JPH05178678A - Method for repairing concrete - Google Patents

Method for repairing concrete

Info

Publication number
JPH05178678A
JPH05178678A JP35923791A JP35923791A JPH05178678A JP H05178678 A JPH05178678 A JP H05178678A JP 35923791 A JP35923791 A JP 35923791A JP 35923791 A JP35923791 A JP 35923791A JP H05178678 A JPH05178678 A JP H05178678A
Authority
JP
Japan
Prior art keywords
concrete
steel
electrode
electrolyte solution
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35923791A
Other languages
Japanese (ja)
Other versions
JP3434522B2 (en
Inventor
Kiminobu Ashida
公伸 芦田
Akio Takahashi
秋男 高橋
Minoru Handa
実 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP35923791A priority Critical patent/JP3434522B2/en
Publication of JPH05178678A publication Critical patent/JPH05178678A/en
Application granted granted Critical
Publication of JP3434522B2 publication Critical patent/JP3434522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4564Electrolytic or electrophoretic processes, e.g. electrochemical re-alkalisation of reinforced concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

PURPOSE:To provide a method for repairing a reinforced concrete structure wherein reinforcing steel and PC steel are used as the reinforcing material and a prestressed concrete structure especially a concrete structure which has been deteriorated by incorporating salt into concrete. CONSTITUTION:Steel in the inside of concrete containing chlorine ions is made to an inner electrode. An electrode provided on the surface part of the concrete is made to a surface electrode. An alkaline or neutral electrolyte solution containing a corrosion retarder is made present between the concrete and the surface electrode. DC current is allowed to flow between the inner electrode and the surface electrode. When the method is used, chlorine ions are removed from a concrete structure subjected to salt damage. Therefore, formation of the passive film of steel is enabled again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄筋やPC鋼材を補強
材とする鉄筋コンクリート構造物及びプレストレストコ
ンクリート構造物の補修方法、特に、コンクリート中に
塩分を含有することによって劣化したコンクリート構造
物の補修方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for repairing a reinforced concrete structure and a prestressed concrete structure having reinforcing bars or PC steel as a reinforcing material, and in particular, repairing a concrete structure deteriorated by containing salt in concrete. Regarding the method.

【0002】[0002]

【従来の技術とその課題】鉄筋コンクリート構造物やプ
レストレストコンクリート構造物などのコンクリート構
造物は、圧縮強度の強いコンクリートと引張強度の強い
鋼材とを組み合わせることによって、力学的に圧縮強度
と引張強度のバランスの取れた構造体となり、それゆえ
種々の重要な構造物に広く使用されてきた。
2. Description of the Related Art Concrete structures such as reinforced concrete structures and prestressed concrete structures are mechanically balanced by combining concrete with high compressive strength and steel with high tensile strength. The resulting structure has been widely used in a variety of important structures.

【0003】また、コンクリートは、水、火、及び日光
等の環境に対する抵抗性が強く、コンクリートのアルカ
リ度がpHで11〜14の強アルカリ性であるので、その内
部にある鋼材表面に不動体被膜が形成して、その鋼材は
腐食から保護され、そのために、コンクリート構造物は
耐久性のある永久構造物であると考えられてきた。
Further, concrete has a strong resistance to the environment such as water, fire, and sunlight, and since the alkalinity of concrete is 11 to 14 at pH, the surface of the steel material inside the concrete has a passivation film. Formation, the steel is protected from corrosion, which is why concrete structures have been considered to be durable permanent structures.

【0004】しかしながら、この永久構造物と考えられ
てきたコンクリート構造物も、種々の原因によりその耐
久性が低下し、構造物としての寿命に疑問が投げかけら
れるようになってきた。
However, the durability of the concrete structure, which has been considered to be the permanent structure, is lowered due to various causes, and the life of the concrete structure is questioned.

【0005】コンクリート構造物が劣化する原因の一つ
として、コンクリートの塩害現象などが挙げられる。一
般に、海岸部にあるコンクリート構造物に海水の飛沫が
飛んできて、コンクリート表面に付着したりして、海水
中に含まれている塩分がコンクリート中の空隙を通りコ
ンクリート内部に浸透する。そして、その部分が内部鉄
筋の位置までくると、塩素イオンにより鋼材の不動体被
膜が破壊されて腐食が発生する。また、コンクリート材
料として使用される細骨材に海砂が用いられる場合、そ
の塩分除去が不十分であると、コンクリートの製造時か
ら多量の塩化物を含有することとなり、鋼材の不動体被
膜形成が不十分となり腐食が発生する。
One of the causes of deterioration of concrete structures is the phenomenon of concrete salt damage. In general, when seawater splashes onto a concrete structure on the coast and adheres to the concrete surface, salt contained in seawater penetrates into the concrete through voids in the concrete. Then, when that portion reaches the position of the internal rebar, the immobilizing body coating of the steel material is broken by the chlorine ions and corrosion occurs. Also, when sea sand is used as the fine aggregate used as a concrete material, if the salt removal is insufficient, a large amount of chloride will be contained from the time of concrete production, and the immobilization film formation of steel will occur. Is insufficient and corrosion occurs.

【0006】以上のような原因で鋼材に腐食が発生し、
それが、コンクリートのひび割れ、欠落、及び剥離等に
進展し、コンクリート構造物としての耐久性を大きく低
下する現象を、一般に、「塩害」と呼んでいる。
Corrosion occurs in the steel due to the above reasons,
The phenomenon in which the crack develops, cracks, peels off, etc. of concrete and greatly deteriorates the durability as a concrete structure is generally called "salt damage".

【0007】このような塩害で劣化したコンクリート構
造物の一般的な補修方法としては、鋼材の錆については
その周囲のコンクリートを、また、コンクリートのひび
割れや欠落部分についてはその部分のコンクリートを、
「はつり」取ったのち新しいコンクリートやモルタルを充
填する、いわゆる、断面修復が主体であった。
As a general method for repairing a concrete structure deteriorated by such salt damage, the rust of the steel material is the surrounding concrete, and the cracked or missing part of the concrete is the concrete of the part.
The main purpose was to repair so-called cross-sections, which consisted of removing "chips" and then filling them with new concrete or mortar.

【0008】この断面修復は、鋼材の錆やコンクリート
のひび割れや欠落という目に見える劣化現象についての
みの補修であって、補修時に劣化現象が確認できていな
い部分、即ち、潜在的にはコンクリートの劣化が進行し
ているが表面的にはそれが顕在化していない危険部分に
ついては、全く処置を行うことができなかった。
This cross-section restoration is a repair only for visible deterioration phenomena such as rust of steel materials and cracking or loss of concrete, and a part where deterioration phenomena cannot be confirmed at the time of repair, that is, potentially of concrete. No treatment could be performed on the dangerous part where the deterioration is progressing but is not apparent on the surface.

【0009】しかも、この方法はコンクリートが劣化し
た根本的な原因について、何ら対策を行っておらず、劣
化現象の根本的な解決は期待できるものではなかった。
In addition, this method does not take any measures against the fundamental cause of deterioration of concrete, and a fundamental solution to the deterioration phenomenon could not be expected.

【0010】このような潜在的な危険部分の課題解決や
根本原因の課題解決を目的として、電気化学的な手法を
用いた補修工法が提案されている(特開平2−302384号
公報)。
A repairing method using an electrochemical method has been proposed for the purpose of solving the problems of such a potentially dangerous portion and the problems of the root cause (Japanese Patent Laid-Open No. 302384/1990).

【0011】この補修工法は、塩害を受けたコンクリー
ト部分にある鋼材と、コンクリート表面にある電極との
間に、ナトリウム、カリウム、及びカルシウムの水酸化
物を電解質とし、それに直流電流を流すことによって、
コンクリート内部に存在している塩素イオンをコンクリ
ート表面部へと電気的に引き寄せ、コンクリート内部の
塩分濃度を減少させる工法である。
In this repair method, hydroxides of sodium, potassium, and calcium are used as electrolytes between the steel material in the concrete portion damaged by salt and the electrodes on the concrete surface, and a direct current is passed through the electrolyte. ,
This is a method to reduce the salt concentration inside the concrete by electrically attracting chlorine ions existing inside the concrete to the concrete surface.

【0012】しかしながら、この工法では、塩素イオン
がコンクリートの表面部に移動するとともに、カチオン
であるナトリウム、カリウム、及びカルシウムがコンク
リート内部へと移動する。
However, in this method, chlorine ions move to the surface of the concrete and cations sodium, potassium, and calcium move to the inside of the concrete.

【0013】ナトリウムやカリウムの水酸化物を電解質
として使用したのでは、アルカリ骨材反応を促進するの
で、塩害の劣化現象は解決したとしても、新たに、アル
カリ骨材反応という別の劣化現象を引き起こすことにな
り、コンクリート構造物の全体的な耐久性を改善すると
いう目的は達成されない。
Since the use of sodium or potassium hydroxide as the electrolyte promotes the alkali-aggregate reaction, even if the deterioration phenomenon due to salt damage is solved, another deterioration phenomenon called the alkali-aggregate reaction is newly introduced. The purpose of improving the overall durability of the concrete structure is not achieved.

【0014】また、カルシウムの水酸化物を使用した場
合、アルカリ骨材反応については問題ないが、カルシウ
ムの水酸化物で含有塩分を取り除いたコンクリートとい
えども、そのコンクリート構造物が置かれている環境条
件は変わらないので、時間の経過と共にいずれまた塩害
を受けるものであり、その時点で再びコンクリート内部
の鋼材の発錆が始まり、また同様の補修を必要とする課
題があり、根本的な解決とはなり得なかった。
In addition, when calcium hydroxide is used, there is no problem in the alkaline aggregate reaction, but the concrete structure is placed even in the concrete in which the salt content is removed with calcium hydroxide. Since the environmental conditions do not change, it will eventually suffer salt damage over time, at which point the steel inside the concrete will start to rust again and there will be a problem that requires similar repairs. Couldn't be.

【0015】一方、コンクリート内部の鋼材の発錆を防
ぐために亜硝酸塩等を劣化したコンクリートに塗布し
て、鋼材の腐食を防止する方法が提案されている(特開
昭60−231478号公報)。
On the other hand, there has been proposed a method of preventing corrosion of a steel material by applying nitrite or the like to deteriorated concrete in order to prevent rusting of the steel material inside the concrete (JP-A-60-231478).

【0016】しかしながら、コンクリートに塗布しただ
けでは亜硝酸塩等がコンクリート内部にまで浸透するこ
とはありえず、最終的には亜硝酸塩等の効果が乏しいと
いう結果に終わるのが常であった。
However, nitrite and the like cannot penetrate into the concrete simply by coating it on the concrete, and the result is that the effect of the nitrite and the like is poor in the end.

【0017】本発明者等は、前記課題を解消すべく種々
検討した結果、特定の方法を採用することにより前記課
題を解消し、内部に塩素イオンを含有するコンクリート
構造物の補修処理が充分に行い得る知見を得て本発明を
完成するに至った。
As a result of various studies to solve the above problems, the present inventors solved the problems by adopting a specific method, and sufficiently repaired a concrete structure containing chlorine ions inside. The knowledge that can be obtained has been obtained, and the present invention has been completed.

【0018】[0018]

【課題を解決するための手段】即ち、本発明は、塩素イ
オンを含有するコンクリート内部の鋼材を内部電極と
し、コンクリートの表面部に設置した電極を表面電極と
し、コンクリートと該表面電極の間に、アルカリ性又は
中性で腐食抑制剤含有の電解質溶液を存在させ、該内部
電極と表面電極の間に直流電流を流すことを特徴とする
塩素イオンを含有するコンクリートの補修方法である。
Means for Solving the Problems That is, according to the present invention, a steel material inside concrete containing chlorine ions is used as an internal electrode, an electrode installed on the surface of the concrete is used as a surface electrode, and between the concrete and the surface electrode. A method for repairing concrete containing chlorine ions, characterized in that an alkaline or neutral electrolyte solution containing a corrosion inhibitor is present and a direct current is passed between the internal electrode and the surface electrode.

【0019】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0020】一般に、硬化したコンクリート内部には、
飽和状態の水酸化カルシウム水溶液である間隙水が充分
に存在している。そのため、コンクリートに電圧を負荷
すると、この間隙水が電解質の役割をしコンクリート自
身が持つ抵抗と加えた電圧に応じた電流が流れる。
Generally, inside hardened concrete,
Sufficient interstitial water, which is a saturated calcium hydroxide aqueous solution, is present. Therefore, when a voltage is applied to the concrete, the pore water acts as an electrolyte and a current flows according to the resistance of the concrete itself and the applied voltage.

【0021】しかし、より電流を流しやすくするため、
あるいは、より均一に電流を流すために電解質溶液を与
える必要がある。
However, in order to make the current flow easier,
Alternatively, it is necessary to apply an electrolyte solution in order to flow the electric current more uniformly.

【0022】電解質溶液を保持したコンクリートに電流
を流すことによって、コンクリート中の塩分が徐々にコ
ンクリート外部へと移動するが、逆に、この電解質が内
部へと移動する。
By passing an electric current through the concrete holding the electrolyte solution, the salt content in the concrete gradually moves to the outside of the concrete, but conversely, the electrolyte moves to the inside.

【0023】本発明に係る電解質溶液はアルカリ性溶液
又は中性溶液である。通常、対象とするコンクリート構
造物の表面積が大きいため、アルカリ性の電解質溶液で
は、多量のアルカリが必要となり、溶液を使用する際の
健康への影響や保管に注意が必要であり、この面から中
性の電解質溶液の使用が好ましい。
The electrolyte solution according to the present invention is an alkaline solution or a neutral solution. Usually, since the surface area of the target concrete structure is large, a large amount of alkali is required in the alkaline electrolyte solution, and it is necessary to pay attention to the health effects and storage when using the solution. The use of a polar electrolyte solution is preferred.

【0024】ここで、中性の電解質溶液とは、pHで6
以上10未満の溶液である。pH6未満では、通常、セメ
ント硬化体中の成分が溶出しコンクリート構造物が崩壊
する危険性があり、pH10以上では取扱上アルカリとし
ての注意が必要である。また、本発明の目的から、pH
で6以上10未満の溶液であっても、塩素を含有するもの
は好ましくない。
Here, the neutral electrolyte solution has a pH of 6
It is a solution of 10 or more. If the pH is less than 6, there is a risk that components in the hardened cement will elute and the concrete structure will collapse, and if the pH is 10 or more, care must be taken as an alkali for handling. Further, for the purpose of the present invention, pH
Even if the solution is 6 or more and less than 10, a solution containing chlorine is not preferable.

【0025】電解質溶液中のアルカリ塩としては、各種
のアルカリ塩、例えば、ナトリウムやカリウムなどのア
ルカリ金属塩や、カルシウムやマグネシウムなどのアル
カリ土類金属塩などが挙げられるが、ナトリウムやカリ
ウムの塩では、アルカリ骨材反応を促進する可能性があ
るので好ましくなく、カルシウム、リチウム、マグネシ
ウム、及びアルミニウム等の塩の使用が好ましい。ま
た、アンモニア等も使用可能である。さらに、水にグリ
セリンやエチレングリコールなどの電解質剤を添加した
ものも使用可能である。
Examples of the alkali salt in the electrolyte solution include various alkali salts, for example, alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium, and sodium and potassium salts. However, it is not preferable because it may promote the alkali-aggregate reaction, and the use of salts such as calcium, lithium, magnesium, and aluminum is preferable. Also, ammonia or the like can be used. Further, water added with an electrolyte agent such as glycerin or ethylene glycol can also be used.

【0026】本発明に係る腐食抑制剤(Corrosion inhib
itor)は、通常、防錆剤と呼ばれるもので、腐食環境下
において添加することによって、金属の腐食を著しく減
少させる物質である。
The corrosion inhibitor according to the present invention (Corrosion inhib
Itor) is usually called a rust preventive agent, and is a substance that remarkably reduces metal corrosion when added in a corrosive environment.

【0027】腐食抑制剤としては、無機系では、亜硝酸
塩、クロム酸塩、ケイ酸塩、及びリン酸塩等、並びに、
有機系では、有機リン酸塩、エステル塩、有機酸類、ス
ルホン酸類、アミン類、アルキルフェノール類、メルカ
プタン類、及びニトロ化合物等が挙げられる。
As the corrosion inhibitor, inorganic compounds such as nitrite, chromate, silicate and phosphate, and
Examples of the organic system include organic phosphates, ester salts, organic acids, sulfonic acids, amines, alkylphenols, mercaptans, and nitro compounds.

【0028】本発明では、これらの腐食抑制剤をカルシ
ウム、リチウム、マグネシウム、アルミニウム、及びア
ンモニア等の水酸化物や炭酸塩等で適切なpHに調整し
たもの、並びに、上記の腐食抑制剤の中でアルカリ性又
は中性のものが使用できるが、コンクリートの物性に与
える影響が少ないもの、例えば、無機系のものの使用が
好ましく、特に、亜硝酸塩の使用がより好ましい。その
うち、腐食抑制効果のある亜硝酸カルシウムは、通常、
セメントと一緒に混練するとセメントの偽凝結を引き起
こすため、セメントとともに練り混ぜてコンクリート補
修に使用することが難しいが、本発明の方法では、硬化
しているコンクリートに直接用いるためこのような問題
は起こらない。さらに、アルカリ骨材反応抑制の面か
ら、塩としては、リチウム、カルシウム、マグネシウ
ム、及びアルミニウム塩等が好ましい。具体例として
は、日産化学工業製商品名「LN−25」等が挙げられ
る。腐食抑制剤の使用量は、使用する腐食抑制剤の種類
や通電時間の長さによって異なるが、通常、電解質水溶
液に含まれる腐食抑制剤の濃度で0.01〜10mol/リットルが好
ましく、0.1〜5mol/リットルがより好ましい。0.01mol/リット
ル未満では通電時間を長くしても腐食抑制効果が乏し
く、10mol/リットルを越えて使用しても効果の向上が期待で
きない。
In the present invention, these corrosion inhibitors are adjusted to a suitable pH with hydroxides or carbonates of calcium, lithium, magnesium, aluminum, ammonia, etc., and among the above corrosion inhibitors. Although alkaline or neutral ones can be used, it is preferable to use ones that have little effect on the physical properties of concrete, for example, inorganic ones, and particularly preferable to use nitrites. Of these, calcium nitrite, which has a corrosion inhibiting effect, is usually
Since it is difficult to use it for concrete repair by kneading it together with cement because it causes pseudo-setting of cement when kneading with cement, the method of the present invention causes such a problem because it is directly used for hardened concrete. Absent. Further, from the viewpoint of suppressing the alkali-aggregate reaction, lithium, calcium, magnesium, aluminum salts and the like are preferable as the salt. As a specific example, the product name "LN-25" manufactured by Nissan Chemical Industries, Ltd. may be mentioned. The amount of the corrosion inhibitor used varies depending on the type of the corrosion inhibitor used and the length of the energizing time, but normally, the concentration of the corrosion inhibitor contained in the electrolyte aqueous solution is preferably 0.01 to 10 mol / liter, and 0.1 to 5 mol / liter. L is more preferred. If it is less than 0.01 mol / liter, the effect of suppressing corrosion is poor even if the energization time is lengthened, and if it is used in excess of 10 mol / liter, improvement of the effect cannot be expected.

【0029】本発明は、液体の「電気誘導」という現象を
利用しながら、コンクリート表面に与えられた電解質溶
液をコンクリート内部にまで強制的に浸透させる方法で
あり、塩素イオンはコンクリートの表面の外部電極(+)
に引き寄せられて、内部から外部へと移動する。
The present invention is a method of forcibly permeating an electrolyte solution given to the surface of concrete into the inside of the concrete while utilizing the phenomenon of "electric induction" of the liquid. Electrode (+)
Is attracted to and moves from inside to outside.

【0030】なお、この際、塩素イオンのセメント硬化
体中の拡散速度は、一般には、アルカリ金属イオンなど
のカチオン系イオンの拡散速度よりも、数倍から十倍程
度大きいので、電解質溶液がコンクリート内部へと移動
しても、塩素イオンは外部へと容易に移動していく。
At this time, the diffusion rate of chlorine ions in the hardened cement product is generally several to ten times higher than the diffusion rate of cationic ions such as alkali metal ions. Even if it moves to the inside, chlorine ions easily move to the outside.

【0031】従って、コンクリートに腐食抑制剤をただ
単に塗布するだけで、内部への浸透をコンクリートの吸
湿や毛細管現象に頼るだけの従来の方法よりも、液体の
電気誘導という電気の「力」を利用して、強制的に電解質
溶液を移動させる本発明の方がより効果的であることが
理解できる。
Therefore, by simply applying the corrosion inhibitor to the concrete, the electric "force" of electric induction of the liquid is generated rather than the conventional method of relying on the moisture absorption of the concrete or the capillary phenomenon to permeate the inside. It can be understood that the present invention in which the electrolyte solution is forcibly moved by utilizing the present invention is more effective.

【0032】本発明で電極間に流す電流は、コンクリー
ト表面積1m2当たり0.5〜10Aが好ましく、0.75〜7.5A
がより好ましく、1〜5Aが最も好ましい。
In the present invention, the electric current flowing between the electrodes is preferably 0.5 to 10 A, and 0.75 to 7.5 A per 1 m 2 of concrete surface area.
Is more preferable, and 1-5A is the most preferable.

【0033】また、本発明で使用する電解質溶液をコン
クリートに与える方法としては、コンクリート表面に電
解質溶液を保持する容器を設けて、その中に、電解質溶
液を蓄える方法、又は、電解質溶液をパルプや布などの
吸着剤に吸着させるか、あるいは、保持させる方法など
が挙げられる。
As a method for applying the electrolyte solution used in the present invention to concrete, a container for holding the electrolyte solution is provided on the concrete surface, and the electrolyte solution is stored in the container, or the electrolyte solution is stored in pulp or pulp. Examples thereof include a method of adsorbing it on an adsorbent such as cloth, or holding it.

【0034】以上のような方法で、塩素イオンを含有す
るコンクリートに電流を流し、電解質溶液をコンクリー
ト内部にまで浸透させるとともに、内部の塩素イオンを
外部へと導き、コンクリートから塩化物を取り除き、さ
らに、内部の鋼材の不動体被膜を再形成して、「塩害」と
いう現象を解消することが可能となる。
By the above method, an electric current is applied to the concrete containing chlorine ions to allow the electrolyte solution to penetrate into the concrete, and the chloride ions inside are guided to the outside to remove chloride from the concrete. It becomes possible to eliminate the phenomenon of "salt damage" by re-forming the immobile body coating of the steel material inside.

【0035】さらに、電解質溶液に腐食抑制剤を用いる
ことにより、一度補修したコンクリート構造物に再度多
量の塩化物が浸入した場合でも鋼材の腐食が抑制され、
発錆現象が防止でき、その結果として塩害の被害を食い
止めることも可能となる。
Further, by using the corrosion inhibitor in the electrolyte solution, the corrosion of the steel material is suppressed even when a large amount of chloride again invades the concrete structure once repaired,
The rust phenomenon can be prevented, and as a result, the damage caused by salt damage can be stopped.

【0036】[0036]

【実施例】以下、本発明の実施例にもとづいて説明す
る。
EXAMPLES Hereinafter, description will be given based on examples of the present invention.

【0037】実施例1 普通セメント/砂を1/2、水・セメント比を60%と
し、塩化ナトリウムをセメント100重量部に対して、1.5
重量部を含有するモルタルを用いて、かぶり厚さが2cm
になるように、その中心にφ10mmの鋼棒を設置した、直
径5cm、高さ10cmの円柱体を作製した。この円柱体を材
令28日まで20℃80%RHの室内養生を行い、その後、この
円柱体の上下面をエポキシ系の塗料で塗布して電気的に
絶縁して試験体とした。この試験体に含有している塩化
ナトリウムの量は1,650mgである。この試験体を、図1
に示すように亜硝酸リチウム0.5mol/リットルの電解質溶液
の中に浸漬し、通電装置にて4週間、表1に示す電流密
度の直流を流した。なお、電解質溶液は各試験体1本に
つき2リットルとし、1週間毎に水の蒸発分だけ蒸留水
を加えた。通電終了時点でこの電解質溶液中に溶出した
塩素イオン濃度を分析し試験体から取り除いたNaCl重量
を計算した。結果を表1に示す。また、同様に8週間、
所定の電流密度の直流を流した時の結果を表1に併記す
る。
Example 1 Normal cement / sand was 1/2, water / cement ratio was 60%, and sodium chloride was 1.5 with respect to 100 parts by weight of cement.
Using a mortar containing parts by weight, the cover thickness is 2 cm
A steel rod having a diameter of 10 mm was installed at the center of the cylinder to prepare a cylindrical body having a diameter of 5 cm and a height of 10 cm. This column was subjected to room curing at 20 ° C. and 80% RH until the 28th day of age, and then the upper and lower surfaces of this column were coated with an epoxy paint to electrically insulate them to obtain a test body. The amount of sodium chloride contained in this test body is 1,650 mg. This test piece is shown in FIG.
As shown in (3), it was immersed in an electrolyte solution of 0.5 mol / liter of lithium nitrite, and a direct current having a current density shown in Table 1 was flown for 4 weeks in an electric device. The electrolyte solution was 2 liters for each test body, and distilled water was added every week for the amount of evaporated water. At the end of energization, the concentration of chloride ions eluted in this electrolyte solution was analyzed and the weight of NaCl removed from the test body was calculated. The results are shown in Table 1. Similarly, for 8 weeks,
Table 1 also shows the results when a direct current having a predetermined current density was applied.

【0038】<使用材料> セメント :普通ポルトランドセメント、電気化学
工業社製 砂 :姫川産川砂 鋼棒 :磨き鋼棒 亜硝酸リチウム:日産化学工業社製商品名「LN−2
5」、pH=11.5、25%溶液 塩化ナトリウム:和光純薬工業社製、試薬1級
<Materials used> Cement: Ordinary Portland cement, sand produced by Denki Kagaku Kogyo Sand: Himekawa production sand bar Steel bar: Polished steel bar Lithium nitrite: Nissan Chemical Co., Ltd. trade name “LN-2
5 ", pH = 11.5, 25% solution Sodium chloride: Wako Pure Chemical Industries, Ltd., reagent grade 1

【0039】[0039]

【表1】 [Table 1]

【0040】なお、表1で電流密度は試験体の電解質溶
液に浸漬している部分で、塗料で絶縁した部分を除く表
面積当たりの電流量を示す。
In Table 1, the current density indicates the amount of current per surface area excluding the part insulated by the paint in the part of the test body immersed in the electrolyte solution.

【0041】実施例2 電解質溶液の種類を表2のように変化させ、電流密度を
1.5A/m2とし、実施例1と同様の塩化物を含有する試験
体を用いて、直流電流を6週間通電し、含有塩分の大部
分を取り除くとともに、電解質溶液を試験体に浸透させ
た。その後、試験体を自然海水使用の塩水噴霧装置に入
れ、20℃の塩水を6時間噴霧した後60℃の温風乾燥を6
時間行う、噴霧−乾燥の繰り返しを3ヶ月間行った。3
ヶ月後に、試験体を割裂して、内部の磨き鋼棒の錆の具
合を観察した。結果を表2に併記する。
Example 2 The kind of electrolyte solution was changed as shown in Table 2, and the current density was changed.
Using a test body containing 1.5 A / m 2 and the same chloride as in Example 1, a direct current was applied for 6 weeks to remove most of the salt content and to allow the electrolyte solution to permeate the test body. .. After that, the test sample was placed in a salt water spray device using natural sea water, and salt water at 20 ° C was sprayed for 6 hours, followed by warm air drying at 60 ° C for 6
The spray-drying was repeated for 3 months. Three
After a month, the test piece was split and the rust condition of the polished steel rod inside was observed. The results are also shown in Table 2.

【0042】<使用材料> 亜硝酸カルシウム:日産化学化学工業社製 水酸化カルシウム:和光純薬工業社製、試薬1級<Materials to be used> Calcium nitrite: manufactured by Nissan Kagaku Kagaku Kogyo Calcium hydroxide: manufactured by Wako Pure Chemical Industries, Reagent 1st grade

【0043】[0043]

【表2】 [Table 2]

【0044】実施例3 腐食抑制剤として亜硝酸カルシウム水溶液を用いて、そ
の濃度を表3に示すように変化し、電流密度を2.0A/m2
としたこと以外は実施例2と同様に行い、試験体内部の
磨き鋼棒の錆の具合を観察した。結果を表3に併記す
る。
Example 3 An aqueous calcium nitrite solution was used as a corrosion inhibitor, the concentration was changed as shown in Table 3, and the current density was 2.0 A / m 2.
The same procedure as in Example 2 was performed except for the above, and the rust condition of the polished steel rod inside the test body was observed. The results are also shown in Table 3.

【0045】[0045]

【表3】 [Table 3]

【0046】実施例4 築後約10年経過しており、コンクリート内にかなりの塩
分を含有している、高さ2.5m、長さ10m、厚み25cmの鉄
筋コンクリート製の岩塩を貯蔵する部屋の壁を用いて試
験を行った。塩分の測定のために、この壁を1.5m間隔で
コアリングし、サンプルを取り、分析を行った。さら
に、このコンクリートを部分的にはつり、コンクリート
内部の鉄筋を内部電極とし、さらに、コンクリートの表
面に公称10mmの異形鉄筋で間隔15cmのメッシュを作りこ
の壁に固定し、亜硝酸リチウムの水溶液を含ませた紙パ
ルプを、メッシュを固定した壁に吹き付け外部の電極を
形成した。この内部電極と外部電極との間に、電流密度
1.25A/m2の直流電流を2.5ヶ月間かけて電解質溶液をコ
ンクリート内部へと電気的に浸透させるとともに内部の
塩素イオンを除去した。2.5ヶ月後、コンクリート表面
の外部電極と紙パルプとを取り除き、最初のコアリング
の位置が間隔の真中になるように、コンクリート壁を1.
5m間隔でコアリングしてコンクリートサンプルを取り出
し、その中に含まれている塩素量を分析した結果、全て
のコンクリートサンプルにおいて、その含有塩素量が通
電作業前の最初の状態の平均値の1/3以下に減少した
ことが確認できた。従って、塩害を受けているコンクリ
ートの健全化が可能となった。
Example 4 Wall of a room for storing rock salt made of reinforced concrete, which is about 10 years old and has a considerable salt content in concrete and is 2.5 m in height, 10 m in length, and 25 cm in thickness. Was tested. For salinity measurements, this wall was cored at 1.5 m intervals, samples were taken and analyzed. Further, this concrete was partially suspended, and the reinforcing steel inside the concrete was used as an internal electrode.Furthermore, a mesh with a nominal distance of 10 mm was formed on the surface of the concrete with a spacing of 15 cm and fixed to this wall, and an aqueous solution of lithium nitrite was contained. The remaining paper pulp was sprayed on the wall where the mesh was fixed to form an external electrode. Between this internal electrode and external electrode, the current density
A 1.25 A / m 2 direct current was applied for 2.5 months to electrically permeate the electrolyte solution into the concrete and remove chlorine ions inside. After 2.5 months, remove the external electrodes and paper pulp on the concrete surface, and put the concrete wall to 1.so that the position of the first coring is in the middle of the gap.
As a result of coring at 5 m intervals and taking out concrete samples, and analyzing the amount of chlorine contained therein, the chlorine content in all concrete samples was 1/1 of the average value in the initial state before electrification work. It was confirmed that the number was reduced to 3 or less. Therefore, it became possible to make concrete damaged by salt damage sound.

【0047】[0047]

【発明の効果】本発明の方法を用いると、塩害を受けた
コンクリート構造物から塩素イオンを除去できるので、
鋼材の不動体被膜の再形成が可能となる。従って、コン
クリートと鋼材との組み合わせによって、成り立ってい
るコンクリート構造物の耐久性をほぼ完ぺきに回復させ
ることが可能である。また、耐久性が回復したコンクリ
ート構造物が、その構造物が置かれている環境条件が変
化しないため、再度、塩素イオンが浸入したコンクリー
トに対しても、鋼材の不動体被膜が保持されるので、発
錆からはじまる塩害劣化という現象を防ぐことが可能と
なり、従来にない信頼性の高い補修工法を提供すること
が可能となる。
EFFECTS OF THE INVENTION By using the method of the present invention, chlorine ions can be removed from a concrete structure damaged by salt.
It is possible to re-form an unmoving film of steel. Therefore, it is possible to almost completely restore the durability of the concrete structure that is formed by combining the concrete and the steel material. In addition, since the concrete structure whose durability has been restored does not change the environmental conditions in which the structure is placed, the immobile body coating of steel is retained even for concrete in which chlorine ions have infiltrated again. It is possible to prevent the phenomenon of salt damage deterioration starting from rusting, and it is possible to provide a highly reliable repairing method that has never existed before.

【図面の簡単な説明】[Brief description of drawings]

図1は試験に用いた時の電流の通電方法を示す。 符号 1:磨き鋼棒 2:モルタル硬化体 3:容器 4:電解質溶液 5:コンクリートの表面電極 6:直流電源 7:可変抵抗器 8:電流計 FIG. 1 shows a method of passing a current when used in a test. Reference numeral 1: Polished steel bar 2: Hardened mortar 3: Container 4: Electrolyte solution 5: Surface electrode of concrete 6: DC power supply 7: Variable resistor 8: Ammeter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塩素イオンを含有するコンクリート内部
の鋼材を内部電極とし、コンクリートの表面部に設置し
た電極を表面電極とし、コンクリートと該表面電極の間
に、アルカリ性又は中性で腐食抑制剤含有の電解質溶液
を存在させ、該内部電極と表面電極の間に直流電流を流
すことを特徴とする塩素イオンを含有するコンクリート
の補修方法。
1. A steel material inside concrete containing chlorine ions is used as an internal electrode, an electrode installed on the surface of the concrete is used as a surface electrode, and an alkaline or neutral corrosion inhibitor is contained between the concrete and the surface electrode. 2. A method for repairing concrete containing chlorine ions, characterized in that the electrolyte solution is present and a direct current is passed between the internal electrode and the surface electrode.
JP35923791A 1991-12-27 1991-12-27 How to repair concrete Expired - Lifetime JP3434522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35923791A JP3434522B2 (en) 1991-12-27 1991-12-27 How to repair concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35923791A JP3434522B2 (en) 1991-12-27 1991-12-27 How to repair concrete

Publications (2)

Publication Number Publication Date
JPH05178678A true JPH05178678A (en) 1993-07-20
JP3434522B2 JP3434522B2 (en) 2003-08-11

Family

ID=18463464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35923791A Expired - Lifetime JP3434522B2 (en) 1991-12-27 1991-12-27 How to repair concrete

Country Status (1)

Country Link
JP (1) JP3434522B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653393A1 (en) * 1993-11-12 1995-05-17 Charles N. Hansen Method for inhibiting corrosion of metal imbedded in concrete
US6398945B1 (en) 1999-07-22 2002-06-04 Infrastructure Repair Technologies, Inc. Method of treating corrosion in reinforced concrete structures by providing a uniform surface potential
JP2002340782A (en) * 2001-05-14 2002-11-27 Okumura Corp Method for predicting degradation of concrete structure
JP2003212674A (en) * 2002-11-22 2003-07-30 Denki Kagaku Kogyo Kk Method of repairing concrete
JP2006232559A (en) * 2005-02-22 2006-09-07 Sumitomo Osaka Cement Co Ltd Electrolytic corrosion protection method of concrete
JP2006327910A (en) * 2005-05-30 2006-12-07 Fuji Ps Corp Method for electrochemical salt removal from concrete structure
JP2011211834A (en) * 2010-03-30 2011-10-20 National Institute Of Advanced Industrial Science & Technology Electrode film composed of carbon nanotube, alkali metal salt and/or alkaline earth metal salt, ionic liquid and polymer, solid electrolytic film, and actuator element
CN109881635A (en) * 2019-04-10 2019-06-14 北京中科行运科技有限公司 A kind of electrochemical rehabilitation device destroyed for concrete salt damage
CN114538957A (en) * 2021-12-22 2022-05-27 同济大学 Method for repairing concrete cracks by electric field induced ettringite

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653393A1 (en) * 1993-11-12 1995-05-17 Charles N. Hansen Method for inhibiting corrosion of metal imbedded in concrete
US6398945B1 (en) 1999-07-22 2002-06-04 Infrastructure Repair Technologies, Inc. Method of treating corrosion in reinforced concrete structures by providing a uniform surface potential
JP2002340782A (en) * 2001-05-14 2002-11-27 Okumura Corp Method for predicting degradation of concrete structure
JP2003212674A (en) * 2002-11-22 2003-07-30 Denki Kagaku Kogyo Kk Method of repairing concrete
JP2006232559A (en) * 2005-02-22 2006-09-07 Sumitomo Osaka Cement Co Ltd Electrolytic corrosion protection method of concrete
JP2006327910A (en) * 2005-05-30 2006-12-07 Fuji Ps Corp Method for electrochemical salt removal from concrete structure
JP2011211834A (en) * 2010-03-30 2011-10-20 National Institute Of Advanced Industrial Science & Technology Electrode film composed of carbon nanotube, alkali metal salt and/or alkaline earth metal salt, ionic liquid and polymer, solid electrolytic film, and actuator element
CN109881635A (en) * 2019-04-10 2019-06-14 北京中科行运科技有限公司 A kind of electrochemical rehabilitation device destroyed for concrete salt damage
CN114538957A (en) * 2021-12-22 2022-05-27 同济大学 Method for repairing concrete cracks by electric field induced ettringite

Also Published As

Publication number Publication date
JP3434522B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
JP4806006B2 (en) Concrete processing method
US6419816B1 (en) Cathodic protection of steel in reinforced concrete with electroosmotic treatment
JPH05178678A (en) Method for repairing concrete
CA2428016C (en) Cathodic protection of reinforced concrete with impregnated corrosion inhibitor
EP0305393A1 (en) Inhibiting corrosion in reinforced concrete.
JP4743814B2 (en) Method for repairing concrete structure and repair liquid for concrete structure
JP2003129262A (en) Electric protection part for corrosion prevention of concrete steel material
EP1111159B1 (en) Method of supplying electric current to prestressed concrete
JP6622372B1 (en) Anticorrosion method for concrete structures
JPH09142959A (en) Method for regenerating concrete structure
JP3449625B2 (en) Repair method for neutralized concrete
JPH05294758A (en) Repairing method for concrete containing salt
JP3325316B2 (en) Concrete regeneration method
JP3797675B2 (en) Method for recovering alkalinity of concrete with neutralized parts.
JP3361387B2 (en) Electrolyte material for concrete regeneration and its regeneration method
JP3325322B2 (en) Concrete regeneration method
JPH082982A (en) Method for repairing concrete
JPH07109186A (en) Regeneration of concrete and electrolytic material therefor
AU682690B2 (en) Realkalization and dechlorination of concrete by surface mounted electrochemical means
Nguyen et al. Dual function carbon fibre reinforced anode system for concrete structures
JP2003129669A (en) Method for repairing cross section of concrete structure
JP3434030B2 (en) Concrete treatment method
JPH06200636A (en) Recovery treatment of deteriorated concrete
ES2537602A1 (en) Corrosion inhibiting solution in steel elements (Machine-translation by Google Translate, not legally binding)
JP2000143367A (en) Charge of pre-stressed concrete with electricity

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100530

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110530

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120530

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9