JP2021063249A - Terminal material for connectors - Google Patents

Terminal material for connectors Download PDF

Info

Publication number
JP2021063249A
JP2021063249A JP2019187326A JP2019187326A JP2021063249A JP 2021063249 A JP2021063249 A JP 2021063249A JP 2019187326 A JP2019187326 A JP 2019187326A JP 2019187326 A JP2019187326 A JP 2019187326A JP 2021063249 A JP2021063249 A JP 2021063249A
Authority
JP
Japan
Prior art keywords
layer
silver
nickel
sic
sic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019187326A
Other languages
Japanese (ja)
Inventor
圭栄 樽谷
Yoshie Tarutani
圭栄 樽谷
賢治 久保田
Kenji Kubota
賢治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019187326A priority Critical patent/JP2021063249A/en
Publication of JP2021063249A publication Critical patent/JP2021063249A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a terminal material for connectors which has excellent heat resistance, improves wear resistance by preventing peeling, and is capable of keeping contact resistance low.SOLUTION: The terminal material for connectors includes: a substrate in which at least a surface layer is made of copper or a copper alloy; a ground layer formed on the substrate; and a silver layer formed on the ground layer, made of silver or a silver alloy, and having a film thickness of 0.5 μm or more and 15 μm or less. The ground layer contains nickel as a main component and has, at least at an interface with the silver layer, an Ni-SiC composite layer in which nickel and SiC particles are co-deposited. The amount of co-deposited SiC in the Ni-SiC composite layer is 0.1 mass% or more.SELECTED DRAWING: Figure 1

Description

本発明は、自動車や民生機器等の電気配線の接続に使用される有用な皮膜が設けられたコネクタ用端子材に関する。 The present invention relates to a terminal material for a connector provided with a useful film used for connecting electrical wiring of automobiles, consumer devices, and the like.

自動車や民生機器等の電気配線の接続に使用されるコネクタ用端子は、一般に、銅又は銅合金基材の表面に錫、金、銀などのめっきを施した端子材が用いられる。このうち、金、銀などの貴金属をめっきした端子材は、耐熱性に優れるため、高温環境下での使用に適している。また、基材からのCuの拡散を防止するため、基材の表面をニッケル又はニッケル合金からなるニッケル層によって覆うことが多い。
しかしながら、端子材の表面を銀層とする場合、銀はニッケルと相互拡散し難いために密着性が悪く、耐摩耗性が損なわれる不具合がある。また、高温環境下で銀層の表面から侵入した酸素がニッケルを酸化させ、ニッケル層からの銀層の剥離を助長するおそれもある。
As the connector terminals used for connecting electrical wiring of automobiles and consumer equipment, terminal materials in which the surface of a copper or copper alloy base material is plated with tin, gold, silver or the like is generally used. Of these, terminal materials plated with precious metals such as gold and silver have excellent heat resistance and are therefore suitable for use in high-temperature environments. Further, in order to prevent the diffusion of Cu from the base material, the surface of the base material is often covered with a nickel layer made of nickel or a nickel alloy.
However, when the surface of the terminal material is a silver layer, silver is difficult to diffuse with nickel, so that the adhesion is poor and the wear resistance is impaired. In addition, oxygen that has entered from the surface of the silver layer in a high temperature environment may oxidize nickel and promote peeling of the silver layer from the nickel layer.

このようなコネクタ用端子材の密着性を改善するため特許文献1〜3の技術が開示されている。
特許文献1及び特許文献2では、ニッケル等からなる下地層と最表層の銀層との間に、所定の算術平均粗さRaに制御された銅又は銅合金からなる中間層を設けることにより、良好な耐熱性、耐フレッティング性、密着性を実現することができると記載されている。
また、特許文献3には、ニッケル等の下地層の上に、銅を0.5質量%〜30質量%含有する銀−銅含有合金めっき層を形成することが記載されている。
The techniques of Patent Documents 1 to 3 are disclosed in order to improve the adhesion of the terminal material for a connector.
In Patent Document 1 and Patent Document 2, an intermediate layer made of copper or a copper alloy controlled to have a predetermined arithmetic mean roughness Ra is provided between the base layer made of nickel or the like and the silver layer of the outermost layer. It is stated that good heat resistance, fretting resistance, and adhesion can be realized.
Further, Patent Document 3 describes that a silver-copper-containing alloy plating layer containing 0.5% by mass to 30% by mass of copper is formed on a base layer such as nickel.

特開2015−117424号公報Japanese Unexamined Patent Publication No. 2015-117424 特開2010−146926号公報JP-A-2010-146926 特開2011−231369号公報Japanese Unexamined Patent Publication No. 2011-231369

しかしながら、これら特許文献記載のコネクタ用端子材では、高温環境下において、中間層や銀−銅含有合金めっき層中のCuが最表面に拡散して酸化し、接触抵抗を高くするおそれがある。 However, in these terminal materials for connectors described in the patent documents, Cu in the intermediate layer and the silver-copper-containing alloy plating layer may diffuse to the outermost surface and oxidize in a high temperature environment to increase the contact resistance.

本発明は、このような事情に鑑みてなされたもので、優れた耐熱性を有するとともに、剥離を防止して耐摩耗性を向上させ、かつ接触抵抗を低く抑えることができるコネクタ用端子材を提供することを目的とする。 The present invention has been made in view of such circumstances, and a terminal material for a connector which has excellent heat resistance, can prevent peeling, improve wear resistance, and can suppress contact resistance to a low level. The purpose is to provide.

本発明のコネクタ用端子材は、少なくとも表層が銅又は銅合金からなる基材と、該基材の上に形成された下地層と、該下地層の上に形成された銀又は銀合金からなる膜厚0.5μm以上15μm以下の銀層とを備え、前記下地層は、ニッケルを主成分とし、少なくとも前記銀層との界面部に、ニッケルとSiC粒子とが共析してなるNi−SiC複合層を有し、該Ni−SiC複合層は、前記SiCの共析量が0.1質量%以上である。 The terminal material for a connector of the present invention is composed of a base material whose surface layer is at least copper or a copper alloy, a base layer formed on the base material, and silver or a silver alloy formed on the base layer. A silver layer having a thickness of 0.5 μm or more and 15 μm or less is provided, and the base layer contains nickel as a main component, and Ni-SiC formed by co-depositing nickel and SiC particles at least at the interface with the silver layer. It has a composite layer, and the Ni—SiC composite layer has an elution amount of the SiC of 0.1% by mass or more.

本発明のコネクタ用端子材は、表面が耐熱性に優れる銀層により構成されており、その銀層が下地層のNi−SiC複合層の表面に形成されていることから、Ni−SiC複合層中のSiC粒子が銀層に対してアンカー効果を発揮し、銀層との密着性を向上させる。このため、銀層の剥離を防止して耐摩耗性を向上させることができる。このSiC複合層におけるSiCの共析量が0.1質量%未満では、十分なアンカー効果が発揮されず、銀層の剥離を防止できない。また、下地層は、ニッケルを主成分とするものであるから、基材からのCuの拡散を防止し、銀層の接触抵抗を低く抑えることができる。
銀層は、その膜厚が0.5μm未満では、コネクタ端子の微摺動摩耗および抜き挿し動作によって銀層が早期に消失するため、電気的接続信頼性が確保できない。銀層を15μmを超える膜厚としても問題ないが、これ以上厚くしても耐熱性向上の効果は飽和する。
Since the surface of the terminal material for a connector of the present invention is composed of a silver layer having excellent heat resistance, and the silver layer is formed on the surface of the Ni-SiC composite layer of the base layer, the Ni-SiC composite layer The SiC particles inside exert an anchor effect on the silver layer and improve the adhesion with the silver layer. Therefore, it is possible to prevent the silver layer from peeling off and improve the wear resistance. If the amount of SiC coagulated in the SiC composite layer is less than 0.1% by mass, a sufficient anchoring effect cannot be exhibited and peeling of the silver layer cannot be prevented. Further, since the base layer contains nickel as a main component, it is possible to prevent the diffusion of Cu from the base material and suppress the contact resistance of the silver layer to a low level.
If the film thickness of the silver layer is less than 0.5 μm, the silver layer disappears at an early stage due to slight sliding wear of the connector terminal and the insertion / removal operation, so that the electrical connection reliability cannot be ensured. There is no problem if the silver layer has a film thickness of more than 15 μm, but even if it is made thicker than this, the effect of improving heat resistance is saturated.

コネクタ用端子材の一つの態様としては、前記下地層は、前記基材の表面を覆うニッケル又はニッケル合金からなるニッケル層と、該ニッケル層の上に形成された前記Ni−SiC複合層とからなり、前記ニッケル層の膜厚は0.2μm以上3.0μm以下であり、前記Ni−SiC複合層は、膜厚が0.1μm以上2.0μm以下であり、前記SiC粒子の共析量が8.0質量%以下である。 In one embodiment of the terminal material for a connector, the base layer is composed of a nickel layer made of nickel or a nickel alloy covering the surface of the base material, and the Ni-SiC composite layer formed on the nickel layer. The thickness of the nickel layer is 0.2 μm or more and 3.0 μm or less, the thickness of the Ni—SiC composite layer is 0.1 μm or more and 2.0 μm or less, and the amount of eutectoid of the SiC particles is It is 8.0% by mass or less.

Ni−SiC複合層中にSiC粒子を上記の平均粒径、共析量で共析させることにより、アンカー効果を適切に発揮させることができる。SiC粒子の共析量が8.0質量%を超えると、Ni−SiC複合層が脆くなる。 By evaporating the SiC particles in the Ni—SiC composite layer with the above average particle size and elution amount, the anchor effect can be appropriately exhibited. When the amount of eutectoid of SiC particles exceeds 8.0% by mass, the Ni—SiC composite layer becomes brittle.

Ni−SiC複合層の膜厚は0.1μm未満では、層中にSiCが共析されにくく、十分なアンカー効果を得られないおそれがある。Ni−SiC複合層の膜厚が2.0μmを超えると、加工時に割れを招きやすい。
この下地層は、基材の表面を覆うニッケル層とNi−SiC複合層との複層構造であり、Ni−SiC複合層の膜厚が0.1μm以上あるから、基材からのCuの拡散防止のためには、ニッケル層の膜厚として0.2μm以上あるとよい。この場合、ニッケル層の膜厚はCuの拡散を防ぐためには3.0μmで十分であり、これ以上厚いと加工時に割れを招きやすい。
なお、SiC粒子は、その平均粒径がNi−SiC複合層の膜厚以下とは限らず、Ni−SiC複合層の表面からわずかに突出して存在しているものも含まれる。
If the film thickness of the Ni—SiC composite layer is less than 0.1 μm, SiC is unlikely to be co-deposited in the layer, and a sufficient anchoring effect may not be obtained. If the film thickness of the Ni—SiC composite layer exceeds 2.0 μm, cracks are likely to occur during processing.
This base layer has a multi-layer structure of a nickel layer covering the surface of the base material and a Ni-SiC composite layer, and since the thickness of the Ni-SiC composite layer is 0.1 μm or more, diffusion of Cu from the base material For prevention, the thickness of the nickel layer is preferably 0.2 μm or more. In this case, the thickness of the nickel layer is sufficient to be 3.0 μm in order to prevent the diffusion of Cu, and if it is thicker than this, cracks are likely to occur during processing.
The average particle size of the SiC particles is not necessarily less than or equal to the film thickness of the Ni—SiC composite layer, and includes those that slightly protrude from the surface of the Ni—SiC composite layer.

コネクタ用端子材の他の一つの態様は、前記下地層は前記Ni−SiC複合層からなり、膜厚が0.4μm以上3.0μm以下であり、前記SiC粒子の共析量が3.0質量%以下である。 In another aspect of the terminal material for the connector, the base layer is made of the Ni-SiC composite layer, the film thickness is 0.4 μm or more and 3.0 μm or less, and the eutectoid amount of the SiC particles is 3.0. It is less than mass%.

この態様は、下地層をNi−SiC複合層のみとしたものであり、単一のめっき処理にて下地層を形成することができる。この場合、ニッケル層を有していないので、基材からのCu拡散防止のために、Ni−SiC複合層の膜厚は0.4μm以上あるとよい。一方、Ni−SiC複合層の膜厚が3.0μmを超えると加工時に割れを招きやすい。 In this embodiment, the base layer is only a Ni—SiC composite layer, and the base layer can be formed by a single plating process. In this case, since it does not have a nickel layer, the film thickness of the Ni—SiC composite layer is preferably 0.4 μm or more in order to prevent Cu diffusion from the base material. On the other hand, if the film thickness of the Ni—SiC composite layer exceeds 3.0 μm, cracks are likely to occur during processing.

本発明によれば、優れた耐熱性を有するとともに、剥離を防止して耐摩耗性を向上させ、かつ接触抵抗を低く抑えることができる。 According to the present invention, it has excellent heat resistance, prevents peeling, improves wear resistance, and can suppress contact resistance low.

本発明の第1実施形態に係るコネクタ用端子材を模式的に示す断面図である。It is sectional drawing which shows typically the terminal material for a connector which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るコネクタ用端子材を模式的に示す断面図である。It is sectional drawing which shows typically the terminal material for a connector which concerns on 2nd Embodiment of this invention.

以下、本発明の実施形態について図面を用いて説明する。図1は第1実施形態、図2は第2実施形態を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment, and FIG. 2 shows a second embodiment.

<第1実施形態>
[コネクタ用端子材の構成]
第1実施形態のコネクタ用端子材1は、図1に断面を模式的に示したように、少なくとも表層が銅又は銅合金からなる板状の基材2と、該基材2の上面に形成された下地層3と、下地層3の上に形成された銀又は銀合金からなる銀層4とを備えている。
<First Embodiment>
[Structure of terminal material for connector]
The connector terminal material 1 of the first embodiment is formed on a plate-shaped base material 2 having at least a surface layer made of copper or a copper alloy and an upper surface of the base material 2, as schematically shown in the cross section in FIG. The base layer 3 is provided with a silver layer 4 made of silver or a silver alloy formed on the base layer 3.

基材2の表層は、銅または銅合金からなるものであれば、特に、その組成が限定されるものではない。本実施形態では、図1に示すように、基材2は銅又は銅合金からなる板材により構成されているが、母材の表面に銅めっき又は銅合金めっきが施されためっき材により構成されてもよい。この場合、母材としては、無酸素銅(C10200)やCu−Mg系銅合金(C18665)等を適用できる。 The composition of the surface layer of the base material 2 is not particularly limited as long as it is made of copper or a copper alloy. In the present embodiment, as shown in FIG. 1, the base material 2 is made of a plate material made of copper or a copper alloy, but is made of a plating material having copper plating or copper alloy plating on the surface of the base material. You may. In this case, oxygen-free copper (C10200), Cu—Mg-based copper alloy (C18665), or the like can be applied as the base material.

下地層3は、ニッケルを主成分としており、その上に形成される銀層4への基材2からのCuの拡散を抑制する機能を有する。
この第1実施形態では、下地層3は、ニッケル又はニッケル合金からなるニッケル層5と、ニッケル層5の上に形成されたNi−SiC複合層6との二層構造とされている。
ニッケル層5は、基材2上にニッケル又はニッケル合金からなるニッケルめっきを施すことにより被覆される。したがって、下地層3のうち、基材2との界面部にニッケル層5が形成される。このニッケル層5の膜厚は0.2μm以上3.0μm以下である。
第1実施形態の下地層3は、ニッケル層5とNi−SiC複合層6との二層構造であり、後述するようにNi−SiC複合層6の膜厚の下限が0.1μmであるので、基材2からのCuの拡散を防ぐためにニッケル層5の膜厚は0.2μm以上あるとよい。ニッケル層5の膜厚の上限は3.0μmで十分であり、これ以上厚いと加工時に割れを招きやすい。なお、ニッケル層5は、ニッケル又はニッケル合金からなるものであれば、特に、その組成が限定されるものではない。
The base layer 3 contains nickel as a main component, and has a function of suppressing the diffusion of Cu from the base material 2 into the silver layer 4 formed on the base layer 3.
In this first embodiment, the base layer 3 has a two-layer structure consisting of a nickel layer 5 made of nickel or a nickel alloy and a Ni—SiC composite layer 6 formed on the nickel layer 5.
The nickel layer 5 is coated by applying nickel plating made of nickel or a nickel alloy on the base material 2. Therefore, of the base layer 3, the nickel layer 5 is formed at the interface with the base material 2. The film thickness of the nickel layer 5 is 0.2 μm or more and 3.0 μm or less.
The base layer 3 of the first embodiment has a two-layer structure of a nickel layer 5 and a Ni-SiC composite layer 6, and the lower limit of the film thickness of the Ni-SiC composite layer 6 is 0.1 μm as described later. The thickness of the nickel layer 5 is preferably 0.2 μm or more in order to prevent the diffusion of Cu from the base material 2. The upper limit of the film thickness of the nickel layer 5 is 3.0 μm, and if it is thicker than this, cracks are likely to occur during processing. The composition of the nickel layer 5 is not particularly limited as long as it is made of nickel or a nickel alloy.

Ni−SiC複合層6は、下地層3のうち、銀層4との界面部に形成されている。このNi−SiC複合層6は、ニッケル(Ni)とSiC粒子が共析(分散)してなるものであり、Ni−SiC複合層6中のSiC粒子61が銀層4に対してアンカー効果を発揮し、銀層4との密着性を向上させる。このため、銀層4の剥離を防止して耐摩耗性を向上させることができる。また、Ni−SiC複合層6は、ニッケルが多く含有されているから、ニッケル層5と同様、基材2からのCuの拡散防止効果があり、銀層4の接触抵抗を低く抑えることができる。 The Ni—SiC composite layer 6 is formed at the interface with the silver layer 4 of the base layer 3. The Ni-SiC composite layer 6 is formed by evaporating (dispersing) nickel (Ni) and SiC particles, and the SiC particles 61 in the Ni-SiC composite layer 6 exert an anchor effect on the silver layer 4. It exerts its effect and improves the adhesion with the silver layer 4. Therefore, it is possible to prevent the silver layer 4 from peeling off and improve the wear resistance. Further, since the Ni—SiC composite layer 6 contains a large amount of nickel, it has an effect of preventing the diffusion of Cu from the base material 2 as in the nickel layer 5, and the contact resistance of the silver layer 4 can be suppressed low. ..

このNi−SiC複合層6は、膜厚が0.1μm以上2.0μm以下であり、SiC粒子の共析量が0.1質量%以上8.0質量%以下である。
Ni−SiC複合層6の膜厚が0.1μm未満では、薄すぎるために銀層4に対するアンカー効果が乏しくなり、銀層4が剥がれやすくなる。Ni−SiC複合層6の膜厚が2.0μmを超えると加工時に割れを招きやすい。SiC粒子61の共析量が0.1質量%未満では、十分なアンカー効果を得ることが難しく、SiC粒子の共析量が8.0質量%を超えると、Ni−SiC複合層6が脆くなる。ここで、SiC粒子の共析量は、Ni−SiC複合層中に含まれるSiC粒子の質量比率を指す。
なお、SiC粒子61の平均粒径は90nm以上300nm以下が好ましく、90nm未満では、十分なアンカー効果を得られないおそれがあり、300nmを超えると、SiC粒子が大きいために、電析時にSiC粒子がニッケルめっき層に取り込まれ難く、共析が困難となり、所望のNi−SiC複合層6が得られない場合がある。また、SiC粒子61は、その平均粒径がNi−SiC複合層6の膜厚以下とは限らず、Ni−SiC複合層6の表面からわずかに突出して存在しているものも含まれる。
The Ni—SiC composite layer 6 has a film thickness of 0.1 μm or more and 2.0 μm or less, and an elution amount of SiC particles of 0.1% by mass or more and 8.0% by mass or less.
If the film thickness of the Ni—SiC composite layer 6 is less than 0.1 μm, the anchor effect on the silver layer 4 becomes poor because it is too thin, and the silver layer 4 is easily peeled off. If the film thickness of the Ni—SiC composite layer 6 exceeds 2.0 μm, cracks are likely to occur during processing. If the elution amount of the SiC particles 61 is less than 0.1% by mass, it is difficult to obtain a sufficient anchor effect, and if the eutectoid amount of the SiC particles exceeds 8.0% by mass, the Ni—SiC composite layer 6 becomes brittle. Become. Here, the amount of eutectoid of SiC particles refers to the mass ratio of SiC particles contained in the Ni—SiC composite layer.
The average particle size of the SiC particles 61 is preferably 90 nm or more and 300 nm or less, and if it is less than 90 nm, a sufficient anchoring effect may not be obtained. Is difficult to be incorporated into the nickel plating layer, and eutectoidation is difficult, so that the desired Ni—SiC composite layer 6 may not be obtained. Further, the average particle size of the SiC particles 61 is not necessarily equal to or less than the film thickness of the Ni—SiC composite layer 6, and includes particles that slightly protrude from the surface of the Ni—SiC composite layer 6.

銀層4は銀又は銀合金からなり、耐熱性を高める効果がある。銀合金の場合、銀層4の硬度が高められ、耐摩耗性に優れる。 The silver layer 4 is made of silver or a silver alloy and has an effect of increasing heat resistance. In the case of a silver alloy, the hardness of the silver layer 4 is increased and the wear resistance is excellent.

また、この銀層4の膜厚は0.5μm以上15μm以下である。銀層4の膜厚が0.5μm未満では、コネクタ端子の微摺動摩耗および抜き差し動作によって銀層4が早期に消失するため、電気的接続信頼性が確保できない。銀層4を15μmを超える膜厚としても問題はないが、コスト増を招く。 The film thickness of the silver layer 4 is 0.5 μm or more and 15 μm or less. If the film thickness of the silver layer 4 is less than 0.5 μm, the silver layer 4 disappears at an early stage due to slight sliding wear of the connector terminal and the insertion / removal operation, so that the electrical connection reliability cannot be ensured. There is no problem even if the silver layer 4 has a film thickness of more than 15 μm, but it causes an increase in cost.

次に、このコネクタ用端子材1の製造方法について説明する。このコネクタ用端子材1の製造方法は、基材2となる少なくとも表層が銅又は銅合金からなる板材を洗浄する前処理工程と、基材2の表面にニッケル又はニッケル合金からなるニッケルめっきを施してニッケル層5を形成するニッケルめっき工程と、ニッケル層5上にSiC粒子を分散させたニッケルめっき浴からNi−SiC複合層6を形成するNi−SiC複合めっき工程と、Ni−SiC複合層6の上に銀ストライクめっきを施した後に銀又は銀合金からなる銀めっきを施す銀めっき工程とを備える。 Next, a method of manufacturing the terminal material 1 for the connector will be described. The method for manufacturing the terminal material 1 for a connector includes a pretreatment step of cleaning a plate material whose surface layer is at least copper or a copper alloy, which is a base material 2, and nickel plating of nickel or a nickel alloy on the surface of the base material 2. A nickel plating step of forming a nickel layer 5 and a Ni-SiC composite plating step of forming a Ni-SiC composite layer 6 from a nickel plating bath in which SiC particles are dispersed on the nickel layer 5 and a Ni-SiC composite layer 6 It is provided with a silver plating step of performing silver strike plating on the surface and then performing silver plating made of silver or a silver alloy.

[前処理工程]
まず、基材2として、少なくとも表層が銅又は銅合金からなる板材を用意し、この板材に脱脂、酸洗等をすることによって表面を清浄する前処理を行う。
[Pretreatment process]
First, as the base material 2, a plate material whose surface layer is at least made of copper or a copper alloy is prepared, and the surface is cleaned by degreasing, pickling, or the like.

[ニッケルめっき工程]
この基材2の表面に、ニッケル又はニッケル合金からなるめっきを施してニッケル層5を形成する。例えば、スルファミン酸ニッケル300g/L、塩化ニッケル30g/L、ホウ酸30g/Lからなるニッケルめっき浴を用いて、浴温45℃、電流密度3A/dmの条件下でニッケルめっきを施して形成される。なお、このニッケルめっきは、緻密なニッケル主体の膜が得られるものであれば特に限定されず、公知のワット浴を用いて電気めっきにより形成してもよい。
[Nickel plating process]
The surface of the base material 2 is plated with nickel or a nickel alloy to form the nickel layer 5. For example, it is formed by performing nickel plating under the conditions of a bath temperature of 45 ° C. and a current density of 3 A / dm 2 using a nickel plating bath composed of nickel sulfamate 300 g / L, nickel chloride 30 g / L, and boric acid 30 g / L. Will be done. The nickel plating is not particularly limited as long as a dense nickel-based film can be obtained, and may be formed by electroplating using a known watt bath.

[Ni−SiC複合めっき工程]
基材2に形成されたニッケル層5の表面に5質量%〜10質量%の硫酸水溶液を用いて活性化処理を行った後、Ni−SiC複合層を形成する。
このNi−SiC複合めっきのためのめっき浴は、特に浴種は問わないが、ワット浴、スルファミン酸浴が良好である。めっき浴中に分散させられるSiC粒子は、平均粒径が90nm以上300nm以下であり、めっき液に対して0.2g/L以上15g/L以下の含有量とされる。
[Ni-SiC composite plating process]
The surface of the nickel layer 5 formed on the base material 2 is activated with a 5% by mass to 10% by mass sulfuric acid aqueous solution, and then a Ni—SiC composite layer is formed.
The plating bath for this Ni-SiC composite plating is not particularly limited to a bath type, but a watt bath and a sulfamic acid bath are preferable. The SiC particles dispersed in the plating bath have an average particle size of 90 nm or more and 300 nm or less, and have a content of 0.2 g / L or more and 15 g / L or less with respect to the plating solution.

[銀めっき工程]
銀めっき処理工程は、Ni−SiC複合層の上に銀ストライクめっきを施す銀ストライクめっき処理と、その後に銀又は銀合金からなる銀めっきを施す銀めっき処理とからなる。
[Silver plating process]
The silver plating treatment step includes a silver strike plating treatment in which silver strike plating is performed on a Ni-SiC composite layer, and a silver plating treatment in which silver plating made of silver or a silver alloy is subsequently performed.

(銀ストライクめっき処理)
まず、Ni−SiC複合層6に対して5〜10質量%の水酸化カリウム水溶液を用いて活性化処理を行った後、Ni−SiC複合層6上に短時間の銀ストライクめっきを施して薄い銀めっき層を形成する。この銀ストライクめっきは、Ni−SiC複合層との密着性を高めるために施される。この銀ストライクめっきを施すためのめっき浴の組成は、シアン浴、ノーシアン浴のいずれでもよく、特に限定されないが、例えば、シアン化銀(AgCN)1g/L〜5g/L、シアン化カリウム(KCN)80g/L〜120g/Lからなるめっき浴が好適である。そして、この銀めっき浴に対してアノードとしてステンレス鋼(SUS316)を用いて、浴温25℃〜30℃、電流密度1A/dmの条件下で銀めっきを30秒程度施すことにより銀ストライクめっき層が形成される。この銀ストライクめっき層は、その後に銀めっき層が形成されると、層としての識別は困難になる。
(Silver strike plating process)
First, the Ni-SiC composite layer 6 is activated with 5 to 10% by mass of an aqueous potassium hydroxide solution, and then the Ni-SiC composite layer 6 is subjected to short-time silver strike plating to make it thin. Form a silver-plated layer. This silver strike plating is applied to enhance the adhesion with the Ni—SiC composite layer. The composition of the plating bath for applying the silver strike plating may be either a cyanide bath or a no-cyanide bath, and is not particularly limited. For example, silver cyanide (AgCN) 1 g / L to 5 g / L and potassium cyanide (KCN) 80 g. A plating bath consisting of / L to 120 g / L is suitable. Then, using stainless steel (SUS316) as an anode for this silver plating bath, silver strike plating is performed for about 30 seconds under the conditions of a bath temperature of 25 ° C. to 30 ° C. and a current density of 1 A / dm 2. Layers are formed. If the silver-plated layer is subsequently formed, the silver-strike-plated layer becomes difficult to identify as a layer.

(銀めっき処理)
銀ストライクめっき後に銀又は銀合金からなる銀めっきを施して銀めっき層を形成する。この銀めっき層を形成するためのめっき浴の組成は、例えば、銀アンチモン合金めっきの場合であると、シアン化銀(AgCN)30g/L〜50g/L、シアン化カリウム(KCN)100g/L〜150g/L、炭酸カリウム(KCO)15g/L〜40g/L、添加剤(日進化成株式会社製ニッシンブライトK)10g/L〜20g/Lからなる。
そして、このめっき浴に対してアノードとして純銀板を用いて、浴温25℃、電流密度4A/dm〜12A/dmの条件下で銀めっきを施すことにより銀めっき層が形成され、銀ストライクめっき層と一体となって膜厚0.5μm以上15μm以下の銀層4が形成される。
(Silver plating)
After silver strike plating, silver plating made of silver or a silver alloy is applied to form a silver plating layer. The composition of the plating bath for forming the silver plating layer is, for example, silver cyanide (AgCN) 30 g / L to 50 g / L and potassium cyanide (KCN) 100 g / L to 150 g in the case of silver antimony alloy plating. It consists of / L, potassium carbonate (K 2 CO 3 ) 15 g / L to 40 g / L, and an additive (Nissin Bright K manufactured by Nikkei Seisei Co., Ltd.) 10 g / L to 20 g / L.
Then, a silver plating layer is formed by performing silver plating on this plating bath using a pure silver plate as an anode under the conditions of a bath temperature of 25 ° C. and a current density of 4 A / dm 2 to 12 A / dm 2, and silver is formed. A silver layer 4 having a film thickness of 0.5 μm or more and 15 μm or less is formed integrally with the strike plating layer.

このようにして、基材2の上にニッケルめっき、Ni−SiC複合めっき、銀めっきを施すことにより、基材2の表面にニッケル層5、Ni−SiC複合層6及び銀層4が形成されたコネクタ用端子材1が形成される。そして、コネクタ用端子材1に対してプレス加工等を施すことにより、表面に銀層4が位置するコネクタ用端子が形成される。 By performing nickel plating, Ni-SiC composite plating, and silver plating on the base material 2 in this way, a nickel layer 5, a Ni-SiC composite layer 6, and a silver layer 4 are formed on the surface of the base material 2. The terminal material 1 for the connector is formed. Then, by performing press working or the like on the connector terminal material 1, a connector terminal in which the silver layer 4 is located is formed on the surface.

本実施形態のコネクタ用端子材1は、最表面が銀層4により形成されているので、耐熱性に優れている。この場合、銀層4の膜厚が0.5μm未満では、コネクタ端子の微摺動摩耗および抜き差し動作によって銀層が早期に消失するため、電気的接続信頼性が確保できない。銀層4を15μmを超える膜厚としても問題はないが、コスト増を招く。 Since the outermost surface of the connector terminal material 1 of the present embodiment is formed by the silver layer 4, it is excellent in heat resistance. In this case, if the film thickness of the silver layer 4 is less than 0.5 μm, the silver layer disappears at an early stage due to slight sliding wear of the connector terminal and the insertion / removal operation, so that the electrical connection reliability cannot be ensured. There is no problem even if the silver layer 4 has a film thickness of more than 15 μm, but it causes an increase in cost.

また、銀層4の下のNi−SiC複合層6にSiC粒子61が分散しているので、該Ni−SiC複合層6の表面に凹凸が生じ、これがアンカー効果を発揮して銀層4との密着性を向上させている。
また、基材2の表面をニッケル層5が覆っており、その上にNi−SiC複合層6が形成されているので、これらニッケル層5及びNi−SiC複合層6からなる下地層3により、基材2からのCuの拡散を防止でき、耐熱性を向上させることができる。
Further, since the SiC particles 61 are dispersed in the Ni-SiC composite layer 6 under the silver layer 4, the surface of the Ni-SiC composite layer 6 has irregularities, which exerts an anchor effect to form the silver layer 4 and the silver layer 4. The adhesion of is improved.
Further, since the surface of the base material 2 is covered with the nickel layer 5 and the Ni-SiC composite layer 6 is formed on the nickel layer 5, the base layer 3 composed of the nickel layer 5 and the Ni-SiC composite layer 6 is used. It is possible to prevent the diffusion of Cu from the base material 2 and improve the heat resistance.

<第2実施形態>
図2は本発明の第2実施形態のコネクタ用端子材を示す。このコネクタ用端子材11は、基材2の上にニッケルを主成分とする下地層31が形成され、該下地層31の上に銀又は銀合金からなる銀層4が形成されている点は第1実施形態と同様であるが、下地層31が、ニッケルとSiC粒子とが共析してなるNi−SiC複合層6のみからなり、ニッケル層5を有していない点が第1実施形態と相違する。
<Second Embodiment>
FIG. 2 shows a terminal material for a connector according to a second embodiment of the present invention. In the terminal material 11 for a connector, a base layer 31 containing nickel as a main component is formed on the base material 2, and a silver layer 4 made of silver or a silver alloy is formed on the base layer 31. Similar to the first embodiment, but the first embodiment is that the base layer 31 is composed of only the Ni—SiC composite layer 6 formed by co-depositing nickel and SiC particles and does not have the nickel layer 5. Is different from.

この場合、Ni−SiC複合層6は、第1実施形態のものと同様、SiC粒子の平均粒径が90nm以上300nm以下、SiC粒子の共析量が0.1質量%以上3.0質量%以下である。ただし、Ni−SiC複合層6の膜厚は0.4μm以上3.0μm以下とされる。第1実施形態では、ニッケル層5とNi−SiC複合層6とからなる下地層3としたが、この第2実施形態では、下地層31がNi−SiC複合層6のみからなるので、基材2からのCuの拡散防止のために、このNi−SiC複合層6の膜厚として0.4μm以上あるとよい。Ni−SiC複合層の膜厚が3.0μmを超えるのは、共析されるSiC粒子も粒径が大きく量も多く必要になるため、無駄である 。SiCの共析量も、第1実施形態のようなニッケル層5を有しない分、多く共析させると基材2からのCuの拡散を防止させる効果が低下し、加工時に割れを招きやすいので、3.0質量%以下がよい。 In this case, in the Ni-SiC composite layer 6, the average particle size of the SiC particles is 90 nm or more and 300 nm or less, and the eutectoid amount of the SiC particles is 0.1% by mass or more and 3.0% by mass, as in the case of the first embodiment. It is as follows. However, the film thickness of the Ni—SiC composite layer 6 is 0.4 μm or more and 3.0 μm or less. In the first embodiment, the base layer 3 is composed of the nickel layer 5 and the Ni—SiC composite layer 6, but in the second embodiment, the base layer 31 is composed of only the Ni—SiC composite layer 6, so that the base material is used. In order to prevent the diffusion of Cu from 2, the thickness of the Ni—SiC composite layer 6 is preferably 0.4 μm or more. It is useless that the film thickness of the Ni-SiC composite layer exceeds 3.0 μm because the SiC particles to be co-deposited also have a large particle size and require a large amount. Since the amount of SiC coagulated does not have the nickel layer 5 as in the first embodiment, the effect of preventing the diffusion of Cu from the base material 2 is reduced and cracks are likely to occur during processing. , 3.0% by mass or less is preferable.

この第2実施形態のコネクタ用端子材11を製造する場合、第1実施形態の製造方法からニッケルめっき工程を省いたものとなる。すなわち、基材2となる少なくとも表層が銅又は銅合金からなる板材を洗浄する前処理工程と、基材2の表面にSiC粒子を分散させたニッケルめっき浴からNi−SiC複合層6を形成するNi−SiC複合めっき工程と、Ni−SiC複合層6の上に銀ストライクめっきを施した後に銀又は銀合金からなる銀めっきを施す銀めっき工程とを備える。各工程の詳細は、Ni−SiC複合めっき工程におけるめっき膜厚を除いて第1実施形態のものと同様である。 When the connector terminal material 11 of the second embodiment is manufactured, the nickel plating step is omitted from the manufacturing method of the first embodiment. That is, the Ni—SiC composite layer 6 is formed from a pretreatment step of cleaning a plate material whose surface layer is at least copper or a copper alloy as the base material 2 and a nickel plating bath in which SiC particles are dispersed on the surface of the base material 2. It includes a Ni-SiC composite plating step and a silver plating step of performing silver strike plating on the Ni-SiC composite layer 6 and then silver plating made of silver or a silver alloy. The details of each step are the same as those of the first embodiment except for the plating film thickness in the Ni—SiC composite plating step.

この第2実施形態のコネクタ用端子材11は、下地層31がNi−SiC複合層6からのみなるので、ニッケルめっき工程を有しない分、製造工程が少なくなって、省力化される。 In the connector terminal material 11 of the second embodiment, since the base layer 31 is composed only of the Ni—SiC composite layer 6, the number of manufacturing steps is reduced and labor is saved because the nickel plating step is not provided.

その他、細部構成は実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記実施形態では、基材2の上面全域に下地層3,31及び銀層4が形成されることとしたが、基材2の表面の一部に下地層3及び銀層4が形成されていてもよいし、基材2の上面の全域に形成した下地層3,31の上面の一部に銀層4が形成されていてもよい。また、第1実施形態のように下地層3をニッケル層5とNi−SiC複合層6との複層構造とする場合でも、基材2の上面の全域にニッケル層5が形成され、そのニッケル層5の上面の一部にNi−SiC複合層6が形成され、このNi−SiC複合層6の上に銀層4が形成されるものとしてもよい。端子に形成された際に少なくとも接点となる部分の表面が銀層4であればよい。 In addition, the detailed configuration is not limited to the configuration of the embodiment, and various changes can be made without departing from the gist of the present invention. For example, in the above embodiment, the base layers 3, 31 and the silver layer 4 are formed on the entire upper surface of the base material 2, but the base layer 3 and the silver layer 4 are formed on a part of the surface of the base material 2. The silver layer 4 may be formed on a part of the upper surfaces of the base layers 3 and 31 formed on the entire upper surface of the base material 2. Further, even when the base layer 3 has a multi-layer structure of the nickel layer 5 and the Ni—SiC composite layer 6 as in the first embodiment, the nickel layer 5 is formed over the entire upper surface of the base material 2, and the nickel thereof is formed. A Ni-SiC composite layer 6 may be formed on a part of the upper surface of the layer 5, and a silver layer 4 may be formed on the Ni-SiC composite layer 6. It suffices that the surface of at least the portion that becomes a contact when formed on the terminal is the silver layer 4.

銅合金板からなる厚さ0.3mmの基材を用意し、この基材に脱脂、酸洗等をすることによって表面を清浄する前処理を行った後、基材の表面に下地層を形成した。下地層としては、Ni−SiC複合層のみを形成したもの、ニッケル層を形成した後にNi−SiC複合層を形成したものの二種類作製した。そして、5質量%の水酸化カリウム水溶液を用いて下地層の表面を清浄化する活性化処理を行った。この活性化処理後に、下地層が被覆された基材に対して、銀ストライクめっき処理を施した後に銀めっき処理を施した。また、比較のため、下地層としてのNi−SiC複合層を形成せずに、ニッケル層のみを形成し、その上に銀層を形成したものも作製した(試料13)。 A base material having a thickness of 0.3 mm made of a copper alloy plate is prepared, and the base material is pretreated to clean the surface by degreasing, pickling, etc., and then a base layer is formed on the surface of the base material. did. Two types of base layers were prepared, one in which only the Ni-SiC composite layer was formed and the other in which the Ni-SiC composite layer was formed after the nickel layer was formed. Then, an activation treatment for cleaning the surface of the base layer was performed using a 5% by mass potassium hydroxide aqueous solution. After this activation treatment, the base material coated with the base layer was subjected to a silver strike plating treatment and then a silver plating treatment. Further, for comparison, a nickel layer was formed without forming a Ni—SiC composite layer as a base layer, and a silver layer was formed on the nickel layer (Sample 13).

各めっきの条件は以下のとおりとした。
<ニッケルめっき条件>
・めっき浴組成
スルファミン酸ニッケル:300g/L
塩化ニッケル:30g/L
ホウ酸:30g/L
・アノード:ニッケル板
・浴温:45℃
・電流密度:3A/dm
The conditions for each plating were as follows.
<Nickel plating conditions>
-Plating bath composition Nickel sulfamate: 300 g / L
Nickel chloride: 30 g / L
Boric acid: 30 g / L
・ Anode: Nickel plate ・ Bath temperature: 45 ℃
-Current density: 3A / dm 2

<Ni−SiC複合めっき条件>
・めっき浴組成
スルファミン酸ニッケル:300g/L
塩化ニッケル:30g/L
ホウ酸:30g/L
SiC粒子(平均粒径は表1に記載):0.2g/L〜15g/L
・アノード:ニッケル板
・浴温:45℃
・電流密度:5A/dm
<Ni-SiC composite plating conditions>
-Plating bath composition Nickel sulfamate: 300 g / L
Nickel chloride: 30 g / L
Boric acid: 30 g / L
SiC particles (average particle size are listed in Table 1): 0.2 g / L to 15 g / L
・ Anode: Nickel plate ・ Bath temperature: 45 ℃
・ Current density: 5A / dm 2

<銀ストライクめっき条件>
・めっき浴組成
シアン化銀:2g/L、
シアン化カリウム:100g/L
・アノード:ステンレス鋼(SUS316)板
・浴温:25℃
・電流密度:1A/dm
<Silver strike plating conditions>
-Plating bath composition Silver cyanide: 2 g / L,
Potassium cyanide: 100 g / L
・ Anode: Stainless steel (SUS316) plate ・ Bath temperature: 25 ℃
・ Current density: 1A / dm 2

<銀めっき条件>
・めっき浴組成
シアン化銀カリウム:55g/L
シアン化カリウム:150g/L
炭酸カリウム:20g/L
光沢剤(日進化成株式会社製ニッシンブライトK):15ml/L
・アノード:純銀板
・浴温:25℃
・電流密度:5A/dm
<Silver plating conditions>
-Plating bath composition Silver cyanide potassium: 55 g / L
Potassium cyanide: 150 g / L
Potassium carbonate: 20 g / L
Brightener (Nissin Bright K manufactured by Nikkei Seisei Co., Ltd.): 15 ml / L
・ Anode: Pure silver plate ・ Bath temperature: 25 ℃
・ Current density: 5A / dm 2

各試料について、ニッケル層、Ni−SiC複合層、銀層のそれぞれの膜厚、Ni−SiC複合層におけるSiC粒子の共析量、SiC粒子の平均粒径を測定し、耐摩耗性、加熱後の変色度合を評価した。 For each sample, the thickness of each of the nickel layer, Ni-SiC composite layer, and silver layer, the amount of segregation of SiC particles in the Ni-SiC composite layer, and the average particle size of SiC particles were measured, and the abrasion resistance and after heating were measured. The degree of discoloration was evaluated.

[ニッケル層、Ni−SiC複合層、銀層の膜厚の測定]
各層の膜厚は、セイコーインスツル株式会社製の集束イオンビーム装置:FIB(型番:SMI3050TB)を用いて断面加工を行い、傾斜角60°の断面SIM(Scanning Ion Microscopy)像における任意の3箇所の膜厚を測長し、その平均を求めた後、実際の長さに変換した。
なお、Ni−SiC複合層において、SiC粒子の一部が層の表面から突出している場合、膜厚の測定に際しては、その突出している部分は測定せず、層内にSiC粒子が埋没している部分を測定した。
[Measurement of film thickness of nickel layer, Ni-SiC composite layer, silver layer]
The thickness of each layer is determined by cross-section processing using a focused ion beam device: FIB (model number: SMI3050TB) manufactured by Seiko Instruments Co., Ltd., and at any three locations in a cross-section SIM (Scanning Ion Microscope) image with an inclination angle of 60 °. After measuring the length of the film and calculating the average, it was converted to the actual length.
In the Ni-SiC composite layer, when a part of the SiC particles protrudes from the surface of the layer, the protruding portion is not measured when measuring the film thickness, and the SiC particles are buried in the layer. The part was measured.

[SiC粒子の共析量]
加圧酸分解装置を用いて、Ni−SiC複合層の皮膜をSiC粒子ごと溶解して溶液化させた。その溶液を株式会社日立ハイテクサイエンス製の高分解能ICP(誘導結合プラズマ)発光分光分析装置(型番:PS−3500DD)で測定し、SiC粒子の共析量(質量%)を求めた。
[Amount of segregation of SiC particles]
Using a pressurized acid decomposition apparatus, the film of the Ni—SiC composite layer was dissolved together with the SiC particles and made into a solution. The solution was measured with a high-resolution ICP (inductively coupled plasma) emission spectrophotometer (model number: PS-3500DD) manufactured by Hitachi High-Tech Science Corporation, and the amount of eutectoid (mass%) of SiC particles was determined.

[SiC粒子の平均粒径]
SiC粒子の平均粒径はめっき液中に混入される際の粒径である。この平均粒径の測定は、動的光散乱粒径分布測定装置(Malvern社製)を用いて動的光散乱法による粒度分布測定を行い、その分布から平均粒径を算出した。
なお、めっき液中のSiC粒子がNi−SiC複合層中に共析されても、SiC粒子の粒径の変化は生じない。
[Average particle size of SiC particles]
The average particle size of the SiC particles is the particle size when mixed in the plating solution. For the measurement of this average particle size, the particle size distribution was measured by the dynamic light scattering method using a dynamic light scattering particle size distribution measuring device (manufactured by Malvern), and the average particle size was calculated from the distribution.
Even if the SiC particles in the plating solution are co-deposited in the Ni—SiC composite layer, the particle size of the SiC particles does not change.

[耐摩耗性]
各試料を60mm×10mmの試験片に切り出し、平板サンプルをオス端子の代用とし、この平板サンプルに曲率半径3mmの凸加工を行ったサンプルをメス端子の代用とした。耐摩耗性の評価は以下の摺動試験により行った。この振動試験では、ブルカー・エイエックスエス株式会社の摩擦摩耗試験機(UMT−Tribolab)を用い、水平に設置したオス端子試験片にメス試験片の凸面を接触させ、5Nの荷重を負荷した状態で、オス端子試験片を水平に10mm摺動させた。摺動後に凸加工サンプルの銀層の下地層(Ni−SiC複合層又はニッケル層)が露出しているか否かで耐摩耗性を判定した。この際、摺動試験後に下地層が露出しなかったものを「A」、下地層が露出したが、摺動痕の半分未満の範囲であったものを「B」、摺動痕の半分以上に下地層が露出したものを「C」とした。
[Abrasion resistance]
Each sample was cut into a test piece of 60 mm × 10 mm, and a flat plate sample was used as a substitute for a male terminal, and a sample obtained by subjecting this flat plate sample to a convex processing with a radius of curvature of 3 mm was used as a substitute for a female terminal. The wear resistance was evaluated by the following sliding test. In this vibration test, a friction and wear tester (UMT-Tribolab) manufactured by Bruker AXS Corporation was used, and the convex surface of the female test piece was brought into contact with the horizontally installed male terminal test piece, and a load of 5N was applied. Then, the male terminal test piece was slid horizontally by 10 mm. Abrasion resistance was determined based on whether or not the underlying layer (Ni—SiC composite layer or nickel layer) of the silver layer of the convex processed sample was exposed after sliding. At this time, "A" is the one in which the base layer is not exposed after the sliding test, "B" is the one in which the base layer is exposed but less than half of the sliding marks, and more than half of the sliding marks. The one with the base layer exposed was designated as "C".

[加熱後の変色度合]
試料を150℃で500時間加熱した後、表面の銀光沢が失われていないか目視で検査した。銀光沢が失われていないと判定されたものを「A」、銀光沢が失われていると判定されたものを「B」とした。
[Degree of discoloration after heating]
After heating the sample at 150 ° C. for 500 hours, the surface was visually inspected for loss of silver luster. The one determined to have no loss of silver luster was designated as "A", and the one determined to have no loss of silver luster was designated as "B".

これらの結果を表1及び表2に示す。「−」との表記は、該当の層を形成しなかったことを示す。 These results are shown in Tables 1 and 2. The notation "-" indicates that the corresponding layer was not formed.

Figure 2021063249
Figure 2021063249

表1中、試料5は、表に記載の平均粒径のSiC粒子をめっき液中に分散させてめっきしたが、形成されためっき膜中にNiと共析したものはなかったことを示す。
この表1からわかるように、試料4,6〜12,14は、耐摩耗性が「A」評価、加熱後変色が「B」評価以上であり、実用上十分な耐摩耗性、耐熱性を有している。試料4及び試料11は、下地層としての総膜厚が0.3μmと若干小さいため、加熱後変色が「B」評価となったものと考えられる。
In Table 1, Sample 5 shows that the SiC particles having the average particle size shown in the table were dispersed in the plating solution and plated, but none of the formed plating films was co-deposited with Ni.
As can be seen from Table 1, Samples 4, 6 to 12, 14 have a wear resistance of "A" or higher and a discoloration after heating of "B" or higher, and have sufficient wear resistance and heat resistance for practical use. Have. Since the total film thickness of the sample 4 and the sample 11 as the base layer was as small as 0.3 μm, it is considered that the discoloration after heating was evaluated as “B”.

これに対して、試料1は銀層の膜厚が0.3μmと小さかったため、耐摩耗性に劣っていた。試料2は、ニッケル層とNi−SiC複合層との二層構造の下地層としては十分な膜厚があるが、Ni−SiC複合層のSiCの共析量が0.05質量%と小さいために摺動試験において銀層が剥離し、下地層が露出した。試料3も、SiC粒子の共析量が0.05質量%であったため、耐摩耗性が低い評価であった。試料5は前述したようにSiC粒子が共析しなかったため、耐摩耗性に劣っていた。これはめっき液に分散させたSiC粒子の粒径が、Ni−SiC複合層として形成した膜厚に比べて大き過ぎたために、共析しなかったものと認められる。
試料13は、Ni−SiC複合層を形成せずに、ニッケル層の上に直接銀層を形成したものであるが、摺動試験で下地のニッケル層が露出し、耐摩耗性が劣っていた。
On the other hand, in Sample 1, the film thickness of the silver layer was as small as 0.3 μm, so that the wear resistance was inferior. Sample 2 has a sufficient film thickness as a base layer having a two-layer structure of a nickel layer and a Ni-SiC composite layer, but the amount of SiC coagulation in the Ni-SiC composite layer is as small as 0.05% by mass. In the sliding test, the silver layer was peeled off and the underlying layer was exposed. Sample 3 was also evaluated as having low wear resistance because the amount of segregation of SiC particles was 0.05% by mass. As described above, the sample 5 was inferior in wear resistance because the SiC particles were not co-deposited. It is recognized that this is because the particle size of the SiC particles dispersed in the plating solution was too large compared to the film thickness formed as the Ni—SiC composite layer, and therefore no coagulation was performed.
In Sample 13, a silver layer was directly formed on the nickel layer without forming a Ni—SiC composite layer, but the underlying nickel layer was exposed in the sliding test, and the abrasion resistance was inferior. ..

1,11 コネクタ用端子材
2 基材
3 下地層
4 銀層
5 ニッケル層
6 Ni−SiC複合層
61 SiC粒子
1,11 Connector terminal material 2 Base material 3 Base layer 4 Silver layer 5 Nickel layer 6 Ni-SiC composite layer 61 SiC particles

Claims (3)

少なくとも表層が銅又は銅合金からなる基材と、該基材の上に形成された下地層と、該下地層の上に形成された銀又は銀合金からなる膜厚0.5μm以上15μm以下の銀層とを備え、
前記下地層は、ニッケルを主成分とし、少なくとも前記銀層との界面部に、ニッケルとSiC粒子とが共析してなるNi−SiC複合層を有し、該Ni−SiC複合層は、前記SiCの共析量が0.1質量%以上であることを特徴とするコネクタ用端子材。
At least a base material whose surface layer is made of copper or a copper alloy, a base layer formed on the base material, and a silver or silver alloy formed on the base layer, having a film thickness of 0.5 μm or more and 15 μm or less. With a silver layer,
The base layer contains nickel as a main component, and has a Ni-SiC composite layer formed by co-depositing nickel and SiC particles at least at an interface with the silver layer, and the Ni-SiC composite layer is said to have the same. A terminal material for a connector, characterized in that the amount of SiC coagulated is 0.1% by mass or more.
前記下地層は、前記基材の表面を覆うニッケル又はニッケル合金からなるニッケル層と、該ニッケル層の上に形成された前記Ni−SiC複合層とからなり、前記ニッケル層の膜厚は0.2μm以上3.0μm以下であり、前記Ni−SiC複合層は、膜厚が0.1μm以上2.0μm以下であり、前記SiC粒子の平均粒径が90nm以上300nm以下、前記SiC粒子の共析量が8.0質量%以下であることを特徴とする請求項1に記載のコネクタ用端子材。 The base layer is composed of a nickel layer made of nickel or a nickel alloy covering the surface of the base material and the Ni—SiC composite layer formed on the nickel layer, and the thickness of the nickel layer is 0. The Ni-SiC composite layer is 2 μm or more and 3.0 μm or less, the thickness of the Ni-SiC composite layer is 0.1 μm or more and 2.0 μm or less, the average particle size of the SiC particles is 90 nm or more and 300 nm or less, and the eutectoid of the SiC particles. The terminal material for a connector according to claim 1, wherein the amount is 8.0% by mass or less. 前記下地層は前記Ni−SiC複合層からなり、膜厚が0.4μm以上3.0μm以下であり、前記SiC粒子の平均粒径が90nm以上300nm以下、前記SiC粒子の共析量が3.0質量%以下であることを特徴とする請求項1に記載のコネクタ用端子材。 The base layer is composed of the Ni-SiC composite layer, the film thickness is 0.4 μm or more and 3.0 μm or less, the average particle size of the SiC particles is 90 nm or more and 300 nm or less, and the eutectoid amount of the SiC particles is 3. The terminal material for a connector according to claim 1, wherein the content is 0% by mass or less.
JP2019187326A 2019-10-11 2019-10-11 Terminal material for connectors Pending JP2021063249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019187326A JP2021063249A (en) 2019-10-11 2019-10-11 Terminal material for connectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187326A JP2021063249A (en) 2019-10-11 2019-10-11 Terminal material for connectors

Publications (1)

Publication Number Publication Date
JP2021063249A true JP2021063249A (en) 2021-04-22

Family

ID=75487607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187326A Pending JP2021063249A (en) 2019-10-11 2019-10-11 Terminal material for connectors

Country Status (1)

Country Link
JP (1) JP2021063249A (en)

Similar Documents

Publication Publication Date Title
JP5280957B2 (en) Conductive member and manufacturing method thereof
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP2004068026A (en) Conducting material for connecting parts and manufacturing method therefor
CN101318390A (en) Remelting plating Sn material and electronic component using the same
JP2010265542A (en) Conductive member and manufacturing method thereof
CN110997985A (en) Silver-coated membrane terminal material and silver-coated membrane terminal
JP2010168598A (en) Conductive member and method for manufacturing the same
TW201527596A (en) Tin-plated copper alloy terminal material
TW201512430A (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP5313773B2 (en) Plated copper strip and method for producing the same
JP5325734B2 (en) Conductive member and manufacturing method thereof
JP7302248B2 (en) Connector terminal materials and connector terminals
JP2021063249A (en) Terminal material for connectors
JP6743998B1 (en) Connector terminal material and connector terminal
JP7040544B2 (en) Terminal material for connectors
JP7313600B2 (en) Connector terminal materials and connector terminals
JP2007002341A (en) Electroconductive material plate for forming connecting parts and manufacturing method therefor
JP7059877B2 (en) Terminal material for connectors and terminals for connectors
JP7302364B2 (en) Connector terminal materials and connector terminals
JP6822618B1 (en) Terminal material for connectors
WO2021029254A1 (en) Terminal material for connectors
JP2020117770A (en) Terminal material for connector, and terminal for connector
JP7494618B2 (en) Connector terminal material
WO2022018896A1 (en) Terminal material for connectors
JP7119267B2 (en) Terminal materials for connectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305