JP2021060204A - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP2021060204A
JP2021060204A JP2019182663A JP2019182663A JP2021060204A JP 2021060204 A JP2021060204 A JP 2021060204A JP 2019182663 A JP2019182663 A JP 2019182663A JP 2019182663 A JP2019182663 A JP 2019182663A JP 2021060204 A JP2021060204 A JP 2021060204A
Authority
JP
Japan
Prior art keywords
inspection
unit
transmission amount
learning
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019182663A
Other languages
Japanese (ja)
Other versions
JP7373840B2 (en
Inventor
倫秋 池田
Noriaki Ikeda
倫秋 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
System Square Inc
Original Assignee
System Square Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System Square Inc filed Critical System Square Inc
Priority to JP2019182663A priority Critical patent/JP7373840B2/en
Publication of JP2021060204A publication Critical patent/JP2021060204A/en
Application granted granted Critical
Publication of JP7373840B2 publication Critical patent/JP7373840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Image Analysis (AREA)

Abstract

To provide an inspection device making a burden to the device small and having good workability when collecting learning data, executing machine learning of a learning model, and executing an inspection using the learning model.SOLUTION: The inspection device comprises: an inspection unit 110 which includes an electromagnetic wave irradiation part 111 for irradiating an inspection target, a transmission amount detection part 113 for detecting a transmission amount of the inspection target, a storage part 114 for storing the distribution data of the transmission amount detected by the transmission amount detection part 113, and an abnormality detection part 115 for detecting a predetermined abnormality in the inspection target based on the distribution data of the transmission amount of the inspection target; a CPU 121 which executes control of the inspection unit 110; and a GPU 122 which executes processing of generating a learning model for detecting a predetermined abnormality in the inspection target under the control of CPU 121 by machine learning using the distribution data of the transmission amount of the inspection target accumulated in the storage part 114 as learning data, in which the abnormality detection part 115 detects the predetermined abnormality in the inspection target by inputting the distribution data of the transmission amount of the inspection target into the learning model.SELECTED DRAWING: Figure 1

Description

本発明は、検査対象物に電磁波を照射し、透過量に基づき異物等の検査を行う検査装置に関する。 The present invention relates to an inspection device that irradiates an object to be inspected with an electromagnetic wave and inspects a foreign substance or the like based on the amount of transmission.

検査対象物にX線、紫外線、可視光線、赤外線、又はマイクロ波などの電磁波を照射し透過量を検出すると、検査対象物内の異物の有無や異物の材質等に起因する透過量の強弱の分布が得られる。この強弱の分布がそれぞれの画素の色調(色彩の明暗・濃淡・強弱などの調子)により表現された二次元画像を生成することで、外観からは知りえない検査対象物内部の状況を可視化することができる。 When the inspection target is irradiated with electromagnetic waves such as X-rays, ultraviolet rays, visible rays, infrared rays, or microwaves and the transmitted amount is detected, the strength of the transmitted amount due to the presence or absence of foreign matter in the inspection object and the material of the foreign matter is determined. A distribution is obtained. By generating a two-dimensional image in which this intensity distribution is expressed by the color tone of each pixel (tone of color tone, shade, intensity, etc.), the situation inside the inspection object that cannot be seen from the outside is visualized. be able to.

前述のように透過量の強弱は、検査対象物内の異物の有無や異物の材質等に起因するが、異物と非異物との組み合わせによっては、両者の透過量の差異が非常に小さく、生成された二次元画像からの両者の識別が難しい場合がある。 As described above, the strength of the permeation amount depends on the presence or absence of foreign matter in the inspection object, the material of the foreign matter, etc., but depending on the combination of the foreign matter and the non-foreign matter, the difference in the permeation amount between the two is very small and is generated. It may be difficult to distinguish between the two from the two-dimensional image.

そのような課題の解決策として、近時、機械学習された学習モデルを用いる方法が提案されている。例えば、検出したい異物を含む検査対象物の透過量の分布を示す画像等のデータを多数収集し、これを学習データとして、当該検査対象物に含まれる当該異物を検出するための学習モデルを機械学習により生成する。この学習モデルに検査対象物の透過量の分布を示す画像等のデータを入力することで、異物を非異物と区別して精度よく検出することが可能になる。 As a solution to such a problem, a method using a machine-learned learning model has recently been proposed. For example, a machine is used to collect a large amount of data such as an image showing the distribution of the permeation amount of an inspection object including a foreign substance to be detected, and use this as learning data to detect the foreign substance contained in the inspection object. Generated by learning. By inputting data such as an image showing the distribution of the transmission amount of the inspection object into this learning model, it becomes possible to distinguish foreign matter from non-foreign matter and detect it with high accuracy.

例えば、複数の物品が重なり合っている状態の商品のX線検査画像を学習画像として用いる機械学習を実行し、これにより得られた特徴量を用いて商品をX線検査することで、互いに重なり合うことがある複数の物品を含む商品の検査精度の低下を抑制可能とする検査装置が特許文献1に開示されている。 For example, by executing machine learning using an X-ray inspection image of a product in which a plurality of articles are overlapped as a learning image and X-ray inspection of the product using the feature amount obtained thereby, the products overlap each other. Patent Document 1 discloses an inspection device capable of suppressing a decrease in inspection accuracy of a product containing a plurality of articles.

また、検査装置で収集した学習データを、別のコンピュータ装置に機械学習させて得られた学習モデルを、再度検査装置に適用して検査を行う方法も提案されている。 In addition, a method has also been proposed in which the learning data collected by the inspection device is machine-learned by another computer device, and the learning model obtained is applied to the inspection device again to perform the inspection.

特許第6537008号公報Japanese Patent No. 6537008

特許文献1に記載の検査装置では、CPU(Central Processing Unit)が学習データの収集や検査の実行制御と機械学習処理との双方を担っている。そのため、CPUで機械学習処理を実行すると、処理に能力と時間を要するため、その間、他の処理を行えないか著しく処理速度が低下する。 In the inspection device described in Patent Document 1, a CPU (Central Processing Unit) is responsible for both collection of learning data, execution control of inspection, and machine learning processing. Therefore, when the machine learning process is executed by the CPU, the process requires power and time, and during that time, other processes cannot be performed or the processing speed is significantly reduced.

また、機械学習を別のコンピュータ装置で実行する方法では、検査装置で収集した学習データを一旦出力して別のコンピュータ装置に入力する手間や、機械学習により得られた学習モデルを検査装置に入力する手間がかかり、かつ、外部から入力した学習モデルを検査で適用できるように検査装置の構成を変更する必要がある。加えて、検査装置とコンピュータ装置のそれぞれにおいて操作が必要になるため、作業性がよくない。 In the method of executing machine learning on another computer device, it is troublesome to output the learning data collected by the inspection device once and input it to another computer device, or input the learning model obtained by machine learning to the inspection device. It is necessary to change the configuration of the inspection device so that the learning model input from the outside can be applied in the inspection. In addition, workability is not good because operations are required for each of the inspection device and the computer device.

本発明の目的は、学習データの収集、学習モデルの機械学習及び当該学習モデルを用いた検査の実行に際し、装置への負荷が小さく、かつ作業性がよい検査装置を提供することにある。 An object of the present invention is to provide an inspection apparatus having a small load on the apparatus and good workability in collecting learning data, machine learning of a learning model, and performing an inspection using the learning model.

本発明の検査装置は、電磁波を発生し検査対象物に照射する電磁波照射部と、検査対象物を透過した電磁波の透過量の分布を検出する透過量検出部と、透過量検出部が検出した透過量の分布データを蓄積する記憶部と、検査対象物の透過量の分布データに基づき検査対象物における所定の異常を検出する異常検出部と、を備える検査部と、検査部の制御を実行するCPUと、を備える検査装置であって、記憶部に蓄積された、所定の異常がある検査対象物の透過量の分布データを学習データとして、検査対象物における所定の異常を検出するための学習モデルを機械学習により生成する処理をCPUによる制御の下で実行するGPU(Graphics Processing Unit)を更に備え、異常検出部は、検査対象物の透過量の分布データを学習モデルに入力することにより、検査対象物における所定の異常を検出する。 In the inspection device of the present invention, an electromagnetic wave irradiation unit that generates an electromagnetic wave and irradiates the inspection object, a transmission amount detection unit that detects the distribution of the transmission amount of the electromagnetic wave transmitted through the inspection object, and a transmission amount detection unit detect the electromagnetic wave. Control of an inspection unit having a storage unit for accumulating transmission amount distribution data and an abnormality detection unit for detecting a predetermined abnormality in the inspection object based on the transmission amount distribution data of the inspection object, and an inspection unit. An inspection device including a CPU for detecting a predetermined abnormality in the inspection object by using the distribution data of the permeation amount of the inspection object having a predetermined abnormality accumulated in the storage unit as learning data. It is further equipped with a GPU (Graphics Processing Unit) that executes the process of generating the learning model by machine learning under the control of the CPU, and the abnormality detection unit inputs the distribution data of the permeation amount of the inspection object into the learning model. , Detects a predetermined abnormality in the inspection object.

学習モデルが、検査対象物の透過量の分布データが入力されることにより、所定の異常がある可能性を示す推論値を出力し、異常検出部が、当該推論値に基づき所定の異常の有無を判定するように構成してもよい。 The learning model outputs an inferred value indicating the possibility of a predetermined abnormality by inputting the distribution data of the permeation amount of the inspection object, and the abnormality detection unit detects the presence or absence of a predetermined abnormality based on the inferred value. May be configured to determine.

検査部とCPUとが本体を構成し、本体の外部に設けられたGPUが、本体に更に設けられた接続インタフェースを介して本体に接続されていてもよい。 The inspection unit and the CPU may form a main body, and a GPU provided outside the main body may be connected to the main body via a connection interface further provided on the main body.

本発明の検査装置は、CPUとは別に単体のGPUを備え、機械学習処理を当該GPUが担う。単体のGPUは、機械学習処理を高速かつ低負荷で実行できるため、発熱時間を短くでき、かつ発熱量も小さくできる。そのため、CPUをはじめとする装置各部への負荷を小さくすることができる。 The inspection device of the present invention includes a single GPU in addition to the CPU, and the GPU is responsible for machine learning processing. Since a single GPU can execute machine learning processing at high speed and with a low load, the heat generation time can be shortened and the heat generation amount can also be reduced. Therefore, the load on each part of the device including the CPU can be reduced.

また、検査装置に機械学習処理機能が実装されているため、学習データの収集、学習モデルの機械学習及び当該学習モデルを用いた検査の実行に関わる全ての操作を検査装置において行うことができ、作業性がよい。 In addition, since the machine learning processing function is implemented in the inspection device, all operations related to the collection of learning data, machine learning of the learning model, and the execution of the inspection using the learning model can be performed in the inspection device. Good workability.

検査装置100の機能構成例を示す図である。It is a figure which shows the functional structure example of the inspection apparatus 100. 検査部110の物理的構成例を示す図である。It is a figure which shows the physical structure example of the inspection part 110. 検査装置200の機能構成例を示す図である。It is a figure which shows the functional structure example of the inspection apparatus 200.

以下、本発明の実施形態を、図面を参照しつつ説明する。なお、以下の説明及び図面では、同一の機能部には同一の符号を付し、一度説明した機能部については説明を省略するか、必要な範囲で説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description and drawings, the same functional parts are designated by the same reference numerals, and the functional parts once described will be omitted or described to the extent necessary.

図1は、本発明の検査装置100の機能構成例を示す図である。検査装置100は、検査部110、CPU121、GPU122、表示部131及び入力部141を備える。また、検査部110は、電磁波照射部111、搬送部112、透過量検出部113、記憶部114及び異常検出部115を備える。図2に検査部110の物理的構成例を示す。 FIG. 1 is a diagram showing a functional configuration example of the inspection device 100 of the present invention. The inspection device 100 includes an inspection unit 110, a CPU 121, a GPU 122, a display unit 131, and an input unit 141. Further, the inspection unit 110 includes an electromagnetic wave irradiation unit 111, a transport unit 112, a transmission amount detection unit 113, a storage unit 114, and an abnormality detection unit 115. FIG. 2 shows an example of the physical configuration of the inspection unit 110.

電磁波照射部111は、搬送部112に載置されて図2におけるY軸方向に搬送される検査対象物Wに、X線、紫外線、可視光線、赤外線などの電磁波を照射する、所定の電磁波照射源である。 The electromagnetic wave irradiation unit 111 irradiates an inspection object W mounted on the transport unit 112 and transported in the Y-axis direction in FIG. 2 with electromagnetic waves such as X-rays, ultraviolet rays, visible rays, and infrared rays. It is the source.

搬送部112は、3次元直交座標系においてXY平面をなす搬送面に載置された検査対象物Wを、Y軸方向に所定の速度で搬送する任意の搬送機構である。搬送部112は、検査対象物Wを透過した電磁波が極力減衰せずに透過量検出部113に届くよう、電磁波の透過性が高いものであることが望ましい。 The transport unit 112 is an arbitrary transport mechanism that transports the inspection object W placed on the transport surface forming the XY plane in the three-dimensional Cartesian coordinate system at a predetermined speed in the Y-axis direction. It is desirable that the transport unit 112 has high electromagnetic wave transmission so that the electromagnetic wave transmitted through the inspection object W reaches the transmission amount detection unit 113 without being attenuated as much as possible.

透過量検出部113は、検査対象物Wを透過した電磁波の透過量を検出し出力する。透過量検出部113の構成方法は任意であり、例えば、X軸方向に並べられた複数の検出素子からなるラインセンサとして構成してもよい。この場合、検査対象物Wからの電磁波の透過量を、搬送部112による搬送速度に応じた周期で検査対象物Wの全体が通過するまで繰り返し検出し出力する。これにより、各周期においてX軸方向に線状に各検出素子が検出した透過量の情報が得られ、検査対象物Wがラインセンサ上を通過する間の各周期の情報を収集することで、検査対象物W全体についての透過量の分布を得ることができる。 The transmission amount detection unit 113 detects and outputs the transmission amount of the electromagnetic wave transmitted through the inspection object W. The method of configuring the transmission amount detection unit 113 is arbitrary, and may be configured as, for example, a line sensor composed of a plurality of detection elements arranged in the X-axis direction. In this case, the amount of electromagnetic waves transmitted from the inspection target object W is repeatedly detected and output at a cycle corresponding to the transport speed by the transport unit 112 until the entire inspection target object W has passed. As a result, information on the amount of transmission detected by each detection element linearly in the X-axis direction is obtained in each cycle, and information on each cycle while the inspection object W passes over the line sensor is collected. It is possible to obtain the distribution of the permeation amount for the entire inspection object W.

記憶部114は、透過量検出部113が検出した、検査対象物Wにおける透過量の分布データを蓄積する。学習モデルの機械学習を行う場合には、機械学習に先立ち、所定の異物を含む検査対象物Wの透過量の分布データを複数蓄積しておく。 The storage unit 114 stores the distribution data of the permeation amount in the inspection object W detected by the permeation amount detection unit 113. When machine learning of the learning model is performed, a plurality of distribution data of the permeation amount of the inspection target W including a predetermined foreign substance are accumulated prior to the machine learning.

また、記憶部114には、CPU121によるプログラムの実行により実現される各種機能が記述されたプログラムが予め記憶される。 Further, the storage unit 114 stores in advance a program in which various functions realized by executing the program by the CPU 121 are described.

記憶部114は、例えば、HDDやフラッシュメモリ等の記憶媒体のほか、不揮発性メモリ、揮発性メモリなどを採用することができる。なお、記憶部114は、その一部又は全部を、検査装置100に設けた通信部を介して接続されたクラウドストレージなどにより検査装置100の外部に設けてもよい。 For the storage unit 114, for example, in addition to a storage medium such as an HDD or a flash memory, a non-volatile memory, a volatile memory, or the like can be adopted. A part or all of the storage unit 114 may be provided outside the inspection device 100 by a cloud storage or the like connected via a communication unit provided in the inspection device 100.

異常検出部115は、検査対象物Wの透過量の分布データに基づき検査対象物Wにおける所定の異常を検出する。 The abnormality detection unit 115 detects a predetermined abnormality in the inspection target W based on the distribution data of the permeation amount of the inspection target W.

具体的には例えば、透過量検出部113においてX軸方向に線状に検出された各検出素子の透過量の大小がそれぞれの画素の色調(色彩の明暗・濃淡・強弱などの調子)により表現された線状の画像を各周期について生成し、Y軸方向に時系列で並べることで、検査対象物W全体の透過画像を生成する。 Specifically, for example, the magnitude of the transmission amount of each detection element detected linearly in the X-axis direction by the transmission amount detection unit 113 is expressed by the color tone of each pixel (tone such as lightness / darkness / shade / intensity of color). By generating the linear images formed for each period and arranging them in chronological order in the Y-axis direction, a transparent image of the entire inspection object W is generated.

そして、生成した透過画像を、検査対象物Wにおける所定の異常を検出するための機械学習を行った学習済みの学習モデルに入力することにより、検査対象物における所定の異常を検出する。 Then, the generated transparent image is input to a learned learning model that has undergone machine learning to detect a predetermined abnormality in the inspection target object W, thereby detecting the predetermined abnormality in the inspection target object.

所定の異常としては、例えば、検査対象物Wが包装物である場合における、内部の異物の存在や内容物の形状の異常や内容物のシール部への噛み込み等のほか、検査対象物W自体の形状の異常や割れ・欠け等が挙げられる。 Predetermined abnormalities include, for example, when the inspection target W is a package, the presence of foreign matter inside, an abnormality in the shape of the contents, biting of the contents into the seal portion, and the like, as well as the inspection target W. Abnormal shape of itself, cracks, chips, etc. can be mentioned.

異常の判定については、例えば、学習モデルへの画像入力により、異常がある可能性を示す推論値が出力されるようにし、出力された推論値と所定の閾値との対比により行ってもよい。より具体的には例えば、異常がある可能性が極めて低い場合を0、異常がある可能性が極めて高い場合を1とした0〜1の範囲で推論値を定義し、出力された推論値が一定の値(例えば0.6)以上である場合に異常があると判定してもよい。 The abnormality may be determined, for example, by inputting an image to the learning model so that an inferred value indicating the possibility of an abnormality is output, and the output inferred value is compared with a predetermined threshold value. More specifically, for example, an inference value is defined in the range of 0 to 1 in which the case where the possibility of abnormality is extremely low is 0 and the case where the possibility of abnormality is extremely high is 1, and the output inference value is When it is a certain value (for example, 0.6) or more, it may be determined that there is an abnormality.

異常検出部115は、必要に応じて、生成した透過画像を、所定の異常が検出される画像要件(例えば、それぞれの画素の色調や、画素間での色調の変化の態様など)と照合することによっても、所定の異常を検出できるように構成してもよい。 The abnormality detection unit 115 collates the generated transparent image with the image requirements for detecting a predetermined abnormality (for example, the color tone of each pixel, the mode of change in color tone between pixels, etc.), if necessary. Alternatively, it may be configured so that a predetermined abnormality can be detected.

異常検出部115は、単体の機能部としてハードウェアとして実現してもよいし、上記の機能が記述されたプログラムを記憶部114に予め記憶させておき、これをCPU121が実行されることにより実現してもよい。 The abnormality detection unit 115 may be realized as hardware as a single functional unit, or is realized by storing a program in which the above functions are described in the storage unit 114 in advance and executing the CPU 121. You may.

CPU121は、検査部110を機能動作させるための各種プログラムを記憶部114から読み出して実行し、プログラムに記述された機能動作を実現する。 The CPU 121 reads various programs for functionally operating the inspection unit 110 from the storage unit 114 and executes them to realize the functional operations described in the programs.

GPU122は、記憶部114に複数蓄積された、所定の異常がある検査対象物Wの透過量の分布データを学習データとして、それぞれの画素の色調の相違や、画素間での色調の変化の態様の相違などに基づき機械学習を行い、検査対象物Wにおける所定の異常を検出するための学習モデルを生成する。当該機能は、CPU121による制御の下で実現される。具体的には、CPU121が当該機能を実現する制御内容が記述されたプログラムを記憶部114から読み出して実行することよりGPU122に対する制御が行われ、これにより当該機能が実現される。 The GPU 122 uses the distribution data of the transmission amount of the inspection object W having a predetermined abnormality accumulated in the storage unit 114 as learning data, and the difference in the color tone of each pixel and the mode of the change in the color tone between the pixels. Machine learning is performed based on the difference between the two, and a learning model for detecting a predetermined abnormality in the inspection object W is generated. This function is realized under the control of the CPU 121. Specifically, the CPU 121 reads a program in which the control content for realizing the function is described from the storage unit 114 and executes the control to control the GPU 122, whereby the function is realized.

表示部131は、CPU121の制御により、検査装置100における各種指示入力のための入力インタフェース、検査状況、異物検出結果などを表示する表示手段である。表示部131は、検査装置100の本体に内蔵されていてもよいし、外付けされていてもよい。 The display unit 131 is a display means for displaying an input interface for inputting various instructions in the inspection device 100, an inspection status, a foreign matter detection result, and the like under the control of the CPU 121. The display unit 131 may be built in the main body of the inspection device 100 or may be externally attached.

入力部141は、装置利用者が必要に応じ情報の入力をするポインティングデバイス、キーボードなどの入力手段である。表示部131にタッチパネルディスプレイを採用し、これを入力部141としてもよい。 The input unit 141 is an input means such as a pointing device and a keyboard for the device user to input information as needed. A touch panel display may be adopted as the display unit 131, and this may be used as the input unit 141.

以上の構成を備える検査装置100において、例えば、次のように装置を起動させ、検査等を実行させる。 In the inspection device 100 having the above configuration, for example, the device is started as follows to execute inspection and the like.

検査装置100が起動されることにより、装置において動作をさせたい項目等が一覧で、又は段階的に表示される入力インタフェースを表示部131に表示させるプログラムを予め記憶部114に記憶させておく。これにより、検査装置100が起動されることにより、当該プログラムが記憶部114から読み出されてCPU121で実行され、当該入力インタフェースが表示部131に表示される。 When the inspection device 100 is started, a program for displaying an input interface in which items to be operated in the device in a list or step by step is displayed in the display unit 131 is stored in the storage unit 114 in advance. As a result, when the inspection device 100 is started, the program is read from the storage unit 114 and executed by the CPU 121, and the input interface is displayed on the display unit 131.

入力インタフェースの表示プログラムは、例えば、項目ごとに設けられたボタンやチェックボックスに入力部141から選択入力されることで、予め記憶部114に記憶された当該項目に対応する機能が記述されたプログラムが読み出され、項目に応じてCPU121又はGPU122で実行されるように記述しておく。 The display program of the input interface is, for example, a program in which a function corresponding to the item stored in advance in the storage unit 114 is described by selecting and inputting from the input unit 141 to a button or a check box provided for each item. Is read and is described so as to be executed by the CPU 121 or the GPU 122 according to the item.

具体的には、選択された項目が、学習データの収集や、学習モデルを用いた異物検出などである場合には、記憶部114から読み出された当該項目に対応するプログラムがCPU121で実行されるように記述しておく。また、選択された項目が、収集された学習データから機械学習処理による学習モデルの生成である場合には、記憶部114から読み出された当該項目に対応するプログラムがGPU122で実行されるように記述しておく。 Specifically, when the selected item is the collection of learning data, the detection of foreign matter using the learning model, or the like, the program corresponding to the item read from the storage unit 114 is executed by the CPU 121. It is described as follows. Further, when the selected item is the generation of a learning model by machine learning processing from the collected learning data, the program corresponding to the item read from the storage unit 114 is executed by the GPU 122. Describe it.

これにより、機械学習処理についてはGPUにおいて行い、それ以外の処理についてはCPUにおいて行うようにすることができる。 As a result, the machine learning process can be performed by the GPU, and the other processes can be performed by the CPU.

以上説明した本発明の検査装置100では、CPU121とは別に単体のGPU122を備え、機械学習処理をGPU122が担う。単体のGPUは、機械学習処理を高速かつ低負荷で実行できるため、発熱時間を短くでき、かつ発熱量も小さくできる。そのため、CPUをはじめとする装置各部への負荷を小さくすることができる。 In the inspection device 100 of the present invention described above, a single GPU 122 is provided in addition to the CPU 121, and the GPU 122 is responsible for the machine learning process. Since a single GPU can execute machine learning processing at high speed and with a low load, the heat generation time can be shortened and the heat generation amount can also be reduced. Therefore, the load on each part of the device including the CPU can be reduced.

また、検査装置100には機械学習処理機能が実装されているため、学習データの収集、学習モデルの機械学習及び当該学習モデルを用いた検査の実行に関わる全ての操作を検査装置において行うことができ、作業性がよい。 Further, since the inspection device 100 is equipped with a machine learning processing function, the inspection device can perform all operations related to the collection of learning data, the machine learning of the learning model, and the execution of the inspection using the learning model. It can be done and workability is good.

本発明は、上記の実施形態に限定されるものではない。上記の実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。すなわち、本発明において表現されている技術的思想の範囲内で適宜変更が可能であり、その様な変更や改良を加えた形態も本発明の技術的範囲に含む。 The present invention is not limited to the above embodiments. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention. That is, it can be appropriately changed within the scope of the technical idea expressed in the present invention, and the form in which such a change or improvement is added is also included in the technical scope of the present invention.

例えば、GPU122は必ずしも検査装置100に内蔵されていなくてもよい。具体的には、例えば図3に示すように、GPU122の代わりに検査装置100内のバス(例えばPCI-Express(登録商標)等)を装置外部に引き出すための接続インタフェース151(例えばThunderbolt(登録商標)3等)を備える本体101を構成し、接続インタフェース151に着脱可能な外付けのGPU122との組み合わせにより検査装置200を構成してもよい。 For example, the GPU 122 does not necessarily have to be built in the inspection device 100. Specifically, for example, as shown in FIG. 3, a connection interface 151 (for example, Thunderbolt (registered trademark)) for pulling out a bus (for example, PCI-Express (registered trademark)) in the inspection device 100 to the outside of the device instead of GPU 122 (for example, Thunderbolt (registered trademark)). ) 3 etc.) may be configured, and the inspection device 200 may be configured by combining with an external GPU 122 that can be attached to and detached from the connection interface 151.

検査装置200によれば、GPU122に不具合が生じた場合においても、容易に修理や正常品への交換が可能となる。また、GPU122をオプション品として、必要に応じて追加売買や貸借による対応を採ることが可能となる。 According to the inspection device 200, even if a defect occurs in the GPU 122, it can be easily repaired or replaced with a normal product. In addition, with the GPU 122 as an optional item, it is possible to take measures such as additional sales and lending as necessary.

また、検査装置内にGPUを備える検査装置100の場合、CPUに学習機能を担わせる場合と比べると発熱による問題の発生を抑えることができるが、GPUもある程度高温になることから、装置内の温度上昇を抑えるため空冷が必要になる。しかし例えば、食品工場などの粉が舞う環境で検査装置を使用する場合、空冷に際しての外気の取り込みにより粉塵による検査装置の故障が懸念される。検査装置200によれば、普段は接続インタフェース151をキャップ等で塞いで本体101を密閉状態にしておき、学習時にのみGPU122を接続するという使用形態をとれるため、検査装置内への粉塵の入り込みを極力防ぐことができる。 Further, in the case of the inspection device 100 having the GPU in the inspection device, it is possible to suppress the occurrence of problems due to heat generation as compared with the case where the CPU is responsible for the learning function. Air cooling is required to suppress the temperature rise. However, for example, when the inspection device is used in an environment where powder is scattered, such as a food factory, there is a concern that the inspection device may be damaged due to dust due to the intake of outside air during air cooling. According to the inspection device 200, the connection interface 151 is usually closed with a cap or the like to keep the main body 101 in a sealed state, and the GPU 122 is connected only during learning. Therefore, dust can enter the inspection device. It can be prevented as much as possible.

100、200…検査装置
110…検査部
111…電磁波照射部
112…搬送部
113…透過量検出部
114…記憶部
115…異常検出部
121…CPU
122…GPU
131…表示部
141…入力部
151…接続インタフェース
W…検査対象物
100, 200 ... Inspection device 110 ... Inspection unit 111 ... Electromagnetic wave irradiation unit 112 ... Transport unit 113 ... Transmission amount detection unit 114 ... Storage unit 115 ... Abnormality detection unit 121 ... CPU
122 ... GPU
131 ... Display unit 141 ... Input unit 151 ... Connection interface W ... Inspection object

Claims (3)

電磁波を発生し検査対象物に照射する電磁波照射部と、前記検査対象物を透過した前記電磁波の透過量の分布を検出する透過量検出部と、前記透過量検出部が検出した前記検査対象物における前記透過量の分布データを蓄積する記憶部と、前記検査対象物の透過量の分布データに基づき、前記検査対象物における所定の異常を検出する異常検出部と、
を備える検査部と、
前記検査部の制御を実行するCPUと、
を備える検査装置であって、
前記記憶部に蓄積された、前記所定の異常がある前記検査対象物の透過量の分布データを学習データとして、前記検査対象物における前記所定の異常を検出するための学習モデルを機械学習により生成する処理を前記CPUによる制御の下で実行するGPUを更に備え、
前記異常検出部は、前記検査対象物の透過量の分布データを前記学習モデルに入力することにより、前記検査対象物における前記所定の異常を検出する
ことを特徴とする検査装置。
An electromagnetic wave irradiation unit that generates an electromagnetic wave and irradiates the inspection object, a transmission amount detection unit that detects the distribution of the transmission amount of the electromagnetic wave that has passed through the inspection object, and the inspection object detected by the transmission amount detection unit. A storage unit that stores the distribution data of the permeation amount in the above, and an abnormality detection unit that detects a predetermined abnormality in the inspection object based on the distribution data of the permeation amount of the inspection object.
Inspection department equipped with
The CPU that executes the control of the inspection unit and
It is an inspection device equipped with
Using the distribution data of the permeation amount of the inspection object having the predetermined abnormality accumulated in the storage unit as learning data, a learning model for detecting the predetermined abnormality in the inspection object is generated by machine learning. A GPU that executes the processing to be performed under the control of the CPU is further provided.
The abnormality detection unit is an inspection device that detects the predetermined abnormality in the inspection target by inputting distribution data of the permeation amount of the inspection target into the learning model.
前記学習モデルは、前記検査対象物の透過量の分布データが入力されることにより、前記所定の異常がある可能性を示す推論値を出力し、
前記異常検出部は、前記推論値に基づき前記所定の異常の有無を判定する
ことを特徴とする請求項1に記載の検査装置。
The learning model outputs an inferred value indicating the possibility of the predetermined abnormality by inputting the distribution data of the permeation amount of the inspection object.
The inspection device according to claim 1, wherein the abnormality detection unit determines the presence or absence of the predetermined abnormality based on the inferred value.
前記検査部と前記CPUとが本体を構成し、前記本体の外部に設けられた前記GPUが、前記本体に更に設けられた接続インタフェースを介して前記本体に接続されることを特徴とする請求項1又は2に記載の検査装置。 The claim is characterized in that the inspection unit and the CPU constitute a main body, and the GPU provided outside the main body is connected to the main body via a connection interface further provided in the main body. The inspection device according to 1 or 2.
JP2019182663A 2019-10-03 2019-10-03 Inspection equipment Active JP7373840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019182663A JP7373840B2 (en) 2019-10-03 2019-10-03 Inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019182663A JP7373840B2 (en) 2019-10-03 2019-10-03 Inspection equipment

Publications (2)

Publication Number Publication Date
JP2021060204A true JP2021060204A (en) 2021-04-15
JP7373840B2 JP7373840B2 (en) 2023-11-06

Family

ID=75381359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019182663A Active JP7373840B2 (en) 2019-10-03 2019-10-03 Inspection equipment

Country Status (1)

Country Link
JP (1) JP7373840B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368845A (en) * 1989-08-09 1991-03-25 Hitachi Ltd Method and apparatus for inspecting soldering
JPH08134019A (en) * 1994-11-11 1996-05-28 Konica Corp Fluorenone derivative, its polymer and electrophotographic photoreceptor using the same
JP2005182785A (en) * 2003-12-09 2005-07-07 Microsoft Corp System and method for accelerating and optimizing processing of machine learning technology by using graphics processing unit
US20180196158A1 (en) * 2017-01-12 2018-07-12 Tsinghua University Inspection devices and methods for detecting a firearm
US20180195977A1 (en) * 2017-01-12 2018-07-12 Nuctech Company Limited Inspection devices and methods for detecting a firearm in a luggage
WO2019022170A1 (en) * 2017-07-26 2019-01-31 横浜ゴム株式会社 Defect inspecting method and defect inspecting device
JP2019087072A (en) * 2017-11-08 2019-06-06 株式会社アクセル Processor, inference device, learning device, processing system, processing method, and processing program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6602630B2 (en) 2015-10-05 2019-11-06 株式会社日立ハイテクサイエンス X-ray inspection apparatus and X-ray inspection method
JP2017090414A (en) 2015-11-17 2017-05-25 キヤノン株式会社 Two-dimensional interference pattern imaging device
US11797838B2 (en) 2018-03-13 2023-10-24 Pinterest, Inc. Efficient convolutional network for recommender systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368845A (en) * 1989-08-09 1991-03-25 Hitachi Ltd Method and apparatus for inspecting soldering
JPH08134019A (en) * 1994-11-11 1996-05-28 Konica Corp Fluorenone derivative, its polymer and electrophotographic photoreceptor using the same
JP2005182785A (en) * 2003-12-09 2005-07-07 Microsoft Corp System and method for accelerating and optimizing processing of machine learning technology by using graphics processing unit
US20180196158A1 (en) * 2017-01-12 2018-07-12 Tsinghua University Inspection devices and methods for detecting a firearm
US20180195977A1 (en) * 2017-01-12 2018-07-12 Nuctech Company Limited Inspection devices and methods for detecting a firearm in a luggage
WO2019022170A1 (en) * 2017-07-26 2019-01-31 横浜ゴム株式会社 Defect inspecting method and defect inspecting device
JP2019087072A (en) * 2017-11-08 2019-06-06 株式会社アクセル Processor, inference device, learning device, processing system, processing method, and processing program

Also Published As

Publication number Publication date
JP7373840B2 (en) 2023-11-06

Similar Documents

Publication Publication Date Title
KR20210126163A (en) Inspection device
JP2019537083A5 (en)
JP6920988B2 (en) Inspection equipment
JP6537008B1 (en) Inspection device
JP7416621B2 (en) Dual energy microfocus X-ray imaging method for meat inspection
JP2010286424A (en) Article inspection device
JP6746142B2 (en) Optical inspection system and image processing algorithm setting method
JP7373840B2 (en) Inspection equipment
JP2015232468A (en) Inspection device
JP2018063183A (en) Device and method for managing radiation exposure
JP5613359B2 (en) X-ray counter
JP2006329907A (en) Foreign material detection apparatus and packing container
JP4052301B2 (en) X-ray foreign substance inspection apparatus and determination parameter setting apparatus for X-ray foreign substance inspection apparatus
JP2015155831A (en) Package inspection apparatus
JP6412076B2 (en) Inspection equipment
JP7323177B2 (en) Inspection system, inspection device, learning device and program
JP2009080031A (en) X-ray inspection device
JP6454503B2 (en) Inspection device
JP2015083967A (en) Inspection equipment
WO2021166441A1 (en) Inspection device and program
EP4224153A1 (en) X-ray inspection apparatus
JP7250301B2 (en) Inspection device, inspection system, inspection method, inspection program and recording medium
JP6763569B2 (en) Optical inspection equipment and optical inspection system
JP2018173374A (en) X-ray inspection device
JP6757970B2 (en) Optical inspection equipment and optical inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231017

R150 Certificate of patent or registration of utility model

Ref document number: 7373840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150