JP2021060573A - Wafer chuck, method for producing the same, and exposure apparatus - Google Patents

Wafer chuck, method for producing the same, and exposure apparatus Download PDF

Info

Publication number
JP2021060573A
JP2021060573A JP2020134003A JP2020134003A JP2021060573A JP 2021060573 A JP2021060573 A JP 2021060573A JP 2020134003 A JP2020134003 A JP 2020134003A JP 2020134003 A JP2020134003 A JP 2020134003A JP 2021060573 A JP2021060573 A JP 2021060573A
Authority
JP
Japan
Prior art keywords
carbon
film
wafer chuck
silicon
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020134003A
Other languages
Japanese (ja)
Other versions
JP2021060573A5 (en
Inventor
敬二 平林
Keiji Hirabayashi
敬二 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US17/037,386 priority Critical patent/US11842918B2/en
Priority to TW109133797A priority patent/TWI826731B/en
Priority to CN202011048311.7A priority patent/CN112599463B/en
Priority to CN202410035948.4A priority patent/CN117878049A/en
Priority to KR1020200127314A priority patent/KR20210039966A/en
Priority to TW112142594A priority patent/TW202408972A/en
Publication of JP2021060573A publication Critical patent/JP2021060573A/en
Priority to US18/504,007 priority patent/US20240071807A1/en
Publication of JP2021060573A5 publication Critical patent/JP2021060573A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

To provide a wafer chuck that has reduced dusting and achieves improved durability by reduction in wear.SOLUTION: A wafer chuck includes a base, the base has an oxidation-treated layer, and a film made of diamond-like carbon (DLC) is formed on an outermost surface of the base.SELECTED DRAWING: Figure 1

Description

本発明は、半導体デバイスを製造するためのリソグラフィープロセス工程等で基板を支持するために使用されるウエハチャック部材に関するものである。 The present invention relates to a wafer chuck member used to support a substrate in a lithography process process for manufacturing a semiconductor device or the like.

半導体デバイスを製造するためのリソグラフィープロセス工程で基板を支持するために使用されるウエハチャック部材として、炭化ケイ素系セラミックス、窒化ケイ素系セラミックスなどのセラミックス材料を用いることが知られている。その中でも炭化ケイ素系セラミックスは機械的強度が強いため摩耗による耐久劣化に強く、また熱伝導性が高いため温度変化による半導体ウエハの位置決め精度の低下が少ない、などウエハチャック部材として適している。しかし、炭化ケイ素部材をウエハチャック材として使用するために所定の形状に加工するために研削、研磨を行うと、その表面に微細なマイクロクラックが発生し、その部分から炭化ケイ素系セラミックスの微粒子が脱離して発塵物となることが知られている。このような発塵物(ゴミ)が半導体デバイスの回路部に付着すると回路の絶縁不良、短絡などを引き起こすなどの問題点が生じる。 It is known that ceramic materials such as silicon carbide-based ceramics and silicon nitride-based ceramics are used as wafer chuck members used to support a substrate in a lithography process process for manufacturing a semiconductor device. Among them, silicon carbide-based ceramics are suitable as wafer chuck members because they have strong mechanical strength and thus are resistant to durability deterioration due to wear, and because they have high thermal conductivity, the positioning accuracy of semiconductor wafers is less likely to decrease due to temperature changes. However, when the silicon carbide member is ground and polished to be processed into a predetermined shape for use as a wafer chuck material, fine microcracks are generated on the surface of the silicon carbide member, and fine particles of silicon carbide ceramics are generated from that portion. It is known that it desorbs and becomes dust. When such dust is attached to the circuit portion of the semiconductor device, problems such as poor insulation of the circuit and short circuit occur.

このため、ウエハチャックからの発塵を防止するためウエハチャック表面に多結晶ダイヤモンド膜または硬質炭素膜を形成することが知られている(特許文献1)。 Therefore, it is known that a polycrystalline diamond film or a hard carbon film is formed on the surface of the wafer chuck in order to prevent dust generation from the wafer chuck (Patent Document 1).

また、モーター部品等に用いられる炭化ケイ素系セラミックスにおいて、大気中または酸化雰囲気中で400〜1400℃の熱処理を行うことで発塵の発生を抑制することが知られている(特許文献2)。これは、大気中または酸化雰囲気中で熱処理を行うと、表面に酸化物を含む表面被膜が形成されるためである。 Further, it is known that in silicon carbide ceramics used for motor parts and the like, the generation of dust is suppressed by performing a heat treatment at 400 to 1400 ° C. in an air or an oxidizing atmosphere (Patent Document 2). This is because when the heat treatment is performed in the air or an oxidizing atmosphere, a surface film containing an oxide is formed on the surface.

特開平6−204324号公報Japanese Unexamined Patent Publication No. 6-20324 特開2002−47078号公報JP-A-2002-47078

しかしながら、ウエハチャック表面に多結晶ダイヤモンド膜または硬質炭素膜を形成することにより発塵を抑制することができるのは成膜を施した面のみで、成膜されていない側面部や裏面部からの発塵を低減することはできなかった。 However, by forming a polycrystalline diamond film or a hard carbon film on the surface of the wafer chuck, dust generation can be suppressed only on the surface on which the film is formed, and from the side surface portion and the back surface portion on which the film is not formed. Dust generation could not be reduced.

また、炭化ケイ素系セラミックスにおいて、大気中または酸化雰囲気中で400〜1400℃の熱処理を行うことで発塵の発生を抑制することができる。しかし、このとき生成される酸化物を含む表面被膜は、炭化ケイ素系セラミックスより機械的強度が低く、更に摩擦係数も大きい。モーター部品等の場合は大きな問題とはならないが、ウエハチャック用部材のようなナノメートルオーダーの平坦性が求められる部材としては摩耗による平坦性悪化によるウエハチャックとしての耐久性の劣化及び摩耗による発塵が問題となる。更に炭化ケイ素系セラミックス部材は耐摩耗性が高いとはいえ、長期にわたるウエハ部材との摺動により摩耗が発生し、位置決め精度や解像度などの露光性能の劣化が認められる。 Further, in silicon carbide ceramics, the generation of dust can be suppressed by performing a heat treatment at 400 to 1400 ° C. in the air or an oxidizing atmosphere. However, the surface coating containing the oxide produced at this time has a lower mechanical strength than the silicon carbide-based ceramics and also has a large coefficient of friction. In the case of motor parts, etc., this is not a major problem, but for members that require nanometer-order flatness, such as wafer chuck members, deterioration of durability as a wafer chuck due to deterioration of flatness due to wear and generation due to wear occur. Dust is a problem. Further, although the silicon carbide ceramic member has high wear resistance, wear occurs due to sliding with the wafer member for a long period of time, and deterioration of exposure performance such as positioning accuracy and resolution is observed.

本発明のウエハチャックは、炭化ケイ素を含むセラミックスによる基材を有するウエハチャックであって、前記基材は酸化処理層を有し、最表面にダイヤモンドライクカーボン(DLC)による膜が形成されていることを特徴とする。 The wafer chuck of the present invention is a wafer chuck having a base material made of ceramics containing silicon carbide, and the base material has an oxidation-treated layer and a film made of diamond-like carbon (DLC) is formed on the outermost surface. It is characterized by that.

本発明のウエハチャックの製造方法は、炭化ケイ素を含むセラミックスによる基板の表面を酸化処理する工程と、ダイヤモンドライクカーボン(DLC)による膜を形成する工程と、を有することを特徴とする。 The method for manufacturing a wafer chuck of the present invention is characterized by including a step of oxidizing the surface of a substrate with ceramics containing silicon carbide and a step of forming a film with diamond-like carbon (DLC).

本発明のウエハチャックは、発塵が抑制され、摩耗の低減による耐久性向上が得られる。 The wafer chuck of the present invention suppresses dust generation and improves durability by reducing wear.

本発明に係る成膜装置の模式図である。It is a schematic diagram of the film forming apparatus which concerns on this invention. 本発明に係るウエハチャックの模式図である。It is a schematic diagram of the wafer chuck which concerns on this invention. 本発明に係るウエハチャックの模式図である。It is a schematic diagram of the wafer chuck which concerns on this invention. 本発明に係る露光装置のリソグラフィープロセスを示す模式図である。It is a schematic diagram which shows the lithography process of the exposure apparatus which concerns on this invention.

以下、本発明の実施の形態を、具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.

ウエハチャックは半導体ウエハを半導体デバイスのリソグラフィープロセス装置内で保持する部材である。ウエハチャックは半導体ウエハとの接触面に高さおよび径が数十μm〜数百μmの突起状のピン部が数百μm〜数mm間隔で形成されており、また半導体ウエハを吸着するための穴や溝も形成されている。 A wafer chuck is a member that holds a semiconductor wafer in a lithography process apparatus for a semiconductor device. In the wafer chuck, protruding pin portions having a height and diameter of several tens of μm to several hundred μm are formed at intervals of several hundred μm to several mm on the contact surface with the semiconductor wafer, and for adsorbing the semiconductor wafer. Holes and grooves are also formed.

図2は本発明で用いられるウエハチャックの模式図である。図中、(a)は上面図で、(b)は側面図である。21がウエハチャック、22は不図示のシリコンウエハなどの各種ウエハをチャックに吸引する際に用いられる吸引孔で厚み方向に貫通している。本図面では径方向に並んで合計27個記載されているが、大きさ、個数、配置はウエハがチャックに適切に吸引・固定されるように適宜、調整される。23はリフトピン用孔で、チャックに固定されたウエハに対してリソグラフィープロセスが終了すると、ウエハの吸引を停止し、不図示のリフトピンがチャック裏側よりリフトピン用孔を通して上昇し、ウエハをチャックから引き離すことができる。本図面では周方向に並んで合計3個記載されているが、大きさ、個数、配置はウエハがチャックから適切に引き離しができるように適宜、調整される。24はウエハチャックの上面で、この面でシリコンウエハなどを保持する。この部分は不図示の前述した突起状のピン部が形成されている。25はウエハチャックのつば部で、この部分でウエハステージに固定することができる。 FIG. 2 is a schematic view of a wafer chuck used in the present invention. In the figure, (a) is a top view and (b) is a side view. 21 is a wafer chuck, and 22 is a suction hole used when sucking various wafers such as a silicon wafer (not shown) to the chuck, and penetrates in the thickness direction. In this drawing, a total of 27 wafers are shown side by side in the radial direction, but the size, number, and arrangement are appropriately adjusted so that the wafers are appropriately attracted and fixed to the chuck. Reference numeral 23 denotes a lift pin hole. When the lithography process for the wafer fixed to the chuck is completed, the wafer suction is stopped, the lift pin (not shown) rises from the back side of the chuck through the lift pin hole, and the wafer is pulled away from the chuck. Can be done. In this drawing, a total of three wafers are shown side by side in the circumferential direction, but the size, number, and arrangement are appropriately adjusted so that the wafer can be appropriately separated from the chuck. Reference numeral 24 denotes an upper surface of the wafer chuck, which holds a silicon wafer or the like. This portion is formed with the above-mentioned protruding pin portion (not shown). Reference numeral 25 denotes a brim portion of the wafer chuck, which can be fixed to the wafer stage.

図3は基材上に形成されるダイヤモンド状炭素膜と密着層の構成を示した模式図である。基材31には突起状のピン部32が形成されている。なお、図3のピン部の形状は模式的に示したもので高さや幅、ピン間隔などの比率は正しいものではない。正しくは前述のように一般的にはピン部は、高さおよび径が数十μm〜数百μmで、数百μm〜数mm間隔で形成される。本発明においてはこの基材表面の全面(ピン部の上面、側面、下面)に、図3(b)に示すようにダイヤモンドライクカーボン(DLC)による膜(ダイヤモンド状炭素膜)33を形成することができる。更に本発明においては図3(c)示すように基材の表面に、密着層34及びダイヤモンド状炭素膜33をこの順に形成することもできる。つまり、ウエハチャックの最表面にダイヤモンドライクカーボン(DLC)による膜を形成する。 FIG. 3 is a schematic view showing the structure of the diamond-like carbon film formed on the base material and the adhesion layer. A protruding pin portion 32 is formed on the base material 31. The shape of the pin portion in FIG. 3 is schematically shown, and the ratios such as height, width, and pin spacing are not correct. Correctly, as described above, the pin portions are generally formed in height and diameter of several tens of μm to several hundred μm and at intervals of several hundred μm to several mm. In the present invention, a film (diamond-like carbon film) 33 made of diamond-like carbon (DLC) is formed on the entire surface of the base material (upper surface, side surface, lower surface of the pin portion) as shown in FIG. 3 (b). Can be done. Further, in the present invention, as shown in FIG. 3C, the adhesion layer 34 and the diamond-like carbon film 33 can be formed in this order on the surface of the base material. That is, a diamond-like carbon (DLC) film is formed on the outermost surface of the wafer chuck.

図4は、本発明のウエハチャックが搭載されている装置の一例である露光装置でのリソグラフィープロセスを示す模式図である。図中、41は露光用の光源で、水銀ランプやKrFレーザー、ArFレーザーなどのレーザー光源、更にX線光源などを使用することができる。42はコンデンサーレンズで光源からの発散光を平行光に変更することができる。43はマスクでウエハに所望の回路パターンが石英部材などの表面に描画されている。44は縮小投影レンズでマスク43に描かれた回路パターンを縮小してウエハ上に投影することができる。45はシリコンなどのウエハで、表面に塗布した感光レジストに所望の回路パターンなどがリソグラフィープロセスで描画される。46はウエハチャックで不図示のウエハステージ上に設置され、シリコンなどのウエハを保持することができる。ウエハ及びウエハチャックはウエハステージにより逐次移動させ、1枚のウエハ上に回路パターンを繰り返し露光していくことができる。図4の模式図では、回路パターンの形成を光源(光)によるリソグラフィープロセスで行うものである例を示した。しかし、本発明のウエハチャックは例えば、ナノインプリントプロセスのような原版となるモールド(金型)を型押しすることで数十ナノメートル以下の微細パターンを転写するプロセスにも使用することが可能である。 FIG. 4 is a schematic view showing a lithography process in an exposure apparatus which is an example of an apparatus in which the wafer chuck of the present invention is mounted. In the figure, 41 is a light source for exposure, and a mercury lamp, a laser light source such as a KrF laser or an ArF laser, an X-ray light source, or the like can be used. Reference numeral 42 denotes a condenser lens, which can change the divergent light from the light source to parallel light. Reference numeral 43 denotes a mask in which a desired circuit pattern is drawn on the surface of a quartz member or the like on the wafer. 44 can reduce the circuit pattern drawn on the mask 43 with a reduction projection lens and project it on the wafer. Reference numeral 45 denotes a wafer made of silicon or the like, and a desired circuit pattern or the like is drawn on the photosensitive resist coated on the surface by a lithography process. Reference numeral 46 denotes a wafer chuck, which is installed on a wafer stage (not shown) and can hold a wafer such as silicon. The wafer and the wafer chuck can be sequentially moved by the wafer stage, and the circuit pattern can be repeatedly exposed on one wafer. In the schematic diagram of FIG. 4, an example is shown in which a circuit pattern is formed by a lithography process using a light source (light). However, the wafer chuck of the present invention can also be used in a process such as a nanoimprint process in which a fine pattern of several tens of nanometers or less is transferred by embossing a mold (die) as an original plate. ..

本発明のウエハチャックを露光装置に搭載することにより、発塵が抑制され、摩耗の低減による耐久性向上を得ることができる。 By mounting the wafer chuck of the present invention on an exposure apparatus, dust generation can be suppressed and durability can be improved by reducing wear.

本実施形態のウエハチャックに用いる基材は、炭化ケイ素を含むセラミックス材料を、半導体ウエハとの接触面にピン形状を形成するなど所定の形状に加工して用いることができる。 The base material used for the wafer chuck of the present embodiment can be used by processing a ceramic material containing silicon carbide into a predetermined shape such as forming a pin shape on a contact surface with a semiconductor wafer.

本実施形態で用いられる炭化ケイ素を含むセラミックスは炭化ケイ素の焼結体又は多結晶体である。焼結体の場合は炭化ケイ素成分の他に、焼結助剤としてBe(ベリリウム)、B(ホウ素)、Al(アルミニウム)の単体及び化合物(炭化物、窒化物、酸化物)などを用いると緻密な焼結体を得ることができる。また、炭化ケイ素多結晶体は、化学的気相蒸着法(CVD法)により形成することができる。具体的には例えば、四塩化ケイ素ガスとメタンガスを原料とする熱CVD法で黒鉛基材上に炭化ケイ素多結晶体を数mm厚で形成した後に、黒鉛基材を切削又は高温による気化で除去することで多結晶炭化ケイ素部材の単体を得ることができる。このCVD法で形成された多結晶炭化ケイ素部材は、焼結助剤が含まれないため焼結体と比べて純度が高く、ダイヤモンド状炭素膜を形成した際の密着性に優れており、更に機械的強度や熱伝導率が高いためウエハチャック部材として好適である。本発明では炭化ケイ素を主成分とする焼結体、CVD法で形成された多結晶炭化ケイ素部材を含めて炭化ケイ素を含むセラミックス(あるいは炭化ケイ素系セラミックス)と称することとする。 The silicon carbide-containing ceramics used in the present embodiment are silicon carbide sintered bodies or polycrystalline bodies. In the case of a sintered body, in addition to the silicon carbide component, if a simple substance of Be (beryllium), B (boron), Al (aluminum) or a compound (carbide, nitride, oxide) is used as a sintering aid, it is dense. A good sintered body can be obtained. Further, the silicon carbide polycrystalline body can be formed by a chemical vapor deposition method (CVD method). Specifically, for example, a silicon carbide polycrystal is formed on a graphite substrate with a thickness of several mm by a thermal CVD method using silicon tetrachloride gas and methane gas as raw materials, and then the graphite substrate is removed by cutting or vaporizing at a high temperature. By doing so, a simple substance of the polycrystalline silicon carbide member can be obtained. Since the polycrystalline silicon carbide member formed by this CVD method does not contain a sintering aid, it has a higher purity than a sintered body, and has excellent adhesion when a diamond-like carbon film is formed. It is suitable as a wafer chuck member because of its high mechanical strength and thermal conductivity. In the present invention, it is referred to as a ceramic containing silicon carbide (or a silicon carbide-based ceramic) including a sintered body containing silicon carbide as a main component and a polycrystalline silicon carbide member formed by a CVD method.

ウエハチャックは、特に半導体ウエハとの接触面のピン形状部において高い平坦性を有している必要がある。基材は研削・研磨加工で所定の形状に加工されるが、その際に表面に微細なマイクロクラックが発生し、その部分から炭化ケイ素を含むセラミックスの微粒子が脱離して発塵物(ゴミ)となる。このような発塵物が半導体デバイスの回路部に付着すると回路の絶縁不良、短絡などを引き起こすことがある。 The wafer chuck needs to have high flatness especially in the pin-shaped portion of the contact surface with the semiconductor wafer. The base material is processed into a predetermined shape by grinding and polishing, but at that time, fine microcracks are generated on the surface, and fine particles of ceramics containing silicon carbide are desorbed from that part to generate dust. It becomes. If such dust adheres to the circuit portion of the semiconductor device, it may cause poor insulation of the circuit, short circuit, or the like.

本実施形態の発明では、この問題を解決するため、まず炭化ケイ素を含むセラミックスによる基材表面の酸化処理を行う。具体的には、例えば大気中または酸素雰囲気中で300℃から700℃の温度で数十分から数十時間加熱を行う。これにより表面のマイクロクラック部が酸化され、酸化物を含む被膜(酸化処理層)が形成される。この酸化物を含む被膜(酸化処理層)の厚さは1nm程度から100nm程度となる。そして、この酸化物を含む被膜(酸化処理層)に含まれる酸素原子の濃度は、25原子%より多い。この被膜に含まれる酸素原子の濃度は、電子顕微鏡の元素分析装置を用いて測定することができる。また、酸化物を含む被膜の組成は、低温処理では炭素、ケイ素、酸素の組成であるが、処理温度を高く、また時間を長くするにつれて、酸素原子の濃度が高くなる傾向がある。 In the invention of the present embodiment, in order to solve this problem, first, the surface of the base material is oxidized with ceramics containing silicon carbide. Specifically, for example, heating is performed at a temperature of 300 ° C. to 700 ° C. for several tens of minutes to several tens of hours in an air atmosphere or an oxygen atmosphere. As a result, the microcracks on the surface are oxidized to form a film (oxidation-treated layer) containing an oxide. The thickness of the coating film (oxidation-treated layer) containing this oxide is about 1 nm to about 100 nm. The concentration of oxygen atoms contained in the oxide-containing coating film (oxidation-treated layer) is more than 25 atomic%. The concentration of oxygen atoms contained in this coating can be measured using an elemental analyzer of an electron microscope. Further, the composition of the coating film containing an oxide is the composition of carbon, silicon, and oxygen in the low temperature treatment, but the concentration of oxygen atoms tends to increase as the treatment temperature is raised and the time is lengthened.

炭化ケイ素を含むセラミックス材は通常、熱的安定性が高く、300℃から700℃程度の温度で酸化することはほとんどない。しかし、研削・研磨加工により生じたマイクロクラック部は加工による欠陥や歪で反応性が高くなり、低温で酸化されやすくなっていると考えられる。マイクロクラック部で酸化物を含む被膜が形成されることにより、クラック表面部の体積が増加しクラック部が埋まることで表面からの微粒子の脱離が抑制されると考えられる。酸化処理温度は一般的に高い方が酸化物を含む被膜が厚くなり発塵防止の効果が高くなるが、例えば1000℃以上にすると熱変形が生じてウエハチャックとして必要な平坦性が低下することがある。このため、酸化処理温度を300℃から700℃と低くし、処理時間を長く(望ましくは数時間以上)することが望ましい。最適な酸化処理条件は炭化ケイ素を含むセラミックス焼結体の場合、焼結前の粒子径や焼結状態、焼結助剤など、更に研削・研磨加工条件により異なるため、適宜、調整する。CVD法で形成された多結晶炭化ケイ素部材の場合の最適な酸化処理条件も、多結晶体の平均粒子径や研削・研磨加工条件により異なるため、適宜、調整する。 Ceramic materials containing silicon carbide usually have high thermal stability and hardly oxidize at a temperature of about 300 ° C. to 700 ° C. However, it is considered that the microcracked portion generated by the grinding / polishing process becomes highly reactive due to defects and strains caused by the process, and is easily oxidized at a low temperature. It is considered that the formation of a film containing an oxide in the microcrack portion increases the volume of the crack surface portion and fills the crack portion to suppress the detachment of fine particles from the surface. Generally, the higher the oxidation treatment temperature, the thicker the film containing oxides and the higher the effect of preventing dust generation. However, if the temperature is 1000 ° C. or higher, thermal deformation occurs and the flatness required for the wafer chuck decreases. There is. Therefore, it is desirable to lower the oxidation treatment temperature from 300 ° C. to 700 ° C. and lengthen the treatment time (preferably several hours or more). In the case of a ceramic sintered body containing silicon carbide, the optimum oxidation treatment conditions differ depending on the particle size before sintering, the sintering state, the sintering aid, and other grinding / polishing conditions, so adjustments are made as appropriate. The optimum oxidation treatment conditions for the polycrystalline silicon carbide member formed by the CVD method also differ depending on the average particle size of the polycrystalline material and the grinding / polishing processing conditions, and thus are appropriately adjusted.

この酸化処理を行った後に、ダイヤモンドライクカーボン(DLC)による膜(ダイヤモンド状炭素膜)を形成する。 After this oxidation treatment, a film (diamond-like carbon film) made of diamond-like carbon (DLC) is formed.

通常、ダイヤモンド状炭素膜は膜応力が大きく、膜剥離しやすいコーティング材料であるが、炭化ケイ素系部材とは比較的密着性が良好であることが知られている。 Usually, a diamond-like carbon film is a coating material having a large film stress and easily peeling off, but it is known that it has relatively good adhesion to a silicon carbide-based member.

しかしながら、炭化ケイ素を含むセラミックス焼結体の場合、酸化処理条件によっては焼結助剤の表面に酸化層が形成される。これにより、ダイヤモンド状炭素膜と炭化ケイ素を含むセラミックス部材との密着性が低下し、ダイヤモンド状炭素膜が剥離しやすくなる、と言う問題が生じる場合がある。これは、焼結助剤材料は、炭化ケイ素材料に比べ酸化しやすいためである。このため、酸化処理条件はダイヤモンド状炭素膜の密着性向上のためにも、酸化処理温度を300℃から700℃と低くすることが望ましい。この酸化処理条件であれば、一般的に炭化ケイ素を含むセラミックス焼結体に含まれる焼結助剤の量は、数重量%以下と少ないため、ダイヤモンド状炭素膜との密着性は実用上使用可能なレベルである。 However, in the case of a ceramic sintered body containing silicon carbide, an oxide layer is formed on the surface of the sintering aid depending on the oxidation treatment conditions. This may cause a problem that the adhesion between the diamond-shaped carbon film and the ceramic member containing silicon carbide is lowered and the diamond-shaped carbon film is easily peeled off. This is because the sintering aid material is more easily oxidized than the silicon carbide material. Therefore, it is desirable that the oxidation treatment temperature be as low as 300 ° C. to 700 ° C. in order to improve the adhesion of the diamond-like carbon film. Under these oxidation treatment conditions, the amount of sintering aid contained in the ceramic sintered body containing silicon carbide is generally as small as several weight% or less, so that the adhesion with the diamond-like carbon film is practically used. It is a possible level.

またCVD法で形成された多結晶炭化ケイ素部材は焼結助剤を含まないため、焼結助剤部での酸化がなく、酸化処理によるダイヤモンド状炭素膜との密着性の低下が小さい。酸化処理におけるクラック部の酸化は主に炭化ケイ素結晶粒子の内部での反応で、ダイヤモンド状炭素膜と接する表面部では酸化部がほとんどないためであろうと推測される。この点でもCVD法で形成された多結晶炭化ケイ素部材は基材として好適である。 Further, since the polycrystalline silicon carbide member formed by the CVD method does not contain a sintering aid, there is no oxidation in the sintering aid portion, and the decrease in adhesion to the diamond-like carbon film due to the oxidation treatment is small. It is presumed that the oxidation of the cracked portion in the oxidation treatment is mainly a reaction inside the silicon carbide crystal particles, and that there is almost no oxidized portion on the surface portion in contact with the diamond-like carbon film. In this respect as well, the polycrystalline silicon carbide member formed by the CVD method is suitable as a base material.

また、密着性の向上のために、少なくともケイ素又は炭素を含む層を形成した後、少なくともケイ素又は炭素を含む層の上にダイヤモンド状炭素膜を積層することができる。つまり、少なくともケイ素又は炭素を含む層、およびダイヤモンドライクカーボンによる膜(ダイヤモンド状炭素膜)を順に積層することができる。 Further, in order to improve the adhesion, a diamond-like carbon film can be laminated on the layer containing at least silicon or carbon after forming a layer containing at least silicon or carbon. That is, a layer containing at least silicon or carbon and a film made of diamond-like carbon (diamond-like carbon film) can be laminated in this order.

更に密着性の向上のためには非晶質であって、炭素、ケイ素、酸素、および水素を含む層を形成した後、非晶質であって、炭素、ケイ素、酸素、および水素を含む層の上にダイヤモンド状炭素膜を積層することも可能である。つまり、非晶質であって、炭素、ケイ素、酸素、および水素を含む層、およびダイヤモンド状炭素膜を順に積層することができる。 To further improve adhesion, an amorphous layer containing carbon, silicon, oxygen, and hydrogen is formed, and then an amorphous layer containing carbon, silicon, oxygen, and hydrogen is formed. It is also possible to laminate a diamond-like carbon film on top of it. That is, a layer that is amorphous and contains carbon, silicon, oxygen, and hydrogen, and a diamond-like carbon film can be laminated in this order.

上記、少なくともケイ素または炭素を含有する層、または非晶質であって、炭素、ケイ素、酸素、および水素を含む層は、密着層と呼ばれるもので、炭化ケイ素系セラミックス部材とダイヤモンド状炭素膜の密着を更に向上させるために形成されるものである。 The above-mentioned layer containing at least silicon or carbon, or a layer that is amorphous and contains carbon, silicon, oxygen, and hydrogen is called an adhesion layer, and is a silicon carbide-based ceramic member and a diamond-like carbon film. It is formed to further improve the adhesion.

本発明における少なくともケイ素または炭素を含有する層とは、シリコン膜、窒化ケイ素膜、炭化ケイ素膜や窒化炭素膜などの炭化物膜、などを含むものである。また、酸素を含有しても構わないがその量は25原子%以下、望ましくは20原子%以下とする。 The layer containing at least silicon or carbon in the present invention includes a silicon film, a silicon nitride film, a carbide film such as a silicon carbide film or a carbon nitride film, and the like. Further, oxygen may be contained, but the amount thereof is 25 atomic% or less, preferably 20 atomic% or less.

また非晶質であって、炭素、ケイ素、酸素、および水素よりなる層は、ダイヤモンド状炭素膜との密着性に優れ、また膜応力も小さいため密着層として適している。この膜は少なくとも炭素、ケイ素、酸素、水素原子が各々少なくとも5原子%以上存在する膜でかつ酸素濃度が20原子%以下の膜であることが好ましい。この膜に含まれる各元素この膜に含まれる各元素濃度の分析は、炭素、ケイ素、酸素原子に関しては走査電子顕微鏡付属の元素分析装置(エネルギー分散型X線分析器)や、X線光電子分光器(XPS)で行うことが可能である。また水素原子のような軽元素については弾性反跳検出分析器(ERDA)で濃度分析を行うことが可能である。 Further, the amorphous layer made of carbon, silicon, oxygen, and hydrogen is suitable as an adhesion layer because it has excellent adhesion to a diamond-like carbon film and has a small film stress. This film is preferably a film in which at least 5 atomic% or more of each of carbon, silicon, oxygen, and hydrogen atoms is present and the oxygen concentration is 20 atomic% or less. Each element contained in this film For analysis of the concentration of each element contained in this film, the elemental analyzer (energy dispersive X-ray analyzer) attached to the scanning electron microscope and X-ray photoelectron spectroscopy are used for carbon, silicon, and oxygen atoms. It can be done with a vessel (XPS). For light elements such as hydrogen atoms, concentration analysis can be performed with an elastic recoil detection analyzer (ERDA).

上記、密着層及びダイヤモンド状炭素膜を成膜する成膜装置の一例を図1に示す。図1の成膜装置は高周波プラズマCVD(化学的気相蒸着)装置である。なお、本実施形態の発明に用いられる成膜装置はこれに限定されるものではなく、公知のイオンプレーティング装置やスパッタ装置などを用いることもできる。また、本実施形態の成膜装置では前記の密着層及びダイヤモンド状炭素膜を連続して成膜することができるが、密着層とダイヤモンド状炭素膜を別々の装置で成膜しても良い。例えば、密着層を図1のような高周波プラズマCVD装置で形成したのちに、ダイヤモンド状炭素膜を別の装置、イオンプレーティング装置やスパッタ装置、あるいはカソードアーク成膜装置で形成しても良い。また、密着層をスパッタ装置で形成したのちに図1の高周波プラズマCVD装置でダイヤモンド状炭素膜を形成しても良い。 FIG. 1 shows an example of the film forming apparatus for forming the adhesion layer and the diamond-like carbon film. The film forming apparatus of FIG. 1 is a high frequency plasma CVD (chemical vapor deposition) apparatus. The film forming apparatus used in the invention of the present embodiment is not limited to this, and a known ion plating apparatus, sputtering apparatus, or the like can also be used. Further, in the film forming apparatus of the present embodiment, the adhesion layer and the diamond-like carbon film can be continuously formed, but the adhesion layer and the diamond-like carbon film may be formed by separate devices. For example, after the adhesion layer is formed by the high-frequency plasma CVD apparatus as shown in FIG. 1, the diamond-like carbon film may be formed by another apparatus, an ion plating apparatus, a sputtering apparatus, or a cathode arc film forming apparatus. Further, the diamond-like carbon film may be formed by the high-frequency plasma CVD apparatus of FIG. 1 after the adhesion layer is formed by the sputtering apparatus.

図1で、真空チャンバー1は、不図示の真空ポンプ及び真空バルブが設置されており、1x10−3Paまで真空排気することができる。原料ガス導入用シャワーヘッド兼グラウンド電極2は、図の下面側に多数の直径1mm程度の穴が設けられ、その部分より原料ガスを導入することができる。穴の径やピッチは成膜される膜の膜厚分布を均一にするため適宜調整する。また、原料ガス導入用シャワーヘッド兼グラウンド電極2は、グラウンド電極としても使用される。原料ガス導入ライン3は、不図示のガスバルブ、ガス流量調整器、原料ガスボンベに接続されている。 In FIG. 1, a vacuum pump and a vacuum valve (not shown) are installed in the vacuum chamber 1, and vacuum exhaust can be performed up to 1x10 -3 Pa. The shower head / ground electrode 2 for introducing the raw material gas is provided with a large number of holes having a diameter of about 1 mm on the lower surface side in the drawing, and the raw material gas can be introduced from the holes. The diameter and pitch of the holes are appropriately adjusted to make the film thickness distribution of the film to be formed uniform. The shower head and ground electrode 2 for introducing the raw material gas is also used as the ground electrode. The raw material gas introduction line 3 is connected to a gas valve (not shown), a gas flow rate regulator, and a raw material gas cylinder.

本装置を用いて、非晶質であって、炭素、ケイ素、酸素、および水素を含む層を形成する場合は、原料ガスとして、例えば液体有機ケイ素化合物を用いることができる。液体有機ケイ素化合物は、テトラエトキシシラン、ヘキサメチルジシロキサンなどを加熱(例えば40℃程度)してガス化して用いることができる。これらのガスは希ガス(アルゴンガス、ヘリウムガスなど)、窒素ガス、水素ガスなどで希釈して使用することもできる。 When using this device to form a layer that is amorphous and contains carbon, silicon, oxygen, and hydrogen, for example, a liquid organosilicon compound can be used as the raw material gas. The liquid organosilicon compound can be used by heating tetraethoxysilane, hexamethyldisiloxane, or the like (for example, about 40 ° C.) to gasify it. These gases can also be diluted with a rare gas (argon gas, helium gas, etc.), nitrogen gas, hydrogen gas, or the like.

ダイヤモンド状炭素膜の原料ガスとしては、種々の炭素含有ガスや液体有機化合物を気化して用いることができる。炭素含有ガスとしては、メタン、エタン、エチレン、アセチレンなどの炭化水素ガス、一酸化炭素、または、ハロゲン化炭素などを用いることができる。液体有機化合物としては、メタノール、エタノールなどのアルコール類、アセトンなどのケトン類、ベンゼン、トルエンなどの芳香族炭化水素、ジメチルエーテルなどのエーテル類、ギ酸、酢酸などの有機酸を用いることができる。これらのガスは希ガス(アルゴンガス、ヘリウムガスなど)、窒素ガス、水素ガスなどで希釈して使用することもできる。基材4は、炭化ケイ素を含むセラミックスによる基材を所定の形状に加工後、前述の酸化処理を施したものである。基板ホルダー兼高周波導入電極5は、基材を配置することができ、また高周波印加用の電極としても使用される。高周波電源6は、基板ホルダー兼高周波導入電極5に高周波電力を供給するものである。 As the raw material gas for the diamond-like carbon film, various carbon-containing gases and liquid organic compounds can be vaporized and used. As the carbon-containing gas, hydrocarbon gases such as methane, ethane, ethylene and acetylene, carbon monoxide, carbon halide and the like can be used. As the liquid organic compound, alcohols such as methanol and ethanol, ketones such as acetone, aromatic hydrocarbons such as benzene and toluene, ethers such as dimethyl ether, and organic acids such as formic acid and acetic acid can be used. These gases can also be diluted with a rare gas (argon gas, helium gas, etc.), nitrogen gas, hydrogen gas, or the like. The base material 4 is obtained by processing a base material made of ceramics containing silicon carbide into a predetermined shape and then subjecting it to the above-mentioned oxidation treatment. The substrate holder and high frequency introduction electrode 5 can be used as an electrode for applying a high frequency, on which a base material can be arranged. The high-frequency power supply 6 supplies high-frequency power to the substrate holder and high-frequency introduction electrode 5.

密着層として少なくともケイ素を含む膜を形成する場合、たとえば、公知のスパッタ法によりシリコンターゲットをスパッタすることで、ケイ素膜を形成することができる。また、スパッタする際のガスとしてアルゴンと窒素の混合ガスを用いると窒化ケイ素膜を作成することができる。更に炭化ケイ素ターゲットをスパッタすることで炭化ケイ素膜を形成することもできる。 When forming a film containing at least silicon as the adhesion layer, for example, a silicon film can be formed by sputtering a silicon target by a known sputtering method. Further, a silicon nitride film can be formed by using a mixed gas of argon and nitrogen as the gas for sputtering. Further, a silicon carbide film can be formed by sputtering the silicon carbide target.

密着層として用いられる非晶質であって、炭素、ケイ素、酸素、および水素よりなる層とは、少なくとも炭素原子、ケイ素原子、酸素原子、水素原子の濃度が各々少なくとも5原子%以上存在する膜である。かつ、酸素原子の濃度が20原子%以下の膜であり、C−Si−O−H膜とも称されるものである。また成膜時に混入する不可避不純物として、希釈ガスとして使用可能な窒素、アルゴン、又は鉄、アルミなどのチャンバー及び基板ホルダー由来の金属元素が1原子%程度以下含有していても構わない。本実施形態における非晶質であって、炭素、ケイ素、酸素、および水素を含む層は、炭化ケイ素を含むセラミックス基材とダイヤモンド状炭素膜の間に形成され、密着性を改善させる中間層として使用される。この層は炭素及びケイ素を含むため密着性に優れ、また水素及び酸素を含むことで膜応力の低減が図られるため更に密着性が向上する。酸素濃度は20原子%以下であれば密着性の向上が見られるが、25原子%より多くなるとダイヤモンド状炭素膜との密着性向上の効果がみられない場合がある。またこの非晶質であって、炭素、ケイ素、酸素、および水素を含む層は、結晶性を有しない非晶質の膜であることが好ましい。 An amorphous layer used as an adhesion layer and composed of carbon, silicon, oxygen, and hydrogen is a film in which at least carbon atoms, silicon atoms, oxygen atoms, and hydrogen atoms each have a concentration of at least 5 atomic% or more. Is. Moreover, it is a film having an oxygen atom concentration of 20 atomic% or less, and is also called a C—Si—OH film. Further, as an unavoidable impurity mixed during film formation, a metal element derived from a chamber such as nitrogen, argon, iron or aluminum that can be used as a dilution gas and a substrate holder may be contained in an amount of about 1 atomic% or less. The amorphous layer containing carbon, silicon, oxygen, and hydrogen in the present embodiment is formed between the ceramic base material containing silicon carbide and the diamond-like carbon film as an intermediate layer for improving adhesion. used. Since this layer contains carbon and silicon, it has excellent adhesion, and since it contains hydrogen and oxygen, the film stress can be reduced, so that the adhesion is further improved. If the oxygen concentration is 20 atomic% or less, the adhesion is improved, but if it is more than 25 atomic%, the effect of improving the adhesion with the diamond-like carbon film may not be observed. Further, the amorphous layer containing carbon, silicon, oxygen, and hydrogen is preferably an amorphous film having no crystallinity.

密着層の膜厚は適宜調整が可能であるが例えば0.01μm以上1μm以下、望ましくは0.02μm以上0.4μm以下である。 The film thickness of the adhesion layer can be adjusted as appropriate, but is, for example, 0.01 μm or more and 1 μm or less, preferably 0.02 μm or more and 0.4 μm or less.

ダイヤモンドライクカーボン(DLC)による膜(ダイヤモンド状炭素膜)とは、基本的には非晶質であり、硬度が高く、赤外領域で透明性が高いことから、こう呼ばれているものである。ダイヤモンドライクカーボン(DLC)による膜(ダイヤモンド状炭素膜)は、硬質炭素膜、i−C膜(アイカーボン膜)、ta−C膜(テトラヘドラルアモルファスカーボン膜)などとも呼ばれることがある。組成としては炭素原子と不可避不純物のみからなるものと、原料由来の水素ガスを含むものがある。この水素ガスを含む膜をa−C:H膜と称することもあるが、本発明のダイヤモンド状炭素膜はこのa−C:H膜も含むものである。不可避不純物として、希釈ガスとして使用可能な窒素、アルゴン、大気中の酸素、又は鉄、アルミなどのチャンバー及び基板ホルダー由来の金属元素などが1原子%程度以下含有していても構わない。また膜厚は適宜調整が可能であるが例えば0.04μm以上1μm以下、望ましくは0.05μm以上0.4μm以下である。 A diamond-like carbon (DLC) film (diamond-like carbon film) is basically amorphous, has high hardness, and is highly transparent in the infrared region, so it is called this way. .. The diamond-like carbon (DLC) film (diamond-like carbon film) may also be referred to as a hard carbon film, an i-C film (eye carbon film), a ta-C film (tetrahedral amorphous carbon film), or the like. Some of the compositions consist only of carbon atoms and unavoidable impurities, while others contain hydrogen gas derived from raw materials. The film containing hydrogen gas is sometimes referred to as an a-C: H film, but the diamond-like carbon film of the present invention also includes this a-C: H film. As unavoidable impurities, nitrogen, argon, oxygen in the atmosphere, or a metal element derived from a chamber such as iron or aluminum or a substrate holder may be contained in an amount of about 1 atomic% or less. The film thickness can be adjusted as appropriate, but is, for example, 0.04 μm or more and 1 μm or less, preferably 0.05 μm or more and 0.4 μm or less.

次に、本発明を実施例に基づき詳細に説明する。 Next, the present invention will be described in detail based on examples.

(発塵量の評価)
本実施例においてウエハチャックの発塵量の評価は以下の方法で行った。所定の形状に研削加工した炭化ケイ素を含むセラミックスによる基材をクリーンベンチ上に設置して、その近傍の空気を吸引してパーティクルカウンターに導入することで0.1μm以上の大きさの発塵物を測定する。発塵量は炭化ケイ素を含むセラミックス焼結体による基材において酸化処理を実施せず、密着層及びダイヤモンド状炭素膜を成膜しない比較例1の発塵量を基準として、実施例及び他の比較例の発塵量と比較することで行った。
(Evaluation of dust generation)
In this example, the amount of dust generated by the wafer chuck was evaluated by the following method. A base material made of ceramics containing silicon carbide ground into a predetermined shape is placed on a clean bench, and air in the vicinity is sucked and introduced into a particle counter to generate dust with a size of 0.1 μm or more. To measure. The amount of dust generated is based on the amount of dust generated in Comparative Example 1 in which the base material made of a ceramics sintered body containing silicon carbide is not oxidized and the adhesion layer and the diamond-like carbon film are not formed. This was done by comparing with the amount of dust generated in the comparative example.

(耐久性の評価)
耐久性の評価は、ピンオンディスク法による摺動試験により行った。炭化ケイ素を含むセラミックス製の基材と同等な素材を平板形状に研削加工したものに、実施例及び比較例に記載の各種の処理を施した試料を用意した。その試料上にΦ8のシリコン製の球体を荷重50g加えながら、幅5mmを速度1mm/secの摺動条件で試験を行った。試験後に摺動部に摺動摩耗痕が見られるか、膜付きサンプルの場合は膜剥離がないか、を光学顕微鏡、走査電子顕微鏡で観察し、更に摩耗痕形状を表面形状が観察可能な干渉計で測定した。
(Evaluation of durability)
The durability was evaluated by a sliding test by the pin-on-disk method. A sample obtained by grinding a material equivalent to a ceramic base material containing silicon carbide into a flat plate shape and subjecting it to various treatments described in Examples and Comparative Examples was prepared. A test was carried out on the sample under a sliding condition of a width of 5 mm and a speed of 1 mm / sec while applying a load of 50 g of a Φ8 silicon sphere. After the test, observe whether there are sliding wear marks on the sliding part or whether there is film peeling in the case of a sample with a film with an optical microscope or scanning electron microscope, and further observe the wear mark shape with interferometry in which the surface shape can be observed. Measured with a meter.

(実施例1)
まず、所定の形状に研削加工した炭化ケイ素を含むセラミックス焼結体製の基材を加熱炉に入れ、酸化処理を行った。加熱条件は、大気中雰囲気下で、10℃/minの昇温速度で400℃に昇温し、400℃で5時間キープし、その後、室温まで8時間かけて徐冷を行った。次に、この炭化ケイ素を含むセラミックス焼結体製の基材を図1に示すような高周波プラズマCVD装置に入れ、真空ポンプにより1x10−3Paまで真空排気を行った。次にプラズマクリーニング用にアルゴンガスを原料ガス導入用シャワーヘッド2に導入して、圧力を5Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を450W印加してプラズマを発生させ、基材4の表面のクリーニング(水分や汚れの除去)を行った。その後、アルゴンガスの導入を停止し、真空ポンプにより1x10−3Paまで真空排気を行った。次にダイヤモンド状炭素膜形成用にトルエンを原料ガス導入用シャワーヘッド2に導入して、圧力を5Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を450W印加してプラズマを発生させ、基材4の表面にダイヤモンド状炭素膜(DLC膜)を100nm形成した。
(Example 1)
First, a base material made of a ceramics sintered body containing silicon carbide ground into a predetermined shape was placed in a heating furnace and subjected to an oxidation treatment. As for the heating conditions, the temperature was raised to 400 ° C. at a heating rate of 10 ° C./min under an atmospheric atmosphere, kept at 400 ° C. for 5 hours, and then slowly cooled to room temperature over 8 hours. Next, the base material made of a ceramic sintered body containing silicon carbide was placed in a high-frequency plasma CVD apparatus as shown in FIG. 1, and vacuum exhausted to 1 x 10 -3 Pa by a vacuum pump. Next, argon gas was introduced into the shower head 2 for introducing the raw material gas for plasma cleaning, and the pressure was adjusted to 5 Pa. Then, 450 W of high frequency was applied from the high frequency power source 6 to the substrate holder 5 to generate plasma, and the surface of the base material 4 was cleaned (removal of moisture and dirt). After that, the introduction of argon gas was stopped, and vacuum exhaust was performed to 1 x 10 -3 Pa by a vacuum pump. Next, toluene was introduced into the shower head 2 for introducing the raw material gas for forming the diamond-like carbon film, and the pressure was adjusted to 5 Pa. Then, 450 W of high frequency was applied from the high frequency power source 6 to the substrate holder 5 to generate plasma, and a diamond-like carbon film (DLC film) of 100 nm was formed on the surface of the base material 4.

なお、別途、分析評価用にダイヤモンド状炭素膜を上記本実施例と同一の条件でシリコン基板上に形成した。分析の結果としては、ダイヤモンド状炭素膜は炭素と水素からなり、その組成はC:H=75.3:24.7atom%で、硬度は20GPaであった。 Separately, a diamond-like carbon film was formed on the silicon substrate under the same conditions as in the present embodiment for analysis and evaluation. As a result of the analysis, the diamond-like carbon film was composed of carbon and hydrogen, the composition of which was C: H = 75.3: 24.7 atom%, and the hardness was 20 GPa.

このウエハチャックを前述の所定の方法で発塵量測定を行い評価した。また、上記本実施例と同様な方法で酸化処理及びダイヤモンド状炭素膜の成膜を行った炭化ケイ素を含むセラミックス焼結体のφ60平板試料を作製した。作製した平板試料について、前述のピンオンディスク法による摺動試験を行い、試験後に摺動摩耗痕および膜剥離がないか、を光学顕微鏡、走査電子顕微鏡で観察した。評価結果は表1のようになった。 This wafer chuck was evaluated by measuring the amount of dust generated by the above-mentioned predetermined method. Further, a φ60 flat plate sample of a ceramics sintered body containing silicon carbide was prepared by performing an oxidation treatment and forming a diamond-like carbon film by the same method as in the present example. The prepared flat plate sample was subjected to a sliding test by the pin-on disk method described above, and after the test, it was observed with an optical microscope and a scanning electron microscope whether there were any sliding wear marks or film peeling. The evaluation results are shown in Table 1.

(実施例2)
所定の形状に研削加工したCVD法で形成された多結晶炭化ケイ素製の基材を加熱炉に入れ、酸化処理を行った。加熱条件は、大気中雰囲気下で、5℃/minの昇温速度で450℃に昇温し、450℃で10時間キープし、その後、室温まで12時間かけて徐冷を行った。次に、このCVD法で形成された多結晶炭化ケイ素製の基材を図1に示すような高周波プラズマCVD装置に入れ、真空ポンプにより1x10−3Paまで真空排気を行った。次にプラズマクリーニング用にアルゴンガスを原料ガス導入用シャワーヘッド2に導入して、圧力を5Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を450W印加してプラズマを発生させ、基材4の表面のクリーニングを行った。次にダイヤモンド状炭素膜形成用にトルエンを原料ガス導入用シャワーヘッド2に導入して、圧力を5Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を600W印加してプラズマを発生させ、基材の表面にダイヤモンド状炭素膜(DLC膜)を150nm形成した。
(Example 2)
A substrate made of polycrystalline silicon carbide formed by a CVD method ground into a predetermined shape was placed in a heating furnace and subjected to an oxidation treatment. As for the heating conditions, the temperature was raised to 450 ° C. at a heating rate of 5 ° C./min under an atmospheric atmosphere, kept at 450 ° C. for 10 hours, and then slowly cooled to room temperature over 12 hours. Next, the polycrystalline silicon carbide base material formed by this CVD method was placed in a high-frequency plasma CVD apparatus as shown in FIG. 1, and vacuum exhausted to 1 x 10 -3 Pa by a vacuum pump. Next, argon gas was introduced into the shower head 2 for introducing the raw material gas for plasma cleaning, and the pressure was adjusted to 5 Pa. Then, 450 W of high frequency was applied from the high frequency power source 6 to the substrate holder 5 to generate plasma, and the surface of the base material 4 was cleaned. Next, toluene was introduced into the shower head 2 for introducing the raw material gas for forming the diamond-like carbon film, and the pressure was adjusted to 5 Pa. Then, 600 W of high frequency was applied from the high frequency power source 6 to the substrate holder 5 to generate plasma, and a diamond-like carbon film (DLC film) of 150 nm was formed on the surface of the base material.

なお、別途、分析評価用にダイヤモンド状炭素膜を上記本実施例と同一の条件でシリコン基板上に形成した。分析の結果としては、ダイヤモンド状炭素膜は炭素と水素からなり、その組成はC:H=80.5:19.5atom%で、硬度は22GPaであった。 Separately, a diamond-like carbon film was formed on the silicon substrate under the same conditions as in the present embodiment for analysis and evaluation. As a result of the analysis, the diamond-like carbon film was composed of carbon and hydrogen, the composition of which was C: H = 80.5: 19.5 atom%, and the hardness was 22 GPa.

このウエハチャックを前述の所定の方法で発塵量測定を行い評価した。また、本実施例と同様な方法で、CVD多結晶炭化ケイ素製のφ60平板試料についてもダイヤモンド状炭素膜を成膜したサンプルを作製した。作製した平板試料について、前述のピンオンディスク法による摺動試験を行い、試験後に摺動摩耗痕および膜剥離を光学顕微鏡、走査電子顕微鏡で観察した。発塵試験及び摺動評価結果を表1に示す。 This wafer chuck was evaluated by measuring the amount of dust generated by the above-mentioned predetermined method. Further, by the same method as in this example, a sample having a diamond-like carbon film formed on the φ60 flat plate sample made of CVD polycrystalline silicon carbide was prepared. The prepared flat plate sample was subjected to a sliding test by the pin-on disk method described above, and after the test, sliding wear marks and film peeling were observed with an optical microscope and a scanning electron microscope. Table 1 shows the results of the dust generation test and sliding evaluation.

(実施例3)
まず、所定の形状に研削加工した炭化ケイ素を含むセラミックス焼結体製の基材を加熱炉に入れ、酸化処理を行った。加熱条件は、大気中雰囲気下で、10℃/minの昇温速度で400℃に昇温し、400℃で5時間キープし、その後、室温まで8時間かけて徐冷を行った。次に、この炭化ケイ素を含むセラミックス製の基材を図1に示すような高周波プラズマCVD装置に入れ、真空ポンプにより1x10−3Paまで真空排気を行った。次にプラズマクリーニング用にアルゴンガスを原料ガス導入用シャワーヘッド2に導入して、圧力を5Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を450W印加してプラズマを発生させ、基材4の表面のクリーニングを行った。次に非晶質であって、炭素、ケイ素、酸素、および水素を含む層を形成するため真空チャンバーに原料ガスとしてヘキサメチルジシロキサンを原料ガス導入用シャワーヘッド2に導入して、圧力を5Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を450W印加してプラズマを発生させ基材4の表面に非晶質であって、炭素、ケイ素、酸素、および水素を含む層を80nm形成した。次にヘキサメチルジシロキサンの導入を停止した。そして、真空ポンプにより1x10−3Paまで真空排気を行ったのちに、ダイヤモンド状炭素膜形成用にトルエンを原料ガス導入用シャワーヘッド2に導入した。そして、圧力を5Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を450W印加してプラズマを発生させ、非晶質であって、炭素、ケイ素、酸素、および水素を含む層の表面にダイヤモンド状炭素膜(DLC膜)を100nm形成した。
(Example 3)
First, a base material made of a ceramics sintered body containing silicon carbide ground into a predetermined shape was placed in a heating furnace and subjected to an oxidation treatment. As for the heating conditions, the temperature was raised to 400 ° C. at a heating rate of 10 ° C./min under an atmospheric atmosphere, kept at 400 ° C. for 5 hours, and then slowly cooled to room temperature over 8 hours. Next, the ceramic substrate containing silicon carbide was placed in a high-frequency plasma CVD apparatus as shown in FIG. 1, and vacuum exhausted to 1 x 10 -3 Pa by a vacuum pump. Next, argon gas was introduced into the shower head 2 for introducing the raw material gas for plasma cleaning, and the pressure was adjusted to 5 Pa. Then, 450 W of high frequency was applied from the high frequency power source 6 to the substrate holder 5 to generate plasma, and the surface of the base material 4 was cleaned. Next, in order to form a layer that is amorphous and contains carbon, silicon, oxygen, and hydrogen, hexamethyldisiloxane as a raw material gas is introduced into the raw material gas introduction shower head 2 in a vacuum chamber, and the pressure is 5 Pa. Adjusted to be. Then, 450 W of high frequency was applied from the high frequency power source 6 to the substrate holder 5 to generate plasma, and an amorphous layer containing carbon, silicon, oxygen, and hydrogen was formed at 80 nm on the surface of the base material 4. Next, the introduction of hexamethyldisiloxane was stopped. Then, after vacuum exhausting to 1 x 10 -3 Pa with a vacuum pump, toluene was introduced into the raw material gas introduction shower head 2 for forming a diamond-like carbon film. Then, the pressure was adjusted to 5 Pa. After that, a high frequency of 450 W is applied from the high frequency power source 6 to the substrate holder 5 to generate plasma, and a diamond-like carbon film (DLC film) is formed on the surface of a layer that is amorphous and contains carbon, silicon, oxygen, and hydrogen. Was formed at 100 nm.

なお、別途、分析評価用に非晶質であって、炭素、ケイ素、酸素、および水素を含む層およびダイヤモンド状炭素膜のそれぞれの単層を上記本実施例と同一の条件でシリコン基板上に形成した。分析の結果としては、非晶質であって、炭素、ケイ素、酸素、および水素を含む層の組成は、C:Si:O:H=40.5:13.0:11.1:35.4atom%であった。また、ダイヤモンド状炭素膜は炭素と水素からなり、その組成はC:H=75.3:24.7atom%で、硬度は20GPaであった。 Separately, for analysis and evaluation, each single layer of a layer containing carbon, silicon, oxygen, and hydrogen and a diamond-like carbon film, which is amorphous, is placed on a silicon substrate under the same conditions as in the above embodiment. Formed. As a result of the analysis, the composition of the layer which is amorphous and contains carbon, silicon, oxygen, and hydrogen is C: Si: O: H = 40.5: 13.0: 11.1: 35. It was 4 amorphous. The diamond-like carbon film was composed of carbon and hydrogen, the composition of which was C: H = 75.3: 24.7 atom%, and the hardness was 20 GPa.

このウエハチャックを前述の所定の方法で発塵量測定を行い評価した。また、上記本実施例と同様な方法で酸化処理及び非晶質であって、炭素、ケイ素、酸素、および水素を含む層及びダイヤモンド状炭素膜の成膜を行った炭化ケイ素を含むセラミックスのφ60平板試料を作製した。作製した平板試料について、前述のピンオンディスク法による摺動試験を行い、試験後に摺動摩耗痕および膜剥離がないか、を光学顕微鏡、走査電子顕微鏡で観察した。評価結果は表1のようになった。 This wafer chuck was evaluated by measuring the amount of dust generated by the above-mentioned predetermined method. Further, φ60 of a ceramic containing silicon carbide, which is oxidized and amorphous by the same method as in the present embodiment and has a layer containing carbon, silicon, oxygen, and hydrogen and a diamond-like carbon film formed. A flat plate sample was prepared. The prepared flat plate sample was subjected to a sliding test by the pin-on disk method described above, and after the test, it was observed with an optical microscope and a scanning electron microscope whether there were any sliding wear marks or film peeling. The evaluation results are shown in Table 1.

(実施例4)
所定の形状に研削加工した炭化ケイ素を含むセラミックス焼結体製の基材を加熱炉に入れ、酸化処理を、大気中雰囲気下で、10℃/minの昇温速度で600℃に昇温し、600℃で3時間キープし、その後、室温まで8時間かけて徐冷を行った。次に、この炭化ケイ素を含むセラミックス焼結体製の基材を図1に示すような高周波プラズマCVD装置に入れ、真空ポンプにより1x10−3Paまで真空排気を行った。次に非晶質であって、炭素、ケイ素、酸素、および水素を含む層を形成するため真空チャンバーに原料ガスとしてヘキサメチルジシロキサン、アルゴンガスを1:5の割合で原料ガス導入用シャワーヘッド2に導入して、圧力を6Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を600W印加してプラズマを発生させ基材4の表面に非晶質であって、炭素、ケイ素、酸素、および水素を含む層を50nm形成した。次にヘキサメチルジシロキサンの導入を停止し、真空ポンプにより1x10−3Paまで真空排気を行った。その後、ダイヤモンド状炭素膜形成用にトルエン、アルゴンガスを1:5の割合で原料ガス導入用シャワーヘッド2に導入して、圧力を4Paになるように調整した。その後、高周波電源6から基板ホルダー5に高周波を650W印加してプラズマを発生させ、非晶質であって、炭素、ケイ素、酸素、および水素を含む層の表面にダイヤモンド状炭素膜(DLC膜)を100nm形成した。
(Example 4)
A base material made of a ceramics sintered body containing silicon carbide ground into a predetermined shape is placed in a heating furnace, and the oxidation treatment is carried out in an atmospheric atmosphere at a heating rate of 10 ° C./min to 600 ° C. , 600 ° C. for 3 hours, and then slowly cooled to room temperature for 8 hours. Next, the base material made of a ceramic sintered body containing silicon carbide was placed in a high-frequency plasma CVD apparatus as shown in FIG. 1, and vacuum exhausted to 1 x 10 -3 Pa by a vacuum pump. Next, in order to form a layer that is amorphous and contains carbon, silicon, oxygen, and hydrogen, hexamethyldisiloxane and argon gas are used as raw material gases in a vacuum chamber at a ratio of 1: 5 to introduce the raw material gas. It was introduced into 2 and the pressure was adjusted to 6 Pa. Then, 600 W of high frequency was applied from the high frequency power source 6 to the substrate holder 5 to generate plasma, and a layer which was amorphous and contained carbon, silicon, oxygen, and hydrogen was formed at 50 nm on the surface of the base material 4. Next, the introduction of hexamethyldisiloxane was stopped, and vacuum exhaust was performed to 1x10 -3 Pa by a vacuum pump. Then, toluene and argon gas were introduced into the raw material gas introduction shower head 2 at a ratio of 1: 5 for forming a diamond-like carbon film, and the pressure was adjusted to 4 Pa. After that, 650 W of high frequency is applied from the high frequency power supply 6 to the substrate holder 5 to generate plasma, and a diamond-like carbon film (DLC film) is formed on the surface of a layer that is amorphous and contains carbon, silicon, oxygen, and hydrogen. Was formed at 100 nm.

なお、別途、分析評価用に非晶質であって、炭素、ケイ素、酸素、および水素を含む層およびダイヤモンド状炭素膜のそれぞれの単層を本実施例と同一の条件でシリコン基板上に形成した。分析の結果としては、非晶質であって、炭素、ケイ素、酸素、および水素を含む層の組成は、C:Si:O:H=35.4:20.6:9.0:35.0atom%であった。また、ダイヤモンド状炭素膜は炭素と水素からなり、その組成はC:H=78.0:22.0atom%で、硬度は21GPaであった。 Separately, a single layer of a layer containing carbon, silicon, oxygen, and hydrogen and a diamond-like carbon film, which is amorphous for analysis and evaluation, is formed on the silicon substrate under the same conditions as in this embodiment. did. As a result of the analysis, the composition of the layer which is amorphous and contains carbon, silicon, oxygen, and hydrogen is C: Si: O: H = 35.4: 20.6: 9.0: 35. It was 0 atom%. The diamond-like carbon film was composed of carbon and hydrogen, the composition of which was C: H = 78.0: 22.0 atom%, and the hardness was 21 GPa.

またこのウエハチャックを前述の所定の方法で、発塵量測定を行い評価した。さらに、上記本実施例と同様な方法で酸化処理及び非晶質であって、炭素、ケイ素、酸素、および水素を含む層及びダイヤモンド状炭素膜の成膜を行った炭化ケイ素を含むセラミックスのφ60平板試料を作製した。作製した平板試料について、前述のピンオンディスク法による摺動試験を行い、試験後に摺動摩耗痕および膜剥離がないか、を光学顕微鏡、走査電子顕微鏡で観察した。評価結果は表1のようになった。 Further, this wafer chuck was evaluated by measuring the amount of dust generated by the above-mentioned predetermined method. Further, φ60 of a ceramic containing silicon carbide, which is oxidized and amorphous by the same method as in the present embodiment and has a layer containing carbon, silicon, oxygen, and hydrogen and a diamond-like carbon film formed. A flat plate sample was prepared. The prepared flat plate sample was subjected to a sliding test by the pin-on disk method described above, and after the test, it was observed with an optical microscope and a scanning electron microscope whether there were any sliding wear marks or film peeling. The evaluation results are shown in Table 1.

(比較例1)
実施例1と同様に所定の形状に研削加工した炭化ケイ素を含むセラミックス焼結体製の基材を、酸化処理を実施せず、更に密着層、ダイヤモンド状炭素膜の成膜を行わずに前述の所定の方法で発塵量測定を行い評価した。また、酸化処理を実施せず、更に密着層、ダイヤモンド状炭素膜の成膜を行っていない炭化ケイ素を含むセラミックスのφ60平板試料を作製した。この試料について、前述のピンオンディスク法による摺動試験を行い、試験後の摺動摩耗痕を光学顕微鏡、走査電子顕微鏡で観察した。評価結果は表1のようになった。
(Comparative Example 1)
The base material made of a ceramics sintered body containing silicon carbide ground into a predetermined shape in the same manner as in Example 1 is not subjected to an oxidation treatment, and is further described above without forming an adhesion layer and a diamond-like carbon film. The amount of dust generated was measured and evaluated by the predetermined method of. Further, a φ60 flat plate sample of ceramics containing silicon carbide, which was not subjected to the oxidation treatment and was not further formed with the adhesion layer and the diamond-like carbon film, was prepared. This sample was subjected to a sliding test by the pin-on disk method described above, and the sliding wear marks after the test were observed with an optical microscope and a scanning electron microscope. The evaluation results are shown in Table 1.

(比較例2)
比較例2では、実施例1と同様に所定の形状に研削加工した炭化ケイ素を含むセラミックス焼結体製の基材を、実施例1と同様な加熱処理(380℃)を行なった。本比較例では密着層及びダイヤモンド状炭素膜(DLC膜)を形成せずに実施例1と同様な所定の方法で発塵量測定を行い評価した。また、酸化処理のみを行った炭化ケイ素系セラミックスのφ60平板試料を作製し、この試料について、前述のピンオンディスク法による摺動試験を行い、試験後の摺動摩耗痕を光学顕微鏡、走査電子顕微鏡で観察した。評価結果は表1のようになった。
(Comparative Example 2)
In Comparative Example 2, a base material made of a ceramics sintered body containing silicon carbide ground into a predetermined shape in the same manner as in Example 1 was subjected to the same heat treatment (380 ° C.) as in Example 1. In this comparative example, the amount of dust generated was measured and evaluated by the same predetermined method as in Example 1 without forming the adhesion layer and the diamond-like carbon film (DLC film). In addition, a φ60 flat plate sample of silicon carbide-based ceramics that was only oxidized was prepared, and this sample was subjected to a sliding test by the pin-on disk method described above, and the sliding wear marks after the test were detected by an optical microscope and scanning electrons. It was observed with a microscope. The evaluation results are shown in Table 1.

Figure 2021060573
Figure 2021060573

(評価)
本発明の実施例1〜3では、発塵量が大幅に減少し、更に摺動試験で摺動摩耗痕が見られないなど摺動耐久性も良好で、かつダイヤモンド状炭素膜の剥離も見られないことが分かった。すなわち、酸化処理された炭化ケイ素を含むセラミックス焼結基材のウエハチャック上に、ダイヤモンド状炭素膜を形成した実施例1において、発塵量は大幅に減少(比較例1に比べ1/100)した。また、摺動試験でダイヤモンド状炭素膜が焼結助剤部で一部膜剥離が見られたがそれ以外の部分で摺動摩耗痕は見られず実用上問題のないレベルであった。
(Evaluation)
In Examples 1 to 3 of the present invention, the amount of dust generated is significantly reduced, the sliding durability is good such that no sliding wear marks are observed in the sliding test, and the diamond-like carbon film is peeled off. I found that I couldn't. That is, in Example 1 in which a diamond-like carbon film was formed on a wafer chuck of a ceramics sintered base material containing oxidized silicon carbide, the amount of dust generated was significantly reduced (1/100 as compared with Comparative Example 1). did. Further, in the sliding test, the diamond-like carbon film was partially peeled off at the sintering aid portion, but no sliding wear marks were observed in the other portions, which was at a level where there was no problem in practical use.

また、実施例2に示すようにCVD法で形成された多結晶炭化ケイ素部材を使用した場合、ダイヤモンド状炭素膜は摺動性評価で膜剥離も見られず良好な密着性を有していることが分かった。これは、CVD法で形成された多結晶炭化ケイ素部材が、焼結体と比べて焼結助剤が含まれないため加熱による酸化処理に対して安定性が高く、ダイヤモンド状炭素膜を形成した際の密着性に優れているためである。また炭化ケイ素を含むセラミックス焼結による基材を用いたウエハチャックの場合、密着層を形成することで(実施例3及び4)、更に発塵の発生と膜剥離が抑制されることがわかった。 Further, when a polycrystalline silicon carbide member formed by the CVD method is used as shown in Example 2, the diamond-like carbon film has good adhesion without film peeling in the slidability evaluation. It turned out. This is because the polycrystalline silicon carbide member formed by the CVD method is more stable to the oxidation treatment by heating because it does not contain a sintering aid as compared with the sintered body, and forms a diamond-like carbon film. This is because it has excellent adhesion. Further, in the case of a wafer chuck using a base material obtained by sintering ceramics containing silicon carbide, it was found that the formation of an adhesive layer (Examples 3 and 4) further suppresses the generation of dust and film peeling. ..

これに対して、チャック用基材を酸化処理せず、密着層及びダイヤモンド状炭素膜の成膜を行っていない比較例1では、発塵量が高く、また摺動試験で摺動摩耗痕が見られるなど摺動耐久性が悪い事が分かった。また、比較例2の酸化処理のみ行った場合は、発塵量が大幅に減少したが、摺動試験で摺動摩耗痕が見られるなど摺動耐久性が低下することが分かった。 On the other hand, in Comparative Example 1 in which the chuck base material was not oxidized and the adhesion layer and the diamond-like carbon film were not formed, the amount of dust generated was high and the sliding wear marks were observed in the sliding test. It was found that the sliding durability was poor, such as being seen. Further, it was found that when only the oxidation treatment of Comparative Example 2 was performed, the amount of dust generated was significantly reduced, but the sliding durability was lowered such that sliding wear marks were observed in the sliding test.

(実施例5、6)
実施例1と同様に加工及び酸化処理されたCVD法多結晶炭化ケイ素製のΦ60平板試料に公知のスパッタ法により、密着層としてシリコン膜及び窒化ケイ素膜を形成した。更にこの試料に実施例3と同一条件でダイヤモンド状炭素膜を形成した。この試料について前述のピンオンディスク法による摺動試験の荷重条件を2倍(100g)に変更して行い、試験後に摺動摩耗痕および膜剥離がないか、を光学顕微鏡、走査電子顕微鏡で観察した。評価結果としては、密着層としてシリコン膜及び窒化ケイ素膜を用いた2試料ともに膜剥離及び摺動摩耗痕は見られなかった。
(Examples 5 and 6)
CVD method that was processed and oxidized in the same manner as in Example 1 A silicon film and a silicon nitride film were formed as adhesion layers on a Φ60 flat plate sample made of polycrystalline silicon carbide by a known sputtering method. Further, a diamond-like carbon film was formed on this sample under the same conditions as in Example 3. For this sample, the load condition of the sliding test by the pin-on disk method described above was changed to 2 times (100 g), and after the test, it was observed with an optical microscope and a scanning electron microscope whether there were any sliding wear marks or film peeling. did. As a result of the evaluation, no film peeling or sliding wear marks were observed in both samples using the silicon film and the silicon nitride film as the adhesion layer.

(実施例7)
実施例1と同様に加工及び酸化処理されたCVD法多結晶炭化ケイ素製のΦ60平板試料に、図1に示すような高周波プラズマCVD装置を用いて、密着層として非晶質であって、炭素、ケイ素、酸素、および水素を含む層を形成した。更にこの試料に実施例1と同一条件でダイヤモンド状炭素膜を形成した。この試料について前述のピンオンディスク法による摺動試験の荷重条件を2倍(100g)に変更して行い、試験後に摺動摩耗痕および膜剥離がないか、を光学顕微鏡、走査電子顕微鏡で観察した。評価結果として膜剥離及び摺動摩耗痕は見られないことを確認した。
(Example 7)
A Φ60 flat plate sample made of polycrystalline silicon carbide processed and oxidized in the same manner as in Example 1 using a high-frequency plasma CVD apparatus as shown in FIG. 1, which is amorphous as an adhesion layer and is carbon. , Silicon, oxygen, and hydrogen were formed. Further, a diamond-like carbon film was formed on this sample under the same conditions as in Example 1. For this sample, the load condition of the sliding test by the pin-on disk method described above was changed to 2 times (100 g), and after the test, it was observed with an optical microscope and a scanning electron microscope whether there were any sliding wear marks or film peeling. did. As a result of the evaluation, it was confirmed that no film peeling or sliding wear marks were observed.

1 真空チャンバー
2 原料ガス導入用シャワーヘッド兼グラウンド電極
3 原料ガス導入ライン
4 基材
5 基板ホルダー兼高周波導入電極
6 高周波電源
21 ウエハチャック
22 吸引孔
23 リフトピン用孔
24 ウエハチャッキング部
25 つば
31 基材
32 ピン部
33 ダイヤモンド状炭素膜
34 密着層
41 光源
42 コンデンサーレンズ
43 マスク
44 縮小投影レンズ
45 ウエハ
46 ウエハチャック
1 Vacuum chamber 2 Shower head and ground electrode for raw material gas introduction 3 Raw material gas introduction line 4 Base material 5 Substrate holder and high frequency introduction electrode 6 High frequency power supply 21 Wafer chuck 22 Suction hole 23 Lift pin hole 24 Wafer chucking part 25 Brim 31 Material 32 Pin part 33 Diamond-like carbon film 34 Adhesive layer 41 Light source 42 Condenser lens 43 Mask 44 Reduction projection lens 45 Wafer 46 Wafer chuck

Claims (13)

炭化ケイ素を含むセラミックスによる基材を有するウエハチャックであって、
前記基材は酸化処理層を有し、最表面にダイヤモンドライクカーボン(DLC)による膜が形成されていることを特徴とするウエハチャック。
A wafer chuck having a base material made of ceramics containing silicon carbide.
A wafer chuck characterized in that the base material has an oxidation-treated layer and a film made of diamond-like carbon (DLC) is formed on the outermost surface.
前記酸化処理層と前記膜との間に、少なくともケイ素又は炭素を含む層が形成されていることを特徴とする請求項1に記載のウエハチャック。 The wafer chuck according to claim 1, wherein a layer containing at least silicon or carbon is formed between the oxidation-treated layer and the film. 前記少なくともケイ素又は炭素を含む層の厚さは、0.01μm以上1μm以下であることを特徴とする請求項2に記載のウエハチャック。 The wafer chuck according to claim 2, wherein the thickness of the layer containing at least silicon or carbon is 0.01 μm or more and 1 μm or less. 前記少なくともケイ素又は炭素を含む層は、シリコン、窒化ケイ素、炭化ケイ素、または窒化炭素を主成分とする層であることを特徴とする請求項2または3に記載のウエハチャック。 The wafer chuck according to claim 2 or 3, wherein the layer containing at least silicon or carbon is a layer containing silicon, silicon nitride, silicon carbide, or carbon nitride as a main component. 前記酸化処理層と前記膜との間に、非晶質であって、炭素、ケイ素、酸素、および水素を含む層が形成されていることを特徴とする請求項1に記載のウエハチャック。 The wafer chuck according to claim 1, wherein a layer which is amorphous and contains carbon, silicon, oxygen, and hydrogen is formed between the oxidation-treated layer and the film. 前記非晶質であって、炭素、ケイ素、酸素、および水素を含む層の厚さは、0.01μm以上1μm以下であることを特徴とする請求項5に記載のウエハチャック。 The wafer chuck according to claim 5, wherein the layer that is amorphous and contains carbon, silicon, oxygen, and hydrogen has a thickness of 0.01 μm or more and 1 μm or less. 前記非晶質であって、炭素、ケイ素、酸素、および水素を含む層は、炭素原子、ケイ素原子、酸素原子、および水素原子の濃度がそれぞれ5原子%以上であり、かつ酸素原子の濃度が20原子%以下であることを特徴とする請求項5または6に記載のウエハチャック。 The amorphous layer containing carbon, silicon, oxygen, and hydrogen has a carbon atom, a silicon atom, an oxygen atom, and a hydrogen atom having a concentration of 5 atomic% or more, and an oxygen atom concentration of 5 atomic% or more. The wafer chuck according to claim 5 or 6, wherein the content is 20 atomic% or less. 前記膜の厚さは、0.04μm以上1μm以下であることを特徴とする請求項1乃至7いずれか一項に記載のウエハチャック。 The wafer chuck according to any one of claims 1 to 7, wherein the thickness of the film is 0.04 μm or more and 1 μm or less. 前記酸化処理層は、酸素濃度が25原子%より高いことを特徴とする請求項1乃至8いずれか一項に記載のウエハチャック。 The wafer chuck according to any one of claims 1 to 8, wherein the oxidation-treated layer has an oxygen concentration of more than 25 atomic%. 炭化ケイ素を含むセラミックスによる基板の表面を酸化処理する工程と、
ダイヤモンドライクカーボン(DLC)による膜を形成する工程と、を有することを特徴とするウエハチャックの製造方法。
The process of oxidizing the surface of the substrate with ceramics containing silicon carbide,
A method for manufacturing a wafer chuck, which comprises a step of forming a film made of diamond-like carbon (DLC).
前記酸化処理する工程の後であって、前記膜を形成する工程の前に、
前記酸化処理した基板上に少なくともケイ素又は炭素を含む層を設ける工程と、を有することを特徴とする請求項10に記載のウエハチャックの製造方法。
After the step of oxidizing treatment and before the step of forming the film,
The method for manufacturing a wafer chuck according to claim 10, further comprising a step of providing a layer containing at least silicon or carbon on the oxidized substrate.
前記酸化処理する工程の後であって、前記膜を形成する工程の前に、
前記酸化処理した基板上に非晶質であって、炭素、ケイ素、酸素、および水素を含む層を設ける工程と、を有することを特徴とする請求項10に記載のウエハチャックの製造方法。
After the step of oxidizing treatment and before the step of forming the film,
The method for manufacturing a wafer chuck according to claim 10, further comprising a step of providing a layer which is amorphous and contains carbon, silicon, oxygen, and hydrogen on the oxidation-treated substrate.
請求項1乃至9いずれか一項に記載のウエハチャックを搭載した露光装置。 An exposure apparatus equipped with the wafer chuck according to any one of claims 1 to 9.
JP2020134003A 2019-10-02 2020-08-06 Wafer chuck, method for producing the same, and exposure apparatus Pending JP2021060573A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/037,386 US11842918B2 (en) 2019-10-02 2020-09-29 Wafer chuck, method for producing the same, and exposure apparatus
TW109133797A TWI826731B (en) 2019-10-02 2020-09-29 Wafer chuck, method for producing the same, and exposure apparatus
CN202011048311.7A CN112599463B (en) 2019-10-02 2020-09-29 Wafer chuck, method for producing the same, and exposure apparatus
CN202410035948.4A CN117878049A (en) 2019-10-02 2020-09-29 Wafer chuck, method for producing the same, and exposure apparatus
KR1020200127314A KR20210039966A (en) 2019-10-02 2020-09-29 Wafer chuck, method for producing the same, and exposure apparatus
TW112142594A TW202408972A (en) 2019-10-02 2020-09-29 Wafer chuck, method for producing the same, and exposure apparatus
US18/504,007 US20240071807A1 (en) 2019-10-02 2023-11-07 Wafer chuck, method for producing the same, and exposure apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019182530 2019-10-02
JP2019182530 2019-10-02

Publications (2)

Publication Number Publication Date
JP2021060573A true JP2021060573A (en) 2021-04-15
JP2021060573A5 JP2021060573A5 (en) 2024-01-19

Family

ID=75380190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020134003A Pending JP2021060573A (en) 2019-10-02 2020-08-06 Wafer chuck, method for producing the same, and exposure apparatus

Country Status (3)

Country Link
JP (1) JP2021060573A (en)
KR (1) KR20210039966A (en)
TW (1) TWI826731B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102390754B1 (en) * 2017-11-08 2022-04-26 에이에스엠엘 네델란즈 비.브이. Manufacturing methods for manufacturing substrate holders and devices

Also Published As

Publication number Publication date
TWI826731B (en) 2023-12-21
TW202114969A (en) 2021-04-16
KR20210039966A (en) 2021-04-12

Similar Documents

Publication Publication Date Title
JP5275567B2 (en) Tantalum carbide-coated carbon material and method for producing the same
US10053778B2 (en) Cooling pedestal with coating of diamond-like carbon
US20060165994A1 (en) Protective coating on a substrate and method of making thereof
JP4322846B2 (en) Susceptor
JP2007016272A (en) Protective film covered on substrate, and its manufacturing method
JP2007213715A (en) Method for forming fluorinated diamondlike carbon thin film, and fluorinated diamondlike carbon thin film obtained thereby
JP2021060573A (en) Wafer chuck, method for producing the same, and exposure apparatus
JP2013087325A (en) Hard carbon film, and method for forming the same
US11842918B2 (en) Wafer chuck, method for producing the same, and exposure apparatus
JP2008001562A (en) Yttrium-based ceramic covering material and its production method
JP2012237024A (en) Alminum nitride film and member covered therewith
Thoka et al. Microstructure and electronic properties of ultra-nano-crystalline-diamond thin films
JP2001257163A (en) Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device
JP2006237498A (en) Susceptor
JPH07176597A (en) Manufacture of member producing little dust
JP4116144B2 (en) Manufacturing method of hard carbon coating member
JP2008144273A (en) Method for producing hard carbon-coated member
CN113564525B (en) Preparation of graphene target and application of graphene target in magnetron sputtering deposition of low-friction carbon film
WO2023008439A1 (en) Member for semiconductor production apparatus and method for producing said member
JPWO2011046191A1 (en) Semiconductor manufacturing jig and manufacturing method thereof
JP2002015619A (en) Electro-conductive material, and plasma resistant member and semiconductor manufacturing device using it
WO2019155947A1 (en) Carbon nanotube aggregate
JPH0826751A (en) Optical element forming die and its production
KR20240080847A (en) Manufacturing method for graphene film
JP2004137567A (en) Method for selectively forming carbon-containing film with chemical vapor deposition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230719

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240507