JP2021063159A - Diene monomer, polymer obtained from the same, and antithrombotic material containing said polymer - Google Patents

Diene monomer, polymer obtained from the same, and antithrombotic material containing said polymer Download PDF

Info

Publication number
JP2021063159A
JP2021063159A JP2019187569A JP2019187569A JP2021063159A JP 2021063159 A JP2021063159 A JP 2021063159A JP 2019187569 A JP2019187569 A JP 2019187569A JP 2019187569 A JP2019187569 A JP 2019187569A JP 2021063159 A JP2021063159 A JP 2021063159A
Authority
JP
Japan
Prior art keywords
hydrocarbon group
polymer
carbon atoms
butyl
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019187569A
Other languages
Japanese (ja)
Other versions
JP7414250B2 (en
Inventor
小林 慎吾
Shingo Kobayashi
慎吾 小林
賢 田中
Ken Tanaka
賢 田中
辻本 智雄
Tomoo Tsujimoto
智雄 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsubishi Gas Chemical Co Inc
Original Assignee
Kyushu University NUC
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsubishi Gas Chemical Co Inc filed Critical Kyushu University NUC
Priority to JP2019187569A priority Critical patent/JP7414250B2/en
Publication of JP2021063159A publication Critical patent/JP2021063159A/en
Application granted granted Critical
Publication of JP7414250B2 publication Critical patent/JP7414250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide an antithrombotic material containing a polymer that can inhibit the adhesion of platelets.SOLUTION: The problem is solved by using a diene monomer represented by the formula (1) (where, R1 is a divalent saturated hydrocarbon group having a linear or branched carbon chain with 1-6 carbon atoms, and R2 is a hydrocarbon group with 6 or less carbon atoms, optionally having an ether linkage).SELECTED DRAWING: None

Description

本発明は、新規なジエン系モノマー並びにそれを用いたポリマー及び該ポリマーの製造方法に関する。より詳しくは、新規なジエン系モノマーを原料に用いたポリマーを含む抗血栓性材料及びそれを用いた医療用器具に関する。 The present invention relates to a novel diene-based monomer, a polymer using the same, and a method for producing the polymer. More specifically, the present invention relates to an antithrombotic material containing a polymer using a novel diene-based monomer as a raw material, and a medical device using the same.

近年、各種の高分子材料を利用した医療用材料の検討が進められており、人工腎臓用膜、血漿分離用膜、カテーテル、ステント、人工肺用膜および人工血管等への利用が期待されている。生体にとって異物である合成材料を生体内組織や血液と接触させて使用することとなるため、医療用材料が生体適合性を有していることが要求される。医療用材料を血液と接触する材料として使用する場合、血小板の粘着および活性化の抑制が生体適合性として重要な項目となる。 In recent years, medical materials using various polymer materials have been studied, and are expected to be used for artificial kidney membranes, plasma separation membranes, catheters, stents, artificial lung membranes, artificial blood vessels, and the like. There is. Since synthetic materials that are foreign substances to the living body are used in contact with tissues and blood in the living body, medical materials are required to have biocompatibility. When a medical material is used as a material that comes into contact with blood, suppression of platelet adhesion and activation is an important item for biocompatibility.

また、生体適合性を示す物質は「中間水」と呼ばれる状態の水分子を含有可能であることが明らかにされている(特許文献1参照)。中間水とは、示差走査型熱量測定(DSC)において−100℃からの昇温過程で水の低温結晶化に基づくコールドクリスタリゼーション(以下、「CC」と略す)に由来する発熱ピークが−60℃以上0℃未満の温度範囲で観測される状態の水のことを言う。この低温結晶化は、生体適合性を示す物質と水との相互作用により、水が通常とは異なる凍結の挙動を示しているものと考えられており、高分子鎖と特定の相互作用により組織化された水であると考えられている。 Further, it has been clarified that a substance exhibiting biocompatibility can contain water molecules in a state called "intermediate water" (see Patent Document 1). Intermediate water is a differential scanning calorimetry (DSC) in which the exothermic peak derived from cold crystallization (hereinafter abbreviated as "CC") based on low temperature crystallization of water in the process of raising the temperature from -100 ° C is-. Water in a state observed in a temperature range of 60 ° C or higher and lower than 0 ° C. In this low-temperature crystallization, it is considered that water exhibits unusual freezing behavior due to the interaction between a substance showing biocompatibility and water, and the structure is formed by a specific interaction with a polymer chain. It is believed to be crystallized water.

水酸基を有するビニル重合性化合物、例えば第一級水酸基を有するメタクリル酸2−ヒドロキシエチルは医療用材料として用いられているが、高い飽和含水率のため、膨潤する性質を有しており、ポリマー剥離の観点から改善が求められている。一方、第三級水酸基を有するビニル重合性化合物は、適度な反応性と親水性を有することが知られている(特許文献2参照)。この特性により、塗料、医療用材料等種々の用途が考えられている。 Vinyl polymerizable compounds having a hydroxyl group, for example, 2-hydroxyethyl methacrylate having a primary hydroxyl group, are used as medical materials, but because of their high saturated water content, they have the property of swelling and polymer peeling. Improvement is required from the viewpoint of. On the other hand, a vinyl polymerizable compound having a tertiary hydroxyl group is known to have appropriate reactivity and hydrophilicity (see Patent Document 2). Due to this characteristic, various uses such as paints and medical materials are considered.

特許第6296433号Patent No. 6296433 特許第4054967号Patent No. 4054967

このような状況において、新規な抗血栓性材料が求められている。 In such a situation, a new antithrombotic material is required.

本発明者らは、特定構造を有するモノマーから得られたポリマーが血小板の粘着を抑制し、抗血栓性を有していることを見出し、本発明に至った。即ち、本発明は以下の通りである。
<1> 下記式(1)で表されるジエン系モノマーである。

Figure 2021063159
(式(1)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
<2> Rが、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH-、-CH(CH)(CH)CH-、-CH(CH)CH(CH)-、-CH(CHCH-、-CH(CHC(CH-、及び-CH(CHCH-からなる群より選択される2価の飽和炭化水素基である、上記<1>に記載のジエン系モノマーである。
<3> Rが、エーテル結合を有していてもよい、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、イソアミル、tert-アミル、n-ヘキシル、及びi-ヘキシルからなる群より選択される炭化水素基である、上記<1>または<2>に記載のジエン系モノマーである。
<4> 下記構造式で表される、上記<1>に記載のジエン系モノマーである。
Figure 2021063159
<5> 下記式(2)で表される繰り返し単位を含むポリマーである。
Figure 2021063159
(式(2)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
<6> Rが、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH-、-CH(CH)(CH)CH-、-CH(CH)CH(CH)-、-CH(CHCH-、-CH(CHC(CH-、及び-CH(CHCH-からなる群より選択される2価の飽和炭化水素基である、上記<5>に記載のポリマーである。
<7> Rが、エーテル結合を有していてもよい、メチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、イソアミル、tert-アミル、n-ヘキシル、及びi-ヘキシルからなる群より選択される炭化水素基である、上記<5>または<6>に記載のポリマーである。
<8> 下記式(3)で表される繰り返し単位を含むポリマーである。
Figure 2021063159
(式(3)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
<9> Rが、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH-、-CH(CH)(CH)CH-、-CH(CH)CH(CH)-、-CH(CHCH-、-CH(CHC(CH-、及び-CH(CHCH-からなる群より選択される炭化水素基である、上記<8>に記載のポリマーである。
<10> Rが、エーテル結合を有していてもよい、メチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、イソアミル、tert-アミル、n-ヘキシル、及びi-ヘキシルからなる群より選択される炭化水素基である、上記<8>または<9>に記載のポリマーである。
<11> 下記式(1)で表されるジエン系モノマーを重合する工程を含む、下記式(2)で表される繰り返し単位を含むポリマーの製造方法である。
Figure 2021063159
(式(1)及び(2)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
<12> 下記式(2)で表される繰り返し単位を含むポリマーを水素添加する工程を含む、下記式(3)で表される繰り返し単位を含むポリマーの製造方法である。
Figure 2021063159
(式(2)及び(3)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
<13> 上記<5>から<10>のいずれかに記載のポリマーを含み、血液と接触する部材の構成材料として用いられる抗血栓性材料である。
<14> 上記<13>に記載の抗血栓性材料を血液と接触する表面に用いた医療用器具である。
<15> 前記医療用器具が、人工腎臓用膜、血漿分離用膜、カテーテル、人工肺用膜、または人工血管である、上記<14>に記載の医療用器具である。 The present inventors have found that a polymer obtained from a monomer having a specific structure suppresses the adhesion of platelets and has antithrombotic properties, leading to the present invention. That is, the present invention is as follows.
<1> A diene-based monomer represented by the following formula (1).
Figure 2021063159
(In the formula (1), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 has an ether bond. Represents a hydrocarbon group having 6 or less carbon atoms which may be present.)
<2> R 1 is, -CH 2 -, - CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH 2 CH 2 -, - CH 2 (CH 2) 2 CH 2 -, - CH 2 (CH) (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -CH 2 (CH 2 ) 3 CH 2- , -CH 2 (CH 2 ) 2 C (CH 3 ) 2 -, and -CH 2 (CH 2) 4 CH 2 - is a bivalent saturated hydrocarbon group selected from the group consisting of a diene monomer as described in the above <1>.
<3> R 2 may have an ether bond, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, neopentyl, isoamyl, tert. -The diene-based monomer according to <1> or <2> above, which is a hydrocarbon group selected from the group consisting of amyl, n-hexyl, and i-hexyl.
<4> The diene-based monomer according to <1>, which is represented by the following structural formula.
Figure 2021063159
<5> A polymer containing a repeating unit represented by the following formula (2).
Figure 2021063159
(In the formula (2), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 has an ether bond. Represents a hydrocarbon group having 6 or less carbon atoms which may be present.)
<6> R 1 is, -CH 2 -, - CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH 2 CH 2 -, - CH 2 (CH 2) 2 CH 2 -, - CH 2 (CH) (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -CH 2 (CH 2 ) 3 CH 2- , -CH 2 (CH 2 ) 2 C (CH 3 ) 2 -, and -CH 2 (CH 2) 4 CH 2 - is a bivalent saturated hydrocarbon group selected from the group consisting of a polymer according to the above <5>.
<7> R 2 may have an ether bond, methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, neopentyl, isoamyl, tert-amyl. The polymer according to <5> or <6> above, which is a hydrocarbon group selected from the group consisting of, n-hexyl, and i-hexyl.
<8> A polymer containing a repeating unit represented by the following formula (3).
Figure 2021063159
(In the formula (3), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 has an ether bond. Represents a hydrocarbon group having 6 or less carbon atoms which may be present.)
<9> R 1 is, -CH 2 -, - CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH 2 CH 2 -, - CH 2 (CH 2) 2 CH 2 -, - CH 2 (CH) (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -CH 2 (CH 2 ) 3 CH 2- , -CH 2 (CH 2 ) 2 C (CH 3 ) 2 -, and -CH 2 (CH 2) 4 CH 2 - is a hydrocarbon radical selected from the group consisting of a polymer according to the above <8>.
<10> R 2 may have an ether bond, methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, neopentyl, isoamyl, tert-amyl. The polymer according to <8> or <9> above, which is a hydrocarbon group selected from the group consisting of, n-hexyl, and i-hexyl.
<11> A method for producing a polymer containing a repeating unit represented by the following formula (2), which comprises a step of polymerizing a diene-based monomer represented by the following formula (1).
Figure 2021063159
(In formulas (1) and (2), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 is an ether. Represents a hydrocarbon group having 6 or less carbon atoms which may have a bond.)
<12> A method for producing a polymer containing a repeating unit represented by the following formula (3), which comprises a step of hydrogenating a polymer containing a repeating unit represented by the following formula (2).
Figure 2021063159
(In formulas (2) and (3), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 is an ether. Represents a hydrocarbon group having 6 or less carbon atoms which may have a bond.)
<13> An antithrombotic material containing the polymer according to any one of <5> to <10> and used as a constituent material of a member that comes into contact with blood.
<14> A medical device using the antithrombotic material according to <13> above on a surface that comes into contact with blood.
<15> The medical device according to <14> above, wherein the medical device is an artificial kidney membrane, a plasma separation membrane, a catheter, an artificial lung membrane, or an artificial blood vessel.

本発明の一態様の好適な抗血栓性材料を血液と接触する表面の部材として用いると、血液と接触した際に、中間水の存在により、血小板の粘着および活性化を抑制することができる。従って、本発明の一態様の好適な抗血栓性材料は、人工腎臓用膜、血漿分離用膜、カテーテル、人工肺用膜および人工血管等の医療用器具の材料として極めて有用である。 When the suitable antithrombotic material of one aspect of the present invention is used as a surface member in contact with blood, the presence of intermediate water can suppress the adhesion and activation of platelets when in contact with blood. Therefore, a suitable antithrombotic material according to one aspect of the present invention is extremely useful as a material for medical instruments such as artificial kidney membranes, plasma separation membranes, catheters, artificial lung membranes, and artificial blood vessels.

以下、本発明の実施の形態について説明する。なお、以下に説明する材料、構成等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。 Hereinafter, embodiments of the present invention will be described. The materials, configurations, etc. described below are not limited to the present invention, and can be variously modified within the scope of the gist of the present invention.

〔抗血栓性材料〕
本発明の抗血栓性材料は、下記式(2)で表される繰り返し単位を含むポリマー、または下記式(3)で表される繰り返し単位を含むポリマーを含み、血液と接触する部材の構成材料として用いられるものである。

Figure 2021063159
式(2)及び式(3)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。
なお、「エーテル結合を有してもよい炭化水素基」とは、炭化水素基を構成する2つの炭素原子がエーテル結合(−O−)を介して結合してもよい旨を規定している。
例えば、エチル基(−CH−CH)であれば、−CH−O−CHで表される基であってもよいことを意味する。また、エーテル結合(−O−)は複数有していてもよく、例えば、n−ブチル基(−CH−CH−CH−CH)であれば、−CH−O−CH−O−CH−O−CHで表される基であってもよい。
式(2)及び式(3)において、Rの好ましい具体例としては、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH-、-CH(CH)(CH)CH-、-CH(CH)CH(CH)-、-CH(CHCH-、-CH(CHC(CH-、及び-CH(CHCH-からなる群より選択される2価の飽和炭化水素基が挙げられ、より好ましくは、-CH-、-CHCH-、-CHCHCH-、-CH(CHCH-、-CH(CHCH-、及び-CH(CHCH-が挙げられる。
式(2)及び式(3)において、Rの好ましい具体例としては、エーテル結合を有していてもよい、メチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、イソアミル、tert-アミル、n-ヘキシル、及びi-ヘキシルからなる群より選択される炭化水素基が挙げられ、より好ましくは、メチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、及びtert-ブチルが挙げられる。 [Antithrombotic material]
The antithrombotic material of the present invention contains a polymer containing a repeating unit represented by the following formula (2) or a polymer containing a repeating unit represented by the following formula (3), and is a constituent material of a member that comes into contact with blood. It is used as.
Figure 2021063159
In formulas (2) and (3), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 is an ether. Represents a hydrocarbon group having 6 or less carbon atoms which may have a bond.
The "hydrocarbon group that may have an ether bond" defines that two carbon atoms constituting the hydrocarbon group may be bonded via an ether bond (-O-). ..
For example, if it is an ethyl group (-CH 2- CH 3 ), it means that it may be a group represented by -CH 2- O-CH 3. Also, an ether bond (-O-) may have a plurality of, for example, if the n- butyl group (-CH 2 -CH 2 -CH 2 -CH 3), -CH 2 -O-CH 2 -O-CH 2 It may be a group represented by -O-CH 3.
In the formulas (2) and (3), preferred specific examples of R 1 are -CH 2- , -CH 2 CH 2- , -CH (CH 3 )-, -CH 2 CH 2 CH 2 -,-. CH 2 (CH 2 ) 2 CH 2- , -CH 2 (CH) (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -CH 2 (CH 2 ) 3 CH 2- , Examples thereof include divalent saturated hydrocarbon groups selected from the group consisting of -CH 2 (CH 2 ) 2 C (CH 3 ) 2- and-CH 2 (CH 2 ) 4 CH 2-, and more preferably. -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 (CH 2) 2 CH 2 -, - CH 2 (CH 2) 3 CH 2 -, and -CH 2 ( CH 2 ) 4 CH 2- can be mentioned.
In formulas (2) and (3), preferred specific examples of R 2 are methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, tert-, which may have an ether bond. Examples include hydrocarbon groups selected from the group consisting of butyl, n-pentyl, neopentyl, isoamyl, tert-amyl, n-hexyl, and i-hexyl, more preferably methyl, ethyl, propyl, i-propyl, Examples include n-butyl, i-butyl, and tert-butyl.

上記式(2)または式(3)で表される繰り返し単位を含むポリマーは、「示差走査熱量計測定において、−60℃以上0℃未満の温度範囲で発熱ピークを有する」なる要件(以下、「要件(I)」と呼ぶ)を満たすものである。この要件(I)は、本発明の抗血栓性材料に含まれる前記ポリマーが、「中間水」と呼ばれる状態の水を含水していることを意味する。
一般的に、ポリマーを含む抗血栓性材料を、水と接触し得る環境下で使用した場合に、抗血栓性材料の表面近傍では、抗血栓性材料に含まれるポリマーからの相互作用を受けて抗血栓性材料の表面に水が吸着される。ポリマーからの相互作用を受けない水は、通常0℃で凍結又は融解するが、この吸着された水は、ポリマーからの相互作用により、−60℃でも凍結しないため「不凍水」とも呼ばれている。
一方で、上記の「中間水」は、抗血栓性材料の表面近傍に吸着している不凍水よりも、抗血栓性材料の表面からわずかに離れた範囲に存在している。そのため、この「中間水」は、抗血栓性材料に含まれるポリマーの相互作用を受けるため、0℃では凍結又は融解しないが、その相互作用の力は不凍水よりは小さく、−60℃以上0℃未満の範囲で凍結又は融解する性質を有する。
つまり、前記ポリマーは、上記要件(I)を満たすため、上述の「中間水」を含水したものであり、本発明の抗血栓性材料は、このような「中間水」を含水したポリマーを含むものである。
The polymer containing the repeating unit represented by the above formula (2) or (3) has a requirement that "in the differential scanning calorimetry measurement, it has an exothermic peak in a temperature range of -60 ° C or higher and lower than 0 ° C" (hereinafter, It meets the requirements (called "requirements (I)"). This requirement (I) means that the polymer contained in the antithrombotic material of the present invention contains water in a state called "intermediate water".
Generally, when an antithrombotic material containing a polymer is used in an environment where it can come into contact with water, the vicinity of the surface of the antithrombotic material undergoes interaction from the polymer contained in the antithrombotic material. Water is adsorbed on the surface of the antithrombotic material. Water that is not interacted with by the polymer is usually frozen or thawed at 0 ° C, but this adsorbed water is also called "antifreeze water" because it does not freeze even at -60 ° C due to the interaction from the polymer. ing.
On the other hand, the above-mentioned "intermediate water" exists in a range slightly distant from the surface of the antithrombotic material than the antifreeze water adsorbed near the surface of the antithrombotic material. Therefore, this "intermediate water" is not frozen or thawed at 0 ° C because of the interaction of the polymer contained in the antithrombotic material, but the interaction force is smaller than that of antifreezing water, and is -60 ° C or higher. It has the property of freezing or thawing in the range of less than 0 ° C.
That is, the polymer contains the above-mentioned "intermediate water" in order to satisfy the above requirement (I), and the antithrombotic material of the present invention contains such a polymer containing "intermediate water". It is a waste.

上述の「中間水」を含水したポリマーを含む抗血栓性材料は、血栓の発生を効果的に抑制し得、優れた生体適合性を有することが、様々な検討の中で分かった。そのような効果を奏する理由としては、以下のように考えられる。
血液中に含まれる最大成分は水であり、一般的な抗血栓性材料に血液を接触させた場合には、血液中の水が、抗血栓性材料に含まれるポリマーの相互作用により、抗血栓性材料の表面近傍に吸着されるという現象が起こり易い。そして、その吸着された水が、さらに血液中のタンパク質と接触した場合に、タンパク質が表面近傍の水に吸着されることで血栓が生じるのではないかと考えられる。
一方で、本発明の抗血栓性材料に含まれるポリマーは、上述の「中間水」を含水しているため、当該抗血栓性材料を血液と接触させた際、血液中のタンパク質は、抗血栓性材料の表面近傍に接触する前に、中間水と接触するため、抗血栓性材料の表面に生じ得る血栓を抑制し得ると推測される。
つまり、本発明の抗血栓性材料に含まれるポリマーは、上記要件(I)を満たし、上述の「中間水」を含水したものであるため、当該抗血栓性材料を血液と接触する部材の構成材料として用いた場合においても、血栓の発生を効果的に抑制し得る。そのため、本発明の抗血栓性材料は、優れた生体適合性を有するものである。
It has been found in various studies that the antithrombotic material containing the polymer containing the above-mentioned "intermediate water" can effectively suppress the generation of thrombi and has excellent biocompatibility. The reason for achieving such an effect is considered as follows.
The largest component contained in blood is water, and when blood is brought into contact with a general antithrombotic material, the water in the blood becomes antithrombotic due to the interaction of the polymer contained in the antithrombotic material. The phenomenon of being adsorbed near the surface of the sex material is likely to occur. Then, when the adsorbed water comes into contact with the protein in the blood, it is considered that the protein is adsorbed by the water near the surface to cause a thrombus.
On the other hand, since the polymer contained in the antithrombotic material of the present invention contains the above-mentioned "intermediate water", when the antithrombotic material is brought into contact with blood, the protein in the blood becomes an antithrombotic. It is presumed that it is possible to suppress possible thrombi on the surface of the antithrombotic material because it comes into contact with the intermediate water before it comes into contact with the vicinity of the surface of the sex material.
That is, since the polymer contained in the antithrombotic material of the present invention satisfies the above requirement (I) and contains the above-mentioned "intermediate water", the structure of the member that contacts the antithrombotic material with blood Even when used as a material, the occurrence of thrombus can be effectively suppressed. Therefore, the antithrombotic material of the present invention has excellent biocompatibility.

なお、上記要件(I)で規定する前記発熱ピークの発熱量は、好ましくは1J/g以上、より好ましくは1.5J/g以上であり、また、好ましくは、20J/g以下である。
本明細書において、上記要件(I)における示差走査熱量計(DSC)測定の測定条件は、後述の実施例に記載されたとおりである。
The calorific value of the exothermic peak specified in the above requirement (I) is preferably 1 J / g or more, more preferably 1.5 J / g or more, and preferably 20 J / g or less.
In the present specification, the measurement conditions for differential scanning calorimetry (DSC) measurement in the above requirement (I) are as described in Examples described later.

<ポリマーの構成及び製造方法>
下記式(2)で表される繰り返し単位を含むポリマーは、下記式(1)で表されるジエン系モノマーを重合する工程を含む製造方法によって得ることができる。

Figure 2021063159
式(1)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。
式(1)において、Rの好ましい具体例としては、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH-、-CH(CH)(CH)CH-、-CH(CH)CH(CH)-、-CH(CHCH-、-CH(CHC(CH-、及び-CH(CHCH-からなる群より選択される2価の飽和炭化水素基が挙げられ、より好ましくは、-CH-、-CHCH-、-CHCHCH-、-CH(CHCH-、-CH(CHCH-、及び-CH(CHCH-が挙げられる。
式(1)において、Rの好ましい具体例としては、エーテル結合を有していてもよい、メチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、イソアミル、tert-アミル、n-ヘキシル、及びi-ヘキシルからなる群より選択される炭化水素基が挙げられ、より好ましくはメチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、及びtert-ブチルが挙げられる。 <Polymer composition and manufacturing method>
The polymer containing the repeating unit represented by the following formula (2) can be obtained by a production method including a step of polymerizing the diene-based monomer represented by the following formula (1).
Figure 2021063159
In formula (1), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 has an ether bond. It represents a hydrocarbon group having 6 or less carbon atoms.
In the formula (1), preferred specific examples of R 1 are -CH 2- , -CH 2 CH 2- , -CH (CH 3 )-, -CH 2 CH 2 CH 2- , -CH 2 (CH 2). ) 2 CH 2- , -CH 2 (CH) (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -CH 2 (CH 2 ) 3 CH 2- , -CH 2 (CH) 2) 2 C (CH 3) 2 -, and -CH 2 (CH 2) 4 CH 2 - is a divalent saturated hydrocarbon group selected from the group consisting of, and more preferably include, -CH 2 -, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 (CH 2) 2 CH 2 -, - CH 2 (CH 2) 3 CH 2 -, and -CH 2 (CH 2) 4 CH 2 -is mentioned.
In formula (1), preferred specific examples of R 2 are methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, which may have an ether bond. , Neopentyl, isoamyl, tert-amyl, n-hexyl, and i-hexyl, and examples thereof include hydrocarbon groups selected from the group consisting of methyl, ethyl, propyl, i-propyl, n-butyl, i-. Butyl and tert-butyl are mentioned.

上記式(1)で表されるジエン系モノマーは、特に、下記構造式で表されるジエン系モノマーであることが好ましい。

Figure 2021063159
The diene-based monomer represented by the above formula (1) is particularly preferably a diene-based monomer represented by the following structural formula.
Figure 2021063159

下記式(3)で表される繰り返し単位を含むポリマーは、下記式(2)で表される繰り返し単位を含むポリマーを水素添加する工程を含む製造方法によって得ることができる。

Figure 2021063159
式(2)及び(3)において、R及びRは上述した通りである。 The polymer containing the repeating unit represented by the following formula (3) can be obtained by a production method including a step of hydrogenating the polymer containing the repeating unit represented by the following formula (2).
Figure 2021063159
In the formulas (2) and (3), R 1 and R 2 are as described above.

上記式(2)で表される繰り返し単位を含むポリマーは、上記式(1)で表されるジエン系モノマーに由来する構成単位のみを有する単独重合体であってもよく、その他のモノマーに由来する構成単位を有する共重合体であってもよい。 The polymer containing the repeating unit represented by the above formula (2) may be a homopolymer having only the structural unit derived from the diene-based monomer represented by the above formula (1), and may be derived from other monomers. It may be a copolymer having a structural unit to be used.

上記式(1)で表されるジエン系モノマーに由来する構成単位の含有量は、上記要件(I)を満たすように調製する観点から、上記式(2)または式(3)で表される繰り返し単位を含むポリマーの構成単位の全量(100質量%)に対して、好ましくは10〜100質量%、より好ましくは30〜100質量%、更に好ましくは50〜100質量%、より更に好ましくは70〜100質量%、特に好ましくは90〜100質量%である。 The content of the structural unit derived from the diene monomer represented by the above formula (1) is represented by the above formula (2) or (3) from the viewpoint of preparing so as to satisfy the above requirement (I). With respect to the total amount (100% by mass) of the constituent units of the polymer including the repeating unit, preferably 10 to 100% by mass, more preferably 30 to 100% by mass, still more preferably 50 to 100% by mass, still more preferably 70. -100% by mass, particularly preferably 90-100% by mass.

本発明の一態様において、上記式(2)または式(3)で表される繰り返し単位を含むポリマーの数平均分子量(Mn)は、上記要件(I)を満たすように調製する観点から、好ましくは5,000〜800,000、より好ましくは10,000〜500,000、特に好ましくは20,000〜100,000である。 In one aspect of the present invention, the number average molecular weight (Mn) of the polymer containing the repeating unit represented by the above formula (2) or the above formula (3) is preferable from the viewpoint of preparing so as to satisfy the above requirement (I). Is 5,000 to 800,000, more preferably 10,000 to 500,000, and particularly preferably 20,000 to 100,000.

また、本発明の一態様において、上記式(2)または式(3)で表される繰り返し単位を含むポリマーの分子量分布(Mw/Mn)は、上記と同様の観点から、好ましくは3以下、より好ましくは2以下であり、また、好ましくは1.01以上である。
なお、Mw及びMnは、それぞれ、当該ポリマーの重量平均分子量及び数平均分子量である。
また、本明細書において、ポリマーの重量平均分子量(Mw)及び数平均分子量(Mn)は、実施例に記載の方法に基づいて測定された値を意味する。
Further, in one aspect of the present invention, the molecular weight distribution (Mw / Mn) of the polymer containing the repeating unit represented by the above formula (2) or the above formula (3) is preferably 3 or less from the same viewpoint as above. It is more preferably 2 or less, and preferably 1.01 or more.
Mw and Mn are the weight average molecular weight and the number average molecular weight of the polymer, respectively.
Further, in the present specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer mean values measured based on the method described in Examples.

<他の成分>
本発明の一態様の抗血栓性材料は、本発明の効果を損なわない範囲で、前記ポリマー以外の他の有効成分を含有していてもよい。
本明細書において、「有効成分」とは、抗血栓性材料に含まれる希釈溶媒を除いた成分を意味する。
前記ポリマー以外の他の有効成分としては、例えば、抗酸化剤、紫外線吸収剤、滑剤、流動性調節剤、離型剤、帯電防止剤、光拡散剤等の添加剤や、ガラス繊維、炭素繊維、粘土化合物等の無機フィラー等が挙げられる。
<Other ingredients>
The antithrombotic material of one aspect of the present invention may contain an active ingredient other than the polymer as long as the effect of the present invention is not impaired.
As used herein, the term "active ingredient" means an ingredient excluding the diluting solvent contained in the antithrombotic material.
Examples of active ingredients other than the polymer include additives such as antioxidants, ultraviolet absorbers, lubricants, fluidity regulators, mold release agents, antistatic agents, and light diffusing agents, glass fibers, and carbon fibers. , Inorganic fillers such as clay compounds and the like.

本発明の一態様の抗血栓性材料において、他の有効成分の含有量としては、当該抗血栓性材料に含まれる前記ポリマー100質量部に対して、好ましくは0〜50質量部、より好ましくは0〜25質量部、更に好ましくは0〜10質量部、より更に好ましくは0〜2質量部である。 In the antithrombotic material of one aspect of the present invention, the content of the other active ingredient is preferably 0 to 50 parts by mass, more preferably 0 to 50 parts by mass, based on 100 parts by mass of the polymer contained in the antithrombotic material. It is 0 to 25 parts by mass, more preferably 0 to 10 parts by mass, and even more preferably 0 to 2 parts by mass.

また、本発明の一態様の抗血栓性材料の形態は、特に限定されず、前記ポリマーと共に希釈溶媒を含む溶液の形態であってもよく、当該溶媒を基材等の表面に塗布してなる塗膜の形態であってもよく、当該塗膜を乾燥してなるシート状物の形態であってもよい。 The form of the antithrombotic material according to one aspect of the present invention is not particularly limited, and may be in the form of a solution containing a diluting solvent together with the polymer, and the solvent is applied to the surface of a substrate or the like. It may be in the form of a coating film, or may be in the form of a sheet-like material obtained by drying the coating film.

なお、本発明の一態様の抗血栓性材料が上記溶液の形態である場合、当該溶液中の前記ポリマーの含有量(ポリマー濃度)としては、当該溶液の全量(100質量%)に対して、好ましくは0.001〜60質量%、より好ましくは0.01〜45質量%、更に好ましくは0.03〜30質量%、より更に好ましくは0.05〜10質量%である。 When the antithrombotic material of one aspect of the present invention is in the form of the above solution, the content (polymer concentration) of the polymer in the solution is based on the total amount (100% by mass) of the solution. It is preferably 0.001 to 60% by mass, more preferably 0.01 to 45% by mass, still more preferably 0.03 to 30% by mass, and even more preferably 0.05 to 10% by mass.

また、本発明の一態様の抗血栓性材料が上記溶液の形態である場合、希釈溶媒としては、前記ポリマーを溶解し得る溶媒であればよく、例えば、水や、メタノール、エタノール、n−プロパノール、イソプロパノール、メチルエチルケトン、アセトン、酢酸エチル、テトラヒドロフラン(THF)、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド、ジオキサン、シクロヘキサン、n−ヘキサン、トルエン、キシレン等の有機溶媒が挙げられる。
これらの希釈溶媒は、単独で用いてもよく、2種以上を併用した混合溶媒であってもよい。
When the antithrombotic material of one aspect of the present invention is in the form of the above solution, the diluting solvent may be any solvent capable of dissolving the polymer, for example, water, methanol, ethanol, n-propanol. , Isopropanol, methyl ethyl ketone, acetone, ethyl acetate, tetrahydrofuran (THF), N, N-dimethylformamide (DMF), dimethylsulfoxide, dioxane, cyclohexane, n-hexane, toluene, xylene and other organic solvents.
These diluting solvents may be used alone or may be a mixed solvent in which two or more kinds are used in combination.

〔抗血栓性材料の製造方法〕
本発明の一態様の抗血栓性材料の製造方法としては、特に限定されないが、例えば、以下の工程(1)及び(3)あるいは工程(1)〜(3)を有する方法であることが好ましい。
・工程(1):少なくとも上記式(1)で表されるジエン系モノマーを含む原料モノマーを重合させて、上記式(2)で表される繰り返し単位を含む重合反応物を得る工程。
・工程(2):工程(1)で得た重合反応物を水素添加させ、上記式(3)で表される繰り返し単位を含むポリマーを得る工程。
・工程(3):工程(1)で得た重合反応物もしくは工程(2)で得たポリマーを水に接触させ、中間水を含有するポリマーを得る工程。
[Manufacturing method of antithrombotic material]
The method for producing the antithrombotic material according to one aspect of the present invention is not particularly limited, but for example, a method having the following steps (1) and (3) or steps (1) to (3) is preferable. ..
Step (1): A step of polymerizing a raw material monomer containing at least a diene-based monomer represented by the above formula (1) to obtain a polymerization reaction product containing a repeating unit represented by the above formula (2).
Step (2): A step of hydrogenating the polymerization reaction product obtained in step (1) to obtain a polymer containing a repeating unit represented by the above formula (3).
Step (3): A step of bringing the polymerization reaction product obtained in step (1) or the polymer obtained in step (2) into contact with water to obtain a polymer containing intermediate water.

工程(1)での重合体の重合方法としては、特に制限は無く、例えば、前記原料モノマーと重合開始剤のみを用いた塊状重合による方法であってもよく、重合開始剤及び溶媒を用いた溶液重合、懸濁重合、及び乳化重合等による方法であってもよい。また、これらの重合方法において、必要に応じて、連鎖移動剤を用いてもよい。
用いる溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類や、テトラヒドロフラン(THF)、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド、ジオキサン、トルエン、アセトン等の有機溶媒が挙げられ、また、水であってもよい。
これらの溶媒は、単独で用いてもよく、2種以上を併用した混合溶媒であってもよい。
The method for polymerizing the polymer in the step (1) is not particularly limited, and may be, for example, a bulk polymerization method using only the raw material monomer and the polymerization initiator, and a polymerization initiator and a solvent are used. The method may be a solution polymerization, a suspension polymerization, an emulsion polymerization or the like. Further, in these polymerization methods, a chain transfer agent may be used if necessary.
Examples of the solvent used include alcohols such as methanol, ethanol and isopropanol, and organic solvents such as tetrahydrofuran (THF), N, N-dimethylformamide (DMF), dimethyl sulfoxide, dioxane, toluene and acetone. , May be water.
These solvents may be used alone or may be a mixed solvent in which two or more kinds are used in combination.

工程(1)で得た重合反応物は、その重合過程で、水を取り込んでいる場合には、上記要件(1)を満たすポリマーとなっている場合もある。
ただし、工程(3)によって、重合反応物から、上記要件(1)を満たすポリマーに容易に調製することができる。
The polymerization reaction product obtained in the step (1) may be a polymer satisfying the above requirement (1) when water is taken in in the polymerization process.
However, the polymerization reaction product can be easily prepared into a polymer satisfying the above requirement (1) by the step (3).

工程(3)における、前記重合反応物を水に接触させる方法としては、水を構成成分とする液体に接触させる方法であれば特に制限は無いが、好ましくはリン酸緩衝食塩水、もしくは生理食塩水、あるいは水、特に好ましくは血液中に含まれる水と接触させる方法が挙げられる。
このようにして、前記重合反応物を水に接触させて、上述の「中間水」を含水させることで、上記要件(1)を満たすポリマーを調製できる。
The method of bringing the polymerization reaction product into contact with water in the step (3) is not particularly limited as long as it is brought into contact with a liquid containing water as a constituent component, but is preferably phosphate buffered saline or physiological saline. Examples thereof include water, or a method of contacting with water, particularly preferably water contained in blood.
In this way, the polymer satisfying the above requirement (1) can be prepared by bringing the polymerization reaction product into contact with water and impregnating the above-mentioned "intermediate water".

なお、工程(3)は、工程(1)で重合反応物を得た後に、他の工程を経ずに行ってもよく、その場合には、工程(3)で得た前記ポリマーに、必要に応じて、上述の他の有効成分や、希釈溶媒を加えて、抗血栓性材料を調製することができる。 The step (3) may be performed without going through other steps after obtaining the polymerization reaction product in the step (1). In that case, the polymer obtained in the step (3) is required. Depending on the above, the antithrombotic material can be prepared by adding the above-mentioned other active ingredients and a diluting solvent.

また、工程(1)で重合反応物を得た後、工程(3)を経ずに、重合反応物に、必要に応じて、上述の他の有効成分や希釈溶媒を加えて組成物を調製し、当該組成物からシート状物等の成形品を製造し、この成形品を使用しながら、同時に工程(3)を経てもよい。つまり、使用時に、この成形品を水と接触させて、成形品に含まれる重合反応物に「中間水」を含水させて前記ポリマーとすることもできる。 Further, after obtaining the polymerization reaction product in the step (1), the composition is prepared by adding the above-mentioned other active ingredients and a diluting solvent to the polymerization reaction product, if necessary, without going through the step (3). Then, a molded product such as a sheet-like product may be produced from the composition, and the step (3) may be performed at the same time while using this molded product. That is, at the time of use, the molded product may be brought into contact with water to cause the polymerization reaction product contained in the molded product to contain "intermediate water" to obtain the polymer.

工程(2)において工程(1)で得た重合反応物を水素添加させる方法としては、当業者に公知の手段を用いることができ、例えばp−トルエンスルホン酸ヒドラジド等のヒドラジド化合物と反応させることで行うことができる。また、パラジウム担持活性炭素等を触媒として、その存在下で水素ガスと反応させる等によって生じさせることができる。 As a method for hydrogenating the polymerization reaction product obtained in the step (1) in the step (2), a means known to those skilled in the art can be used, for example, reacting with a hydrazide compound such as p-toluenesulfonic acid hydrazide. Can be done with. Further, it can be generated by reacting with hydrogen gas in the presence of palladium-supported activated carbon or the like as a catalyst.

水素添加の際に用いられる溶媒は、反応に対して不活性であり、水素添加される重合反応物に対して溶解性がある溶媒であれば特に制限されない。使用されうる溶媒の例としては、THF、THP、ベンゼン、トルエン、キシレン等が挙げられるが、これらに限定されない。 The solvent used for hydrogenation is not particularly limited as long as it is a solvent that is inert to the reaction and is soluble in the polymerization reaction product to be hydrogenated. Examples of solvents that can be used include, but are not limited to, THF, THP, benzene, toluene, xylene and the like.

水素添加によって上記式(2)で示されるようなポリマー組成物中の不飽和結合が還元される水素添加率は、好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上とされることが望ましい。水素添加率は、例えばHNMRを用いて、不飽和結合の水素に由来するシグナルを観測することによって求めることができる。 The hydrogenation rate at which unsaturated bonds in the polymer composition as represented by the above formula (2) are reduced by hydrogenation is preferably 90% or more, more preferably 95% or more, and most preferably 99% or more. It is desirable to be done. The hydrogenation rate can be determined by observing a signal derived from unsaturatedly bonded hydrogen , for example, using 1 1 HNMR.

また、上記式(2)で示されるような不飽和結合を有するポリマー組成物に対しては、水素添加の他にも、二重結合に対して反応性を示す試薬と反応させる等により、水素以外の官能基を導入することも可能である。不飽和結合に対して置換基を導入する反応として、例えばハロゲン化水素の付加、ハロゲン化、ハイドロボレーション、syn-ジヒドロキシル化等が挙げられ、得られるポリマー組成物の用途等に応じて適宜決定することができる。 Further, for a polymer composition having an unsaturated bond as represented by the above formula (2), in addition to hydrogenation, hydrogen is reacted by reacting with a reagent exhibiting reactivity with a double bond. It is also possible to introduce a functional group other than. Examples of the reaction for introducing a substituent into an unsaturated bond include addition of hydrogen halide, halogenation, hydroboration, syn-dihydroxylation, etc., and appropriately depending on the use of the obtained polymer composition and the like. Can be decided.

〔抗血栓性材料の用途〕
本発明の抗血栓性材料は、血栓の発生を効果的に抑制し得、優れた生体適合性を有する。そのため、本発明の抗血栓性材料は、血液と接触する部材の構成材料として用いられることが好ましく、具体的には、血液浄化膜、人工腎臓用膜、血漿分離用膜、人工肺用膜、人工血管、カテーテル、歯科材料、細胞シート等の構成材料として好適に使用し得る。
また、本発明の抗血栓性材料を、医療用器具の血液と接触する表面の少なくとも一部に導入すると、凝固系、補体系、血小板系の活性化等を抑制することが可能であり、優れた生体適合性を付与することができる。
[Use of antithrombotic material]
The antithrombotic material of the present invention can effectively suppress the occurrence of thrombus and has excellent biocompatibility. Therefore, the antithrombotic material of the present invention is preferably used as a constituent material of a member that comes into contact with blood, and specifically, a blood purification membrane, an artificial kidney membrane, a plasma separation membrane, an artificial lung membrane, and the like. It can be suitably used as a constituent material for artificial blood vessels, catheters, dental materials, cell sheets and the like.
Further, when the antithrombotic material of the present invention is introduced into at least a part of the surface of a medical device in contact with blood, it is possible to suppress activation of the coagulation system, complement system, platelet system and the like, which is excellent. Biocompatibility can be imparted.

また、本発明は、下記[1]及び[2]も提供し得る。
[1]上述の抗血栓性材料を血液と接触する表面に用いた医療用器具。
[2]上述の抗血栓性材料を用いて形成された部材を血液と接触させる、抗血栓性材料の使用方法。
上記[1]に記載の前記医療用器具としては、血液浄化膜、人工腎臓用膜、血漿分離用膜、人工肺用膜、人工血管、カテーテル、歯科材料、細胞シート等が挙げられるが、人工腎臓用膜、血漿分離用膜、カテーテル、人工肺用膜、または人工血管であることが好ましい。
The present invention may also provide the following [1] and [2].
[1] A medical device using the above-mentioned antithrombotic material on a surface that comes into contact with blood.
[2] A method for using an antithrombotic material, in which a member formed by using the above-mentioned antithrombotic material is brought into contact with blood.
Examples of the medical device according to the above [1] include blood purification membranes, artificial kidney membranes, plasma separation membranes, artificial lung membranes, artificial blood vessels, catheters, dental materials, cell sheets, and the like. It is preferably a membrane for kidney, a membrane for plasma separation, a catheter, a membrane for artificial lung, or an artificial blood vessel.

以下、実施例により本発明を詳細に説明するが、本発明はこれら実施例によって限定されるものではない。なお、以下の例で用いた試薬は、とくに断りの無い場合は市販品をそのまま用いた。以下の例において、実施例1及び比較例1〜2で得られた生成物(中間化合物、最終化合物)の構造の確認、重合の進行度、各実施例で得られた重合体の数平均分子量及び分子量分布の測定、NMR測定による構造の確認、中間水の有無の確認は以下のようにして行った。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples. As the reagents used in the following examples, commercially available products were used as they were unless otherwise specified. In the following examples, confirmation of the structure of the products (intermediate compound, final compound) obtained in Examples 1 and Comparative Examples 1 and 2, the degree of polymerization progress, and the number average molecular weight of the polymers obtained in each example. The molecular weight distribution was measured, the structure was confirmed by NMR measurement, and the presence or absence of intermediate water was confirmed as follows.

(1)数平均分子量([Mn]、単位:g/mol)
ピーク分子量が既知の標準ポリスチレンを用い、該標準ポリスチレンで校正したゲル浸透クロマトグラフィー(GPC)(島津製作所社製「Prominence」、カラム構成:TosohTSKgel guardcolumn HHR−H、G5000HHR、G4000HHR、G3000HHR)を使用して、重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を測定した。(溶媒:テトラヒドロフラン、温度:40℃、流量:1.0mL/min)。
(1) Number average molecular weight ([Mn], unit: g / mol)
Peak molecular weight using a known standard polystyrene, the gel permeation chromatography calibrated with standard polystyrene (GPC) (manufactured by Shimadzu Corporation "Prominence" Column configuration: TosohTSKgel guardcolumn H HR -H, G5000H HR, G4000H HR, G3000H HR ) Was used to measure the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymer. (Solvent: tetrahydrofuran, temperature: 40 ° C., flow rate: 1.0 mL / min).

(2)分子量分布([Mw/Mn])
上記(1)の方法で求めた重量平均分子量(Mw)と数平均分子量(Mn)の値を用い、その比(Mw/Mn)として求めた。
(2) Molecular weight distribution ([Mw / Mn])
Using the values of the weight average molecular weight (Mw) and the number average molecular weight (Mn) obtained by the method (1) above, the ratio (Mw / Mn) was determined.

(3)NMR測定
モノマー及びポリマーの構造解析については、NMR測定装置(ブルカー社製、AVANCE III 400MHz)を用い、H NMR測定及び13C NMR測定を行った。なお、ケミカルシフトはH NMRの場合にはテトラメチルシラン(0.00ppm)を基準とし、13C NMRの場合にはCDCl(77.1ppm)を基準とした。
(3) NMR measurement For structural analysis of monomers and polymers, 1 H NMR measurement and 13 C NMR measurement were performed using an NMR measuring device (AVANCE III 400 MHz manufactured by Bruker). The chemical shift was based on tetramethylsilane (0.00 ppm) in the case of 1 H NMR and CDCl 3 (77.1 ppm) in the case of 13 C NMR.

(4)中間水の有無の確認
DSC装置(エスアイアイ・ナノテクノロジーズ株式会社、「EXSTARX-DSC7000」)を用い、窒素流量50mL/min、5.0℃/minの条件で測定を行った。温度プログラムは、(i)30℃から−100℃まで冷却、(ii)−100℃で5分間保持、(iii)−100℃から30℃まで加熱を行った。リン酸緩衝食塩水に3日以上浸漬させた含水高分子を用いて測定を行い、上記(i)において−40℃における水の低温結晶化に起因する発熱ピークの有無によって中間水の有無を確認した。
(4) Confirmation of the presence or absence of intermediate water The measurement was carried out under the conditions of a nitrogen flow rate of 50 mL / min and 5.0 ° C./min using a DSC device (SI Nanotechnology Co., Ltd., “EXSTAR X-DSC7000”). The temperature program consisted of (i) cooling from 30 ° C. to −100 ° C., (ii) holding at −100 ° C. for 5 minutes, and (iii) heating from −100 ° C. to 30 ° C. Measurement was performed using a hydrous polymer immersed in phosphate buffered saline for 3 days or more, and the presence or absence of intermediate water was confirmed by the presence or absence of an exothermic peak due to low-temperature crystallization of water at −40 ° C. in (i) above. did.

(実施例1)
2−(3−メトキシプロピル)−1,3−ブタジエン(式(1)で表されるジエン系モノマー)の製造
(1)クロロプレンの調製
500mLの三口フラスコに水酸化ナトリウム52g(1.3mol)、水210mL、テトラブチルアンモニウムブロミド14g(43.4mmol)を加え、ディーンスターク装置および冷却管を立てて冷却水を流し、オイルバスで65℃に加熱しながら3,4−ジクロロ−1−ブテン81.3g(650mmol)を滴下した。生成するクロロプレンをディーンスターク装置にて回収しながら70℃で2時間攪拌を続け、加熱を止めて反応を停止した。回収した溶液を硫酸マグネシウム(無水)で乾燥し、濾過した後、水素化カルシウム存在下で蒸留(常圧、57℃)することで目的物を得た(収量30.9g、収率54%)。
H NMR測定によって検出されたシグナルは以下の通りであった。
H NMR(400MHz,CDCl)δ=6.42(1H),5.67(1H),5.44-5.36(m,2H),5.32(1H).
(Example 1)
Production of 2- (3-methoxypropyl) -1,3-butadiene (diene monomer represented by the formula (1)) (1) Preparation of chloroprene 52 g (1.3 mol) of sodium hydroxide in a 500 mL three-necked flask. 210 mL of water and 14 g (43.4 mmol) of tetrabutylammonium bromide were added, and a Dean-Stark apparatus and a cooling tube were set up to allow cooling water to flow, and while heating at 65 ° C. in an oil bath, 3,4-dichloro-1-butene 81. 3 g (650 mmol) was added dropwise. While recovering the produced chloroprene with a Dean-Stark apparatus, stirring was continued at 70 ° C. for 2 hours, heating was stopped, and the reaction was stopped. The recovered solution was dried over magnesium sulfate (anhydrous), filtered, and then distilled (normal pressure, 57 ° C.) in the presence of calcium hydride to obtain the desired product (yield 30.9 g, yield 54%). ..
1 The signals detected by 1 H NMR measurement were as follows.
1 1 H NMR (400 MHz, CDCl 3 ) δ = 6.42 (1H), 5.67 (1H), 5.44-5.36 (m, 2H), 5.32 (1H).

(2)2−(3−メトキシプロピル)−1,3−ブタジエンの製造
1Lの三口フラスコに上記で得られたクロロプレン14.1g(160mmol)とジクロロ[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)0.87g(1.6mmol)、乾燥THF70mLを加え、氷浴で冷やしながら攪拌した。そこに、調製したグリニャール試薬を滴下し、カップリング反応を行った。滴下後室温で12時間攪拌を続け、水100 mLの入った1Lビーカー中に反応溶液を流しいれて反応を停止させた。2N HClを加えて中和し、分液漏斗を用いて有機層と水層を分離した。水層に対してエーテルによる抽出操作を3回行い、有機層に加えた。回収した有機層を硫酸マグネシウム(無水)で乾燥し、濾過後ジブチルヒドロキシトルエン5mgを加え、エバポレータで濃縮した。
続いて、ヘキサン:エーテル=9:1の混合溶媒を展開溶媒としてシリカゲルカラムクロマトグラフィ―による精製を行った。得られた粗生成物を水素化カルシウム存在下で減圧蒸留し、目的とする2−(3−メトキシプロピル)−1,3−ブタジエン(沸点40℃/10mmHg)目的物を収量3.58g、収率18%で得た。NMR測定によって検出されたシグナルは以下の通りであった。
H NMR(400MHz,CDCl)δ=6.36(1H),5.23(1H),5.10-4.95(m,3H),3.39(2H),3.33(s,3H),2.34-2.22(m,2H),1.83-1.70(m,2H).
13C NMR(101MHz,CDCl)δ=145.97,138.89,115.94,113.41,72.45,58.66,28.20,27.86.
(2) Production of 2- (3-methoxypropyl) -1,3-butadiene In a 1 L three-necked flask, 14.1 g (160 mmol) of chloroprene obtained above and dichloro [1,3-bis (diphenylphosphino) propane) ] 0.87 g (1.6 mmol) of nickel (II) and 70 mL of dry THF were added, and the mixture was stirred while cooling in an ice bath. The prepared Grignard reagent was added dropwise thereto, and a coupling reaction was carried out. After the dropping, stirring was continued at room temperature for 12 hours, and the reaction solution was poured into a 1 L beaker containing 100 mL of water to stop the reaction. Neutralization was performed by adding 2N HCl, and the organic layer and the aqueous layer were separated using a separatory funnel. The aqueous layer was extracted with ether three times and added to the organic layer. The recovered organic layer was dried over magnesium sulfate (anhydrous), filtered, 5 mg of dibutylhydroxytoluene was added, and the mixture was concentrated on an evaporator.
Subsequently, purification was performed by silica gel column chromatography using a mixed solvent of hexane: ether = 9: 1 as a developing solvent. The obtained crude product was distilled under reduced pressure in the presence of calcium hydride to yield the desired 2- (3-methoxypropyl) -1,3-butadiene (boiling point 40 ° C./10 mmHg) in a yield of 3.58 g. Obtained at a rate of 18%. The signals detected by NMR measurement were as follows.
1 1 H NMR (400 MHz, CDCl 3 ) δ = 6.36 (1H), 5.23 (1H), 5.10-4.95 (m, 3H), 3.39 (2H), 3.33 (s) , 3H), 2.34-2.22 (m, 2H), 1.83-1.70 (m, 2H).
13 C NMR (101 MHz, CDCl 3 ) δ = 145.97, 138.89, 115.94, 113.41, 72.45, 58.66, 28.20, 27.86.

(3)2−(3−メトキシプロピル)−1,3−ブタジエン重合体(式(2)で表される繰り返し単位を含むポリマー)の製造
シュレンク管に上記で得られた2−(3−メトキシプロピル)−1,3−ブタジエン3.00g(23.8mmol)、2−(ドデシルチオカルボノチオイルチオ)−2−メチルプロパン酸17.4mg(0.0476mmol)、アゾビスイソブチロニトリル3.91mg(0.0238mmol)を加え、フリーズポンプソウによる脱気操作を3回行い、アルゴン雰囲気下、常圧、75℃で重合を行った。24、36、54時間後に随時反応容器を開放して少量の重合溶液をサンプリングし、H NMRで重合の進行度を確認した。確認のたびに同量のアゾビスイソブチロニトリルを添加して重合を継続し、目的の重合度に達するまで反応を続けた。
重合後は室温に冷却することで反応を停止した。THF/MeOH系での沈殿精製操作を3回行い、得られた高分子を大過剰の純水中で一晩撹拌することで水に可溶な成分の除去を行った(以下、この操作を「水精製」という)。上澄みの水を取り除き、少量のジブチルヒドロキシトルエンを加えたTHFで高分子を回収し、真空オーブンを用いて室温で24時間乾燥させ、粘稠体の目的物である2−(3−メトキシプロピル)−1,3−ブタジエン重合体を得た。収量は0.974g(モノマーユニット換算で7.73mmol)、収率32%であった。GPCを用いて分子量を測定した結果、Mnは22kg/mol、Mw/Mnは1.3であった。NMR測定によって検出されたシグナルは以下の通りであった。
H NMR(400MHz,CDCl)δ=5.21−5.04(m,1H),4.84−4.69(m,2H),3.39−3.27(m,5H),2.15−1.91(m,6H),1.75−1.56(m,2H).
13C NMR(101MHz,CDCl)δ=138.77,124.95,72.52,58.47,37.21,33.33,28.17,26.63.
(3) Production of 2- (3-methoxypropyl) -1,3-butadiene polymer (polymer containing a repeating unit represented by the formula (2)) 2- (3-methoxy) obtained above in a Schlenck tube. 3. Propyl) -1,3-butadiene 3.00 g (23.8 mmol), 2- (dodecylthiocarbonotioilthio) -2-methylpropanoic acid 17.4 mg (0.0476 mmol), azobisisobutyronitrile 3. 91 mg (0.0238 mmol) was added, and the degassing operation was carried out three times with freeze pump saw, and polymerization was carried out under an argon atmosphere at normal pressure and 75 ° C. After 24, 36, and 54 hours, the reaction vessel was opened at any time, a small amount of the polymerization solution was sampled, and the progress of the polymerization was confirmed by 1 1 H NMR. The same amount of azobisisobutyronitrile was added at each confirmation to continue the polymerization, and the reaction was continued until the desired degree of polymerization was reached.
After the polymerization, the reaction was stopped by cooling to room temperature. The precipitation purification operation in a THF / MeOH system was carried out three times, and the obtained polymer was stirred overnight in a large excess of pure water to remove water-soluble components (hereinafter, this operation is performed). "Water purification"). The supernatant water is removed, the polymer is recovered in THF with a small amount of dibutylhydroxytoluene, and dried in a vacuum oven at room temperature for 24 hours to obtain the viscous product 2- (3-methoxypropyl). A -1,3-butadiene polymer was obtained. The yield was 0.974 g (7.73 mmol in terms of monomer unit), and the yield was 32%. As a result of measuring the molecular weight using GPC, Mn was 22 kg / mol and Mw / Mn was 1.3. The signals detected by NMR measurement were as follows.
1 1 H NMR (400 MHz, CDCl 3 ) δ = 5.21-5.04 (m, 1H), 4.84-4.69 (m, 2H), 3.39-3.27 (m, 5H), 2.15-1.91 (m, 6H), 1.75-1.56 (m, 2H).
13 C NMR (101 MHz, CDCl 3 ) δ = 138.77, 124.95, 72.52, 58.47, 37.21, 33.33, 28.17, 26.63.

(4)水素添加2−(3−メトキシプロピル)−1,3−ブタジエン重合体(式(3)で表される繰り返し単位を含むポリマー)の製造
上記で得られた2−(3−メトキシプロピル)−1,3−ブタジエン重合体0.86g(6.8mmol)、o−キシレン20mL、p−トルエンスルホニルヒドラジド6.33g(34mmol)、トリブチルアミン7.04g(38mmol)、ジブチルヒドロキシトルエン5mgを加え、100℃で6時間加熱攪拌した。同様の操作を再度行ったのち、H NMRで二重結合のシグナルの消失を確認し、加熱を止め反応を停止させた。THF/MeOH系での沈殿精製を3回と水精製を行った。上澄みの水を取り除き、少量のTHFで沈殿物を回収した後、エバポレータでTHFを留去し、真空オーブンを用いて12時間室温で乾燥することで無色粘稠体の目的物を得た。収量0.758g(モノマーユニット換算で5.92mmol)、収率87%であった。GPCを用いて分子量を測定した結果、Mnは33kg/mol、Mw/Mnは1.4であった。NMR測定によって検出されたシグナルは以下の通りであった。
H NMR(400MHz,CDCl)δ=3.40−3.27(m,5H),2.15−0.92(m,11H).
13C NMR(101MHz,CDCl)δ=73.57,58.63,37.54,34.36,29.94,26.94.
ここで、得られた水素添加2−(3−メトキシプロピル)−1,3−ブタジエン重合体について、上記「(4)中間水の有無の確認」を行ったところ、−40℃における水の低温結晶化に起因する発熱ピークによって中間水の存在を確認した。
(4) Production of hydrogenated 2- (3-methoxypropyl) -1,3-butadiene polymer (polymer containing a repeating unit represented by the formula (3)) 2- (3-methoxypropyl) obtained above. ) -1,3-butadiene polymer 0.86 g (6.8 mmol), o-xylene 20 mL, p-toluenesulfonyl hydrazide 6.33 g (34 mmol), tributylamine 7.04 g (38 mmol), dibutylhydroxytoluene 5 mg are added. , 100 ° C. for 6 hours with stirring. After performing the same operation again, the disappearance of the double bond signal was confirmed by 1 H NMR, and the heating was stopped to stop the reaction. Precipitation purification with a THF / MeOH system was performed three times and water purification was performed. After removing the supernatant water and collecting the precipitate with a small amount of THF, the THF was distilled off with an evaporator and dried at room temperature for 12 hours using a vacuum oven to obtain a colorless viscous substance. The yield was 0.758 g (5.92 mmol in terms of monomer unit), and the yield was 87%. As a result of measuring the molecular weight using GPC, Mn was 33 kg / mol and Mw / Mn was 1.4. The signals detected by NMR measurement were as follows.
1 1 H NMR (400 MHz, CDCl 3 ) δ = 3.40-3.27 (m, 5H), 2.15-0.92 (m, 11H).
13 C NMR (101 MHz, CDCl 3 ) δ = 73.57, 58.63, 37.54, 34.36, 29.94, 26.94.
Here, when the above "(4) Confirmation of the presence or absence of intermediate water" was performed on the obtained hydrogenated 2- (3-methoxypropyl) -1,3-butadiene polymer, the low temperature of water at -40 ° C. The presence of intermediate water was confirmed by the exothermic peak caused by crystallization.

(比較例1)
PET(ポリエチレンテレフタレート)フィルム(三菱樹脂株式会社、ダイアホイル カタログ番号T100E125)をそのまま用いた。実施例1と同様に、含水させたポリマーについて発熱ピークを測定したところ、−40℃で発熱ピークを示さなかった。
(Comparative Example 1)
The PET (polyethylene terephthalate) film (Mitsubishi Plastics Co., Ltd., Diafoil Catalog No. T100E125) was used as it was. When the exothermic peak was measured for the hydrated polymer in the same manner as in Example 1, no exothermic peak was shown at −40 ° C.

(比較例2)
水素添加ポリ(3−(3−メトキシプロピル)−1−シクロオクテン)の製造
(1)3−ブロモ−1−シクロオクテンの調製
1Lの三口フラスコにcis−シクロオクテン66.1g(600mmol)、四塩化炭素350mL、N−ブロモスクシンイミド(NBS)77.0g(430mmol)、アゾビスイソブチロニトリル(AIBN)70.6mg(0.43mmol)を加え、系内を撹拌しながら窒素バブリングを20分間行った。その後、窒素を流しながら90℃で2時間還流を行ったのち、加熱を止め室温まで冷却した。反応溶液を吸引ろ過しスクシンイミドを取り除いた後、エバポレータを用いて余分な溶媒を取り除き、ヘキサンを展開溶媒とするシリカゲルカラムクロマトグラフィにより精製を行った。その後、エバポレータを用いてヘキサンを取り除き、水素化カルシウム存在下で減圧蒸留を行い、34℃/0.08mmHgの沸点で無色透明の液体である3−ブロモ−1−シクロオクテンを収量51.3g(271mmol)、収率63%で得た。H NMR測定によって検出されたシグナルは以下の通りであった。
H NMR(400MHz,CDCl)δ=5.79(1H),5.60(1H),4.95(1H),2.32-2.00(m,4H),1.76−1.24(m,6H).
(Comparative Example 2)
Preparation of hydrogenated poly (3- (3-methoxypropyl) -1-cyclooctene) (1) Preparation of 3-bromo-1-cyclooctene 66.1 g (600 mmol) of cis-cyclooctene in a 1 L three-necked flask, 4 Add 350 mL of carbon chloride, 77.0 g (430 mmol) of N-bromosuccinimide (NBS), and 70.6 mg (0.43 mmol) of azobisisobutyronitrile (AIBN), and perform nitrogen bubbling for 20 minutes while stirring the inside of the system. It was. Then, after refluxing at 90 ° C. for 2 hours while flowing nitrogen, heating was stopped and the mixture was cooled to room temperature. The reaction solution was suction-filtered to remove succinimide, excess solvent was removed using an evaporator, and purification was performed by silica gel column chromatography using hexane as a developing solvent. Then, hexane is removed using an evaporator, distillation is performed under reduced pressure in the presence of calcium hydride, and a yield of 51.3 g (3-bromo-1-cyclooctene), which is a colorless and transparent liquid at a boiling point of 34 ° C./0.08 mmHg, is obtained (51.3 g). 271 mmol), yield 63%. 1 The signals detected by 1 H NMR measurement were as follows.
1 1 H NMR (400 MHz, CDCl 3 ) δ = 5.79 (1H), 5.60 (1H), 4.95 (1H), 2.32-2.00 (m, 4H), 1.76-1 .24 (m, 6H).

(2)3−(3−メトキシプロピル)−1−シクロオクテンの調製
(i)300mLの三口フラスコにマグネシウム(削り状)4.86g(200mmol)とスターラーチップを入れ、冷却管およびT字管、塩化カルシウム管をつなぎ、冷却水を流しつつ系内をアルゴンガスで満たした。乾燥ジエチルエーテル20mLとジブロモエタン0.1mLを加え、攪拌することでマグネシウムの活性化を促した。その後、3−ブロモ−1−メトキシプロパン22.8g(149mmol)を乾燥ジエチルエーテル150mLで希釈した溶液を0℃で30分かけてゆっくり滴下した。滴下終了後、室温で3時間攪拌したものをグリニャール試薬としてカップリング反応に使用した。
(2) Preparation of 3- (3-methoxypropyl) -1-cyclooctene (i) Put 4.86 g (200 mmol) of magnesium (shavings) and stirrer chips in a 300 mL three-necked flask, and put a cooling tube and a T-shaped tube. A calcium chloride tube was connected, and the inside of the system was filled with argon gas while flowing cooling water. 20 mL of dry diethyl ether and 0.1 mL of dibromoethane were added and stirred to promote the activation of magnesium. Then, a solution obtained by diluting 22.8 g (149 mmol) of 3-bromo-1-methoxypropane with 150 mL of dry diethyl ether was slowly added dropwise at 0 ° C. over 30 minutes. After completion of the dropping, the mixture was stirred at room temperature for 3 hours and used as a Grignard reagent in the coupling reaction.

(ii)500mLの三口フラスコに上記で得られた3−ブロモ−1−シクロオクテン22.4g(118mmol)とヨウ化銅(I)540mg(2.84mmol)、乾燥THF100mLを加え、攪拌した。そこに、上記で調製したグリニャール試薬を0℃で30分かけて滴下し、室温で2時間攪拌を続けた。水100mLの入った1Lビーカー中に反応溶液を流しいれ、反応を停止させた。2規定塩酸を加えて中和し、分液漏斗を用いて有機層と水層を分離した。水層に対してエーテルによる抽出操作を3回行い、有機層に加えた。回収した有機層をチオ硫酸ナトリウム水溶液で洗浄後、炭酸カリウム(無水)で乾燥し、濾過した溶液をエバポレータで濃縮することにより粗生成物を得た。これを水素化カルシウム存在下で減圧蒸留することによって精製し、目的とする3−(3−メトキシプロピル)−1−シクロオクテン(b.p.=52.0〜54.5℃/0.08mmHg)を収量14.6g、収率68%で得た。NMR測定によって検出されたシグナルは以下の通りであった。
H NMR(400MHz,CDCl)δ=5.63(1H),5.19(1H),3.35(t,2H),3.32(s,3H),2.50−2.37(m,1H),2.27−1.95(m,2H),1.73−1.06(m,12H).
13C NMR(101MHz,CDCl)δ=135.44,129.65,73.15, 58.63,36.71,35.84,33.24,29.77,28.06,27.06,26.89,25.97.
(Ii) 22.4 g (118 mmol) of 3-bromo-1-cyclooctene obtained above, 540 mg (2.84 mmol) of copper (I) iodide, and 100 mL of dried THF were added to a 500 mL three-necked flask and stirred. The Grignard reagent prepared above was added dropwise at 0 ° C. over 30 minutes, and stirring was continued at room temperature for 2 hours. The reaction solution was poured into a 1 L beaker containing 100 mL of water to stop the reaction. Neutralization was performed by adding 2N hydrochloric acid, and the organic layer and the aqueous layer were separated using a separatory funnel. The aqueous layer was extracted with ether three times and added to the organic layer. The recovered organic layer was washed with an aqueous sodium thiosulfate solution, dried with potassium carbonate (anhydrous), and the filtered solution was concentrated with an evaporator to obtain a crude product. This is purified by distillation under reduced pressure in the presence of calcium hydride, and the target 3- (3-methoxypropyl) -1-cyclooctene (bp = 52.0 to 54.5 ° C./0.08 mmHg) is used. ) Was obtained with a yield of 14.6 g and a yield of 68%. The signals detected by NMR measurement were as follows.
1 1 H NMR (400 MHz, CDCl 3 ) δ = 5.63 (1H), 5.19 (1H), 3.35 (t, 2H), 3.32 (s, 3H), 2.50-2.37 (M, 1H), 2.27-1.95 (m, 2H), 1.73-1.06 (m, 12H).
13 C NMR (101 MHz, CDCl 3 ) δ = 135.44, 129.65, 73.15, 58.63, 36.71, 35.84, 33.24, 29.77, 28.06, 27.06 , 26.89, 25.97.

(3)3−(3−メトキシプロピル)−1−シクロオクテン重合体の製造
上記で得られた3−(3−メトキシプロピル)−シクロオクテン8.0g(44.0mmol)、cis−4−オクテン14.8g(0.13mmol)、第二世代グラブス触媒74.7mg(0.09mmol)、乾燥CHClを15mL加え、反応溶液を調製した。攪拌20時間後に転化率が98%であることを確認し、少量のCHClとエチルビニルエーテルを加えて室温で1時間撹拌することで反応を停止させた。使用した触媒の量に対して20当量の金属スカベンジャーを加え、室温で一晩撹拌することで触媒を吸着させた。ガラスフィルター、0.45μmテフロンフィルター、0.1μmテフロンフィルターを用いて段階的に金属スカベンジャーを濾別した。2Lのビーカーを用いてTHF/MeOH系での沈殿精製を3回行った後、得られた高分子を大過剰の純水中で一晩撹拌することで水に可溶な成分の除去を行った(以下、この操作を「水精製」という)。上澄みの水を取り除き、少量のTHFに溶解させて高分子を回収した後、エバポレータでTHFを留去し、真空オーブンを用いて12時間室温で乾燥することで目的物である3−(3−メトキシプロピル)−1−シクロオクテン重合体を得た。精製操作の後、粘稠体の目的物を収量6.84g(37.6mmol)、収率86%で得た。GPCを用いて分子量を測定した結果、Mは90kg/mol、M/Mは1.7であった。NMR測定によって検出されたシグナルは以下の通りであった。
H NMR(400MHz,CDCl)δ=5.30(1H),5.05(1H),3.39-3.27(m,5H),2.01−1.90(m,2H),1.89−1.78(m,1H),1.65−1.06(m,12H).
13C NMR(101MHz,CDCl)δ=134.52,130.47,73.12,58.48,42.74,35.59,32.62,31.84,29.73,29.32,27.46,27.08.
(3) Production of 3- (3-Methoxypropyl) -1-Cyclooctene Polymer 8.0 g (44.0 mmol) of 3- (3-methoxypropyl) -cyclooctene obtained above, cis-4-octene A reaction solution was prepared by adding 14.8 g (0.13 mmol), 74.7 mg (0.09 mmol) of second-generation Grubbs catalyst, and 15 mL of dry CHCl 3. After 20 hours of stirring, it was confirmed that the conversion rate was 98%, a small amount of CHCl 3 and ethyl vinyl ether were added, and the reaction was stopped by stirring at room temperature for 1 hour. Twenty equivalents of the metal scavenger was added to the amount of catalyst used, and the catalyst was adsorbed by stirring overnight at room temperature. The metal scavenger was filtered out stepwise using a glass filter, a 0.45 μm Teflon filter, and a 0.1 μm Teflon filter. After performing precipitation purification in a THF / MeOH system three times using a 2 L beaker, the obtained polymer is stirred overnight in a large excess of pure water to remove water-soluble components. (Hereinafter, this operation is referred to as "water purification"). After removing the supernatant water and dissolving it in a small amount of THF to recover the polymer, the THF is distilled off with an evaporator and dried at room temperature for 12 hours using a vacuum oven to achieve the desired 3- (3- (3-). A methoxypropyl) -1-cyclooctene polymer was obtained. After the purification operation, the target product of the viscous body was obtained in a yield of 6.84 g (37.6 mmol) and a yield of 86%. As a result of measuring the molecular weight using GPC, M n was 90 kg / mol and M w / M n was 1.7. The signals detected by NMR measurement were as follows.
1 1 H NMR (400 MHz, CDCl 3 ) δ = 5.30 (1H), 5.05 (1H), 3.39-3.27 (m, 5H), 2.01-1.90 (m, 2H) , 1.89-1.78 (m, 1H), 1.65-1.06 (m, 12H).
13 C NMR (101 MHz, CDCl 3 ) δ = 134.52, 130.47, 73.12, 58.48, 42.74, 35.59, 32.62, 31.84, 29.73, 29.32 , 27.46, 27.08.

(4)水素添加3−(3−メトキシプロピル)−1−シクロオクテン重合体の製造
冷却塔を接続した三口フラスコに上記で得られた3−(3−メトキシプロピル)−シクロオクテン重合体4.00g(モノマーユニット換算で21.7mmolに相当)、o−キシレン90mL、p−トルエンスルホニルヒドラジド20.5g(110mmol)、トリブチルアミン21.3g(115mmol)、ジブチルヒドロキシトルエン5mgを加え、100℃で3時間加熱攪拌した。H NMRで二重結合のシグナルの消失を確認した後、加熱を止め反応を停止させた。反応溶液を室温まで冷却し、THF/MeOH系での沈殿精製を3回と水精製を行った。上澄みの水を取り除き、少量のTHFで沈殿物を回収した後、エバポレータでTHFを留去し、真空オーブンを用いて12時間室温で乾燥することで無色粘稠体の目的物を収量3.96g(21.5mmol)、収率99%で得た。GPCを用いて分子量を測定した結果、Mは96kg/mol、M/Mは1.9であった。NMR測定によって検出されたシグナルは以下の通りであった。
H NMR(400MHz,CDCl)δ=3.38−3.30(m,5H),1.58−1.47(m,2H),1.33−1.14(m,17H).
13C NMR(101MHz,CDCl)δ=73.61,58.65,37.48,33.82,30.36,30.06,29.93,26.96,26.88.
ここで、得られた水素添加3−(3−メトキシプロピル)−1−シクロオクテン重合体について、実施例1と同様に、含水させたポリマーについて発熱ピークを測定したところ、−40℃での発熱ピークは非常に小さかった。
(4) Production of hydrogenated 3- (3-methoxypropyl) -1-cyclooctene polymer The 3- (3-methoxypropyl) -cyclooctene polymer obtained above in a three-necked flask connected to a cooling tower. Add 00 g (corresponding to 21.7 mmol in terms of monomer unit), 90 mL of o-xylene, 20.5 g (110 mmol) of p-toluenesulfonyl hydrazide, 21.3 g (115 mmol) of tributylamine, and 5 mg of dibutylhydroxytoluene, and add 3 at 100 ° C. It was heated and stirred for hours. 1 After confirming the disappearance of the double bond signal by 1 H NMR, the heating was stopped and the reaction was stopped. The reaction solution was cooled to room temperature, and precipitation purification with a THF / MeOH system was performed three times and water purification was performed. After removing the supernatant water and collecting the precipitate with a small amount of THF, the THF was distilled off with an evaporator and dried at room temperature for 12 hours using a vacuum oven to obtain a yield of 3.96 g of a colorless viscous substance. (21.5 mmol), yield 99%. As a result of measuring the molecular weight using GPC, M n was 96 kg / mol and M w / M n was 1.9. The signals detected by NMR measurement were as follows.
1 1 H NMR (400 MHz, CDCl 3 ) δ = 3.38-3.30 (m, 5H), 1.58-1.47 (m, 2H), 1.33-1.14 (m, 17H).
13 C NMR (101 MHz, CDCl 3 ) δ = 73.61, 58.65, 37.48, 33.82, 30.36, 30.06, 29.93, 26.96, 26.88.
Here, with respect to the obtained hydrogenated 3- (3-methoxypropyl) -1-cyclooctene polymer, the exothermic peak of the hydrated polymer was measured in the same manner as in Example 1, and the exothermic peak was measured. The peak was very small.

(血小板粘着試験)
(1)試験用基板の調製
実施例1および比較例2で得られた水素添加ポリマーをそれぞれメタノール10mLに対して0.02gになるように投入して全量を溶解させた。得られた溶液を用いて比較例1のPET(ポリエチレンテレフタレート)板上にスピンコートし、コート被膜を形成させた。得られたコート基板から8mm角に切り出したものを走査型電子顕微鏡(SEM)用試料台に固定した。それらの材料表面にリン酸緩衝生理食塩水(phosphate buffered saline:PBS)200μLを接触させ、37℃、1時間インキュベートした。
(Platelet adhesion test)
(1) Preparation of Test Substrate The hydrogenated polymers obtained in Example 1 and Comparative Example 2 were added so as to be 0.02 g with respect to 10 mL of methanol, respectively, to dissolve the entire amount. The obtained solution was spin-coated on a PET (polyethylene terephthalate) plate of Comparative Example 1 to form a coating film. An 8 mm square cut out from the obtained coated substrate was fixed on a sample table for a scanning electron microscope (SEM). The surface of these materials was contacted with 200 μL of phosphate buffered saline (PBS) and incubated at 37 ° C. for 1 hour.

(2)血小板懸濁液の調製
クエン酸ナトリウムで抗凝固したヒト新鮮血液を1500rpmで5分間遠心分離し、上澄みを多血小板血漿(platelet rich plasma:PRP)として回収した。残りの血液をさらに4000rpmで10分間遠心分離した上澄みを乏血小板血漿(platelet poor plasma:PPP)として回収した。回収したPRPをPBSを用いて800倍に希釈したのち、血球計算板を用いてPRP中の血小板濃度の確認を行った。血小板濃度が既知の上記PRPを、回収したPPPを用いて希釈し、血小板濃度が4×10cells/mLの血小板懸濁液を調製した。
(2) Preparation of Platelet Suspension Fresh human blood anticoagulated with sodium citrate was centrifuged at 1500 rpm for 5 minutes, and the supernatant was collected as platelet-rich plasma (PRP). The remaining blood was further centrifuged at 4000 rpm for 10 minutes, and the supernatant was collected as platelet-rich plasma (PPP). The recovered PRP was diluted 800-fold with PBS, and then the platelet concentration in PRP was confirmed using a hemocytometer. The above PRP having a known platelet concentration was diluted with the recovered PPP to prepare a platelet suspension having a platelet concentration of 4 × 10 7 cells / mL.

(3)血小板粘着試験
この血小板懸濁液を各試料上に200μL滴下し、37℃にて1時間インキュベートした。その後、各試料をPBSにて2回洗浄した後、1質量%のグルタルアルデヒド溶液に浸漬し、37℃にて2時間固定した。固定化した試料はPBSに10分間、PBS:水=1:1の混合液に8分間、水に8分間、さらに別に用意した水にもう一度8分間浸漬させて洗浄し、室温で風乾した。コーティングをしていないPET基板(比較例1)についても同様の処理により血小板を粘着した。粘着した血小板を電子顕微鏡で観察し、単位面積あたりの血小板数を測定して、PET基板への粘着数に対する各試験サンプルの粘着数の比〔試験サンプルの粘着数/PET基板の粘着数〕を算出し、血小板の粘着性を評価した。結果を表1に示す。
(3) Platelet Adhesion Test 200 μL of this platelet suspension was added dropwise to each sample and incubated at 37 ° C. for 1 hour. Then, each sample was washed twice with PBS, immersed in 1 mass% glutaraldehyde solution, and fixed at 37 ° C. for 2 hours. The immobilized sample was washed by immersing it in PBS for 10 minutes, in a mixed solution of PBS: water = 1: 1 for 8 minutes, in water for 8 minutes, and further in water prepared separately for 8 minutes, and air-dried at room temperature. Platelets were adhered to the uncoated PET substrate (Comparative Example 1) by the same treatment. Observe the adhered platelets with an electron microscope, measure the number of platelets per unit area, and determine the ratio of the number of adhesions of each test sample to the number of adhesions to the PET substrate [the number of adhesions of the test sample / the number of adhesions of the PET substrate]. It was calculated and the adhesiveness of platelets was evaluated. The results are shown in Table 1.

Figure 2021063159
Figure 2021063159

表1に示すように、比較例1及び2と比べ、実施例1で得られた水素添加ポリマーは、血小板の粘着を著しく抑制していることが分かった。
As shown in Table 1, it was found that the hydrogenated polymer obtained in Example 1 significantly suppressed the adhesion of platelets as compared with Comparative Examples 1 and 2.

Claims (15)

下記式(1)で表されるジエン系モノマー。
Figure 2021063159
(式(1)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
A diene-based monomer represented by the following formula (1).
Figure 2021063159
(In the formula (1), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 has an ether bond. Represents a hydrocarbon group having 6 or less carbon atoms which may be present.)
が、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH-、-CH(CH)(CH)CH-、-CH(CH)CH(CH)-、-CH(CHCH-、-CH(CHC(CH-、及び-CH(CHCH-からなる群より選択される2価の飽和炭化水素基である、請求項1に記載のジエン系モノマー。 R 1 is, -CH 2 -, - CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH 2 CH 2 -, - CH 2 (CH 2) 2 CH 2 -, - CH 2 (CH ) (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -CH 2 (CH 2 ) 3 CH 2- , -CH 2 (CH 2 ) 2 C (CH 3 ) 2- , The diene-based monomer according to claim 1, which is a divalent saturated hydrocarbon group selected from the group consisting of -CH 2 (CH 2 ) and 4 CH 2-. が、エーテル結合を有していてもよい、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、イソアミル、tert-アミル、n-ヘキシル、及びi-ヘキシルからなる群より選択される炭化水素基である、請求項1または2に記載のジエン系モノマー。 R 2 may have an ether bond, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, neopentyl, isoamyl, tert-amyl, The diene-based monomer according to claim 1 or 2, which is a hydrocarbon group selected from the group consisting of n-hexyl and i-hexyl. 下記構造式で表される、請求項1に記載のジエン系モノマー。
Figure 2021063159
The diene-based monomer according to claim 1, which is represented by the following structural formula.
Figure 2021063159
下記式(2)で表される繰り返し単位を含むポリマー。
Figure 2021063159
(式(2)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
A polymer containing a repeating unit represented by the following formula (2).
Figure 2021063159
(In the formula (2), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 has an ether bond. Represents a hydrocarbon group having 6 or less carbon atoms which may be present.)
が、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH-、-CH(CH)(CH)CH-、-CH(CH)CH(CH)-、-CH(CHCH-、-CH(CHC(CH-、及び-CH(CHCH-からなる群より選択される2価の飽和炭化水素基である、請求項5に記載のポリマー。 R 1 is, -CH 2 -, - CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH 2 CH 2 -, - CH 2 (CH 2) 2 CH 2 -, - CH 2 (CH ) (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -CH 2 (CH 2 ) 3 CH 2- , -CH 2 (CH 2 ) 2 C (CH 3 ) 2- , The polymer according to claim 5, which is a divalent saturated hydrocarbon group selected from the group consisting of -CH 2 (CH 2 ) and 4 CH 2-. が、エーテル結合を有していてもよい、メチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、イソアミル、tert-アミル、n-ヘキシル、及びi-ヘキシルからなる群より選択される炭化水素基である、請求項5または6に記載のポリマー。 R 2 may have an ether bond, methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, neopentyl, isoamyl, tert-amyl, n- The polymer according to claim 5 or 6, which is a hydrocarbon group selected from the group consisting of hexyl and i-hexyl. 下記式(3)で表される繰り返し単位を含むポリマー。
Figure 2021063159
(式(3)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
A polymer containing a repeating unit represented by the following formula (3).
Figure 2021063159
(In the formula (3), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 has an ether bond. Represents a hydrocarbon group having 6 or less carbon atoms which may be present.)
が、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH-、-CH(CH)(CH)CH-、-CH(CH)CH(CH)-、-CH(CHCH-、-CH(CHC(CH-、及び-CH(CHCH-からなる群より選択される2価の飽和炭化水素基である、請求項8に記載のポリマー。 R 1 is, -CH 2 -, - CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH 2 CH 2 -, - CH 2 (CH 2) 2 CH 2 -, - CH 2 (CH ) (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -CH 2 (CH 2 ) 3 CH 2- , -CH 2 (CH 2 ) 2 C (CH 3 ) 2- , The polymer according to claim 8, which is a divalent saturated hydrocarbon group selected from the group consisting of -CH 2 (CH 2 ) and 4 CH 2-. が、エーテル結合を有していてもよい、メチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、イソアミル、tert-アミル、n-ヘキシル、及びi-ヘキシルからなる群より選択される炭化水素基である、請求項8または9に記載のポリマー。 R 2 may have an ether bond, methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, neopentyl, isoamyl, tert-amyl, n- The polymer according to claim 8 or 9, which is a hydrocarbon group selected from the group consisting of hexyl and i-hexyl. 下記式(1)で表されるジエン系モノマーを重合する工程を含む、下記式(2)で表される繰り返し単位を含むポリマーの製造方法。
Figure 2021063159
(式(1)及び(2)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
A method for producing a polymer containing a repeating unit represented by the following formula (2), which comprises a step of polymerizing a diene-based monomer represented by the following formula (1).
Figure 2021063159
(In formulas (1) and (2), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 is an ether. Represents a hydrocarbon group having 6 or less carbon atoms which may have a bond.)
下記式(2)で表される繰り返し単位を含むポリマーを水素添加する工程を含む、下記式(3)で表される繰り返し単位を含むポリマーの製造方法。
Figure 2021063159
(式(2)及び(3)において、Rは1〜6個の炭素原子を有する直鎖状又は分岐鎖状の炭素鎖を含む、2価の飽和炭化水素基を表し、Rはエーテル結合を有していてもよい炭素数6以下の炭化水素基を表す。)
A method for producing a polymer containing a repeating unit represented by the following formula (3), which comprises a step of hydrogenating a polymer containing a repeating unit represented by the following formula (2).
Figure 2021063159
(In formulas (2) and (3), R 1 represents a divalent saturated hydrocarbon group containing a linear or branched carbon chain having 1 to 6 carbon atoms, and R 2 is an ether. Represents a hydrocarbon group having 6 or less carbon atoms which may have a bond.)
請求項5から10のいずれかに記載のポリマーを含み、血液と接触する部材の構成材料として用いられる抗血栓性材料。 An antithrombotic material containing the polymer according to any one of claims 5 to 10 and used as a constituent material of a member that comes into contact with blood. 請求項13に記載の抗血栓性材料を血液と接触する表面に用いた医療用器具。 A medical device using the antithrombotic material according to claim 13 on a surface that comes into contact with blood. 前記医療用器具が、人工腎臓用膜、血漿分離用膜、カテーテル、人工肺用膜、または人工血管である、請求項14に記載の医療用器具。
The medical device according to claim 14, wherein the medical device is an artificial kidney membrane, a plasma separation membrane, a catheter, an artificial lung membrane, or an artificial blood vessel.
JP2019187569A 2019-10-11 2019-10-11 Diene monomers, polymers obtained therefrom, antithrombotic materials containing the polymers Active JP7414250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019187569A JP7414250B2 (en) 2019-10-11 2019-10-11 Diene monomers, polymers obtained therefrom, antithrombotic materials containing the polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187569A JP7414250B2 (en) 2019-10-11 2019-10-11 Diene monomers, polymers obtained therefrom, antithrombotic materials containing the polymers

Publications (2)

Publication Number Publication Date
JP2021063159A true JP2021063159A (en) 2021-04-22
JP7414250B2 JP7414250B2 (en) 2024-01-16

Family

ID=75487572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187569A Active JP7414250B2 (en) 2019-10-11 2019-10-11 Diene monomers, polymers obtained therefrom, antithrombotic materials containing the polymers

Country Status (1)

Country Link
JP (1) JP7414250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805685A (en) * 2022-04-21 2022-07-29 中国科学院青岛生物能源与过程研究所 Polar conjugated olefin polymer and preparation method and application thereof
WO2024018999A1 (en) * 2022-07-16 2024-01-25 国立大学法人九州大学 Polymer compound

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467118A (en) * 1982-03-03 1984-08-21 Givaudan Corporation Process for the catalytic synthesis of conjugated dienes from dialkylallylamines
JPH0716292A (en) * 1993-07-02 1995-01-20 Japan Synthetic Rubber Co Ltd Material for antithrombogenic medical instrument
JP2002167413A (en) * 2000-11-29 2002-06-11 Mitsui Chemicals Inc Polar group-containing branched olefin copolymer and thermoplastic resin composition containing the same
JP2003192727A (en) * 2001-04-26 2003-07-09 Mitsubishi Gas Chem Co Inc Vinyl polymerizable monomer having tertiary hydroxyl group and its polymer
JP2004187536A (en) * 2002-12-10 2004-07-08 Shiono Koryo Kk Myrcenyl methyl ether-containing spice composition, drink and food additive, and food and drink product
JP2009273812A (en) * 2008-05-19 2009-11-26 Shinshu Univ Antithrombogenic material by modifying surface of hydrophobic/hydrophobic block copolymer
JP2014105221A (en) * 2012-11-22 2014-06-09 Yamagata Univ Biocompatibility polymer and production method of the same, and new compound for producing the same
JP2016050266A (en) * 2014-09-01 2016-04-11 国立大学法人九州大学 Biocompatible copolymer, and antithrombotic coating agent and medical supply prepared using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467118A (en) * 1982-03-03 1984-08-21 Givaudan Corporation Process for the catalytic synthesis of conjugated dienes from dialkylallylamines
JPH0716292A (en) * 1993-07-02 1995-01-20 Japan Synthetic Rubber Co Ltd Material for antithrombogenic medical instrument
JP2002167413A (en) * 2000-11-29 2002-06-11 Mitsui Chemicals Inc Polar group-containing branched olefin copolymer and thermoplastic resin composition containing the same
JP2003192727A (en) * 2001-04-26 2003-07-09 Mitsubishi Gas Chem Co Inc Vinyl polymerizable monomer having tertiary hydroxyl group and its polymer
JP2004187536A (en) * 2002-12-10 2004-07-08 Shiono Koryo Kk Myrcenyl methyl ether-containing spice composition, drink and food additive, and food and drink product
JP2009273812A (en) * 2008-05-19 2009-11-26 Shinshu Univ Antithrombogenic material by modifying surface of hydrophobic/hydrophobic block copolymer
JP2014105221A (en) * 2012-11-22 2014-06-09 Yamagata Univ Biocompatibility polymer and production method of the same, and new compound for producing the same
JP2016050266A (en) * 2014-09-01 2016-04-11 国立大学法人九州大学 Biocompatible copolymer, and antithrombotic coating agent and medical supply prepared using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DEEPAK D. VISHNU ET AL.: "Synthesis of isoprenicpolybutadiene macromonomers for the preparation of branched polybutadiene", EUROPEAN POLYMER JOURNAL, vol. 113, JPN6023028375, 25 January 2019 (2019-01-25), pages 133 - 141, ISSN: 0005102190 *
ESBEN TAARNING ET AL.: "Unsaturated aldehydes asalkene equivalents in the Diels-Alder reaction", CHEMISTRY - A EUROPEAN JOURNAL, vol. 14, JPN6023028377, 2008, pages 5638 - 5644, XP071827607, ISSN: 0005102192, DOI: 10.1002/chem.200800003 *
HOPF HENNING ET AL.: "Thermal pericyclictandem reactions", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 21, JPN6023028374, 2001, pages 4009 - 4030, ISSN: 0005102193 *
TAKENAKA KATSUHIKO ET AL.: "Polymerization of 1,3-DienesContaining Functional Groups 6: Unexpected Collapse of Monomer Structure", POLYMER JOURNAL, vol. 41, JPN6023028376, 2009, pages 106 - 107, ISSN: 0005102191 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805685A (en) * 2022-04-21 2022-07-29 中国科学院青岛生物能源与过程研究所 Polar conjugated olefin polymer and preparation method and application thereof
CN114805685B (en) * 2022-04-21 2023-11-24 中国科学院青岛生物能源与过程研究所 Polar conjugated olefin polymer and preparation method and application thereof
WO2024018999A1 (en) * 2022-07-16 2024-01-25 国立大学法人九州大学 Polymer compound

Also Published As

Publication number Publication date
JP7414250B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7414250B2 (en) Diene monomers, polymers obtained therefrom, antithrombotic materials containing the polymers
JP4772943B2 (en) Novel hydroxyl group-containing copolymer and process for producing the same
JP5647176B2 (en) Radical polymerizable macrocyclic resin composition having low polymerization stress
EP0003071B1 (en) A method of forming polymer films
WO2002064648A1 (en) Fluorine-containing compounds and polymers and processes for producing the same
US11555085B2 (en) Block copolymers and uses thereof
TW200426185A (en) Styrene block copolymer compositions to be used for the manufacture of transparent, gel-free films
JP7313900B2 (en) Antithrombotic material and medical device using the same
JP2015196754A (en) modified polyvinyl acetal resin
JP4054967B2 (en) Vinyl polymerizable monomer having tertiary hydroxyl group and polymer thereof
JP7366685B2 (en) Antithrombotic materials, methods of using antithrombotic materials, and medical devices
EP3385289B1 (en) Nitroxyl-radical-containing copolymer having phosphate residue, and use thereof
US3369030A (en) Ethylenically unsaturated azidoformates
WO1991009074A1 (en) Thermoplastic graft copolymer and production thereof
JPS6032803A (en) Alkyletherified hydroxystyrene polymer containing ester group and its manufacture
JP4498009B2 (en) Coating agent
WO1992003501A1 (en) Thermoplastic elastomer composition
JP2021091777A (en) Adhesive for surface protective material and surface protective material
JP2020186340A (en) Antithrombotic material and use of antithrombotic material
WO2024018999A1 (en) Polymer compound
JP6667825B2 (en) Polymer for medical device, material for medical device, and medical device using the same
JP2006037000A (en) Coating agent
US3523144A (en) Block copolymers of tetrahydrofuran and process for their preparation
JP3057758B2 (en) Thermoplastic graft copolymer and method for producing the same
JP3127487B2 (en) New maleimide polymer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7414250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150