JP2015110818A - Surface treatment method and surface treatment system of heat transfer pipe of steam generator - Google Patents
Surface treatment method and surface treatment system of heat transfer pipe of steam generator Download PDFInfo
- Publication number
- JP2015110818A JP2015110818A JP2013253404A JP2013253404A JP2015110818A JP 2015110818 A JP2015110818 A JP 2015110818A JP 2013253404 A JP2013253404 A JP 2013253404A JP 2013253404 A JP2013253404 A JP 2013253404A JP 2015110818 A JP2015110818 A JP 2015110818A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- transfer tube
- surface treatment
- potential
- treatment liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Chemical Treatment Of Metals (AREA)
Abstract
Description
本発明は、蒸気発生器の伝熱管の表面処理方法及び表面処理システムに関する。 The present invention relates to a surface treatment method and a surface treatment system for a heat transfer tube of a steam generator.
蒸気発生器(SG)に用いられている伝熱管は、耐応力腐食割れ(SCC)性を優先課題として、ステンレス鋼(SUS)から、Ni基合金、例えばAlloy600、Alloy690TT、Alloy800等へと変遷してきた。これらNi基合金は、耐SCC性に優れるものの、高負荷運転時に、AOA(Axial offset anomaly:燃料の軸方向出力)ポテンシャルの低下や被ばく線量の上昇を起こし易いことが知られていた。 Heat transfer tubes used in steam generators (SG) have changed from stainless steel (SUS) to Ni-based alloys such as Alloy 600, Alloy 690TT, Alloy 800, etc., with stress corrosion cracking (SCC) resistance as a priority issue. It was. Although these Ni-based alloys are excellent in SCC resistance, it has been known that they are likely to cause a decrease in AOA (Axial offset anomaly) potential and an increase in exposure dose during high-load operation.
このうち、AOAポテンシャルの低下の原因は、次のようであると考えられている。例えば加圧水型原子炉(PWR)の一次系において、伝熱管は、液体との接触面積が最も大きい部材の一つである。この伝熱管にNi基合金が用いられているため、一次冷却水に溶け出すNiイオンの割合がFeイオンに比べて大きくなる。そのため、高負荷運転時のサブクール沸騰部に余剰のNiイオンがNiOとして析出し、NiOに取り込まれたB(ホウ素)化合物が出力の低下をもたらすためであると考えられる。 Among these, the cause of the decrease in the AOA potential is considered as follows. For example, in the primary system of a pressurized water reactor (PWR), the heat transfer tube is one of the members having the largest contact area with the liquid. Since a Ni-based alloy is used for this heat transfer tube, the proportion of Ni ions that dissolve into the primary cooling water is greater than that of Fe ions. Therefore, it is considered that excessive Ni ions precipitate as NiO in the subcooled boiling portion during high-load operation, and the B (boron) compound taken into NiO causes a decrease in output.
また、被ばく線量の上昇の原因に関しては、一次冷却水中に溶出した余剰のNiイオンが還元されて金属Ni(Coを含む。)として燃料表面に析出し、原子炉プラント停止時に一次系内が酸化性雰囲気となることでこの金属Niが一次冷却水中に溶出し、一次系全体に回って機器表面に付着するためと考えられる。 As for the cause of the increase in exposure dose, surplus Ni ions eluted in the primary cooling water are reduced and deposited on the fuel surface as metallic Ni (including Co), and the primary system is oxidized when the reactor plant is shut down. It is considered that this metallic Ni elutes in the primary cooling water due to the atmosphere, and adheres to the equipment surface around the entire primary system.
そのため、伝熱管からのNi溶出を低減させる方法として、伝熱管の内表面に微小粒径のビーズを用いてブラスト処理を施した後、高温水を流通させることで、伝熱管の内表面に表面皮膜を形成させる方法が提案されている(例えば、特許文献1参照。)。このように、Ni基合金からなる伝熱管については、AOAポテンシャルの低下と被ばく線量の上昇を抑制するための方法が検討されている。 Therefore, as a method of reducing the elution of Ni from the heat transfer tube, the inner surface of the heat transfer tube is subjected to a blasting process using beads having a small particle diameter, and then the high temperature water is circulated on the inner surface of the heat transfer tube. A method for forming a film has been proposed (see, for example, Patent Document 1). As described above, methods for suppressing a decrease in AOA potential and an increase in exposure dose have been studied for heat transfer tubes made of a Ni-based alloy.
本発明は、PWR運転中の伝熱管内からのNi溶出を抑制し、AOAポテンシャルの低下や被ばく線量の上昇を抑制する方法及びシステムを提供することを目的とする。 An object of the present invention is to provide a method and system for suppressing Ni elution from the inside of a heat transfer tube during PWR operation and suppressing a decrease in AOA potential and an increase in exposure dose.
本発明の伝熱管の表面処理方法の一態様は、Ni基合金からなる蒸気発生器の伝熱管の表面処理方法であって、前記伝熱管内に処理液を通流する工程と、前記処理液のpHを5.5以上6.5以下に調整する工程と、前記伝熱管の表面電位を0V.vs.SHE以上に調整する工程とを備え、前記伝熱管の表面にFeの酸化物及び/又はCrとFeの複合酸化物からなる表面皮膜を形成することを特徴とする。 One aspect of the heat treatment tube surface treatment method of the present invention is a surface treatment method for a heat transfer tube of a steam generator made of a Ni-based alloy, the step of flowing a treatment solution into the heat transfer tube, and the treatment solution Adjusting the pH of the tube to 5.5 or more and 6.5 or less, and adjusting the surface potential of the heat transfer tube to 0V. vs. And a step of adjusting to more than SHE, and forming a surface film made of an oxide of Fe and / or a composite oxide of Cr and Fe on the surface of the heat transfer tube.
本発明の伝熱管の表面処理システムの一態様は、Ni基合金からなる蒸気発生器の伝熱管の表面処理システムであって、前記伝熱管内に処理液を循環させる処理液ラインと、前記処理液ライン上に配置され、前記処理液のpHを5.5以上6.5以下に調整する弱酸調整槽と、前記伝熱管の表面電位を0V.vs.SHE以上に調整する電位調整機構を備え、前記伝熱管の表面にFeの酸化物及び/又はCrとFeの複合酸化物からなる表面皮膜を形成することを特徴とする。 One aspect of the heat transfer tube surface treatment system of the present invention is a surface treatment system for a steam generator heat transfer tube made of a Ni-based alloy, the treatment liquid line circulating the treatment liquid in the heat transfer tube, and the treatment A weak acid adjusting tank which is arranged on the liquid line and adjusts the pH of the treatment liquid to 5.5 or more and 6.5 or less, and the surface potential of the heat transfer tube is set to 0V. vs. A potential adjusting mechanism for adjusting to SHE or higher is provided, and a surface film made of an oxide of Fe and / or a composite oxide of Cr and Fe is formed on the surface of the heat transfer tube.
本発明によれば、PWR運転中のNi溶出を抑制し、AOAポテンシャルの低下や被ばく線量の上昇を抑制することができる。 According to the present invention, Ni elution during PWR operation can be suppressed, and a decrease in AOA potential and an increase in exposure dose can be suppressed.
以下、本発明の実施の形態を、図面を用いて説明する。
図1は実施形態の蒸気発生器の伝熱管の表面処理システム100の要部を概略的に示す図である。図1に示す表面処理システム100は、蒸気発生器1に設置された、Ni基合金からなる伝熱管2内の表面処理を行う。伝熱管2には、内部に一次冷却水を導入する一次冷却水供給管3と、内部の一次冷却水を導出する一次冷却水導出管4とが接続されており、一次冷却水供給管3、伝熱管2及び一次冷却水導出管4が一次冷却水ライン5を構成している。一次冷却水ライン5には一次冷却水を循環させるポンプ6が介装されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a main part of a
また、蒸気発生器1内部の上方には、蒸気室7が形成されている。蒸気室7には、二次冷却水を導入する二次冷却水供給管8と、蒸気を排出する蒸気排出管9が接続されている。蒸気発生器1の運転時は、図示しない原子炉で生成された一次冷却水が伝熱管2に導入され、伝熱管2内を通流する間に、蒸気室7に供給された二次冷却水と熱交換し、当該二次冷却水を加熱して蒸気を発生させる。また、熱交換によって降温された一次冷却水は、伝熱管2内から一次冷却水導出管4を介して原子炉に戻される。
A
一次冷却水供給管3及び一次冷却水導出管4には、表面処理ライン10を介して弱酸調整槽11が接続されている。表面処理ライン10には、処理液Lを移送する処理液ポンプ12が介装され、処理液Lを伝熱管2及び弱酸調整槽11間を循環させるように構成されている。
A weak
また、弱酸調整槽11には、弱酸調整槽11にそれぞれ酸素ガス、窒素ガスを供給する酸素ガスボンベ13、窒素ガスボンベ14及び弱酸調整槽11内の処理液Lをサンプリングするサンプリング管15が接続されている。サンプリング管15上には、処理液Lの、溶存酸素濃度を測定する溶存酸素計16及びpHを測定するpH計17が設置されている。サンプリング管15には、処理液Lを移送するポンプ18が介装されており、処理液Lは、サンプリング管15上で溶存酸素濃度及びpHが測定された後、弱酸調整槽11に戻される。
The weak
また、表面処理システム100は、伝熱管2の表面電位を測定する電位測定装置19を備えている。伝熱管2及び電位測定装置19が伝熱管試料極接続ライン20で接続され、参照電極21が伝熱管2内の一次冷却水導出管4の開口付近に設置されている。一次冷却水ライン5及び表面処理ライン10には、流路を一次冷却水ライン5又は表面処理ライン10に切替えるためのバルブ22〜25が介装されている。
In addition, the
ここで、Ni、Fe、Crの腐食電位について説明する。図2は、温度25℃におけるNiの電位−pH図である。図2よりNiイオンは、pHがおおよそ8.5以下、腐食電位が0V.vs.SHE付近で安定化し易く、水に溶解し易い特性があることが分かる。 Here, the corrosion potential of Ni, Fe, and Cr will be described. FIG. 2 is a potential-pH diagram of Ni at a temperature of 25 ° C. From FIG. 2, it can be seen that Ni ions have a characteristic that the pH is approximately 8.5 or less and the corrosion potential is easily stabilized in the vicinity of 0 V. vs. SHE and is easily dissolved in water.
図3は、温度25℃におけるCrの電位−pH図である。CrはpHがおおよそ5.5以上12以下、腐食電位が−1.1V.vs.SHE以上0.5V.vs.SHE以下程度の範囲で酸化物を形成し、不動態化し易いことが分かる。図4は、温度25℃におけるFeの電位−pH図である。図4より、FeはpHがおおよそ2以上、腐食電位が−0.3V.vs.SHE以上0.8V.vs.SHE以下程度の範囲で酸化物を形成し、不動態化し易いことが分かる。したがって、Ni、Cr及びFeを含有する合金の表面に、pHを5.5以上8以下でかつ腐食電位を±0V.vs.SHE以上に調整した液体を接触させることによって、Niイオンは溶解し、FeとCrは酸化物になり易い状態に導くことが可能となる。
FIG. 3 is a potential-pH diagram of Cr at a temperature of 25 ° C. It can be seen that Cr forms an oxide in the range of about pH 5.5 to 12 and corrosion potential in the range of about -1.1 V. vs. SHE to 0.5 V. vs. SHE, and is easily passivated. FIG. 4 is a potential-pH diagram of Fe at a temperature of 25 ° C. From FIG. 4, it can be seen that Fe forms an oxide in the range of about
また、図5、6、7はそれぞれ、温度300℃におけるNi、Cr及びFeの電位−pH図である。温度300℃になるとNiが溶解しやすいpHは5.5程度と、温度25℃に比べてより酸性側に変移しているが、pH5.5ではFeとCrは酸化物を形成し易い領域にあり、NiがFe及びCrに比べて溶解し易い傾向には変化はない。 5, 6, and 7 are potential-pH diagrams of Ni, Cr, and Fe, respectively, at a temperature of 300 ° C. At a temperature of 300 ° C., the pH at which Ni is easily dissolved is about 5.5, which is more acidic than at a temperature of 25 ° C., but at pH 5.5, Fe and Cr are in a region where oxides are easily formed. There is no change in the tendency of Ni to dissolve more easily than Fe and Cr.
次に、本実施形態の表面処理方法について説明する。先ず、原子炉プラント起動前に、伝熱管2を蒸気発生器1内に組み付けた状態、つまり蒸気発生器1の組立状態で、バルブ22〜25の開閉を行い、伝熱管2及び表面処理ライン10による循環流路を構成する。弱酸調整槽11から、処理液Lとして酸性水溶液を一次冷却水供給管3に供給し、この処理液Lを表面処理ライン10に循環させる。
Next, the surface treatment method of this embodiment will be described. First, before starting the nuclear reactor plant, the
処理液Lは、伝熱管2内を流通する過程で伝熱管2内表面に表面被膜を形成する。伝熱管2は、Ni、Cr及びFeを含有するNi基合金で構成されている。したがって、上述したように、腐食電位とpHの関係から、例えば、処理液LのpHを5.5以上に調整し、伝熱管2の表面電位を0V.vs.SHE以上に調整することで、伝熱管2内表面のNiをNiイオンとして溶出させるとともに、Feの酸化物及び/又はCrとFeの複合酸化物を形成させて、Fe又はFeとCrを富化した表面被膜を形成することができる。また、温度が上昇するとNiが溶解しやすいpHは小さくなる(酸性側へ変移する)ため、処理液LをpH6.5以下に調整する。
The treatment liquid L forms a surface coating on the inner surface of the
処理液LのpH調整には、好ましくはホウ酸又はシュウ酸の水溶液が用いられる。ホウ酸は中性子吸収材で使用されている薬品であるため、好適である。また、シュウ酸は高温になると分解するので、原子炉プラントへの影響が少なく、好適である。 For adjusting the pH of the treatment liquid L, an aqueous solution of boric acid or oxalic acid is preferably used. Boric acid is preferred because it is a chemical used in neutron absorbers. Moreover, since oxalic acid decomposes at a high temperature, it has little influence on the nuclear reactor plant and is preferable.
処理液LのpHは、pH計17の測定値に基き、弱酸調整槽11において処理液Lにホウ酸水溶液(又はシュウ酸水溶液。)を添加することで調整する。また、伝熱管2の表面電位は、電位測定装置19の測定値に基いて、酸素ガスボンベ13及び窒素ガスボンベ14からそれぞれ弱酸調整槽11に酸素ガス及び窒素ガスを供給することで調整する。処理液L中の溶存酸素濃度を上昇させることで、処理液Lの腐食電位を上昇させることができ、溶存酸素濃度を低下させることで、伝熱管2の表面電位を低下させることができる。なお、処理液Lに窒素ガスを供給することで、処理液L中の溶存酸素濃度を低下させ、伝熱管2の表面電位を低下させることができる。
The pH of the treatment liquid L is adjusted by adding a boric acid aqueous solution (or oxalic acid aqueous solution) to the treatment liquid L in the weak
また、図5〜7の結果より、ホウ酸水溶液(又はシュウ酸水溶液。)の温度は、特に限定されず、常温(25℃程度)〜300℃であってよい。また、処理液Lの循環流量、循環時間は、処理液Lとして用いる酸性水溶液や伝熱管2を構成する材料に応じて適宜変更する。
From the results of FIGS. 5 to 7, the temperature of the boric acid aqueous solution (or oxalic acid aqueous solution) is not particularly limited, and may be room temperature (about 25 ° C.) to 300 ° C. Further, the circulation flow rate and the circulation time of the treatment liquid L are appropriately changed according to the acidic aqueous solution used as the treatment liquid L and the material constituting the
また、ホウ酸水溶液(又はシュウ酸水溶液。)の濃度は、0.005〜5.0mol/Lの範囲であることが好ましい。ここで、図8は、ホウ酸水溶液の温度とpHの関係を測定した結果を示すグラフである。図8より、25℃でのホウ酸水溶液は、濃度1.0mol/LでpH4.7程度、0.11mol/LでpH5.1程度、0.0093mol/LでpH5.6程度であった。 The concentration of the boric acid aqueous solution (or oxalic acid aqueous solution) is preferably in the range of 0.005 to 5.0 mol / L. Here, FIG. 8 is a graph showing the results of measuring the relationship between the temperature and pH of the boric acid aqueous solution. From FIG. 8, the boric acid aqueous solution at 25 ° C. had a pH of about 4.7 at a concentration of 1.0 mol / L, a pH of about 5.1 at 0.11 mol / L, and a pH of about 5.6 at 0.0093 mol / L.
処理液Lは、伝熱管2内を通流することで、溶出したNiイオンを含むことになり、NiOや金属Niが析出する可能性もある。そのため、表面処理ライン10の一次冷却水導出管4及び弱酸調整槽11の間に、処理液L中のNiイオンを吸着除去するイオン交換装置26を備えることが好ましい、また、析出したNiOや金属Niなどの固形物をろ過除去するフィルタ27を備えることが好ましい。これにより、処理液Lの使用効率を向上させ、廃液量を低減することができる。
The treatment liquid L contains the eluted Ni ions by flowing through the
また、本実施形態の表面処理方法で伝熱管2の表面処理を行った後、バルブ22〜25を開閉して一次冷却水ライン5を構成して原子炉プラントを起動する。このとき、伝熱管2内表面の処理液Lを洗浄するために、原子炉プラント起動前に伝熱管2内に純水を通流することが好ましい。ただし、上述したようにホウ酸は一次冷却水中に含まれるため、処理液LのpH調整にホウ酸水溶液を用いた場合には、洗浄は行わなくても原子炉プラントへの影響は少ない。
Moreover, after performing the surface treatment of the
なお、弱酸調整槽11内の処理液Lの温度調整や、ホウ酸水溶液の供給量の制御、酸素ガス、窒素ガスの供給量の制御は原子炉プラントに通常設置されている計測器及び制御装置により行うことができる。
Note that the temperature adjustment of the treatment liquid L in the weak
以上、本実施形態の表面処理方法及び表面処理システムによれば、Ni基合金で形成された伝熱管表面に、Feの酸化物及び/又はCrとFeの複合酸化物からなる表面被膜を形成することで、PWR運転中のNi溶出を抑制し、AOAポテンシャルの低下や被ばく線量の上昇を抑制することができる。 As described above, according to the surface treatment method and the surface treatment system of the present embodiment, a surface film made of an oxide of Fe and / or a composite oxide of Cr and Fe is formed on the surface of a heat transfer tube formed of a Ni-based alloy. Thus, it is possible to suppress Ni elution during PWR operation, and to suppress a decrease in AOA potential and an increase in exposure dose.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1…蒸気発生器、2…伝熱管、3…一次冷却水供給管、4…一次冷却水導出管、5…一次冷却水ライン、6,18…ポンプ、7…蒸気室、8…二次冷却水供給管、9…蒸気排出管、10…表面処理ライン、11…弱酸調整槽、12…処理液ポンプ、13…酸素ガスボンベ、14…窒素ガスボンベ、15…サンプリング管、16…溶存酸素計、17…pH計、19…電位測定装置、20…伝熱管試料極接続ライン、21…参照電極、22,23,24,25…バルブ、26…イオン交換装置、27…フィルタ、100…表面処理システム、L…処理液。
DESCRIPTION OF
Claims (5)
前記伝熱管内に処理液を通流する工程と、
前記処理液のpHを5.5以上6.5以下に調整する工程と、
前記伝熱管の表面電位を0V.vs.SHE以上に調整する工程と
を備え、
前記伝熱管の表面にFeの酸化物及び/又はCrとFeの複合酸化物からなる表面皮膜を形成することを特徴とする伝熱管の表面処理方法。 A surface treatment method for a heat transfer tube of a steam generator made of a Ni-based alloy,
Flowing the treatment liquid into the heat transfer tube;
Adjusting the pH of the treatment liquid to 5.5 or more and 6.5 or less;
The surface potential of the heat transfer tube is set to 0V. vs. A step of adjusting to more than SHE,
A surface treatment method for a heat transfer tube, comprising forming a surface film made of an oxide of Fe and / or a composite oxide of Cr and Fe on the surface of the heat transfer tube.
前記伝熱管内に処理液を循環させる処理液ラインと、
前記処理液ライン上に配置され、前記処理液のpHを5.5以上6.5以下に調整する弱酸調整槽と、
前記伝熱管の表面電位を0V.vs.SHE以上に調整する電位調整機構を備え、
前記伝熱管の表面にFeの酸化物及び/又はCrとFeの複合酸化物からなる表面皮膜を形成することを特徴とする伝熱管の表面処理システム。 A surface treatment system for a heat transfer tube of a steam generator made of a Ni-based alloy,
A treatment liquid line for circulating the treatment liquid in the heat transfer tube;
A weak acid adjusting tank which is arranged on the processing liquid line and adjusts the pH of the processing liquid to 5.5 or more and 6.5 or less;
The surface potential of the heat transfer tube is set to 0V. vs. Equipped with a potential adjustment mechanism that adjusts more than SHE,
A surface treatment system for a heat transfer tube, wherein a surface film made of Fe oxide and / or a composite oxide of Cr and Fe is formed on the surface of the heat transfer tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013253404A JP2015110818A (en) | 2013-12-06 | 2013-12-06 | Surface treatment method and surface treatment system of heat transfer pipe of steam generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013253404A JP2015110818A (en) | 2013-12-06 | 2013-12-06 | Surface treatment method and surface treatment system of heat transfer pipe of steam generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015110818A true JP2015110818A (en) | 2015-06-18 |
Family
ID=53525849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013253404A Pending JP2015110818A (en) | 2013-12-06 | 2013-12-06 | Surface treatment method and surface treatment system of heat transfer pipe of steam generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015110818A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019502106A (en) * | 2015-11-24 | 2019-01-24 | フラマトムFramatome | Steam generator and corresponding manufacturing and use method |
JP2020144138A (en) * | 2020-05-14 | 2020-09-10 | フラマトムFramatome | Steam generator, and manufacturing method and use method therefor |
-
2013
- 2013-12-06 JP JP2013253404A patent/JP2015110818A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019502106A (en) * | 2015-11-24 | 2019-01-24 | フラマトムFramatome | Steam generator and corresponding manufacturing and use method |
JP2020144138A (en) * | 2020-05-14 | 2020-09-10 | フラマトムFramatome | Steam generator, and manufacturing method and use method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6034149B2 (en) | Method of attaching noble metal to components of nuclear power plant | |
JP2015110818A (en) | Surface treatment method and surface treatment system of heat transfer pipe of steam generator | |
JP2002107488A (en) | Method of controlling water quality for nuclear reactor, and nuclear power plant | |
JP5377147B2 (en) | Method of forming nickel ferrite film on carbon steel member | |
KR20140042581A (en) | Oxide layer producing system, oxide layer simulating method of a primary nuclear power plant using the same | |
CN104882184B (en) | The device and method of zincification in ADS reactor lead bismuth eutectic alloys | |
US10204712B2 (en) | Method for inner-contour passivation of steel surfaces of nuclear reactor | |
JP7132162B2 (en) | Corrosion suppression method for carbon steel piping | |
JP2013164269A (en) | Radiation amount reducing method for nuclear power plant constitution member and nuclear power plant | |
JP6322493B2 (en) | Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants | |
JP2005283528A (en) | Reductive nitrogen compound injecting operation method for atomic power plant | |
JP6220294B2 (en) | Anticorrosion method for nuclear power plant | |
US20180277274A1 (en) | Method for decontaminating nickel-based alloy | |
JP2016099159A (en) | Method and apparatus for suppressing adhesion of radionuclide to carbon steel member | |
RU2120143C1 (en) | Water chemistry organizing process | |
EP2833366B1 (en) | Radiation source reducing system and method for atomic power plant | |
JP2018100836A (en) | Method of forming radioactive substance adhesion inhibit coating | |
TWI277102B (en) | Method of reducing corrosion of nuclear reactor structural material | |
JP6517981B2 (en) | Method of repairing fuel assembly, method of manufacturing fuel assembly | |
JP6921020B2 (en) | Exposure reduction method | |
JPH0784090A (en) | Method and device for injecting metal ion into reactor primary coolant | |
JP3266485B2 (en) | Boiling water nuclear power plant, method of operating the same, and method of forming oxide film on wetted surface of its component | |
JP2019157215A (en) | Corrosion prevention method of carbon steel member of plant | |
JP2020187007A (en) | Chemical injection device and chemical injection method | |
JP2008045924A (en) | Device for restraining chrome from adhering in nuclear power plant and method employed by such device |