JP2021059927A - Method for removing salt from concrete structure - Google Patents

Method for removing salt from concrete structure Download PDF

Info

Publication number
JP2021059927A
JP2021059927A JP2019185656A JP2019185656A JP2021059927A JP 2021059927 A JP2021059927 A JP 2021059927A JP 2019185656 A JP2019185656 A JP 2019185656A JP 2019185656 A JP2019185656 A JP 2019185656A JP 2021059927 A JP2021059927 A JP 2021059927A
Authority
JP
Japan
Prior art keywords
water
concrete
aqueous solution
concrete structure
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019185656A
Other languages
Japanese (ja)
Other versions
JP7271388B2 (en
Inventor
勇一 北野
Yuichi Kitano
勇一 北野
真央 陳内
Mao Jinnai
真央 陳内
薫 尾上
Kaoru Onoe
薫 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Construction Co Ltd
Original Assignee
Kawada Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Construction Co Ltd filed Critical Kawada Construction Co Ltd
Priority to JP2019185656A priority Critical patent/JP7271388B2/en
Publication of JP2021059927A publication Critical patent/JP2021059927A/en
Application granted granted Critical
Publication of JP7271388B2 publication Critical patent/JP7271388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for removing salt from a concrete structure, which can be easily constructed, saves labor, saves energy, and can be carried out at a low cost, and can be expected to have a sufficient salt removing effect.SOLUTION: The inside of the target concrete is moistened with a humidity of 98% or higher, and a water-retaining material impregnated with a hygroscopic aqueous solution having an equilibrium relative humidity of 95% or lower is attached to the surface of the concrete and brought into contact with the aqueous solution, and further chloride ions inside the concrete is moved to the outside of the concrete. As the aqueous solution to be brought into contact with the surface of concrete, an aqueous solution of lithium nitrite having a concentration of 16% or higher is used. In addition, a film or cover (drying prevention means) is attached so as to cover the outside of the attached water-retaining material. Further, the attached water-retaining material is regularly replaced with a water-retaining material newly impregnated with the aqueous solution.SELECTED DRAWING: Figure 4

Description

本発明は、塩害を受けたコンクリート構造物において、塩害による損傷(鋼材の腐食等)が顕在化する前に、躯体内の塩化物イオン濃度を低減させる方法(塩分除去方法)に関し、特に、省労力かつ省エネルギーで実施することができるコンクリート構造物の塩分除去方法に関する。 The present invention relates to a method (salt removal method) for reducing the chloride ion concentration in the skeleton before damage due to salt damage (corrosion of steel materials, etc.) becomes apparent in a concrete structure damaged by salt damage. It relates to a method for removing salt from a concrete structure, which can be carried out with labor and energy saving.

塩害等によってコンクリート構造物の躯体内に塩化物イオン(Cl-)が一定量以上侵入してしまった場合、鋼材(内部に埋設されている鉄筋、PC鋼材等)の表面に形成されている緻密な不動態被膜が破壊されて、鋼材が腐食してしまう危険性が高くなる。躯体内において鋼材が腐食すると、鋼材の体積が腐食部で数倍に膨張し、鋼材に沿ったコンクリートのひび割れを引き起こすおそれがある。ひび割れが生じると、酸素と水の供給が容易となり、腐食が加速度的に進行し、その結果、コンクリートが剥落したり、鋼材断面積の減少による部材耐力の低下に至る場合がある。 Skeleton body to the chloride ions of the concrete structure by salt damage, etc. (Cl -) may had penetrated a predetermined amount or more, the steel (rebar is embedded therein, PC steel material) dense formed on the surface of There is a high risk that the passive film will be destroyed and the steel material will corrode. When the steel material corrodes in the skeleton, the volume of the steel material expands several times at the corroded part, which may cause cracks in the concrete along the steel material. When cracks occur, the supply of oxygen and water becomes easy, and corrosion progresses at an accelerating rate, and as a result, concrete may peel off or the member strength may decrease due to a decrease in the cross-sectional area of the steel material.

塩害等によってコンクリート構造物の躯体内に塩化物イオンが侵入してしまった場合の対応策の一つとして、躯体内の塩化物イオン濃度を低減させる方法(コンクリート構造物の塩分除去方法)が実施されている。コンクリート構造物の塩分除去方法としては、種々の方法が提案されており、例えば、コンクリート構造物の外側表面に電解質溶液を保持させるとともに、電極(陽極)を設置し、躯体内の鋼材を陰極として直流電流を通電し、電気泳動の原理によってコンクリート中に侵入した塩化物イオンを、コンクリートの外部(電解質溶液側)へ移動させるという方法(電気泳動を利用した電気化学的脱塩方法)等が知られている。 As one of the countermeasures when chloride ions invade the skeleton of the concrete structure due to salt damage, etc., a method of reducing the chloride ion concentration in the skeleton (salt removal method of the concrete structure) is implemented. Has been done. Various methods have been proposed as a method for removing salt from a concrete structure. For example, an electrolyte solution is held on the outer surface of the concrete structure, an electrode (anode) is installed, and a steel material in the skeleton is used as a cathode. A method of energizing a DC current and moving chloride ions that have entered the concrete by the principle of electrophoresis to the outside of the concrete (electrolyte solution side) (electrochemical desalting method using electrophoresis) is known. Has been done.

特開2018−199596号公報JP-A-2018-199596 特開2018−124286号公報JP-A-2018-124286 特開2009−126728号公報Japanese Unexamined Patent Publication No. 2009-126728 特開2000−303700号公報Japanese Unexamined Patent Publication No. 2000-303700 特開平7−89773号公報Japanese Unexamined Patent Publication No. 7-89773

しかしながら、電気泳動を利用した電気化学的脱塩方法は、設備が大掛かりとなるため、準備作業及び撤収作業において相当の労力と時間を要するほか、大量の電気エネルギーを消費することになり、施工コストも高額となってしまうという問題がある。また、陰極として使用する内部の鋼材へアクセスするための削孔作業等が必要となり、コンクリート構造物に負担を与えてしまう可能性がある。 However, the electrochemical desalting method using electrophoresis requires a large amount of equipment, requires considerable labor and time in preparation work and withdrawal work, and consumes a large amount of electrical energy, resulting in construction cost. There is a problem that it becomes expensive. In addition, drilling work or the like is required to access the internal steel material used as the cathode, which may impose a burden on the concrete structure.

本発明は、上記のような従来技術における課題を解決しようとするものであって、簡易に施工でき、省労力、省エネルギー、かつ、低コストで実施することができ、十分な塩分除去効果を期待することができるコンクリート構造物の塩分除去方法の提供を目的とする。 The present invention is intended to solve the above-mentioned problems in the prior art, and can be easily constructed, labor-saving, energy-saving, and low-cost, and is expected to have a sufficient salt removal effect. It is an object of the present invention to provide a method for removing salt from a concrete structure that can be used.

本発明に係るコンクリート構造物の塩分除去方法は、対象となるコンクリートの内部を湿度98%以上の湿潤状態とし、平衡相対湿度が95%以下である吸湿性を有する水溶液を、コンクリートの表面に接触させて静置し、コンクリート内部の塩化物イオンをコンクリートの外部へ移動させることを特徴としている。 In the method for removing salt from a concrete structure according to the present invention, the inside of the target concrete is in a wet state with a humidity of 98% or more, and a hygroscopic aqueous solution having an equilibrium relative humidity of 95% or less is brought into contact with the surface of the concrete. It is characterized in that it is allowed to stand and allowed to move chloride ions inside the concrete to the outside of the concrete.

尚、吸湿性を有する水溶液として、濃度16%以上の亜硝酸リチウム水溶液を使用することが好ましい。また、水溶液をコンクリートの表面に接触させるために、水溶液を含ませた保水性材料をコンクリートの表面に付着させること、又は、コンクリートの表面に付着させた保水性材料に水溶液を含ませることが好ましく、保水性材料としては、水溶液を1000g/m2以上保水できるものを使用することが好ましい。 As the aqueous solution having hygroscopicity, it is preferable to use an aqueous solution of lithium nitrite having a concentration of 16% or more. Further, in order to bring the aqueous solution into contact with the surface of concrete, it is preferable to attach the water-retaining material containing the aqueous solution to the surface of concrete, or to include the aqueous solution in the water-retaining material attached to the surface of concrete. As the water-retaining material, it is preferable to use a material capable of retaining 1000 g / m 2 or more of an aqueous solution.

更に、保水性材料としては、保水性を有する繊維状物質(例えば、パルプ、布、又は、不織布等)をシート状に成形したもの、又は、保水性を有する多孔質材料(例えば、ゼオライト、シラスバルーン、又は、発泡ビーズ等)をボード状(板状)に成形したもの、又は、保水性を有する有機高分子材料(例えば、ポリアクリル酸系の吸水性高分子材料)を、通水性を有する袋内に収容してシート状に成形したものを使用することが好ましい。 Further, as the water-retaining material, a fibrous material having water retention (for example, pulp, cloth, non-woven fabric, etc.) is molded into a sheet, or a porous material having water retention (for example, zeolite, silas, etc.). A board-shaped (plate-shaped) molded balloon, foamed beads, etc., or an organic polymer material having water retention (for example, a polyacrylic acid-based water-absorbing polymer material) having water permeability. It is preferable to use a sheet-shaped product that is housed in a bag.

また、保水性材料として、保水性を有する多孔質材料(例えば、ゼオライト、シラスバルーン、又は、発泡ビーズ等)、又は、保水性を有する有機高分子材料(例えば、ポリアクリル酸系の吸水性高分子材料等)を使用し、それらをコンクリートの表面に吹き付けて付着させ、保水層を形成するようにしてもよい。更に、保水性材料として、亜硝酸リチウム水溶液を使用した場合において保水性能が低下しないものを使用することが好ましい。 Further, as the water-retaining material, a porous material having water retention (for example, zeolite, shirasu balloon, or foamed beads, etc.) or an organic polymer material having water retention (for example, polyacrylic acid-based high water absorption) Molecular materials, etc.) may be used and sprayed onto the surface of the concrete to adhere them to form a water-retaining layer. Further, as the water-retaining material, it is preferable to use a material that does not deteriorate the water-retaining performance when an aqueous solution of lithium nitrite is used.

また、水溶液をコンクリートの表面に接触させるために、コンクリートの表面を覆うように貯水槽を設置し、その中に水溶液を貯水することによって、コンクリートの表面に水溶液を接触させることもできる。尚、コンクリート表面に付着させた保水性材料、又は、貯水槽内に貯水した水溶液は、定期的に交換することが好ましい。また、保水性材料又は貯水槽の外側を覆うように、フィルム又はカバー(乾燥防止手段)を取り付けることが好ましい。 Further, in order to bring the aqueous solution into contact with the surface of concrete, a water storage tank may be installed so as to cover the surface of the concrete, and the aqueous solution may be stored in the water storage tank to bring the aqueous solution into contact with the surface of concrete. It is preferable that the water-retaining material adhered to the concrete surface or the aqueous solution stored in the water storage tank be replaced regularly. Further, it is preferable to attach a film or a cover (drying prevention means) so as to cover the outside of the water-retaining material or the water storage tank.

また、上記のような塩分除去方法を実施した後、コンクリートの表面に対して塗装を施した場合には、塩分の再侵入による劣化のリスクを好適に回避することができる。 Further, when the surface of concrete is painted after the salt removing method as described above is carried out, the risk of deterioration due to re-invasion of salt can be suitably avoided.

本発明に係るコンクリート構造物の塩分除去方法は、極めて簡易に施工でき、省労力、省エネルギー、かつ、低コストで実施することができるにも拘わらず、十分な塩分除去効果を期待することができる。 Although the method for removing salt from a concrete structure according to the present invention can be carried out extremely easily, labor saving, energy saving, and low cost, a sufficient salt removing effect can be expected. ..

図1は、実施例1の実験で使用した容器1、試験体2等の説明図である。FIG. 1 is an explanatory diagram of a container 1, a test body 2, and the like used in the experiment of Example 1. 図2は、実施例1の実験で使用した容器1、試験体2’等の説明図である。FIG. 2 is an explanatory diagram of the container 1, the test body 2'and the like used in the experiment of Example 1. 図3は、実施例1の実験で使用した試験体2から試料を採取する方法の説明図である。FIG. 3 is an explanatory diagram of a method of collecting a sample from the test body 2 used in the experiment of Example 1. 図4は、実施例1の実験で得た試料における塩化物イオン濃度の測定結果を示すグラフである。FIG. 4 is a graph showing the measurement results of the chloride ion concentration in the sample obtained in the experiment of Example 1. 図5は、実施例1の試験体IC16(16%亜硝酸リチウム水溶液に浸漬した試験体)の外側部2dと内側部2eの塩化物イオン濃度の相関を示すグラフである。FIG. 5 is a graph showing the correlation between the chloride ion concentrations of the outer portion 2d and the inner portion 2e of the test body IC16 (test body immersed in a 16% lithium nitrite aqueous solution) of Example 1. 図6は、本発明の一実施形態の説明図であって、貯水槽12を使用して、水溶液3をコンクリート構造物11の表面に接触させる方法の説明図である。FIG. 6 is an explanatory diagram of an embodiment of the present invention, and is an explanatory diagram of a method of bringing the aqueous solution 3 into contact with the surface of the concrete structure 11 using the water storage tank 12.

本発明に係る「コンクリート構造物の塩分除去方法」は、コンクリート構造物の躯体内の塩化物イオン濃度を低減させる方法であって、コンクリートの表面から水を与えてコンクリート内部を湿潤状態(湿度98%以上)とし、平衡相対湿度が95%以下である吸湿性を有する水溶液を、コンクリートの表面に接触させて静置し、コンクリート内部の塩化物イオンをコンクリートの外部へ移動させることを特徴とするものである。 The "method for removing salt from a concrete structure" according to the present invention is a method for reducing the chloride ion concentration in the skeleton of a concrete structure, and water is applied from the surface of the concrete to moisten the inside of the concrete (humidity 98). % Or more), and an aqueous solution having a hygroscopic property having an equilibrium relative humidity of 95% or less is brought into contact with the surface of concrete and allowed to stand, and chloride ions inside the concrete are moved to the outside of the concrete. It is a thing.

水溶液をコンクリートの表面に接触させる具体的な方法としては、保水性材料を使用する方法や、貯水槽を使用する方法等を採用することができる。保水性材料を使用する場合、例えば、保水性を有する繊維状物質(パルプ、布、又は、不織布等)をシート状に成形したもの(保水性シート)、或いは、保水性を有する有機高分子材料(ポリアクリル酸系の吸水性高分子材料)を、通水性を有する袋内に収容してシート状に成形したもの(保水性シート)に水溶液を含浸させ、これをコンクリートの表面に貼り付けてもよいし、保水性を有する多孔質材料(ゼオライト、シラスバルーン、又は、発泡ビーズ等)をボード状(板状)に成形したもの(保水性ボード)に水溶液を含浸させ、これをコンクリートの表面に密着させるようにしてもよい。また、保水性を有する多孔質材料、又は、保水性を有する有機高分子材料を、コンクリートの表面に吹き付けて付着させ、保水性材料による保水層を形成し、この保水層に水溶液を含ませるようにしてもよい。 As a specific method for bringing the aqueous solution into contact with the surface of concrete, a method using a water-retaining material, a method using a water tank, or the like can be adopted. When a water-retaining material is used, for example, a fibrous substance having water retention (pulp, cloth, non-woven fabric, etc.) molded into a sheet (water-retaining sheet), or an organic polymer material having water retention. (Polyacrylic acid-based water-absorbing polymer material) is housed in a water-permeable bag and molded into a sheet (water-retaining sheet) impregnated with an aqueous solution, and this is attached to the surface of concrete. Alternatively, a porous material having water retention (zeolite, silas balloon, foamed beads, etc.) molded into a board shape (plate shape) (water retention board) is impregnated with an aqueous solution, and this is impregnated on the surface of concrete. It may be brought into close contact with. Further, a porous material having water retention or an organic polymer material having water retention is sprayed onto the surface of concrete to be adhered to form a water retention layer made of the water retention material so that the water retention layer contains an aqueous solution. It may be.

尚、保水性材料としては、なるべく保水性が高いもの(水溶液を1000g/m2以上保水できるもの)を使用することが好ましい。例えば、厚さ6mm、吸水量5000g/m2程度のものを2枚重ねた状態で使用した場合、十分な保水性を得ることができる。 As the water-retaining material, it is preferable to use a material having as high a water-retaining property as possible (a material capable of retaining 1000 g / m 2 or more of an aqueous solution). For example, when two sheets having a thickness of 6 mm and a water absorption of about 5000 g / m 2 are used in a stacked state, sufficient water retention can be obtained.

一方、貯水槽を使用する場合、例えば図6に示すように、コンクリート構造物11の表面を覆うように貯水槽12を設置し、水溶液3を貯水槽12内に貯留することによって、コンクリートの表面に接触させる。 On the other hand, when a water storage tank is used, for example, as shown in FIG. 6, the water storage tank 12 is installed so as to cover the surface of the concrete structure 11, and the aqueous solution 3 is stored in the water storage tank 12 to store the surface of the concrete. To contact.

また、保水性材料及び貯水槽に対しては、乾燥対策を行うことが好ましい。例えば、コンクリートの表面に貼り付けた保水性シート、或いは、保水性ボード、又は、コンクリートの表面に吹き付けて形成した保水層、又は、貯水槽の外側を覆うように、気密性が高い(透気度が低い)プラスチック製のフィルムや、金属製又は合成樹脂製のカバー等(乾燥防止手段)を取り付ける。尚、乾燥防止手段は、貼り付けた保水性シート等の周囲のコンクリートの表面に対して密着できるように構成することが必要である。 In addition, it is preferable to take measures against drying of the water-retaining material and the water storage tank. For example, it is highly airtight (airtight) so as to cover the outside of a water-retaining sheet attached to the surface of concrete, a water-retaining board, a water-retaining layer formed by spraying on the surface of concrete, or a water storage tank. Attach a plastic film (low degree) or a metal or synthetic resin cover (drying prevention means). The drying prevention means needs to be configured so as to be in close contact with the surface of the surrounding concrete such as the attached water-retaining sheet.

また、保水性材料に含ませ、或いは、貯水槽内に貯留する水溶液としては、濃度16%(或いは16%以上)の亜硝酸リチウム水溶液(濃度16%:平衡相対湿度90%)を用いることができる。尚、亜硝酸リチウム水溶液を保水性材料に含ませる場合、当然のことながら、保水性材料としては、亜硝酸リチウム水溶液と接触することによって変質せず、保水性能が低下しないものを使用する。 Further, as the aqueous solution to be contained in the water-retaining material or stored in the water storage tank, a lithium nitrite aqueous solution having a concentration of 16% (or 16% or more) (concentration 16%: equilibrium relative humidity 90%) may be used. it can. When the lithium nitrite aqueous solution is contained in the water-retaining material, as a matter of course, a water-retaining material that does not deteriorate due to contact with the lithium nitrite aqueous solution and does not deteriorate in water-retaining performance is used.

水溶液をコンクリートの表面に接触させる期間は、対象となるコンクリート構造物における塩害の程度(侵入した塩化物イオンの多寡)に応じて適宜決定することができる。更に、保水性材料、及び、水溶液は、定期的に(例えば、4週間毎に)新しいものと交換することが好ましい。 The period during which the aqueous solution is brought into contact with the surface of the concrete can be appropriately determined according to the degree of salt damage (the amount of invaded chloride ions) in the target concrete structure. Furthermore, it is preferable that the water-retaining material and the aqueous solution are replaced with new ones on a regular basis (for example, every 4 weeks).

具体的には、水溶液をコンクリートの表面に接触させる保水性材料として、保水性シート、又は、保水性ボードを使用した(コンクリート表面に貼り付けた)場合には、それらをコンクリート表面から剥がして除去し、水溶液を新たに含浸させた新しい保水性シート、又は、保水性ボードと交換する。また、多孔質材料等の保水性材料を吹き付けることによって、コンクリート表面に保水層を形成した場合には、この保水層を剥がして除去し、保水性材料の吹きつけを再度行って保水層を新たに形成し、水溶液を新たに含ませる。また、貯水槽を使用した場合には、内部に貯留した水溶液3(図6参照)を、新しいものと交換する。 Specifically, when a water-retaining sheet or a water-retaining board is used (attached to the concrete surface) as a water-retaining material that brings the aqueous solution into contact with the concrete surface, they are peeled off from the concrete surface and removed. Then, replace it with a new water-retaining sheet or a water-retaining board newly impregnated with the aqueous solution. When a water-retaining layer is formed on the concrete surface by spraying a water-retaining material such as a porous material, the water-retaining layer is peeled off and removed, and the water-retaining material is sprayed again to renew the water-retaining layer. And add a new aqueous solution. When a water tank is used, the aqueous solution 3 (see FIG. 6) stored inside is replaced with a new one.

また、上述の塩分除去処理が終了した後、コンクリートの表面に対して塗装を施すことが好ましく、この場合、塩分の再侵入による劣化を好適に回避することができる。 Further, it is preferable to apply a coating to the surface of the concrete after the above-mentioned salt removal treatment is completed, and in this case, deterioration due to re-invasion of the salt can be preferably avoided.

以下、本発明に係る方法の効果等に関し、発明者らが行った各種の実験の結果を、実施例1〜4として説明する。 Hereinafter, the results of various experiments conducted by the inventors regarding the effects of the method according to the present invention will be described as Examples 1 to 4.

亜硝酸リチウム水溶液等の塩分除去効果を確認するための実験を行った。この実験では、塩化物イオンを一定量含有させた試験体(モルタル塊)を製作し、それらの試験体を亜硝酸リチウム水溶液、及び、その他の水溶液の中に一定期間浸漬し、その後、各試験体の内部の塩化物イオン濃度を測定し、分析を行った。また、同一条件で製作した試験体に対して電気化学的脱塩処理を行い、効果を比較した。 An experiment was conducted to confirm the salt removal effect of an aqueous solution of lithium nitrite. In this experiment, test specimens (mortar mass) containing a certain amount of chloride ions were prepared, and these specimens were immersed in an aqueous solution of lithium nitrite and other aqueous solutions for a certain period of time, and then each test was performed. Chloride ion concentration inside the body was measured and analyzed. In addition, the test specimens produced under the same conditions were subjected to electrochemical desalting treatment, and the effects were compared.

試験体は、水セメント比(w/c)40%の1:2モルタルに、塩化ナトリウムを練り混ぜて、直径50mm、高さ100mmの円柱状に成型して製作した。そして、外側表面から水を与えて各試験体を湿潤状態(湿度98%以上)とし、図1に示すように、水溶液3を満たした容器1の中に試験体2を収容して浸漬し、容器1の上部を密封して、直射日光が当たらない室内にて26週間静置した。 The test piece was produced by kneading sodium chloride into a 1: 2 mortar having a water-cement ratio (w / c) of 40% and molding it into a cylinder having a diameter of 50 mm and a height of 100 mm. Then, water is applied from the outer surface to bring each test piece into a wet state (humidity 98% or more), and as shown in FIG. 1, the test piece 2 is housed and immersed in a container 1 filled with an aqueous solution 3. The upper part of the container 1 was sealed and allowed to stand for 26 weeks in a room not exposed to direct sunlight.

尚、試験体2を浸漬する水溶液3として、濃度16%の亜硝酸リチウム水溶液(溶媒:石灰水(水酸化カルシウム飽和水溶液、pH12以上))を使用した。また、比較例として、石灰水と、石灰水に対して十分な量(試験体中に含まれる塩化物イオンの全量を吸着できる量)の陰イオン交換樹脂(強塩基性OH-型)を添加した水溶液とを用意し、同一の条件で試験体の浸漬処理を行った。 As the aqueous solution 3 for immersing the test body 2, an aqueous solution of lithium nitrite having a concentration of 16% (solvent: lime water (saturated aqueous solution of calcium hydroxide, pH 12 or higher)) was used. In addition, as a comparative example, lime water and an anion exchange resin (strong basic OH - type) in a sufficient amount (amount capable of adsorbing the entire amount of chloride ions contained in the test body) were added to the lime water. The aqueous solution was prepared and the test piece was immersed under the same conditions.

更に、上記浸漬処理と並行して、電気化学的脱塩処理を行った。具体的には、中心位置に直径5mmの空洞部を有する円筒状の試験体2’(配合及び塩化物イオン濃度等の条件は、図1の試験体2と同一)を製作し、図2に示すように、空洞部に直径5mmの炭素棒4を挿入して、容器1内に収容するとともに、チタン製のメッシュ材5を、試験体2’の周囲を取り囲むように配置し、容器1内に電解質溶液3’を投入して、試験体2’及びメッシュ材5を浸漬させた。そして、炭素棒4とメッシュ材5をそれぞれ電源部6に接続し、炭素棒4を陰極、メッシュ材5を陽極として、電源部6から直流電流1A/m2を印加して、8週間にわたって継続的に通電し、電気泳動の原理を利用して脱塩処理を行った。尚、電解質溶液3’としては、石灰水(pH12以上)を使用した。 Further, in parallel with the above dipping treatment, an electrochemical desalting treatment was performed. Specifically, a cylindrical test body 2'(conditions such as compounding and chloride ion concentration are the same as those of the test body 2 of FIG. 1) having a cavity having a diameter of 5 mm at the center position was produced, and FIG. 2 shows. As shown, a carbon rod 4 having a diameter of 5 mm is inserted into the cavity and housed in the container 1, and a titanium mesh material 5 is arranged so as to surround the test piece 2'inside the container 1. The electrolyte solution 3'was added to the test piece 2'and the mesh material 5 was immersed in the test piece 2'. Then, the carbon rod 4 and the mesh material 5 are connected to the power supply unit 6, respectively, the carbon rod 4 is used as a cathode and the mesh material 5 is used as an anode, and a direct current of 1 A / m 2 is applied from the power supply unit 6 to continue for 8 weeks. It was energized and desalted using the principle of electrophoresis. As the electrolyte solution 3', lime water (pH 12 or higher) was used.

次に、浸漬実験を行った試験体2(図1参照)を容器1から取り出し、図3に示すように、上端から25mm下方の位置、及び、下端から25mm上方の位置(図3において破線で示す位置)で水平方向に切断し、上部2a及び下部2cを取り除いて中間部2bを抽出し、更に、中間部2bを、外側部2d(外周面から中心に向かって7mmの深さまでの部分)と、内側部2e(図3において斜線で示す部分)とに分離して、試料を採取した。また、電気化学的脱塩処理を行った試験体2’(図2参照)についても、同じ方法で外側部と内側部とに分離し、試料を採取した。そして、それらの試料を個別に微粉砕し、JIS A 1154「硬化コンクリート中に含まれる塩化物イオンの試験方法」に準拠して、各試料の塩化物イオン濃度を測定した。それらの結果を図4に示す。 Next, the test body 2 (see FIG. 1) in which the immersion experiment was performed was taken out from the container 1, and as shown in FIG. 3, a position 25 mm below the upper end and a position 25 mm above the lower end (in the dashed line in FIG. 3). Cut in the horizontal direction at the indicated position), remove the upper part 2a and the lower part 2c to extract the middle part 2b, and further, the middle part 2b is the outer part 2d (the part from the outer peripheral surface to the depth of 7 mm toward the center). And the inner part 2e (the part shown by the diagonal line in FIG. 3) were separated, and a sample was taken. Further, the test piece 2'(see FIG. 2) subjected to the electrochemical desalting treatment was also separated into an outer part and an inner part by the same method, and a sample was collected. Then, those samples were individually pulverized, and the chloride ion concentration of each sample was measured in accordance with JIS A 1154 “Test method for chloride ions contained in hardened concrete”. The results are shown in FIG.

図4のグラフにおいて、「IA」は、石灰水に浸漬した試験体、「IB」は、陰イオン交換樹脂を添加した水溶液に浸漬した試験体、「IC16」は、16%亜硝酸リチウム水溶液に浸漬した試験体、「ID」は、電気化学的脱塩処理を行った試験体、「R」は、浸漬等を行うことなく、製作後そのままの状態で保管した試験体である。また、図4に示す破線(Clim)は、鋼材の腐食が発生する塩化物イオン濃度をモルタル換算(骨材を除く容積0.6m3/m3と仮定)した値(2.86kg/m3)である。 In the graph of FIG. 4, "IA" is a test body immersed in lime water, "IB" is a test body immersed in an aqueous solution to which an anion exchange resin is added, and "IC16" is a 16% lithium nitrite aqueous solution. The immersed test piece, "ID", is a test piece that has been subjected to an electrochemical desalting treatment, and "R" is a test piece that has been stored as it is after being manufactured without being immersed. The broken line (Clim ) shown in FIG. 4 is the value (2.86 kg / m) obtained by converting the chloride ion concentration at which corrosion of the steel material occurs in terms of mortar ( assuming a volume of 0.6 m 3 / m 3 excluding the aggregate). 3 ).

図4に示すように、電気化学的脱塩処理を行った試験体IDでは、外側部及び内側部のいずれにおいても、塩化物イオン濃度が大幅に低下した。一方、浸漬処理を行った試験体IA,IB,IC16では、外側部2dについては塩化物イオン濃度の低下が確認されたが、内側部2eについては、顕著な濃度低下は認められなかった。 As shown in FIG. 4, in the test piece ID subjected to the electrochemical desalting treatment, the chloride ion concentration was significantly reduced in both the outer portion and the inner portion. On the other hand, in the test bodies IA, IB, and IC16 that had undergone the immersion treatment, a decrease in the chloride ion concentration was confirmed in the outer portion 2d, but no significant decrease in the concentration was observed in the inner portion 2e.

また、この実験結果から、亜硝酸リチウム水溶液等を用いて浸漬処理を行うことによって期待できる塩分除去効果(塩化物イオン濃度の低減効果)は、試験体の外側表面から少なくとも7mm程度の深さまで有効であることが判明した。更に、外側部(外側表面から7mmの深さまでの部分)に限定して考察すると、浸漬処理を行った試験体IA,IB,IC16の中で塩化物イオン濃度が最も低くなったのは、試験体IC16(16%亜硝酸リチウム水溶液に浸漬した試験体)であり(より詳細には、IC16<IB<IA)、従って、16%亜硝酸リチウム水溶液を使用した場合、石灰水、及び、陰イオン交換樹脂を添加した水溶液を使用する場合よりも、高い塩分除去効果を期待できることが確認された。 In addition, from the results of this experiment, the salt removal effect (effect of reducing chloride ion concentration) that can be expected by performing the immersion treatment with an aqueous solution of lithium nitrite or the like is effective up to a depth of at least about 7 mm from the outer surface of the test piece. It turned out to be. Furthermore, considering only the outer part (the part from the outer surface to a depth of 7 mm), the test having the lowest chloride ion concentration among the test bodies IA, IB, and IC16 subjected to the immersion treatment was the test. Body IC16 (test specimen immersed in 16% lithium nitrite aqueous solution) (more specifically, IC16 <IB <IA), and therefore, when 16% lithium nitrite aqueous solution is used, lime water and anions. It was confirmed that a higher salt removal effect can be expected than when an aqueous solution containing an exchange resin is used.

次に、亜硝酸リチウム水溶液を含浸させた保水性シート(保水性材料)を貼り付けた場合の塩分除去効果を確認するための実験を行った。この実験では、上記浸漬実験(実施例1)で使用した試験体と同一の試験体を使用した。 Next, an experiment was conducted to confirm the salt removal effect when a water-retaining sheet (water-retaining material) impregnated with an aqueous solution of lithium nitrite was attached. In this experiment, the same test body as the test body used in the immersion experiment (Example 1) was used.

まず、外側表面から水を与えて各試験体を湿潤状態(湿度98%以上)とし、それらの外側表面に、亜硝酸リチウム水溶液を含浸させた保水性シートを貼り付け、容器内に収容して密封し、直射日光が当たらない室内にて26週間静置し、その後、各試験体の内部の塩化物イオン濃度を測定した。 First, water is applied from the outer surface to bring each test piece into a wet state (humidity 98% or more), and a water-retaining sheet impregnated with an aqueous solution of lithium nitrite is attached to the outer surface thereof and housed in a container. It was sealed and allowed to stand in a room not exposed to direct sunlight for 26 weeks, after which the chloride ion concentration inside each test piece was measured.

保水性シートとしては、厚さ6mm、吸水量5000g/m2のものを2枚重ねた状態で使用した。また、保水性シートに含浸させる水溶液として、濃度16%の亜硝酸リチウム水溶液(溶媒:石灰水(pH12以上))を使用した。 As the water-retaining sheet, two sheets having a thickness of 6 mm and a water absorption capacity of 5000 g / m 2 were used in a stacked state. Further, as an aqueous solution to impregnate the water-retaining sheet, an aqueous solution of lithium nitrite having a concentration of 16% (solvent: lime water (pH 12 or more)) was used.

また、試験体のうち、一つのグループ(試験体S)に対しては、亜硝酸リチウム水溶液を含浸させた保水性シートを、4週間毎に新しいもの(亜硝酸リチウム水溶液を新たに含浸させた新しい保水性シート)と交換しながら実施し、他のグループ(試験体N)に対しては、保水性シートの交換を行わずに実施した。 In addition, one group (test body S) of the test bodies was newly impregnated with a new water-retaining sheet impregnated with an aqueous solution of lithium nitrite (a new aqueous solution of lithium nitrite) every 4 weeks. It was carried out while exchanging with a new water-retaining sheet), and for the other group (test body N), it was carried out without exchanging the water-retaining sheet.

各試験体S,Nを容器から取り出して、実施例1と同じ要領で、試験体の中間部2bを外側部2dと内側部2e(図3参照)とに分離して試料を採取し、塩化物イオン濃度の測定を行った。保水性シートの交換を行った試験体Sの外側部2dの塩化物イオン濃度の値は、実施例1の試験体IC16(16%亜硝酸リチウム水溶液に浸漬した試験体)の外側部2dの値(2.77kg/m3、図4参照)よりも低くなった(S<IC16)。一方、保水性シートの交換を行わなかった試験体Nの外側部2dの塩化物イオン濃度の値は、実施例1の試験体IC16の外側部2dの値よりも高くなった(S<IC16<N)。 Each of the test specimens S and N is taken out from the container, and the intermediate portion 2b of the specimen is separated into the outer portion 2d and the inner portion 2e (see FIG. 3) in the same manner as in Example 1, and a sample is collected to obtain chloride. The bodily ion concentration was measured. The value of the chloride ion concentration in the outer portion 2d of the test body S in which the water-retaining sheet was replaced is the value of the outer portion 2d of the test body IC16 (test body immersed in 16% lithium nitrite aqueous solution) of Example 1. It was lower than (2.77 kg / m 3 , see FIG. 4) (S <IC16). On the other hand, the value of the chloride ion concentration in the outer portion 2d of the test body N in which the water-retaining sheet was not replaced was higher than the value in the outer portion 2d of the test body IC16 of Example 1 (S <IC16 < N).

従って、16%亜硝酸リチウム水溶液を含浸した保水性シートを試験体の外側表面に貼り付けるとともに、保水性シートを定期的に交換した場合、16%亜硝酸リチウム水溶液に試験体を浸漬する場合よりも、高い塩分除去効果を期待できることが確認された。 Therefore, when a water-retaining sheet impregnated with a 16% lithium nitrite aqueous solution is attached to the outer surface of the test piece and the water-retaining sheet is replaced regularly, the test piece is immersed in the 16% lithium nitrite aqueous solution. However, it was confirmed that a high salt removal effect can be expected.

尚、保水性シートに含浸させる水溶液として、濃度16%の亜硝酸リチウム水溶液のほかに、濃度4%、及び、濃度8%の亜硝酸リチウム水溶液を使用して、同じ実験を行ったところ、亜硝酸リチウムの濃度が高いほど、高い塩分除去効果を期待できることが確認された。 The same experiment was conducted using an aqueous solution of lithium nitrite having a concentration of 16% and an aqueous solution of lithium nitrite having a concentration of 4% and a concentration of 8% as the aqueous solution to be impregnated in the water-retaining sheet. It was confirmed that the higher the concentration of lithium nitrate, the higher the salt removal effect can be expected.

亜硝酸リチウムの塩分除去メカニズムを検証するために、亜硝酸リチウム水溶液の平衡相対湿度を測定し、また、予防保全対策としての有効性を確認するために、実施例1の試験体IC中に浸透した亜硝酸イオンの分析を行った。 In order to verify the salt removal mechanism of lithium nitrite, the equilibrium relative humidity of the lithium nitrite aqueous solution was measured, and in order to confirm the effectiveness as a preventive maintenance measure, it penetrated into the test body IC of Example 1. The nitrite ion was analyzed.

本発明の発明者らは、コンクリートの内部と外部との湿度差によって塩分除去が促進される(湿度が高いコンクリートの内部から、湿度が低い外部へ、塩化物イオンが移動する)と仮定して、上記実験(実施例1及び実施例2)を行ったところ、一定の塩分除去効果が得られることを確認することができた。そして、表1に示す通り、実験に使用した濃度16%の亜硝酸リチウム水溶液の平衡相対湿度が、温度20℃の環境において、90%であることが確認された。この事実は、上記仮定と符合する。但し、平衡相対湿度と塩分除去率の間には他の影響も確認された。 The inventors of the present invention assume that the humidity difference between the inside and the outside of concrete promotes salt removal (chloride ions move from the inside of concrete with high humidity to the outside with low humidity). When the above experiments (Example 1 and Example 2) were carried out, it was confirmed that a certain salt removing effect was obtained. Then, as shown in Table 1, it was confirmed that the equilibrium relative humidity of the 16% concentration lithium nitrite aqueous solution used in the experiment was 90% in an environment at a temperature of 20 ° C. This fact is consistent with the above assumptions. However, other effects were also identified between the equilibrium relative humidity and the salt removal rate.

Figure 2021059927
Figure 2021059927

図5は、実施例1と実施例2の試験体(ただし、試験体IBと試験体IDを除く)の外側部2dと内側部2eの塩化物イオン濃度の相関を示すグラフである。このグラフに示されるように、両者の塩化物イオン濃度は、負の相関性を示した。つまり、外側部2dの塩化物イオン濃度が低下するほど、内側部2eの塩化物イオン濃度は、初期(図4の試験体R参照)の塩化物イオン濃度から増加する傾向があることが判明した。 FIG. 5 is a graph showing the correlation between the chloride ion concentrations of the outer portion 2d and the inner portion 2e of the test bodies of Example 1 and Example 2 (excluding the test body IB and the test body ID). As shown in this graph, the chloride ion concentrations of the two showed a negative correlation. That is, it was found that as the chloride ion concentration in the outer portion 2d decreases, the chloride ion concentration in the inner portion 2e tends to increase from the initial chloride ion concentration (see the test piece R in FIG. 4). ..

試験体に接触させる水溶液中の亜硝酸イオンが、試験体の内部(外側部2d及び内側部2e)に浸透する段階で、試験体の外側部2dに存在していた塩化物イオンの一部が、試験体の外部へ移動した一方で、他の一部が、試験体の内側部2eへ移動した可能性があると考えられる。つまり、亜硝酸イオンと塩化物イオンの共存が塩化物イオンの移動速度に影響を与えた要因は、「平衡論」と「速度論」の両者が関与したものと推察される。 At the stage when the nitrite ion in the aqueous solution to be brought into contact with the test piece permeates the inside of the test piece (outer part 2d and inner part 2e), a part of the chloride ion existing in the outer part 2d of the test piece is released. It is considered that while the other part moved to the outside of the test piece, it may have moved to the inner part 2e of the test piece. In other words, it is presumed that both "equilibrium theory" and "kinetics" were involved in the factors that affected the movement rate of chloride ions by the coexistence of nitrite ions and chloride ions.

Figure 2021059927
Figure 2021059927

実施例1の試験体IC中の亜硝酸イオンの分析結果は、上表の通りである。試験体IC中のNO2 -/Cl-モル比は、外側部2dで2.39、内側部2eで0.50であった。亜硝酸イオンは、塩化物イオンによって破壊された鋼材の不動態被膜を修復して、腐食反応を抑制する効果がある。既往研究によると、コンクリート内部にある塩化物イオンに対し、亜硝酸イオンのモル比が0.6以上であれば腐食抑制効果が高いと報告されている。 The analysis results of nitrite ion in the test body IC of Example 1 are as shown in the above table. NO specimens in IC 2 - / Cl - molar ratio, 2.39 at the outer portion 2d, was 0.50 at the inner portion 2e. Nitrite ions have the effect of repairing the passivation film of steel materials destroyed by chloride ions and suppressing the corrosion reaction. According to previous studies, it is reported that the corrosion suppressing effect is high when the molar ratio of nitrite ion to chloride ion inside concrete is 0.6 or more.

直径50mmの試験体IC16において、内側部2eまで亜硝酸イオンが浸透していることが確認されたため、亜硝酸リチウム水溶液を用いて本発明に係る塩分除去方法を実施した場合、コンクリートの外側表面から概ね25mmの深さの範囲において、亜硝酸イオンによる腐食抑制効果を期待することができると考えられ、従って、予防保全対策として有効となり得ることが確認された。 Since it was confirmed that nitrite ions permeated to the inner portion 2e in the test body IC16 having a diameter of 50 mm, when the salt removal method according to the present invention was carried out using an aqueous solution of lithium nitrite, it was observed from the outer surface of the concrete. It is considered that the corrosion suppressing effect by nitrite ion can be expected in the range of about 25 mm depth, and therefore, it was confirmed that it can be effective as a preventive maintenance measure.

外側表面から水を与えてコンクリートの内部を湿潤状態とさせる方法について実験を行って確認した。この実験では、試験体として、塩害を受けて撤去されたコンクリート部材(長さ3.7m、高さ1.7m)を用意し、ひび割れ等の損傷がなく、健全な外側表面(試験対象面、面積:30×30cm)を4箇所選定し、各試験対象面に対し、以下の4方法を個別に(1つの試験対象面に対し1つの方法を)実施して水(水道水)を与え、乾燥防止のためにラップを被せた状態で1日間静置した。
方法ア 散水(水量500g/m2をスプレーで散布)
方法イ 保水性シート(厚さ2mm、水量1500g/m2)の貼り付け
方法ウ 保水性シート(厚さ4mm、水量3000g/m2)の貼り付け
方法エ 保水性シート(厚さ6mm、水量5000g/m2)の貼り付け
Experiments were conducted to confirm how to moisten the inside of concrete by giving water from the outer surface. In this experiment, a concrete member (length 3.7 m, height 1.7 m) that was removed due to salt damage was prepared as a test body, and there was no damage such as cracks, and a sound outer surface (test surface, test target surface, Area: 30 x 30 cm) was selected at four locations, and the following four methods were individually performed (one method for one test target surface) on each test target surface to give water (tap water). The mixture was allowed to stand for 1 day with a wrap to prevent it from drying out.
Method A Watering (spraying 500g / m 2 of water with a spray)
Method a. Attaching a water-retaining sheet (thickness 2 mm, water volume 1500 g / m 2 ) Method C. Attaching a water-retaining sheet (thickness 4 mm, water volume 3000 g / m 2 ) D. Attaching a water-retaining sheet (thickness 6 mm, water volume 5000 g) / M 2 ) paste

その後(1日経過後)、ラップ(方法イ〜エにおいては、ラップ及び保水性シート)を撤去した。そして、各試験対象面から内部に向かって削孔を行い、約20mmの深さの位置に湿度センサを固定し、削孔を密封した状態で内部の湿度を測定した。尚、実験は室内で実施し、測定時の気温は24℃、湿度は65%であった。 After that (after 1 day), the wrap (wrap and water-retaining sheet in methods (a) to (d)) was removed. Then, holes were drilled inward from each test target surface, a humidity sensor was fixed at a position at a depth of about 20 mm, and the humidity inside was measured with the drilled holes sealed. The experiment was carried out indoors, and the temperature at the time of measurement was 24 ° C. and the humidity was 65%.

測定の結果、方法アを実施した試験対象面内部の湿度は88%、方法イ〜エを実施した試験対象面内部の湿度はいずれも98%以上となった。この実験結果により、水1500g/m2以上を1日以上保水できる手段を用いることにより、コンクリートの内部を湿潤状態(湿度98%以上)とできることが確認された。 As a result of the measurement, the humidity inside the test target surface on which method A was carried out was 88%, and the humidity inside the test target surface on which methods a to d were carried out was 98% or more. From this experimental result, it was confirmed that the inside of concrete can be made wet (humidity 98% or more) by using a means capable of retaining 1500 g / m 2 or more of water for one day or more.

1:容器、
2、2’:試験体、
2a:上部、
2b:中間部、
2c:下部、
2d:外側部、
2e:内側部、
3:水溶液、
3’:電解質溶液、
4:炭素棒、
5:メッシュ材、
6:電源部、
11:コンクリート構造物、
12:貯水槽
1: Container,
2, 2': Specimen,
2a: Upper part,
2b: middle part,
2c: bottom,
2d: outer part,
2e: Inner part,
3: Aqueous solution,
3': Electrolyte solution,
4: Carbon rod,
5: Mesh material,
6: Power supply,
11: Concrete structure,
12: Water tank

Claims (14)

対象となるコンクリートの内部を湿度98%以上の湿潤状態とし、
平衡相対湿度が95%以下である吸湿性を有する水溶液を前記コンクリートの表面に接触させて静置し、前記コンクリート内部の塩化物イオンを前記コンクリートの外部へ移動させることを特徴とする、コンクリート構造物の塩分除去方法。
The inside of the target concrete is kept wet with a humidity of 98% or more.
A concrete structure characterized in that a hygroscopic aqueous solution having an equilibrium relative humidity of 95% or less is brought into contact with the surface of the concrete and allowed to stand, and chloride ions inside the concrete are moved to the outside of the concrete. How to remove salt from things.
前記水溶液として、亜硝酸リチウム水溶液を使用することを特徴とする、請求項1に記載のコンクリート構造物の塩分除去方法。 The method for removing salt from a concrete structure according to claim 1, wherein an aqueous solution of lithium nitrite is used as the aqueous solution. 前記亜硝酸リチウム水溶液における亜硝酸リチウムの濃度を16%以上とすることを特徴とする、請求項2に記載のコンクリート構造物の塩分除去方法。 The method for removing salt from a concrete structure according to claim 2, wherein the concentration of lithium nitrite in the aqueous solution of lithium nitrite is 16% or more. 前記コンクリートの表面に、前記水溶液を含ませた保水性材料を付着させることにより、又は、前記コンクリートの表面に付着させた保水性材料に、前記水溶液を含ませることにより、前記水溶液を前記コンクリートの表面に接触させることを特徴とする、請求項1〜3のいずれかに記載のコンクリート構造物の塩分除去方法。 By adhering the water-retaining material containing the aqueous solution to the surface of the concrete, or by impregnating the water-retaining material adhering to the surface of the concrete with the water-retaining material, the aqueous solution can be applied to the concrete. The method for removing salt from a concrete structure according to any one of claims 1 to 3, wherein the concrete structure is brought into contact with a surface. 前記保水性材料として、前記水溶液を1000g/m2以上保水できるものを使用することを特徴とする、請求項4に記載のコンクリート構造物の塩分除去方法。 The method for removing salt from a concrete structure according to claim 4, wherein as the water-retaining material, a material capable of retaining 1000 g / m 2 or more of the aqueous solution is used. 前記保水性材料として、保水性を有する繊維状物質をシート状に成形したもの、又は、保水性を有する多孔質材料をボード状に成形したものを使用することを特徴とする、請求項5に記載のコンクリート構造物の塩分除去方法。 The fifth aspect of the present invention is characterized in that, as the water-retaining material, a material obtained by molding a fibrous material having water retention into a sheet shape or a material obtained by molding a porous material having water retention into a board shape is used. The method for removing salt from a concrete structure according to the description. 前記保水性材料として、保水性を有する有機高分子材料を、通水性を有する袋内に収容して、シート状に成形したものを使用することを特徴とする、請求項5に記載のコンクリート構造物の塩分除去方法。 The concrete structure according to claim 5, wherein as the water-retaining material, an organic polymer material having water retention is housed in a bag having water permeability and molded into a sheet shape. How to remove salt from things. 前記保水性材料として、保水性を有する多孔質材料、又は、保水性を有する有機高分子材料を使用し、それらを前記コンクリートの表面に吹き付けて付着させ、保水層を形成することを特徴とする、請求項5に記載のコンクリート構造物の塩分除去方法。 As the water-retaining material, a porous material having water retention or an organic polymer material having water retention is used, and they are sprayed onto the surface of the concrete to adhere to the surface of the concrete to form a water-retaining layer. , The method for removing salt from a concrete structure according to claim 5. 前記水溶液を使用した場合において保水性能が低下しないものを、前記保水性材料として使用することを特徴とする、請求項5に記載のコンクリート構造物の塩分除去方法。 The method for removing salt from a concrete structure according to claim 5, wherein a material whose water retention performance does not deteriorate when the aqueous solution is used is used as the water retention material. 前記保水性材料を、前記水溶液を新たに含ませた保水性材料と定期的に交換し、又は、定期的に、前記保水性材料を新しいものに交換するとともに、前記水溶液を新たに含ませることを特徴とする、請求項4〜9のいずれかに記載のコンクリート構造物の塩分除去方法。 The water-retaining material is periodically replaced with a water-retaining material newly containing the aqueous solution, or the water-retaining material is regularly replaced with a new one, and the aqueous solution is newly contained. The method for removing salt from a concrete structure according to any one of claims 4 to 9, wherein the method is characterized by. 前記コンクリートの表面を覆うように貯水槽を設置し、
前記水溶液を、前記貯水槽内に貯留することにより、前記コンクリートの表面に接触させることを特徴とする、請求項1〜3のいずれかに記載のコンクリート構造物の塩分除去方法。
A water tank is installed so as to cover the surface of the concrete.
The method for removing salt from a concrete structure according to any one of claims 1 to 3, wherein the aqueous solution is stored in the water storage tank so as to be brought into contact with the surface of the concrete.
前記貯水槽内の前記水溶液を、定期的に交換することを特徴とする、請求項4に記載のコンクリート構造物の塩分除去方法。 The method for removing salt from a concrete structure according to claim 4, wherein the aqueous solution in the water storage tank is replaced regularly. 乾燥防止手段として、フィルム又はカバーを、前記保水性材料又は前記貯水槽の外側を覆うように取り付けることを特徴とする、請求項4〜12のいずれかに記載のコンクリート構造物の塩分除去方法。 The method for removing salt from a concrete structure according to any one of claims 4 to 12, wherein a film or a cover is attached so as to cover the outside of the water-retaining material or the water storage tank as a drying prevention means. 請求項1〜13のいずれかに記載のコンクリート構造物の塩分除去方法を実施した後、コンクリートの表面に対して塗装を施すことを特徴とする、コンクリート構造物の補修方法。 A method for repairing a concrete structure, which comprises performing the method for removing salt from a concrete structure according to any one of claims 1 to 13 and then applying a coating to the surface of the concrete.
JP2019185656A 2019-10-09 2019-10-09 Method for removing salt from concrete structure Active JP7271388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019185656A JP7271388B2 (en) 2019-10-09 2019-10-09 Method for removing salt from concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019185656A JP7271388B2 (en) 2019-10-09 2019-10-09 Method for removing salt from concrete structure

Publications (2)

Publication Number Publication Date
JP2021059927A true JP2021059927A (en) 2021-04-15
JP7271388B2 JP7271388B2 (en) 2023-05-11

Family

ID=75379767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019185656A Active JP7271388B2 (en) 2019-10-09 2019-10-09 Method for removing salt from concrete structure

Country Status (1)

Country Link
JP (1) JP7271388B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204683A (en) * 1984-03-29 1985-10-16 株式会社小野田 Rust prevention of steel material in inorganic material
JPS62265189A (en) * 1986-01-10 1987-11-18 日産化学工業株式会社 Degradation preventive construction for cementitious material
JPH04317448A (en) * 1991-04-16 1992-11-09 Nippon Cement Co Ltd Rust inhibiting method for reinforced concrete
JPH05214818A (en) * 1992-02-07 1993-08-24 Railway Technical Res Inst Repairing method for cured concrete
JPH09142959A (en) * 1995-11-17 1997-06-03 Denki Kagaku Kogyo Kk Method for regenerating concrete structure
EP0962432A1 (en) * 1998-05-30 1999-12-08 General Coatings NV Method and apparatus for the removal of ionic impurities from reinforced concrete structures
JP2006144313A (en) * 2004-11-17 2006-06-08 I S Kosan Kk Execution method of dust preventive agent to concrete structure, and permeable rust preventive agent composition
JP2009107910A (en) * 2007-10-31 2009-05-21 Takenaka Komuten Co Ltd Alkali treatment liquid and treating method of concrete molded product using thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204683A (en) * 1984-03-29 1985-10-16 株式会社小野田 Rust prevention of steel material in inorganic material
JPS62265189A (en) * 1986-01-10 1987-11-18 日産化学工業株式会社 Degradation preventive construction for cementitious material
JPH04317448A (en) * 1991-04-16 1992-11-09 Nippon Cement Co Ltd Rust inhibiting method for reinforced concrete
JPH05214818A (en) * 1992-02-07 1993-08-24 Railway Technical Res Inst Repairing method for cured concrete
JPH09142959A (en) * 1995-11-17 1997-06-03 Denki Kagaku Kogyo Kk Method for regenerating concrete structure
EP0962432A1 (en) * 1998-05-30 1999-12-08 General Coatings NV Method and apparatus for the removal of ionic impurities from reinforced concrete structures
JP2006144313A (en) * 2004-11-17 2006-06-08 I S Kosan Kk Execution method of dust preventive agent to concrete structure, and permeable rust preventive agent composition
JP2009107910A (en) * 2007-10-31 2009-05-21 Takenaka Komuten Co Ltd Alkali treatment liquid and treating method of concrete molded product using thereof

Also Published As

Publication number Publication date
JP7271388B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2015186724A1 (en) Concrete protective material, method for repairing concrete structure, impregnation inducer for concrete structures, and defect filler for concrete structures
SK5692003A3 (en) Cathodic protection of steel in reinforced concrete with electroosmotic treatment
JP2021059927A (en) Method for removing salt from concrete structure
US6387244B1 (en) Cathodic protection of reinforced concrete with impregnated corrosion inhibitor
JP6267036B2 (en) Method for producing modifier for concrete structure and method for modifying concrete structure
JP2009126728A (en) Desalting process for reinforced concrete
JPH05178678A (en) Method for repairing concrete
JPH08104581A (en) Repairing method of concrete
JP7038600B2 (en) Surface modification method for hardened cement and surface modification device for hardened cement
JPH09142959A (en) Method for regenerating concrete structure
JPS62265189A (en) Degradation preventive construction for cementitious material
JP2003129262A (en) Electric protection part for corrosion prevention of concrete steel material
JP2024057539A (en) Method for removing salt from concrete structures
JP3797675B2 (en) Method for recovering alkalinity of concrete with neutralized parts.
JPH082982A (en) Method for repairing concrete
HU209897B (en) Apparatus for electrokinetic desalinizing walls
JP2006327905A (en) Method for salt removal from concrete structure
JP3434030B2 (en) Concrete treatment method
JP3325322B2 (en) Concrete regeneration method
JP3325316B2 (en) Concrete regeneration method
JPH06200636A (en) Recovery treatment of deteriorated concrete
JP3361387B2 (en) Electrolyte material for concrete regeneration and its regeneration method
AU682690B2 (en) Realkalization and dechlorination of concrete by surface mounted electrochemical means
JPH07109186A (en) Regeneration of concrete and electrolytic material therefor
JP2000154076A (en) Treatment of concrete hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230208

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230213

C272 Notice of ex officio correction

Free format text: JAPANESE INTERMEDIATE CODE: C272

Effective date: 20230214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

C092 Termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C092

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7271388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150