JP2021059834A - Carbon fiber precursor acrylic fiber, carbon fiber, and production method of the same - Google Patents

Carbon fiber precursor acrylic fiber, carbon fiber, and production method of the same Download PDF

Info

Publication number
JP2021059834A
JP2021059834A JP2020218693A JP2020218693A JP2021059834A JP 2021059834 A JP2021059834 A JP 2021059834A JP 2020218693 A JP2020218693 A JP 2020218693A JP 2020218693 A JP2020218693 A JP 2020218693A JP 2021059834 A JP2021059834 A JP 2021059834A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
minor axis
single fiber
precursor acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020218693A
Other languages
Japanese (ja)
Inventor
直正 松山
Naomasa Matsuyama
直正 松山
祐太郎 中村
Yutaro Nakamura
祐太郎 中村
憲史 廣田
Norifumi Hirota
憲史 廣田
宏子 松村
Hiroko Matsumura
宏子 松村
勝彦 池田
Katsuhiko Ikeda
勝彦 池田
巧己 若林
Katsumi Wakabayashi
巧己 若林
忠 大谷
Tadashi Otani
忠 大谷
彰浩 伊藤
Akihiro Ito
彰浩 伊藤
健司 平野
Kenji Hirano
健司 平野
明人 畑山
Akihito Hatayama
明人 畑山
顕治 兼田
Kenji Kaneda
顕治 兼田
篤志 中嶋
Atsushi Nakajima
篤志 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2021059834A publication Critical patent/JP2021059834A/en
Priority to JP2022178730A priority Critical patent/JP2023011895A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0046Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by coagulation, i.e. wet electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide a carbon fiber enabling high intensity of a CFRP-made tank by minimizing variation in fiber volume content of CFRP by curbing generation of an air bubble, minimizing variation in resin content, and suppressing a void inside the CFRP of the CFRP-made tank when impregnating a carbon fiber bundle with thermoset resin in a process of producing the CFRP-made tank by a filament binding method.SOLUTION: A carbon fiber according to a first embodiment of this invention has center line average roughness Ra of a monofilament surface of 6.0 nm or larger and 13 nm or smaller and a long axis/short axis ratio of a monofilament of 1.11 or larger and 1.245 or smaller. The carbon fiber according to the first embodiment can be obtained by subjecting a carbon fiber precursor acrylic fiber according to a second embodiment to flame-resistance processing and carbonization in a specified condition, the carbon fiber precursor acrylic fiber having center average roughness Ra of a monofilament surface of 18 nm or larger and 27 nm or smaller and a long axis/short axis ratio of a monofilament of 1.11 or larger and 1.245 or smaller.SELECTED DRAWING: Figure 3

Description

本発明は、炭素繊維前駆体アクリル繊維、炭素繊維およびそれらの製造方法に関する。 The present invention relates to carbon fiber precursor acrylic fibers, carbon fibers and methods for producing them.

各種産業において様々な用途に利用される圧力容器は近年、その利用範囲がますます広がっており、天然ガスを燃料とする自動車に搭載する圧力容器(CNGタンク)や水素ガスを燃料とする燃料電池車に搭載される圧力容器(CHGタンク)への展開も進んでいる。自動車用の圧力容器は燃費改善のため、より軽量化することが市場には求められている。 In recent years, the range of use of pressure vessels used for various purposes in various industries has been expanding more and more, such as pressure vessels (CNG tanks) mounted on automobiles that use natural gas as fuel and fuel cells that use hydrogen gas as fuel. It is also being deployed in pressure vessels (CHG tanks) mounted on vehicles. The market is required to reduce the weight of pressure vessels for automobiles in order to improve fuel efficiency.

炭素繊維を用いた圧力容器は、通常、炭素繊維の単繊維からなる束(以下、炭素繊維束という場合がある。)にエポキシ樹脂などの樹脂を含浸させて、ライナーと呼ばれる金属製や樹脂製の円筒状物に巻き付ける処理を行い、樹脂を加熱硬化することによって得られる。(以下、フィラメントワインディング法という場合がある。)
炭素繊維は、一般的に高い比強度及び比弾性率を有することが知られており、炭素繊維を用いた圧力容器(以下、CFRP製タンクという場合がある。)は、金属製の圧力容器と同程度の強度を持ちつつ、軽量である。
しかしながら、自動車用の圧力容器では、特にCHGタンクの分野では更なる高強度化が求められている。
CFRP製タンクの高強度化には、使用する炭素繊維のストランド強度を高くする事に加え、CFRP製タンクを構成する炭素繊維強化プラスチック(以下、CFRPという場合がある。)中のボイドの生成を抑制すること、CFRP中の繊維体積含有率の斑を小さくすることが重要である。
A pressure vessel using carbon fibers is usually made of a metal or resin called a liner by impregnating a bundle of carbon fiber single fibers (hereinafter, sometimes referred to as a carbon fiber bundle) with a resin such as epoxy resin. It is obtained by subjecting the resin to a cylindrical object of No. 1 and heat-curing the resin. (Hereinafter, it may be called the filament winding method.)
Carbon fibers are generally known to have high specific strength and specific elastic modulus, and a pressure vessel using carbon fibers (hereinafter, may be referred to as a CFRP tank) is a metal pressure vessel. It is lightweight while having the same strength.
However, pressure vessels for automobiles are required to have higher strength, especially in the field of CHG tanks.
In order to increase the strength of the CFRP tank, in addition to increasing the strand strength of the carbon fiber used, voids are generated in the carbon fiber reinforced plastic (hereinafter, may be referred to as CFRP) constituting the CFRP tank. It is important to suppress and reduce the unevenness of the fiber volume content in CFRP.

従来の技術で製造された炭素繊維は、炭素繊維束を構成する単繊維の表面に形成されている皺が浅い程、炭素繊維束の集束性が高くなり、炭素繊維束への樹脂の含浸が不十分となり、CFRP中にボイドが形成されてしまう傾向があった。逆に単繊維の表面に形成されている皺が深すぎると、炭素繊維束の集束性が不十分となり、樹脂の含浸が一定とならず、CFRP中の繊維体積含有率の斑が大きくなってしまう傾向があった。
また、炭素繊維束を構成する単繊維の断面形状が真円に近づくほど、単繊維同士の隙間が小さくなり、炭素繊維束への樹脂の含浸が不十分となり、CFRP中にボイドが形成されてしまう傾向があった。逆に単繊維の繊維軸方向の断面形状が真円から遠ざかるほど、単繊維間の隙間のばらつきが大きくなってしまい、炭素繊維束への樹脂の含浸が一定とならず、CFRP中の繊維体積含有率の斑が大きくなってしまう傾向があった。
従って、CFRP製タンクの高強度化を達成するためには、ストランド強度が高いことに加え、単繊維の断面形状および単繊維の表面に形成されている皺を適切に制御した炭素繊維が望まれている。
In carbon fibers manufactured by the conventional technique, the shallower the wrinkles formed on the surface of the single fibers constituting the carbon fiber bundle, the higher the cohesiveness of the carbon fiber bundle, and the impregnation of the carbon fiber bundle with the resin. It became insufficient and tended to form voids in CFRP. On the contrary, if the wrinkles formed on the surface of the single fiber are too deep, the focusing property of the carbon fiber bundle becomes insufficient, the impregnation of the resin is not constant, and the unevenness of the fiber volume content in CFRP becomes large. There was a tendency to end up.
Further, as the cross-sectional shape of the single fibers constituting the carbon fiber bundle approaches a perfect circle, the gap between the single fibers becomes smaller, the impregnation of the carbon fiber bundle with the resin becomes insufficient, and voids are formed in the CFRP. There was a tendency to end up. On the contrary, as the cross-sectional shape of the single fiber in the fiber axis direction becomes farther from the perfect circle, the variation of the gap between the single fibers becomes large, the impregnation of the resin into the carbon fiber bundle becomes not constant, and the fiber volume in CFRP. The content rate spots tended to grow larger.
Therefore, in order to achieve high strength of the CFRP tank, carbon fibers having high strand strength and appropriately controlled wrinkles formed on the cross-sectional shape of the single fiber and the surface of the single fiber are desired. ing.

特許文献1では、炭素繊維束を構成する単繊維の表面の表面凹凸構造を制御する事で、樹脂との界面接着性を維持しつつ、応力集中による破壊靭性低下を抑制し、また、炭素繊維束を構成する単繊維の断面形状をより真円に近づける事で、応力集中による破壊靭性低下を抑制して、高い機械的特性を有する炭素繊維強化複合材料が得られると記載されている。しかしながら、炭素繊維束を構成する単繊維の断面形状は真円に近く、単繊維の表面の凹凸も浅い為、得られるCFRP製タンクはボイドが多くなる場合があり、ボイドが多い場合には高い強度が得られにくい。 In Patent Document 1, by controlling the surface uneven structure of the surface of the single fiber constituting the carbon fiber bundle, while maintaining the interfacial adhesiveness with the resin, the decrease in fracture toughness due to stress concentration is suppressed, and the carbon fiber is also used. It is described that by making the cross-sectional shape of the single fibers constituting the bundle closer to a perfect circle, a carbon fiber reinforced composite material having high mechanical properties can be obtained by suppressing a decrease in fracture toughness due to stress concentration. However, since the cross-sectional shape of the single fibers constituting the carbon fiber bundle is close to a perfect circle and the surface irregularities of the single fibers are shallow, the obtained CFRP tank may have many voids, which is high when there are many voids. It is difficult to obtain strength.

また、特許文献2には、炭素繊維束の幅を均一な扁平形状とし、樹脂含浸後の繊維束の幅変動を抑制することで、フィラメントワインディング法によるCFRP製タンクの製造に適した炭素繊維束が得られると記載されている。そのために炭素繊維束を構成する単繊維の断面形状および表面の算術平均粗さを制御している。しかし、使用している炭素繊維束を構成する単繊維の断面形状が真円に近いため、単繊維同士が最密充填しやすくなっており、得られるCFRP製タンクはボイドが多い傾向となり、高い強度が得られにくい。 Further, in Patent Document 2, the width of the carbon fiber bundle is made into a uniform flat shape, and the width fluctuation of the fiber bundle after resin impregnation is suppressed, so that the carbon fiber bundle suitable for manufacturing a CFRP tank by the filament winding method is suitable. Is stated to be obtained. Therefore, the cross-sectional shape and the arithmetic mean roughness of the surface of the single fibers constituting the carbon fiber bundle are controlled. However, since the cross-sectional shape of the single fibers that make up the carbon fiber bundle used is close to a perfect circle, it is easy for the single fibers to be packed closely together, and the obtained CFRP tank tends to have many voids, which is high. It is difficult to obtain strength.

特開2010−285710号公報Japanese Unexamined Patent Publication No. 2010-285710 特開2012−154000号公報Japanese Unexamined Patent Publication No. 2012-154000

本発明は、かかる課題を解決するためになされたものであり、炭素繊維束を構成する単繊維の断面形状および単繊維の表面に形成されている皺を適切に制御することで、フィラメントワインディング法によってCFRP製タンクを製造する過程にて、熱硬化性樹脂を炭素繊維束に含浸させる際に、気泡の生成を抑制でき、樹脂含有率の斑を小さくでき、CFRP製タンクのCFRP内部のボイドを抑制して、CFRPの繊維体積含有率の斑を小さくして、CFRP製タンクの高強度化が可能となる炭素繊維および炭素繊維束、その炭素繊維および炭素繊維束の原料となる炭素繊維前駆体アクリル繊維および炭素繊維前駆体アクリル繊維束と、それら炭素繊維前駆体アクリル繊維束および炭素繊維束の製造方法を提供することにある。 The present invention has been made to solve such a problem, and is a filament winding method by appropriately controlling the cross-sectional shape of the single fibers constituting the carbon fiber bundle and the wrinkles formed on the surface of the single fibers. When the carbon fiber bundle is impregnated with the heat-curable resin in the process of manufacturing the CFRP tank, the formation of air bubbles can be suppressed, the unevenness of the resin content can be reduced, and the void inside the CFRP of the CFRP tank can be reduced. Carbon fibers and carbon fiber bundles that can be suppressed to reduce the unevenness of the fiber volume content of CFRP and increase the strength of CFRP tanks, and carbon fiber precursors that are the raw materials for the carbon fibers and carbon fiber bundles. It is an object of the present invention to provide an acrylic fiber and a carbon fiber precursor acrylic fiber bundle, and a method for producing the carbon fiber precursor acrylic fiber bundle and the carbon fiber bundle.

前記目的は以下の方法によって解決される。
すなわち、本発明の第一の態様は、単繊維表面の中心線平均粗さRaが6.0nm以上13nm以下であり、単繊維の長径/短径が1.11以上1.245以下である炭素繊維である。
本発明の第一の態様である炭素繊維は、下記[1]〜[3]の何れか1つ以上の構成を具備することが好ましい。
[1] 単繊維の凹み距離/短径が0.011以上0.018以下である。
[2] 前記単繊維表面の中心線平均粗さRaが10nm以下であり、前記単繊維の長径/短径が1.135以上である。
[3] 前記単繊維の凹み距離/短径が0.0145以上である。
The purpose is solved by the following method.
That is, in the first aspect of the present invention, the center line average roughness Ra of the surface of the single fiber is 6.0 nm or more and 13 nm or less, and the major axis / minor axis of the single fiber is 1.11 or more and 1.245 or less. It is a fiber.
The carbon fiber according to the first aspect of the present invention preferably has one or more of the following configurations [1] to [3].
[1] The dent distance / minor axis of the single fiber is 0.011 or more and 0.018 or less.
[2] The center line average roughness Ra of the surface of the single fiber is 10 nm or less, and the major axis / minor axis of the single fiber is 1.135 or more.
[3] The recess distance / minor axis of the single fiber is 0.0145 or more.

本発明の第二の態様は、単繊維表面の中心線平均粗さRaが18nm以上27nm以下であり、単繊維の長径/短径が1.11以上1.245以下である炭素繊維前駆体アクリル繊維である。
本発明の第二の態様である炭素繊維前駆体アクリル繊維は、下記[4]〜[6]の何れか1つ以上の構成を具備することが好ましい。
[4] 単繊維の凹み距離/短径が0.011以上0.018以下である。
[5] 前記単繊維表面の中心線平均粗さRaが24nm以下であり、前記単繊維の長径/短径が1.135以上である。
[6] 前記単繊維の凹み距離/短径が0.0145以上である。
In the second aspect of the present invention, the carbon fiber precursor acrylic having a centerline average roughness Ra of the surface of the single fiber of 18 nm or more and 27 nm or less and the major axis / minor axis of the single fiber of 1.11 or more and 1.245 or less. It is a fiber.
The carbon fiber precursor acrylic fiber according to the second aspect of the present invention preferably has one or more of the following configurations [4] to [6].
[4] The dent distance / minor axis of the single fiber is 0.011 or more and 0.018 or less.
[5] The center line average roughness Ra of the surface of the single fiber is 24 nm or less, and the major axis / minor axis of the single fiber is 1.135 or more.
[6] The recess distance / minor axis of the single fiber is 0.0145 or more.

本発明の第三の態様は、下記1)〜3)の工程を含み、且つ下記4)及び5)の条件を満たす炭素繊維前駆体アクリル繊維束の製造方法である。
1)凝固液濃度が65質量%以上70質量%以下であり、凝固液温度が36℃以上40℃以下である凝固液中に、アクリロニトリル系重合体溶液を紡糸口金から吐出し凝固させて、凝固糸を得ると同時に、凝固糸にかかる張力を55mgf/フィラメント以上75mgf/フィラメント以下に制御しながら引き取る工程。
2)前記1)工程にて引き取った凝固糸を空中にて1.00倍以上1.15倍以下の延伸処理を施した後、50℃以上の水を用いた、4段以上7段以下からなる洗浄・延伸槽にて2.4倍以上2.7倍以下の倍率範囲で延伸・洗浄を行い、さらに95℃以上の水を用いた熱水槽にて0.97倍以上1.1倍以下の緩和又は延伸を行って延伸糸を得る工程。
3)前記2)工程で得られた延伸糸に油剤を付与して乾燥した後、130℃以上160℃以下の加圧水蒸気雰囲気下で3.0倍以上4.5倍以下に延伸する工程。
4)前記1)工程の凝固糸を引き取ってから前記2)工程の延伸糸を得るまでの凝固糸の合計延伸倍率は2.4倍以上2.7倍以下である。
5)前記1)工程の凝固糸を引き取ってから前記3)工程の加圧水蒸気雰囲気下での延伸後までの合計延伸倍率は9.0倍以上12倍以下である。
A third aspect of the present invention is a method for producing a carbon fiber precursor acrylic fiber bundle, which comprises the following steps 1) to 3) and satisfies the following conditions 4) and 5).
1) Acrylonitrile-based polymer solution is discharged from a spinneret to coagulate in a coagulation liquid having a coagulation liquid concentration of 65% by mass or more and 70% by mass or less and a coagulation liquid temperature of 36 ° C. or more and 40 ° C. or less. A step of obtaining a yarn and at the same time taking it while controlling the tension applied to the coagulated yarn to 55 mgf / filament or more and 75 mgf / filament or less.
2) After the coagulated yarn taken in the above 1) step is drawn in the air at 1.00 times or more and 1.15 times or less, using water at 50 ° C. or higher, from 4 steps or more and 7 steps or less. Stretching / washing is performed in a magnification range of 2.4 times or more and 2.7 times or less in a washing / stretching tank, and 0.97 times or more and 1.1 times or less in a hot water tank using water at 95 ° C. or higher. A step of obtaining a drawn yarn by relaxing or drawing the above.
3) A step of applying an oil agent to the drawn yarn obtained in the above 2) step, drying it, and then stretching it to 3.0 times or more and 4.5 times or less in a pressurized steam atmosphere of 130 ° C. or higher and 160 ° C. or lower.
4) The total draw ratio of the coagulated yarn from the time when the coagulated yarn in the step 1) is taken up to the time when the drawn yarn in the step 2) is obtained is 2.4 times or more and 2.7 times or less.
5) The total draw ratio from the taking of the coagulated yarn in the step 1) to the drawing in the pressurized steam atmosphere of the step 3) is 9.0 times or more and 12 times or less.

本発明の第四の態様は、下記4)〜6)の工程を含む炭素繊維束の製造方法である。
4)本発明の第二態様の炭素繊維前駆体アクリル繊維から構成される炭素繊維前駆体アクリル繊維束に対し、酸化性雰囲気中で200℃以上300℃以下に加熱し耐炎化繊維束とする耐炎化工程。
5)前記耐炎化繊維束を非酸化性雰囲気中、550℃以上800℃以下で加熱し前炭素化繊維束とする前炭素化工程。
6)前記前炭素化繊維束を非酸化性雰囲気中、1200℃以上3000℃以下で加熱し炭素繊維束とする高温炭素化工程。
A fourth aspect of the present invention is a method for producing a carbon fiber bundle, which comprises the following steps 4) to 6).
4) The flame-resistant carbon fiber precursor acrylic fiber bundle composed of the carbon fiber precursor acrylic fiber of the second aspect of the present invention is heated to 200 ° C. or higher and 300 ° C. or lower in an oxidizing atmosphere to form a flame-resistant fiber bundle. Chemical process.
5) A pre-carbonization step in which the flame-resistant fiber bundle is heated at 550 ° C. or higher and 800 ° C. or lower in a non-oxidizing atmosphere to form a pre-carbonized fiber bundle.
6) A high-temperature carbonization step in which the pre-carbonized fiber bundle is heated at 1200 ° C. or higher and 3000 ° C. or lower in a non-oxidizing atmosphere to form a carbon fiber bundle.

本発明により炭素繊維の単繊維の断面形状および単繊維の表面に形成されている皺を適切に制御することで、フィラメントワインディング法によってCFRP製タンクを製造する過程にて、熱硬化性樹脂を炭素繊維束に含浸させる際に、気泡の生成を抑制でき、繊維含有率の斑を小さくでき、結果的にCFRP製タンクの高強度化が可能となる炭素繊維の原料となる炭素繊維前駆体アクリル繊維と該炭素繊維が提供される。 By appropriately controlling the cross-sectional shape of the single fiber of carbon fiber and the wrinkles formed on the surface of the single fiber according to the present invention, the heat-curable resin is carbonized in the process of manufacturing a CFRP tank by the filament winding method. When impregnated into a fiber bundle, the formation of air bubbles can be suppressed, the unevenness of the fiber content can be reduced, and as a result, the strength of the CFRP tank can be increased. And the carbon fiber is provided.

図1は、単繊維の長径及び短径の定義を説明するための概略図である。FIG. 1 is a schematic diagram for explaining the definitions of the major axis and the minor axis of a single fiber. 図2は、単繊維の凹み距離の定義を説明するための概略図である。FIG. 2 is a schematic diagram for explaining the definition of the recessed distance of the single fiber. 図3は、実施例2の炭素繊維前駆体アクリル繊維束を構成する単繊維断面の電子顕微鏡撮影画像である。FIG. 3 is an electron micrograph of a cross section of a single fiber constituting the carbon fiber precursor acrylic fiber bundle of Example 2. 図4は、比較例9の炭素繊維前駆体アクリル繊維束を構成する単繊維断面の電子顕微鏡撮影画像である。FIG. 4 is an electron micrograph of a cross section of a single fiber constituting the carbon fiber precursor acrylic fiber bundle of Comparative Example 9. 図5は、比較例7の炭素繊維前駆体アクリル繊維断面の電子顕微鏡撮影画像である。FIG. 5 is an electron micrograph of a cross section of the carbon fiber precursor acrylic fiber of Comparative Example 7.

本発明の炭素繊維前駆体アクリル繊維は、単繊維表面の中心線平均粗さRaが18nm以上27nm以下である。
本発明では、炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaを18nm以上とすることで、該炭素繊維前駆体アクリル繊維から得られる炭素繊維の単繊維からなる炭素繊維束が過剰に集束することを抑制でき、炭素繊維束に樹脂を含浸させやすくなる。また、炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaを27nm以下とすることで、該炭素繊維前駆体アクリル繊維から得られる炭素繊維の単繊維からなる炭素繊維束の集束性が不足することを防止でき、炭素繊維束に樹脂を均一に含浸させやすくなる。
CFRP製タンク高強度化の観点から、炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaは24nm以下であることがより好ましい。なお、炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaは実施例に記載の方法で測定することができる。
The carbon fiber precursor acrylic fiber of the present invention has a center line average roughness Ra of the surface of a single fiber of 18 nm or more and 27 nm or less.
In the present invention, by setting the centerline average roughness Ra of the surface of the single fiber of the carbon fiber precursor acrylic fiber to 18 nm or more, a carbon fiber bundle made of the single fiber of the carbon fiber obtained from the carbon fiber precursor acrylic fiber can be obtained. It is possible to suppress excessive focusing, and it becomes easy to impregnate the carbon fiber bundle with the resin. Further, by setting the centerline average roughness Ra of the surface of the single fiber of the carbon fiber precursor acrylic fiber to 27 nm or less, the bundling property of the carbon fiber bundle made of the single fiber of the carbon fiber obtained from the carbon fiber precursor acrylic fiber is set. Can be prevented from being insufficient, and the carbon fiber bundle can be easily impregnated with the resin uniformly.
From the viewpoint of increasing the strength of the CFRP tank, it is more preferable that the center line average roughness Ra of the single fiber surface of the carbon fiber precursor acrylic fiber is 24 nm or less. The center line average roughness Ra of the surface of the single fiber of the carbon fiber precursor acrylic fiber can be measured by the method described in Examples.

本発明の炭素繊維前駆体アクリル繊維は、単繊維の長径/短径が1.11以上1.245以下である。本発明では、炭素繊維前駆体アクリル繊維の単繊維の長径/短径を1.11以上とすることで炭素繊維前駆体アクリル繊維の単繊維の束(以下、炭素繊維前駆体アクリル繊維束という場合がある。)を耐炎化および炭素化して得られる炭素繊維束を構成する単繊維同士の隙間を十分確保する事が可能となり、炭素繊維束に樹脂を含浸させやすくなる。また、炭素繊維前駆体アクリル繊維の単繊維の長径/短径を1.245以下とすることで耐炎化および炭素化して得られる炭素繊維の単繊維同士の隙間が過剰になることを防ぎ、炭素繊維束に樹脂を均一に含浸させやすくなる。
CFRP製タンク高強度化の観点から、炭素繊維前駆体アクリル繊維の単繊維の長径/短径は1.135以上であることがより好ましい。
炭素繊維前駆体アクリル繊維の単繊維の長径/短径とは、炭素繊維前駆体アクリル繊維を構成する個々の単繊維の繊維軸方向に垂直な断面1に対して外接する矩形のうち面積が最小の矩形2の、長辺の長さXと短辺の長さYとの比(X/Y)の平均値である。具体的には、実施例に記載の方法で測定することができる(図1参照)。
The carbon fiber precursor acrylic fiber of the present invention has a single fiber with a major axis / minor axis of 1.11 or more and 1.245 or less. In the present invention, by setting the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber to 1.11 or more, the bundle of the single fiber of the carbon fiber precursor acrylic fiber (hereinafter, referred to as the carbon fiber precursor acrylic fiber bundle). It becomes possible to sufficiently secure a gap between the single fibers constituting the carbon fiber bundle obtained by making the carbon fiber bundle flame-resistant and carbonizing the carbon fiber bundle, and it becomes easy to impregnate the carbon fiber bundle with the resin. Further, by setting the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber to 1.245 or less, it is possible to prevent the gap between the single fibers of the carbon fiber obtained by flame resistance and carbonization from becoming excessive, and to prevent carbon. It becomes easy to uniformly impregnate the fiber bundle with the resin.
From the viewpoint of increasing the strength of the CFRP tank, it is more preferable that the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber is 1.135 or more.
The major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber is the smallest area of the rectangle circumscribing with respect to the cross section 1 perpendicular to the fiber axis direction of each single fiber constituting the carbon fiber precursor acrylic fiber. It is the average value of the ratio (X / Y) of the length X of the long side and the length Y of the short side of the rectangle 2. Specifically, it can be measured by the method described in Examples (see FIG. 1).

本発明の炭素繊維前駆体アクリル繊維は、単繊維の凹み距離/短径が0.011以上0.018以下であることが好ましい。
本発明では、炭素繊維前駆体アクリル繊維の単繊維の凹み距離/短径を0.011以上とすることで、該炭素繊維前駆体アクリル繊維から得られる炭素繊維の単繊維同士の隙間を十分確保する事が可能となり、炭素繊維束に樹脂を含浸させやすくなる。また、炭素繊維前駆体アクリル繊維の単繊維の凹み距離/短径を0.018以下とすることで該炭素繊維前駆体アクリル繊維から得られる炭素繊維の単繊維同士の隙間が過剰になることを防ぎ、炭素繊維束に樹脂を均一に含浸させやすくなる。
CFRP製タンク高強度化の観点から、炭素繊維前駆体アクリル繊維の単繊維の凹み距離/短径は0.0145以上であることがより好ましい。
炭素繊維前駆体アクリル繊維の単繊維の凹み/短径とは、炭素繊維前駆体アクリル繊維を構成する個々の単繊維の繊維軸方向に垂直な断面1に対して外接する矩形のうち面積が最小の矩形の短辺の長さY(図1参照)と、同じ断面1について次の通り定義する凹み距離Zとの逆比(Z/Y)の平均値である。具体的には、実施例に記載の方法で測定することができる。
凹み距離は、炭素繊維前駆体アクリル繊維を構成する個々の単繊維の繊維軸方向に垂直な断面1に対して2点で接する直線3と繊維の断面1とで囲まれる空間(凹み)の面積が最も大きくなる凹みの深さであり、凹みを囲む断面1の周上の点のうち直線3から最も離れた点4と直線3との距離Zとして定義される(図2参照)。
The carbon fiber precursor acrylic fiber of the present invention preferably has a single fiber recess distance / minor axis of 0.011 or more and 0.018 or less.
In the present invention, by setting the recess distance / minor axis of the single fibers of the carbon fiber precursor acrylic fiber to 0.011 or more, a sufficient gap between the single fibers of the carbon fibers obtained from the carbon fiber precursor acrylic fiber is sufficiently secured. It becomes possible to impregnate the carbon fiber bundle with the resin. Further, by setting the recess distance / minor axis of the single fiber of the carbon fiber precursor acrylic fiber to 0.018 or less, the gap between the single fibers of the carbon fiber obtained from the carbon fiber precursor acrylic fiber becomes excessive. This prevents the carbon fiber bundles from being uniformly impregnated with the resin.
From the viewpoint of increasing the strength of the CFRP tank, it is more preferable that the recess distance / minor axis of the single fiber of the carbon fiber precursor acrylic fiber is 0.0145 or more.
The dent / minor axis of the single fiber of the carbon fiber precursor acrylic fiber is the smallest area of the rectangle circumscribing with respect to the cross section 1 perpendicular to the fiber axis direction of each single fiber constituting the carbon fiber precursor acrylic fiber. It is an average value of the inverse ratio (Z / Y) of the length Y of the short side of the rectangle (see FIG. 1) and the recessed distance Z defined as follows for the same cross section 1. Specifically, it can be measured by the method described in Examples.
The dent distance is the area of the space (dent) surrounded by the straight line 3 which is in contact with the cross section 1 perpendicular to the fiber axis direction of each single fiber constituting the carbon fiber precursor acrylic fiber at two points and the cross section 1 of the fiber. Is the maximum depth of the dent, and is defined as the distance Z between the point 4 farthest from the straight line 3 and the straight line 3 among the points on the circumference of the cross section 1 surrounding the dent (see FIG. 2).

本発明の炭素繊維前駆体アクリル繊維は、溶剤にアクリロニトリル系重合体が溶解したアクリロニトリル系重合体溶液を紡糸して得られる。
本発明で用いられるアクリロニトリル系重合体は、アクリロニトリルを主な単量体とし、これを重合して得られる重合体である。アクリロニトリル系重合体は、アクリロニトリルのみから得られるホモポリマーであっても、主成分であるアクリロニトリルに加えて他の単量体が共重合したコポリマーであってもよい。
The carbon fiber precursor acrylic fiber of the present invention is obtained by spinning an acrylonitrile-based polymer solution in which an acrylonitrile-based polymer is dissolved in a solvent.
The acrylonitrile-based polymer used in the present invention is a polymer obtained by polymerizing acrylonitrile as a main monomer. The acrylonitrile-based polymer may be a homopolymer obtained only from acrylonitrile, or a copolymer obtained by copolymerizing other monomers in addition to acrylonitrile as a main component.

アクリロニトリル系重合体中のアクリロニトリル単位の含有量は、得られる炭素繊維束に求める品質等を勘案して決定でき、例えば、90質量%以上99.5質量%以下であることが好ましく、96質量%以上99.5質量%以下であることがより好ましい。アクリロニトリル単位の含有量が90質量%以上であれば、炭素繊維前駆体アクリル繊維を炭素繊維に転換するための耐炎化および炭素化のそれぞれの工程で、単繊維同士の融着を招くことがなく、炭素繊維束のストランド強度低下を防ぐことができる。さらに、加熱ローラーや加圧水蒸気による延伸等の処理において、単繊維間の接着を回避できる。アクリロニトリル単位の含有量が99.5質量%以下であれば、溶剤への溶解性が低下せず、アクリロニトリル系重合体の析出・凝固を防止できるため、炭素繊維前駆体アクリル繊維を安定して製造できる。 The content of the acrylonitrile unit in the acrylonitrile-based polymer can be determined in consideration of the quality required for the obtained carbon fiber bundle, and is, for example, 90% by mass or more and preferably 99.5% by mass or less, preferably 96% by mass. It is more preferably 99.5% by mass or less. When the content of the acrylonitrile unit is 90% by mass or more, the single fibers are not fused to each other in each of the flame resistance and carbonization steps for converting the carbon fiber precursor acrylic fiber into carbon fiber. , It is possible to prevent a decrease in the strand strength of the carbon fiber bundle. Further, in a treatment such as stretching with a heating roller or pressurized steam, adhesion between single fibers can be avoided. When the content of the acrylonitrile unit is 99.5% by mass or less, the solubility in the solvent does not decrease and the precipitation and solidification of the acrylonitrile-based polymer can be prevented, so that the carbon fiber precursor acrylic fiber can be stably produced. it can.

アクリロニトリル系重合体中のアクリロニトリル以外の単量体単位としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、アクリロニトリル系重合体の親水性を向上させるビニル系単量体、耐炎化反応を促進するビニル系単量体が好ましい。
アクリロニトリル系重合体を合成する方法はどのような重合方法であってもよく、重合方法の相違によって本発明が制約されるものではない。
As the monomer unit other than acrylonitrile in the acrylonitrile-based polymer, a vinyl-based monomer copolymerizable with acrylonitrile can be appropriately selected, and a vinyl-based single amount that improves the hydrophilicity of the acrylonitrile-based polymer. A vinyl-based monomer that promotes the body and flame resistance reaction is preferable.
The method for synthesizing the acrylonitrile-based polymer may be any polymerization method, and the present invention is not limited by the difference in the polymerization method.

アクリロニトリル系重合体溶液の溶剤にはジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤、塩化亜鉛、チオシアン酸ナトリウム等の無機化合物の水溶液が挙げられる。中でもジメチルアセトアミド、ジメチルスルホキシド、およびジメチルホルムアミドはアクリロニトリル系重合体に対する溶解力が高い点から好ましい。 Examples of the solvent for the acrylonitrile polymer solution include organic solvents such as dimethylacetamide, dimethyl sulfoxide and dimethylformamide, and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate. Of these, dimethylacetamide, dimethyl sulfoxide, and dimethylformamide are preferable because they have high dissolving power in acrylonitrile-based polymers.

アクリロニトリル系重合体溶液の重合体濃度は、20質量%以上25質量%以下とすることが好ましい。より好ましくは21質量%以上24質量%以下である。重合体濃度を20質量%以上とすることで、凝固糸内部のボイドが減少するため、炭素繊維束のストランド強度を高くすることができる。また、重合体濃度を25質量%以下とすることでアクリロニトリル系重合体溶液は適度な粘度と流動性を保つことができるため、炭素繊維前駆体アクリル繊維の製造が容易となる。 The polymer concentration of the acrylonitrile-based polymer solution is preferably 20% by mass or more and 25% by mass or less. More preferably, it is 21% by mass or more and 24% by mass or less. By setting the polymer concentration to 20% by mass or more, the voids inside the coagulated yarn are reduced, so that the strand strength of the carbon fiber bundle can be increased. Further, when the polymer concentration is 25% by mass or less, the acrylonitrile-based polymer solution can maintain an appropriate viscosity and fluidity, so that the carbon fiber precursor acrylic fiber can be easily produced.

炭素繊維前駆体アクリル繊維を得る紡糸方法としては、例えば、アクリロニトリル系重合体溶液を紡糸口金(以下、ノズルという)より吐出する際に直接凝固液中に紡出して凝固させる湿式紡糸法、空中に紡出して空中で凝固させる乾式紡糸法、一旦空中に紡出した後凝固液中で凝固させる乾湿式紡糸法等がある。
本発明では、有機溶剤の濃度が65質量%以上70質量%以下、温度が33℃以上40℃以下の有機溶剤水溶液を凝固液として、凝固液中にアクリロニトリル系重合体溶液を3000以上、好ましくは12000以上、さらに好ましくは24000以上の吐出孔を有するノズルより吐出して凝固させて凝固糸を得ることが好ましい。1個のノズルが有する吐出孔の数は120000以下が好ましく、60000以下がさらに好ましい。
Examples of the spinning method for obtaining the carbon fiber precursor acrylic fiber include a wet spinning method in which an acrylonitrile-based polymer solution is spun directly into a coagulating liquid and coagulated when it is discharged from a spinneret (hereinafter referred to as a nozzle), in the air. There are a dry spinning method of spinning and solidifying in the air, a dry and wet spinning method of spinning in the air and then solidifying in a coagulating liquid.
In the present invention, an aqueous organic solvent solution having an organic solvent concentration of 65% by mass or more and 70% by mass or less and a temperature of 33 ° C. or more and 40 ° C. or less is used as a coagulating liquid, and an acrylonitrile-based polymer solution of 3000 or more is preferably contained in the coagulating liquid. It is preferable to obtain a coagulated yarn by discharging from a nozzle having a discharge hole of 12,000 or more, more preferably 24,000 or more, and solidifying the mixture. The number of discharge holes contained in one nozzle is preferably 120,000 or less, more preferably 60,000 or less.

凝固液である有機溶剤水溶液の有機溶剤の濃度(凝固液濃度ともいう)を65質量%以上とすることで、炭素繊維前駆体アクリル繊維の単繊維の長径/短径および単繊維表面の中心線平均粗さRaが大きくなりすぎることを防ぐことが可能となる。また、凝固液中の有機溶剤水溶液の濃度を70質量%以下とすることで、得られる炭素繊維前駆体アクリル繊維の単繊維の長径/短径および単繊維表面の中心線平均粗さRaが小さくなりすぎることを防ぐことが可能になる。炭素繊維前駆体アクリル繊維の単繊維の長径/短径および炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaを制御するため、凝固液である有機溶剤水溶液の有機溶剤の濃度を66質量%以上68質量%以下とすることがより好ましい。
凝固液である有機溶剤水溶液の温度を33℃以上とすることで、得られる炭素繊維前駆体アクリル繊維の単繊維の長径/短径および単繊維表面の中心線平均粗さRaが大きくなりすぎることを防ぐことが可能になる。また、凝固液の有機溶剤水溶液の温度を40℃以下とすることで、得られる炭素繊維前駆体アクリル繊維の単繊維の長径/短径および単繊維表面の中心線平均粗さRaが小さくなりすぎることを防ぐことが可能になる。炭素繊維前駆体アクリル繊維の単繊維の長径/短径および単繊維表面の中心線平均粗さRaを制御するため、凝固液である有機溶剤水溶液の温度を36℃以上40℃以下とすることが好ましく、36℃以上39℃以下とすることがより好ましい。
By setting the concentration of the organic solvent (also referred to as the coagulation liquid concentration) of the organic solvent aqueous solution which is the coagulation liquid to 65% by mass or more, the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber and the center line of the single fiber surface It is possible to prevent the average roughness Ra from becoming too large. Further, by setting the concentration of the organic solvent aqueous solution in the coagulating liquid to 70% by mass or less, the major axis / minor axis of the obtained single fiber of the carbon fiber precursor acrylic fiber and the center line average roughness Ra of the single fiber surface are small. It becomes possible to prevent it from becoming too much. In order to control the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber and the centerline average roughness Ra of the single fiber surface of the carbon fiber precursor acrylic fiber, the concentration of the organic solvent in the organic solvent aqueous solution which is the coagulation liquid is adjusted. It is more preferably 66% by mass or more and 68% by mass or less.
By setting the temperature of the organic solvent aqueous solution as the coagulating liquid to 33 ° C. or higher, the major axis / minor axis of the obtained single fiber of the carbon fiber precursor acrylic fiber and the center line average roughness Ra of the single fiber surface become too large. Can be prevented. Further, by setting the temperature of the organic solvent aqueous solution of the coagulation liquid to 40 ° C. or lower, the major axis / minor axis of the obtained single fiber of the carbon fiber precursor acrylic fiber and the center line average roughness Ra of the single fiber surface become too small. It becomes possible to prevent that. In order to control the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber and the center line average roughness Ra of the surface of the single fiber, the temperature of the organic solvent aqueous solution as the coagulation liquid may be 36 ° C. or higher and 40 ° C. or lower. It is preferably 36 ° C. or higher and 39 ° C. or lower, more preferably.

本発明では、凝固糸を凝固液より引き取る際の凝固糸にかかる張力(引取張力という)を55mgf/フィラメント以上75mgf/フィラメント以下とすることが好ましい。引取張力の測定方法は実施例記載の測定方法の通りである。
凝固糸を凝固液より引き取る際の引取張力を55mgf/フィラメント以上とすることで、凝固液内にて凝固糸がばらけてしまい、引取不良になることを防止できる。加えて得られる炭素繊維前駆体アクリル繊維の単繊維の長径/短径および単繊維表面の中心線平均粗さRaが小さくなりすぎることを防ぐことが可能になる。
また、凝固糸を凝固液より引き取る際の引取張力を75mgf/フィラメント以下とすることで、得られる炭素繊維前駆体アクリル繊維の単繊維の長径/短径および単繊維表面の中心線平均粗さRaが大きくなりすぎることを防ぐことが可能になる。
In the present invention, it is preferable that the tension applied to the coagulated yarn (referred to as take-up tension) when the coagulated yarn is taken up from the coagulating liquid is 55 mgf / filament or more and 75 mgf / filament or less. The method for measuring the take-up tension is the same as the measuring method described in the examples.
By setting the take-up tension when the coagulated yarn is taken up from the coagulating liquid to 55 mgf / filament or more, it is possible to prevent the coagulated yarn from being scattered in the coagulating liquid and causing poor take-up. In addition, it is possible to prevent the major axis / minor axis of the obtained carbon fiber precursor acrylic fiber single fiber and the center line average roughness Ra of the single fiber surface from becoming too small.
Further, by setting the take-up tension when taking up the coagulated yarn from the coagulating liquid to 75 mgf / filament or less, the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber obtained and the average roughness Ra of the center line of the surface of the single fiber are Ra. Can be prevented from becoming too large.

炭素繊維前駆体アクリル繊維の単繊維の長径/短径および単繊維表面の中心線平均粗さRaの制御および炭素繊維前駆体アクリル繊維束の製造安定性の面から、凝固糸を凝固液より引き取る際の引取張力を57fmg/フィラメント以上71mgf/フィラメント以下とすることがより好ましい。 The coagulated yarn is taken from the coagulating liquid from the viewpoint of controlling the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber and the center line average roughness Ra of the single fiber surface and the production stability of the carbon fiber precursor acrylic fiber bundle. It is more preferable that the take-up tension is 57 fmg / filament or more and 71 mgf / filament or less.

引き取られた凝固糸は、凝固液を含んだ状態のまま、空中にて延伸を実施してもよい。空中での延伸倍率は、1.00倍以上1.15倍以下とすることが好ましい。延伸倍率を1.15倍以下とすることで、過剰な延伸を抑制できる。炭素繊維束のストランド強度を高くし、CFRP製タンクの性能をより高くするという観点から、延伸倍率を1倍以上1.05倍以下とすることがより好ましい。 The collected coagulated yarn may be stretched in the air while containing the coagulating liquid. The stretching ratio in the air is preferably 1.00 times or more and 1.15 times or less. Excessive stretching can be suppressed by setting the stretching ratio to 1.15 times or less. From the viewpoint of increasing the strand strength of the carbon fiber bundle and improving the performance of the CFRP tank, it is more preferable that the draw ratio is 1 time or more and 1.05 times or less.

本発明では凝固糸を空中で延伸した後に続いて洗浄・延伸する。洗浄方法は脱溶剤出来ればいかなる方法でもよい。たとえば、50℃以上100℃未満の範囲の温度に設定された多段洗浄・延伸槽にて、洗浄・延伸を行う。ここで、洗浄・延伸槽の段数は特に制限はないが、3段以上10段以下程度が適当である。4段以上7段以下が好ましい。延伸倍率は、2.4倍以上2.8倍以下とすることが好ましい。
延伸倍率を2.4倍以上とすることで十分な分子配向性を持った炭素繊維前駆体アクリル繊維を製造することが可能となり、結果的に炭素繊維束のストランド強度を高くすることが可能となる。加えて、得られる炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaが小さくなりすぎることを防ぐことが可能になる。また、延伸倍率を2.8倍以下とすることで、延伸過剰によるフィブリル構造の破壊と炭素繊維前駆体アクリル繊維の欠陥点形成を防ぐことが可能となり、結果的に炭素繊維束のストランド強度を高くすることが可能となる。加えて、得られる炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaが大きくなりすぎることを防ぐことが可能になる。炭素繊維束のストランド強度を高くし、CFRP製タンクの性能をより高くするという観点から、延伸倍率を2.4倍以上2.7倍以下がより好ましく、2.5倍以上2.7倍以下とすることがさらに好ましい。
In the present invention, the coagulated yarn is stretched in the air and then washed and stretched. The cleaning method may be any method as long as the solvent can be removed. For example, washing / stretching is performed in a multi-stage washing / stretching tank set to a temperature in the range of 50 ° C. or higher and lower than 100 ° C. Here, the number of stages of the washing / stretching tank is not particularly limited, but about 3 stages or more and 10 stages or less is appropriate. It is preferably 4 steps or more and 7 steps or less. The draw ratio is preferably 2.4 times or more and 2.8 times or less.
By setting the draw ratio to 2.4 times or more, it becomes possible to produce carbon fiber precursor acrylic fiber having sufficient molecular orientation, and as a result, it is possible to increase the strand strength of the carbon fiber bundle. Become. In addition, it is possible to prevent the center line average roughness Ra of the surface of the single fiber of the obtained carbon fiber precursor acrylic fiber from becoming too small. Further, by setting the draw ratio to 2.8 times or less, it is possible to prevent the destruction of the fibril structure and the formation of defective points of the carbon fiber precursor acrylic fiber due to excessive stretching, and as a result, the strand strength of the carbon fiber bundle is increased. It can be made higher. In addition, it is possible to prevent the center line average roughness Ra of the surface of the single fiber of the obtained carbon fiber precursor acrylic fiber from becoming too large. From the viewpoint of increasing the strand strength of the carbon fiber bundle and improving the performance of the CFRP tank, the draw ratio is more preferably 2.4 times or more and 2.7 times or less, and 2.5 times or more and 2.7 times or less. Is more preferable.

洗浄・延伸して得られた糸を95℃以上100℃未満の熱水中にて0.97倍以上1.1倍以下に緩和または延伸して延伸糸を得ることが好ましい。0.97倍以上とすることで繊維束のばらけによる引取不良を防止でき、前工程での延伸の歪みを緩和させることが可能となる。また、1.1倍以下とすることで、過剰な延伸を抑制でき、フィブリル構造の破壊と炭素繊維前駆体アクリル繊維の欠陥点形成を防ぐことが可能となる。炭素繊維の高強度化及び炭素繊維前駆体アクリル繊維の製造安定性の面から、熱水中の延伸倍率は、0.97倍以上1.05倍以下とすることがより好ましい。 It is preferable to relax or stretch the yarn obtained by washing and drawing to 0.97 times or more and 1.1 times or less in hot water of 95 ° C. or higher and lower than 100 ° C. to obtain a drawn yarn. By setting the value to 0.97 times or more, it is possible to prevent poor take-up due to loosening of the fiber bundle, and it is possible to alleviate the distortion of stretching in the previous step. Further, by setting the value to 1.1 times or less, excessive stretching can be suppressed, and destruction of the fibril structure and formation of defective points of the carbon fiber precursor acrylic fiber can be prevented. From the viewpoint of increasing the strength of the carbon fiber and the production stability of the carbon fiber precursor acrylic fiber, the draw ratio in hot water is more preferably 0.97 times or more and 1.05 times or less.

凝固糸を引き取ってから熱水中で延伸して延伸糸を得るまでの合計延伸倍率は2.4倍以上2.9倍以下とすることが好ましい。2.4倍以上とすることで十分な配向を持った炭素繊維前駆体アクリル繊維を製造することが可能となり、結果的に炭素繊維束のストランド強度を高くすることが可能となる。加えて、得られる炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaが小さくなりすぎることを防ぐことが可能になる。また、延伸倍率を2.9倍以下とすることで、延伸過剰によるフィブリル構造の破壊と炭素繊維前駆体アクリル繊維の欠陥点形成を防ぐことが可能となる。加えて、得られる炭素繊維前駆体アクリル繊維の単繊維表面の中心線平均粗さRaが大きくなりすぎることを防ぐことが可能になる。炭素繊維束のストランド強度を高くし、CFRP製タンクの性能をより高くするという観点から、凝固糸を引き取ってから95℃以上100℃未満の水中で延伸して延伸糸を得るまでの合計延伸倍率を2.4倍以上2.7倍以下とすることがより好ましく、2.5倍以上2.7倍以下とすることがさらに好ましい。 The total draw ratio from the time when the coagulated yarn is taken up to the time when the coagulated yarn is drawn in hot water to obtain a drawn yarn is preferably 2.4 times or more and 2.9 times or less. By setting the value to 2.4 times or more, it becomes possible to produce carbon fiber precursor acrylic fibers having sufficient orientation, and as a result, it becomes possible to increase the strand strength of the carbon fiber bundle. In addition, it is possible to prevent the center line average roughness Ra of the surface of the single fiber of the obtained carbon fiber precursor acrylic fiber from becoming too small. Further, by setting the draw ratio to 2.9 times or less, it is possible to prevent the destruction of the fibril structure and the formation of defective points of the carbon fiber precursor acrylic fiber due to excessive stretching. In addition, it is possible to prevent the center line average roughness Ra of the surface of the single fiber of the obtained carbon fiber precursor acrylic fiber from becoming too large. From the viewpoint of increasing the strand strength of the carbon fiber bundle and improving the performance of the CFRP tank, the total draw ratio from the time when the coagulated yarn is taken up to the time when the coagulated yarn is drawn in water at 95 ° C. or higher and lower than 100 ° C. to obtain a drawn yarn. Is more preferably 2.4 times or more and 2.7 times or less, and further preferably 2.5 times or more and 2.7 times or less.

95℃以上100℃未満の水中にて延伸して得た延伸糸には油剤組成物を付与することが好ましい。油剤組成物は、炭素繊維前駆体アクリル繊維に求める機能等を勘案して決定でき、例えば、シリコーン系油剤組成物が好ましく、必要に応じて、さらに酸化防止剤、帯電防止剤、消泡剤、防腐剤、抗菌剤、浸透剤等の添加物を配合することができる。油剤組成物を延伸糸に付与する方法としては、ローラー法、ガイド法、スプレー法、ディップ法等、公知の方法を用いることができる。油剤組成物が付着した延伸糸は、続いて乾燥工程にて乾燥し、乾燥繊維となる。この乾燥繊維を炭素繊維前駆体アクリル繊維として用いることもできる。 It is preferable to impart an oil composition to the drawn yarn obtained by drawing in water at 95 ° C. or higher and lower than 100 ° C. The oil composition can be determined in consideration of the functions required for the carbon fiber precursor acrylic fiber, for example, a silicone-based oil composition is preferable, and if necessary, an antioxidant, an antistatic agent, a defoaming agent, etc. Additives such as preservatives, antibacterial agents, and penetrants can be blended. As a method for applying the oil composition to the drawn yarn, a known method such as a roller method, a guide method, a spray method, or a dip method can be used. The drawn yarn to which the oil composition is attached is subsequently dried in a drying step to become dried fibers. This dried fiber can also be used as a carbon fiber precursor acrylic fiber.

乾燥工程は、従来公知の方法で延伸糸を乾燥でき、例えば、加熱ローラーによる乾燥が好ましい乾燥方法として挙げられる。なお、加熱ローラーの数は1個であっても2個以上であってもよい。 In the drying step, the drawn yarn can be dried by a conventionally known method, and for example, drying with a heating roller is preferable as a drying method. The number of heating rollers may be one or two or more.

乾燥繊維を加圧水蒸気雰囲気中にて延伸して炭素繊維前駆体アクリル繊維とすることもできる。このとき、加圧水蒸気雰囲気の温度は130℃以上160℃以下とすることが好ましい。また、加圧水蒸気雰囲気中での延伸倍率は3.0倍以上4.5倍以下とすることが好ましい。
加圧水蒸気雰囲気の温度を130℃以上とすることで、乾燥繊維の可塑化が十分となり、延伸倍率を高くしても破断せず、得られる炭素繊維前駆体アクリル繊維に含まれる毛羽の量を低減させることが可能となり、結果的に耐炎化および炭素化して得られる炭素繊維の品位が安定化する。また、加圧水蒸気雰囲気の温度を160℃以下とすることで、加圧水蒸気雰囲気中での延伸中にて、酸化反応や分解反応を抑制することができるため、結果的に得られる炭素繊維束のストランド強度低下を防ぐことが可能となる。
The dried fibers can also be stretched in a pressurized steam atmosphere to obtain carbon fiber precursor acrylic fibers. At this time, the temperature of the pressurized steam atmosphere is preferably 130 ° C. or higher and 160 ° C. or lower. Further, the stretching ratio in a pressurized steam atmosphere is preferably 3.0 times or more and 4.5 times or less.
By setting the temperature of the pressurized steam atmosphere to 130 ° C. or higher, the dry fibers are sufficiently plasticized, do not break even when the draw ratio is increased, and the amount of fluff contained in the obtained carbon fiber precursor acrylic fiber is reduced. As a result, the quality of the carbon fiber obtained by flame resistance and carbonization is stabilized. Further, by setting the temperature of the pressurized steam atmosphere to 160 ° C. or lower, the oxidation reaction and the decomposition reaction can be suppressed during stretching in the pressurized steam atmosphere, so that the resulting carbon fiber bundle strands can be suppressed. It is possible to prevent a decrease in strength.

加圧水蒸気雰囲気中での延伸倍率を3.0倍以上とすることで、得られる炭素繊維前駆体アクリル繊維の分子配向性が向上され、得られる炭素繊維束のストランド強度は向上する。また、加圧水蒸気雰囲気中での延伸倍率を4.5倍以下とすることで、過剰な延伸を抑制することができ、フィブリル構造の破壊と炭素繊維前駆体アクル繊維の欠陥点形成を防ぐことが可能となる。
炭素繊維束のストランド高強度化と延伸安定性向上の観点から、加圧水蒸気雰囲気中での延伸倍率は3.3倍以上4.3倍以下とすることがより好ましい。
凝固糸を引き取ってから加圧水蒸気雰囲気中で延伸した後までの合計延伸倍率は9.0倍以上12倍以下とすることが好ましい。9.0倍以上とすることで延伸不足による、炭素繊維前駆体アクリル繊維の分子配向性の不足を防ぐことが可能となり、結果的に炭素繊維束のストランド強度を高くすることが可能となる。また、合計延伸倍率を12倍以下とすることで、延伸過剰によるフィブリル構造の破壊と炭素繊維前駆体アクリル繊維の欠陥点形成を防ぐことが可能となり、結果的に炭素繊維束のストランド強度を高くすることが可能となる。炭素繊維束のストランド強度を高くするという観点から、合計延伸倍率を9倍以上11倍以下とすることがより好ましい。
By setting the draw ratio in a pressurized steam atmosphere to 3.0 times or more, the molecular orientation of the obtained carbon fiber precursor acrylic fiber is improved, and the strand strength of the obtained carbon fiber bundle is improved. Further, by setting the draw ratio in a pressurized steam atmosphere to 4.5 times or less, excessive stretching can be suppressed, and destruction of the fibril structure and formation of defective points of the carbon fiber precursor ackle fiber can be prevented. It will be possible.
From the viewpoint of increasing the strand strength of the carbon fiber bundle and improving the stretching stability, it is more preferable that the stretching ratio in a pressurized steam atmosphere is 3.3 times or more and 4.3 times or less.
The total draw ratio from the time when the coagulated yarn is taken up to the time when it is drawn in a pressurized steam atmosphere is preferably 9.0 times or more and 12 times or less. By setting the value to 9.0 times or more, it is possible to prevent insufficient molecular orientation of the carbon fiber precursor acrylic fiber due to insufficient stretching, and as a result, it is possible to increase the strand strength of the carbon fiber bundle. Further, by setting the total draw ratio to 12 times or less, it is possible to prevent the destruction of the fibril structure and the formation of defective points of the carbon fiber precursor acrylic fiber due to excessive stretching, and as a result, the strand strength of the carbon fiber bundle is increased. It becomes possible to do. From the viewpoint of increasing the strand strength of the carbon fiber bundle, it is more preferable that the total draw ratio is 9 times or more and 11 times or less.

乾燥繊維を延伸する雰囲気とする加圧水蒸気は加圧飽和水蒸気であることが好ましい。 乾燥後または加圧水蒸気雰囲気中にて延伸して得られた炭素繊維前駆体アクリル繊維は、室温のロールに接触させる等の方法により、常温の状態まで冷却する。冷却した炭素繊維前駆体アクリル繊維は、ワインダーでボビンに巻き取られ、或いはケンスに振込まれて収納され、炭素繊維の製造に供される。 The pressurized steam that creates the atmosphere in which the dried fibers are stretched is preferably pressurized saturated steam. The carbon fiber precursor acrylic fiber obtained after drying or stretching in a pressurized steam atmosphere is cooled to a room temperature state by a method such as contacting with a roll at room temperature. The cooled carbon fiber precursor acrylic fiber is wound on a bobbin by a winder or transferred to a Kens and stored, and is used for the production of carbon fiber.

以上より、本発明の炭素繊維前駆体アクリル繊維は、下記1)〜3)の工程を含み、且つ下記4)及び5)の条件を満たす方法により好ましく製造することができる。
1)凝固液濃度が65質量%以上70質量%以下であり、凝固液温度が36℃以上40℃以下である凝固液中に、アクリロニトリル系重合体溶液を紡糸口金から吐出し凝固させて、凝固糸を得ると同時に、凝固糸にかかる張力を55mgf/フィラメント以上75mgf/フィラメント以下に制御しながら引き取る工程。
2)前記1)工程にて引き取った凝固糸を空中にて1.00倍以上1.15倍以下の延伸処理を施した後、50℃以上の水を用いた、4段以上7段以下からなる洗浄・延伸槽にて2.4倍以上2.7倍以下の倍率範囲で延伸・洗浄を行い、さらに95℃以上の水を用いた熱水槽にて0.97倍以上1.1倍以下の緩和又は延伸を行って延伸糸を得る工程。
3)前記2)工程で延伸した後の延伸糸に油剤を付与して乾燥した後、130℃以上160℃以下の加圧水蒸気雰囲気下で3.0倍以上4.5倍以下に延伸する工程。
4)前記1)工程の凝固糸を引き取ってから前記2)工程の延伸糸を得るまでの凝固糸の合計延伸倍率は2.4倍以上2.7倍以下である。
5)前記1)工程の凝固糸を凝固液より引き取ってから前記3)工程の加圧水蒸気雰囲気下での延伸後までの合計延伸倍率は9.0倍以上12倍以下である。
From the above, the carbon fiber precursor acrylic fiber of the present invention can be preferably produced by a method including the following steps 1) to 3) and satisfying the following conditions 4) and 5).
1) Acrylonitrile-based polymer solution is discharged from a spinneret to coagulate in a coagulation liquid having a coagulation liquid concentration of 65% by mass or more and 70% by mass or less and a coagulation liquid temperature of 36 ° C. or more and 40 ° C. or less. A step of obtaining a yarn and at the same time taking it while controlling the tension applied to the coagulated yarn to 55 mgf / filament or more and 75 mgf / filament or less.
2) After the coagulated yarn taken in the above 1) step is drawn in the air at 1.00 times or more and 1.15 times or less, using water at 50 ° C. or higher, from 4 steps or more and 7 steps or less. Stretching / washing is performed in a magnification range of 2.4 times or more and 2.7 times or less in a washing / stretching tank, and 0.97 times or more and 1.1 times or less in a hot water tank using water at 95 ° C. or higher. A step of obtaining a drawn yarn by relaxing or drawing the above.
3) A step of applying an oil agent to the drawn yarn after drawing in the step 2), drying the yarn, and then stretching the yarn to 3.0 times or more and 4.5 times or less in a pressurized steam atmosphere of 130 ° C. or higher and 160 ° C. or lower.
4) The total draw ratio of the coagulated yarn from the time when the coagulated yarn in the step 1) is taken up to the time when the drawn yarn in the step 2) is obtained is 2.4 times or more and 2.7 times or less.
5) The total draw ratio from the time when the coagulated yarn in the step 1) is taken from the coagulating liquid to the time when the coagulated yarn in the step 3) is drawn in a pressurized steam atmosphere is 9.0 times or more and 12 times or less.

本発明の炭素繊維は前述の炭素繊維前駆体アクリル繊維を耐炎化および炭素化して得られる。
本発明の炭素繊維は、単繊維表面の中心線平均粗さRaが6.0nm以上13nm以下である。
本発明では、炭素繊維の単繊維表面の中心線平均粗さRaを6.0nm以上とすることで、炭素繊維の単繊維からなる炭素繊維束が過剰に集束することを抑制でき、炭素繊維束に樹脂を含浸させやすくなる。また、炭素繊維の単繊維表面の中心線平均粗さRaを13nm以下とすることで、炭素繊維の単繊維からなる炭素繊維束の集束が不足することを防止でき、炭素繊維束に樹脂を均一に含浸させやすくなる。
高い強度のCFRP製タンクを得る観点から、炭素繊維の単繊維表面の中心線平均粗さRaは10nm以下であることがより好ましい。なお、炭素繊維の単繊維表面の中心線平均粗さRaは実施例に記載の方法で測定することができる。
The carbon fiber of the present invention is obtained by making the above-mentioned carbon fiber precursor acrylic fiber flame-resistant and carbonized.
The carbon fiber of the present invention has a center line average roughness Ra of the surface of a single fiber of 6.0 nm or more and 13 nm or less.
In the present invention, by setting the centerline average roughness Ra of the surface of the single fiber of the carbon fiber to 6.0 nm or more, it is possible to suppress excessive focusing of the carbon fiber bundle made of the single fiber of the carbon fiber, and the carbon fiber bundle. Is easily impregnated with resin. Further, by setting the average roughness Ra of the center line of the surface of the carbon fiber single fiber to 13 nm or less, it is possible to prevent insufficient focusing of the carbon fiber bundle made of the carbon fiber single fiber, and to make the resin uniform in the carbon fiber bundle. Is easy to impregnate.
From the viewpoint of obtaining a high-strength CFRP tank, it is more preferable that the center line average roughness Ra of the single fiber surface of the carbon fiber is 10 nm or less. The center line average roughness Ra of the surface of the single fiber of the carbon fiber can be measured by the method described in the examples.

本発明の炭素繊維は、炭素繊維の単繊維の長径/短径が1.11以上1.245以下である。本発明では、炭素繊維の単繊維の長径/短径を1.11以上とすることで炭素繊維の単繊維同士の隙間を十分確保する事が可能となり、炭素繊維束に樹脂を含浸させやすくなる。また、炭素繊維の単繊維の長径/短径を1.245以下とすることで炭素繊維の単繊維同士の隙間が過剰になることを防ぎ、炭素繊維束に樹脂を均一に含浸させやすくなる。
高い強度のCFRP製タンクを得る観点から、炭素繊維の単繊維の長径/短径は1.135以上であることがより好ましい。なお、炭素繊維の単繊維の長径/短径は、炭素繊維前駆体アクリル繊維の単繊維の長径/短径と同様に定義され同様の方法で測定することができる。
In the carbon fiber of the present invention, the major axis / minor axis of the single fiber of the carbon fiber is 1.11 or more and 1.245 or less. In the present invention, by setting the major axis / minor axis of the carbon fiber single fibers to 1.11 or more, it is possible to sufficiently secure a gap between the carbon fiber single fibers, and it becomes easy to impregnate the carbon fiber bundle with the resin. .. Further, by setting the major axis / minor axis of the carbon fiber single fibers to 1.245 or less, it is possible to prevent the gaps between the carbon fiber single fibers from becoming excessive, and it becomes easy to uniformly impregnate the carbon fiber bundle with the resin.
From the viewpoint of obtaining a high-strength CFRP tank, the major axis / minor axis of the carbon fiber single fiber is more preferably 1.135 or more. The major axis / minor axis of the single fiber of the carbon fiber is defined in the same manner as the major axis / minor axis of the single fiber of the carbon fiber precursor acrylic fiber, and can be measured by the same method.

本発明の炭素繊維は、単繊維の凹み距離/短径が0.011以上0.018以下であることが好ましい。
本発明では、炭素繊維の単繊維の凹み距離/短径を0.011以上とすることで、炭素繊維の単繊維同士の隙間を十分確保することが可能となり、炭素繊維束に樹脂を含浸させやすくなる。また、炭素繊維の単繊維の凹み距離/短径を0.018以下とすることで炭素繊維の単繊維同士の隙間が過剰になることを防ぎ、炭素繊維束に樹脂を均一に含浸させやすくなる。
CFRP製タンク高強度化の観点から、炭素繊維の単繊維の凹み距離/短径は0.0145以上であることがより好ましい。なお、炭素繊維の単繊維の凹み距離/短径は、炭素繊維前駆体アクリル繊維の単繊維の凹み距離/短径と同様に定義され同様の方法で測定することができる。
The carbon fiber of the present invention preferably has a single fiber recess distance / minor axis of 0.011 or more and 0.018 or less.
In the present invention, by setting the recess distance / minor diameter of the carbon fiber single fibers to 0.011 or more, it is possible to sufficiently secure a gap between the carbon fiber single fibers, and the carbon fiber bundle is impregnated with the resin. It will be easier. Further, by setting the recess distance / minor axis of the carbon fiber single fibers to 0.018 or less, it is possible to prevent the gaps between the carbon fiber single fibers from becoming excessive, and it becomes easy to uniformly impregnate the carbon fiber bundle with the resin. ..
From the viewpoint of increasing the strength of the CFRP tank, it is more preferable that the recess distance / minor axis of the carbon fiber single fiber is 0.0145 or more. The dent distance / minor axis of the single fiber of the carbon fiber is defined in the same manner as the dent distance / minor axis of the single fiber of the carbon fiber precursor acrylic fiber, and can be measured by the same method.

炭素繊維は炭素繊維前駆体アクリル繊維を耐炎化および炭素化して得ることができる。耐炎化および炭素化のそれぞれの条件は特に限定されないが、繊維内部にボイド等の構造的欠陥が発生しにくい条件を設定するのが好ましい。耐炎化は、炭素繊維前駆体アクリル繊維を酸化性雰囲気中で緊張あるいは延伸条件下で加熱し、耐炎化繊維とするものである。耐炎化の方法は、例えば、熱風循環方式、多孔表面を有する固定熱板方式、加熱ロール方式等が挙げられる。耐炎化の加熱温度は、例えば200℃以上300℃以下が好ましい。耐炎化では、耐炎化繊維の密度が1.3g/cm以上1.5g/cm以下になるまで処理することが好ましい。 The carbon fiber can be obtained by flame-resistant and carbonizing the carbon fiber precursor acrylic fiber. The conditions for flame resistance and carbonization are not particularly limited, but it is preferable to set conditions in which structural defects such as voids are unlikely to occur inside the fiber. In flame resistance, the carbon fiber precursor acrylic fiber is heated in an oxidizing atmosphere under tension or stretching conditions to obtain flame resistance. Examples of the flameproofing method include a hot air circulation method, a fixed hot plate method having a porous surface, a heating roll method, and the like. The heating temperature for flame resistance is preferably, for example, 200 ° C. or higher and 300 ° C. or lower. For flame resistance, it is preferable to treat until the density of the flame resistant fibers is 1.3 g / cm 3 or more and 1.5 g / cm 3 or less.

炭素化は、耐炎化で得られた耐炎化繊維を不活性ガス雰囲気下で加熱することにより、炭素繊維を得るものである。炭素化は、前炭素化と高温炭素化とからなることが好ましい。前炭素化は、最高温度550℃以上800℃以下の不活性ガス雰囲気中にて、緊張下で耐炎化繊維を加熱し前炭素化繊維とする。この前炭素化により、炭素繊維の機械的特性を向上させることができる。不活性ガスとしては、窒素、アルゴン、ヘリウム等、公知の不活性ガスを採用できるが、経済性の面から窒素が望ましい。
高温炭素化は、前炭素化繊維を1200℃以上3000℃以下の不活性ガス雰囲気中に通し、前炭素化繊維を加熱し炭素繊維とする。この高温炭素化により、炭素繊維の機械的特性を向上させることができる。用いることができる不活性ガスは、前炭素化操作に採用できる不活性ガスと同様である。
In carbonization, carbon fibers are obtained by heating the flame-resistant fibers obtained by flame resistance in an inert gas atmosphere. Carbonization preferably consists of pre-carbonization and high-temperature carbonization. For precarbonization, the flame-resistant fibers are heated under tension in an inert gas atmosphere having a maximum temperature of 550 ° C. or higher and 800 ° C. or lower to obtain precarbonized fibers. This pre-carbonization can improve the mechanical properties of the carbon fibers. As the inert gas, known inert gases such as nitrogen, argon and helium can be used, but nitrogen is preferable from the viewpoint of economy.
In high-temperature carbonization, the pre-carbonized fibers are passed through an inert gas atmosphere of 1200 ° C. or higher and 3000 ° C. or lower, and the pre-carbonized fibers are heated to obtain carbon fibers. This high-temperature carbonization can improve the mechanical properties of carbon fibers. The inert gas that can be used is the same as that of the inert gas that can be used in the precarbonization operation.

以上より、本発明の炭素繊維は、下記7)〜9)工程を含む方法により好ましく製造することができる。
7)本発明の炭素繊維前駆体アクリル繊維から構成される炭素繊維前駆体アクリル繊維束に対し、酸化性雰囲気中で200℃以上300℃以下に加熱し耐炎化繊維束とする耐炎化工程。
8)前記耐炎化繊維束を非酸化性雰囲気中、550℃以上800℃以下で加熱し前炭素化繊維束とする前炭素化工程。
9)前記前炭素化繊維束を非酸化性雰囲気中、1200℃以上3000℃以下で加熱し炭素繊維束とする高温炭素化工程。
From the above, the carbon fiber of the present invention can be preferably produced by a method including the following steps 7) to 9).
7) A flame-resistant step of heating a carbon fiber precursor acrylic fiber bundle composed of the carbon fiber precursor acrylic fiber of the present invention to 200 ° C. or higher and 300 ° C. or lower in an oxidizing atmosphere to form a flame-resistant fiber bundle.
8) A pre-carbonization step in which the flame-resistant fiber bundle is heated at 550 ° C. or higher and 800 ° C. or lower in a non-oxidizing atmosphere to form a pre-carbonized fiber bundle.
9) A high-temperature carbonization step in which the pre-carbonized fiber bundle is heated at 1200 ° C. or higher and 3000 ° C. or lower in a non-oxidizing atmosphere to form a carbon fiber bundle.

得られた炭素繊維は、表面処理することが好ましい。表面処理方法としては、公知の方法、即ち、電解酸化、薬剤酸化及び空気酸化などによる酸化処理が挙げられ、いずれでも良い。電解酸化処理の後には、炭素繊維表面の電解質ならびに、電解酸化処理によって付着した不純物を除去するための洗浄処理を行い、引き続き炭素繊維束を乾燥させる。乾燥方法は、ロール乾燥、熱風乾燥および輻射熱乾燥など公知のいずれの技術も採用できる。 The obtained carbon fiber is preferably surface-treated. Examples of the surface treatment method include known methods, that is, oxidation treatment by electrolytic oxidation, chemical oxidation, air oxidation, or the like, and any of them may be used. After the electrolytic oxidation treatment, a cleaning treatment for removing the electrolyte on the surface of the carbon fibers and impurities adhering by the electrolytic oxidation treatment is performed, and the carbon fiber bundle is subsequently dried. As the drying method, any known technique such as roll drying, hot air drying and radiant heat drying can be adopted.

次に、炭素繊維はサイジング処理をすることが好ましい。サイジング処理はサイジング剤を有機溶剤に溶解させたものや、乳化剤などで水に分散させたエマルション液であるサイジング液を、炭素繊維に付与し、これを乾燥することによって行うことができる。なお、炭素繊維へのサイジング剤の付着量の調節は、サイジング液のサイジング剤濃度の調整や絞り量によるサイジング液の付着量の調整によって行なうことができる。炭素繊維へサイジング液の付着させる方法は、走行する炭素繊維束を等間隔に並列に配置しシート状にしてサイジング液に浸漬させる方法を用いることが生産性の観点から好ましい。
このようにして得られた炭素繊維は、ストランド強度が高いだけではなく、これを用いて製造されたCFRP製タンクの強度も高いものとなる。
Next, it is preferable that the carbon fibers are sized. The sizing treatment can be carried out by applying a sizing solution obtained by dissolving a sizing agent in an organic solvent or an emulsion solution dispersed in water with an emulsifier or the like to the carbon fibers and drying the sizing solution. The amount of the sizing agent attached to the carbon fibers can be adjusted by adjusting the concentration of the sizing agent in the sizing solution or adjusting the amount of the sizing agent attached by the amount of drawing. As a method for adhering the sizing liquid to the carbon fibers, it is preferable to use a method in which running carbon fiber bundles are arranged in parallel at equal intervals to form a sheet and immersed in the sizing liquid from the viewpoint of productivity.
The carbon fiber thus obtained not only has high strand strength, but also has high strength in the CFRP tank manufactured by using the carbon fiber.

以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

[凝固糸引取張力]
ノズルから吐出、形成された凝固糸が、凝固液から出てから最初のガイドにかかる力から凝固糸束を引き取る張力を測定し、フィラメント1本あたりに換算して凝固糸引取張力を算出した。
[Coagulation thread take-up tension]
The tension at which the coagulated yarn discharged and formed from the nozzle withdraws the coagulated yarn bundle from the force applied to the first guide after being discharged from the coagulating liquid was measured, and the coagulated yarn withdrawal tension was calculated by converting it per filament.

[単繊維の長径/短径]
内径1mmの塩化ビニル樹脂製のチューブ内に測定用の繊維束を通した後、これをナイフで輪切りにして試料を準備する。ついで、この試料を繊維断面が上を向くようにしてSEM試料台に接着し、さらに金を約10nmの厚さにスパッタリングしてから、電子顕微鏡(フィリップス社製、製品名:XL20走査型)により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察する。観察した単繊維断面のうち、ランダムに100本選び、それぞれに対して外接する最も面積の小さな矩形を求めその長辺の長さと短辺の長さの比を求め、その100本分の平均値を繊維束の単繊維の長径/短径とした。
[Major / minor diameter of single fiber]
A fiber bundle for measurement is passed through a tube made of vinyl chloride resin having an inner diameter of 1 mm, and then sliced into round slices with a knife to prepare a sample. Then, this sample was adhered to the SEM sample table with the fiber cross section facing upward, and gold was further sputtered to a thickness of about 10 nm, and then by an electron microscope (manufactured by Phillips, product name: XL20 scanning type). , The fiber cross section is observed under the conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm. Of the observed single fiber cross sections, 100 were randomly selected, the rectangle with the smallest area circumscribing each was obtained, the ratio of the length of the long side to the length of the short side was obtained, and the average value of the 100 fibers was obtained. Was defined as the major axis / minor axis of the single fiber of the fiber bundle.

[単繊維表面の中心線平均粗さRa]
測定用の繊維束の両端を、走査型プローブ顕微鏡装置付属のSPA400用金属製試料台(20mm径)「エポリードサービス社製、品番:K−Y10200167」上にカーボンペーストで固定し、以下条件で測定する。
[Center line average roughness Ra of single fiber surface]
Both ends of the fiber bundle for measurement are fixed with carbon paste on a metal sample table (20 mm diameter) for SPA400 (20 mm diameter) "Epolide Service Co., Ltd., product number: KY10200167" attached to the scanning probe microscope device, and under the following conditions. Measure.

〔走査型プローブ顕微鏡測定条件〕
装置:エスアイアイ・ナノテクノロジー社製、SPI4000プローブステーション、SPA400(ユニット)
走査モード:ダイナミックフォースモード(DFM)(形状像測定)
探針:エスアイアイ・ナノテクノロジー社製 SI−DF−20
走査範囲:2μm×2μm
Rotation:90°
走査速度:1.0Hz、
ピクセル数:512×512
測定環境:室温、大気中
単繊維1本に対して、上記条件にて1画像を得て、得られた画像を走査型プローブ顕微鏡付属の画像解析ソフト(SPIWin)を用い、以下条件にて画像解析を実施した。
[Scanning probe microscope measurement conditions]
Equipment: SPI4000 probe station, SPA400 (unit) manufactured by SII Nanotechnology Co., Ltd.
Scanning mode: Dynamic force mode (DFM) (shape image measurement)
Probe: SI-DF-20 manufactured by SII Nanotechnology Co., Ltd.
Scanning range: 2 μm x 2 μm
Rotation: 90 °
Scanning speed: 1.0Hz,
Number of pixels: 512 x 512
Measurement environment: room temperature, air
One image was obtained for one single fiber under the above conditions, and the obtained image was subjected to image analysis under the following conditions using image analysis software (SPIWin) attached to a scanning probe microscope.

〔画像解析条件〕
得られた形状像に、〔フラット処理〕、〔メディアン8処理〕、〔三次傾き補正〕を行い、曲面を平面にフィッティング補正した画像を得る。平面補正した画像の表面粗さ解析より、中心線平均粗さRaを求める。
[Image analysis conditions]
The obtained shape image is subjected to [flat processing], [median 8 processing], and [third-order tilt correction] to obtain an image in which a curved surface is fitted and corrected to a flat surface. The center line average roughness Ra is obtained from the surface roughness analysis of the plane-corrected image.

〔フラット処理〕
リフト、振動、スキャナのクリープ等によってイメージデータに現れたZ軸方向の歪み、うねりを除去する処理であり、走査型プローブ顕微鏡測定上の装置因によるデータのひずみを除去する処理である。
[Flat processing]
It is a process of removing distortions and waviness in the Z-axis direction appearing in image data due to lift, vibration, creep of a scanner, etc., and is a process of removing distortions of data due to a device factor in scanning probe microscope measurement.

〔メディアン8処理〕
得られた形状像のZ軸データを3×3の範囲で全てメディアンフィルタで処理する。
[Median 8 processing]
All the Z-axis data of the obtained shape image is processed by the median filter in the range of 3 × 3.

〔三次傾き補正〕
処理対象イメージの全データから最小二乗近似によって3次曲面を求めてフィッティングする。
繊維束の単繊維表面の中心線平均粗さRaの測定では1つの繊維束につき、単繊維を10本ランダムに採取し、それぞれについて走査型プローブ顕微鏡にて画像を得て解析し、繊維表面の中心線平均粗さRaを測定する。得られたRaの10本分の平均値を、測定用の繊維束の単繊維表面の中心線平均粗さRaとした。
[Third-order tilt correction]
A cubic curved surface is obtained and fitted by least squares approximation from all the data of the image to be processed.
In the measurement of the center line average roughness Ra of the single fiber surface of the fiber bundle, 10 single fibers were randomly collected for each fiber bundle, and images were obtained and analyzed with a scanning probe microscope for each of them, and the fiber surface was analyzed. The center line average roughness Ra is measured. The average value of 10 of the obtained Ra was defined as the center line average roughness Ra of the single fiber surface of the fiber bundle for measurement.

[単繊維の凹み距離/短径]
単繊維の長径/短径の測定と同様にして、ランダムに選んだ100本の単繊維の断面の、それぞれに対して外接する最も面積の小さな矩形を求め、その短辺の長さを測定した。さらに同じ断面に対して凹み距離(図2参照)を測定した。こうして測定した凹み距離と短辺の長さの比を算出し、算出した比の100本分の平均値を繊維束の単繊維の凹み距離/短径とした。それぞれの単繊維について、その断面1に外接する最も面積の小さな矩形2の長辺の一方が、断面1の凹み距離を定めるために求めた直線3と一致することが多い(図3、図5)が、一致しない場合もある(図2)。また、断面1の周が凸な曲線であるために断面1に2点で接する直線を求めることができない場合(図4)は凹み距離Zは0であるとして扱った。
[Single fiber dent distance / minor diameter]
Similar to the measurement of the major axis / minor axis of the single fiber, the rectangle having the smallest area circumscribing each of the cross sections of 100 randomly selected single fibers was obtained, and the length of the short side thereof was measured. .. Further, the recess distance (see FIG. 2) was measured with respect to the same cross section. The ratio of the dent distance to the length of the short side measured in this way was calculated, and the average value of 100 of the calculated ratios was taken as the dent distance / minor diameter of the single fiber of the fiber bundle. For each single fiber, one of the long sides of the rectangle 2 having the smallest area circumscribing the cross section 1 often coincides with the straight line 3 obtained to determine the recessed distance of the cross section 1 (FIGS. 3 and 5). ), But may not match (Fig. 2). Further, when the straight line tangent to the cross section 1 at two points cannot be obtained because the circumference of the cross section 1 is a convex curve (FIG. 4), the recess distance Z is treated as 0.

[炭素繊維束のストランド強度]
炭素繊維束のストランド強度は、JIS−R−7608に規定されているエポキシ樹脂含浸ストランド法に準じて測定した。なお、測定回数は10回とし、その平均値を評価の対象とした。
[Strand strength of carbon fiber bundle]
The strand strength of the carbon fiber bundle was measured according to the epoxy resin impregnated strand method specified in JIS-R-7608. The number of measurements was 10 times, and the average value was used as the evaluation target.

[圧力容器の破壊圧力]
フィラメントワインディング装置を用いて、炭素繊維束を、容量9リットルのアルミニウム製ライナー(全長540mm、胴部長さ415mm、胴部外径163mm、胴部の中央での肉厚3mm)に巻き付けた。使用したアルミニウム製のライナーは、JIS H 4040のA6061−T6に規定されるアルミニウム素材に熱処理を施した材料からなるものである。炭素繊維束を、巻出しガイドロールを介して位置を調整し、続けてタッチロールを使用してマトリックス樹脂を炭素繊維束へ定量供給、含浸させた後に、ライナーへ巻きつけ、中間体容器を作製した。ライナーへの巻き付け方であるが、まず、胴部上にライナーの回転軸方向に対し88.6°をなすフープ層を形成し、ライナーの回転軸方向に対し11.0°の角度でライナーの鏡部を補強するヘリカル層を積層した後、胴部上にライナーの回転軸方向に対し65.0°をなすフープ層を形成し、その後、ライナーの回転軸方向に対し13.0°の角度でライナーの鏡部を補強するヘリカル層を積層し、再度胴部上にライナーの回転軸方向に対し88.6°をなすフープ層を形成し、ライナーの回転軸方向に対し11.0°の角度でライナーの鏡部を補強するヘリカル層を積層した。
得られた中間体容器をフィラメントワインディング装置から外し、加熱炉内に吊り下げて、炉内温度を2℃/分で110℃まで昇温した後110℃で2時間保持して硬化させた。その後、炉内温度を1℃/分で60℃まで冷却し、CFRP製タンクを得た。
水圧破壊試験機にCFRP製タンクをセットし、CFRP製タンク内に水を満たした後、昇圧速度15MPa/分でCFRP製タンクに水圧を負荷し、CFRP製タンクが破裂したときの水圧を記録してCFRP製タンクの破壊圧力とした。
[Destructive pressure of pressure vessel]
Using a filament winding device, the carbon fiber bundle was wound around an aluminum liner having a capacity of 9 liters (total length 540 mm, body length 415 mm, body outer diameter 163 mm, wall thickness 3 mm at the center of the body). The aluminum liner used is made of a heat-treated aluminum material specified in JIS H 4040 A6061-T6. The position of the carbon fiber bundle is adjusted via the unwinding guide roll, and then the matrix resin is quantitatively supplied and impregnated into the carbon fiber bundle using the touch roll, and then wound around the liner to prepare an intermediate container. did. Regarding how to wrap the liner, first, a hoop layer forming 88.6 ° with respect to the rotation axis direction of the liner is formed on the body, and the liner is wound at an angle of 11.0 ° with respect to the rotation axis direction of the liner. After laminating the helical layer that reinforces the mirror part, a hoop layer forming 65.0 ° with respect to the rotation axis direction of the liner is formed on the body, and then an angle of 13.0 ° with respect to the rotation axis direction of the liner is formed. A helical layer that reinforces the mirror part of the liner is laminated, and a hoop layer that forms 88.6 ° with respect to the rotation axis direction of the liner is formed again on the body portion, and 11.0 ° with respect to the rotation axis direction of the liner. A helical layer was laminated to reinforce the mirror part of the liner at an angle.
The obtained intermediate container was removed from the filament winding apparatus, suspended in a heating furnace, the temperature in the furnace was raised to 110 ° C. at 2 ° C./min, and then held at 110 ° C. for 2 hours for curing. Then, the temperature in the furnace was cooled to 60 ° C. at 1 ° C./min to obtain a CFRP tank.
After setting the CFRP tank in the hydraulic failure tester and filling the CFRP tank with water, the CFRP tank is loaded with water pressure at a boosting speed of 15 MPa / min, and the water pressure when the CFRP tank bursts is recorded. The breaking pressure of the CFRP tank was used.

実施例1
[アクリロニトリル系重合体溶液の製造]
アクリロニトリル、アクリルアミド、メタクリル酸を、水中に投入し、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド単位/メタクリル酸単位=97/2/1(質量比)からなるアクリロニトリル系重合体を得た。このアクリロニトリル系重合体をジメチルアセトアミドに溶解し、21質量%のアクリロニトリル系重合体溶液を製造した。
Example 1
[Manufacturing of acrylonitrile-based polymer solution]
Acrylonitrile, acrylamide, and methacrylic acid are put into water and copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and acrylonitrile unit / acrylamide unit / methacrylic acid unit = 97/2/1. An acrylonitrile-based polymer composed of (mass ratio) was obtained. This acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a 21% by mass acrylonitrile-based polymer solution.

[炭素繊維前駆体アクリル繊維束の製造]
上記で得たアクリロニトリル系重合体溶液を、濃度67質量%、温度38℃のジメチルアセトアミド水溶液からなる凝固液中に、孔径50μm、孔数30000の紡糸ノズルより吐出し凝固糸を得ると同時に、凝固糸にかかる張力を70mgf/フィラメントに制御しながら引き取った。
引き取った凝固糸を、空中で1.01倍に延伸し、続いて50℃から98℃の範囲の水を用いた5段の延伸・洗浄槽を通して、2.60倍の延伸と洗浄を同時に行った後、98℃の水を用いた熱水槽中で0.98倍の延伸(緩和)を実施して延伸糸を得た。得られた延伸糸をアミノ変性シリコーン系油剤分散液中に浸漬し、140℃の加熱ローラーで緻密化して乾燥繊維束を得た。このとき使用したアミノ変性シリコーン系油剤分散液は、アミノ変性シリコーン(信越化学工業株式会社製、商品名:KF−865)85質量部に対し、乳化剤(日光ケミカルズ株式会社製、商品名:NIKKOL BL−9EX)を15質量部混合したものをゴーリンミキサー(エスエムテー株式会社製、商品名:圧力式ホモジナイザーゴーリンタイプ)で乳化した後、水を加えて製造したものである。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.57倍であった。次いで、得られた乾燥繊維束を約150℃の加圧飽和蒸気雰囲気下にて3.50倍に延伸し、単繊維繊度1.0dtexの炭素繊維前駆体アクリル繊維束を製造した。凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.01倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)を上記の方法に従って測定した。測定結果を表2に示す。
[Manufacturing of carbon fiber precursor acrylic fiber bundle]
The acrylonitrile-based polymer solution obtained above is discharged into a coagulating solution consisting of a dimethylacetamide aqueous solution having a concentration of 67% by mass and a temperature of 38 ° C. from a spinning nozzle having a pore size of 50 μm and a pore number of 30,000 to obtain a coagulated yarn and at the same time coagulate. The tension applied to the yarn was taken while controlling it to 70 mgf / filament.
The collected coagulated yarn is stretched 1.01 times in the air, and then 2.60 times stretched and washed at the same time through a 5-stage stretching / washing tank using water in the range of 50 ° C. to 98 ° C. After that, drawing (relaxation) of 0.98 times was carried out in a hot water tank using water at 98 ° C. to obtain drawn yarn. The obtained drawn yarn was immersed in an amino-modified silicone-based oil dispersion and densified with a heating roller at 140 ° C. to obtain a dried fiber bundle. The amino-modified silicone-based oil dispersion used at this time was an emulsifier (manufactured by Nikko Chemicals Co., Ltd., trade name: NIKKOL BL) with respect to 85 parts by mass of amino-modified silicone (manufactured by Shinetsu Chemical Industry Co., Ltd., trade name: KF-865). A mixture of 15 parts by mass of -9EX) was emulsified with a Gorin mixer (manufactured by SMT Co., Ltd., trade name: pressure homogenizer Gorin type), and then water was added to produce the product. The total draw ratio from the time when the coagulated yarn was taken up to the time when the drawn yarn after the treatment in the hot water tank was obtained was 2.57 times. Next, the obtained dried fiber bundle was stretched 3.50 times in a pressurized saturated steam atmosphere at about 150 ° C. to produce a carbon fiber precursor acrylic fiber bundle having a single fiber fineness of 1.0 dtex. The total draw ratio from the time when the coagulated yarn was taken up to the time when the coagulated yarn was drawn under a pressurized saturated steam atmosphere was 9.01 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. Further, the physical characteristics of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber) were measured according to the above method. The measurement results are shown in Table 2.

[炭素繊維束の製造]
得られた炭素繊維前駆体アクリル繊維束を耐炎化炉に導入し、220〜280℃に加熱された空気を炭素繊維前駆体アクリル繊維束に吹き付けることによって、前駆体繊維束を耐炎化して密度1.35g/cmの耐炎繊維束を得た。伸張率は−4.0%とし、耐炎化処理時間は70分とした。
次に耐炎化繊維束を窒素中300〜700℃の温度勾配を有する第一炭素化炉を4.0%の伸長を加えながら通過させた。第一炭素化炉での温度勾配は直線的になるように設定し、処理時間は1.3分とした。更に窒素雰囲気中で1000〜1600℃の温度勾配を設定した第二炭素化炉を−4.5%の伸長を加えながら通過させ、炭素繊維束を得た。第二炭素化炉での処理時間は1.3分とした。
引き続いて、重炭酸アンモニウム10質量%水溶液中を走行せしめ炭素繊維束を陽極として、被処理炭素繊維1g当たり30クーロンの電気量となる様に対極との間で通電処理を行い、50℃の水で洗浄した後乾燥した。
次に、ハイドランN320(DIC社製)の水分散液を付与して乾燥して、サイジング剤を0.8質量%付着させ、ボビンに巻きとった。
得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
[Manufacturing of carbon fiber bundles]
The obtained carbon fiber precursor acrylic fiber bundle is introduced into a flameproof furnace, and air heated to 220 to 280 ° C. is blown onto the carbon fiber precursor acrylic fiber bundle to make the precursor fiber bundle flameproof and have a density of 1. A flame resistant fiber bundle of .35 g / cm 3 was obtained. The elongation rate was -4.0%, and the flame resistance treatment time was 70 minutes.
The flame-resistant fiber bundle was then passed through a first carbonization furnace with a temperature gradient of 300-700 ° C. in nitrogen with an elongation of 4.0%. The temperature gradient in the first carbonization furnace was set to be linear, and the treatment time was 1.3 minutes. Further, a carbon fiber bundle was obtained by passing through a second carbonization furnace having a temperature gradient of 1000 to 1600 ° C. in a nitrogen atmosphere while applying an elongation of −4.5%. The processing time in the second carbonization furnace was 1.3 minutes.
Subsequently, the carbon fiber bundle was used as an anode by running in a 10% by mass aqueous solution of ammonium bicarbonate, and energization treatment was performed between the counter electrode and the counter electrode so that the amount of electricity was 30 coulombs per 1 g of carbon fiber to be treated, and water at 50 ° C. After washing with, it was dried.
Next, an aqueous dispersion of Hydran N320 (manufactured by DIC Corporation) was applied, dried, and 0.8% by mass of a sizing agent was adhered to the bobbin.
Physical properties of the obtained carbon fiber bundle (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and produced using the obtained carbon fiber bundle. The breaking pressure of the pressure vessel) was measured according to the above method. The measurement results are shown in Table 2.

実施例2
炭素繊維前駆体アクリル繊維束の製造において、実施例1で用いたアクリロニトリル系重合体溶液を、孔径45μmのノズルを使用し、凝固糸にかかる張力を60mgf/フィラメントに制御しながら引き取り、加圧飽和水蒸気雰囲気下での延伸倍率を4.20倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.57倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は10.8倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 2
In the production of the carbon fiber precursor acrylic fiber bundle, the acrylonitrile-based polymer solution used in Example 1 was taken up using a nozzle having a pore size of 45 μm while controlling the tension applied to the coagulated yarn to 60 mgf / filament, and was saturated under pressure. The same procedure as in Example 1 was carried out except that the stretching ratio in a water vapor atmosphere was set to 4.20 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.57 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was 0.8 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

実施例3
炭素繊維前駆体アクリル繊維束の製造において、実施例1で用いたアクリロニトリル系重合体溶液を、凝固糸にかかる張力を72mgf/フィラメントに制御しながら引き取り、加圧飽和水蒸気雰囲気下での延伸倍率を4.20倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.57倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率を10.8倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 3
In the production of the carbon fiber precursor acrylic fiber bundle, the acrylonitrile-based polymer solution used in Example 1 was taken up while controlling the tension applied to the coagulated yarn to 72 mgf / filament, and the draw ratio under a pressurized saturated steam atmosphere was adjusted. It was carried out in the same manner as in Example 1 except that it was set to 4.20 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.57 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was 0.8 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

実施例4
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度を69質量%とし、凝固糸にかかる張力を65mgf/フィラメントに制御した以外は実施例1と同様に実施した。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 4
In the production of the carbon fiber precursor acrylic fiber bundle, the same procedure as in Example 1 was carried out except that the concentration of the dimethylacetamide aqueous solution as the coagulating liquid was set to 69% by mass and the tension applied to the coagulated yarn was controlled to 65 mgf / filament.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

参考例1
炭素繊維前駆体アクリル繊維の製造において、凝固液であるジメチルアセトアミド水溶液の温度を35℃とし、凝固糸にかかる張力を74mgf/フィラメントに制御した以外は実施例1と同様に実施した。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Reference example 1
In the production of the carbon fiber precursor acrylic fiber, the same procedure as in Example 1 was carried out except that the temperature of the dimethylacetamide aqueous solution as the coagulating liquid was set to 35 ° C. and the tension applied to the coagulated yarn was controlled to 74 mgf / filament.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

参考例2
炭素繊維前駆体アクリル繊維束の製造において、延伸・洗浄槽での延伸倍率を2.80倍としとした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.77倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.70倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Reference example 2
In the production of the carbon fiber precursor acrylic fiber bundle, the same procedure as in Example 1 was carried out except that the draw ratio in the drawing / washing tank was set to 2.80 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.77 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 9. It was .70 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

比較例1
炭素繊維前駆体アクリル繊維束の製造において、実施例1で用いたアクリロニトリル系重合体溶液を、濃度65質量%、温度30℃のジメチルアセトアミド水溶液からなる凝固液中に、孔径75μm、孔数30000の紡糸ノズルより吐出し凝固糸を得ると同時に、凝固糸にかかる張力を60mgf/フィラメントに制御しながら引き取った。引き取った凝固糸は、空中での延伸を実施せず、ふたたび濃度を65質量%、温度を30℃のジメチルアセトアミド水溶液中にて2.00倍で延伸した。それ以降は、延伸・洗浄槽での延伸倍率を4.00倍、加圧飽和水蒸気雰囲気下での延伸倍率を2.00倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は7.84倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は15.7倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径はほぼ同等であったが、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRaは実施例1と比較して増加した。また、炭素繊維束のストランド強度も4400MPaとなり、圧力容器の破壊圧力も80MPaと実施例1と比較して低い値となった。
Comparative Example 1
In the production of the carbon fiber precursor acrylic fiber bundle, the acrylonitrile-based polymer solution used in Example 1 was placed in a coagulating solution consisting of a dimethylacetamide aqueous solution having a concentration of 65% by mass and a temperature of 30 ° C. and having a pore size of 75 μm and a pore size of 30,000. At the same time as the coagulated yarn was discharged from the spinning nozzle, the tension applied to the coagulated yarn was taken over while being controlled to 60 mgf / filament. The collected coagulated yarn was not stretched in the air, but was again stretched at a concentration of 65% by mass and at a temperature of 30 ° C. in a dimethylacetamide aqueous solution at a ratio of 2.00 times. After that, the same procedure as in Example 1 was carried out except that the stretching ratio in the stretching / washing tank was 4.00 times and the stretching ratio in a pressurized saturated steam atmosphere was 2.00 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 7.84 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 15. It was 7.7 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle were almost the same, but the dent distance / minor axis of the single fiber and the center line average roughness Ra of the single fiber surface were found in Example 1. Increased compared to. Further, the strand strength of the carbon fiber bundle was 4400 MPa, and the breaking pressure of the pressure vessel was 80 MPa, which was lower than that of Example 1.

比較例2
炭素繊維前駆体アクリル繊維束の製造において、実施例1で用いたアクリロニトリル系重合体溶液を、濃度60質量%、温度30℃のジメチルアセトアミド水溶液からなる凝固液中に、孔径75μm、孔数30000の紡糸ノズルより吐出し凝固糸を得ると同時に、凝固糸にかかる張力を95mgf/フィラメントに制御しながら引き取った。引き取った凝固糸は、空中での延伸を実施せず、ふたたび濃度を60質量%、温度を30℃のジメチルアセトアミド水溶液中にて1.20倍で延伸した。それ以降は、延伸・洗浄槽での延伸倍率を4.00倍、加圧飽和水蒸気雰囲気下での延伸倍率を2.00倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は4.70倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.41倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRaは実施例1と比較して増加した。また、炭素繊維束のストランド強度も4400MPaとなり、圧力容器の破壊圧力も80MPaと実施例1と比較して低い値となった。
Comparative Example 2
In the production of the carbon fiber precursor acrylic fiber bundle, the acrylonitrile-based polymer solution used in Example 1 was placed in a coagulating solution consisting of a dimethylacetamide aqueous solution having a concentration of 60% by mass and a temperature of 30 ° C., having a pore size of 75 μm and a pore size of 30,000. At the same time as the coagulated yarn was discharged from the spinning nozzle, the tension applied to the coagulated yarn was taken over while being controlled to 95 mgf / filament. The coagulated yarn taken up was not stretched in the air, but was stretched again in a dimethylacetamide aqueous solution having a concentration of 60% by mass and a temperature of 30 ° C. at a concentration of 1.20 times. After that, the same procedure as in Example 1 was carried out except that the stretching ratio in the stretching / washing tank was 4.00 times and the stretching ratio in a pressurized saturated steam atmosphere was 2.00 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 4.70 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 9. It was .41 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle, the recessed distance / minor axis of the single fiber, and the centerline average roughness Ra of the single fiber surface were increased as compared with Example 1. Further, the strand strength of the carbon fiber bundle was 4400 MPa, and the breaking pressure of the pressure vessel was 80 MPa, which was lower than that of Example 1.

比較例3
炭素繊維前駆体アクリル繊維束の製造において、実施例1で用いたアクリロニトリル系重合体溶液を、凝固糸にかかる張力を74mgf/フィラメントに制御しながら引き取り、空中での延伸倍率を1.05倍とし、延伸・洗浄槽での延伸倍率を3.00倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は3.09倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は10.8倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRaは実施例1と比較して低下した。また、炭素繊維束のストランド強度も5500MPaとなり、圧力容器の破壊圧力も110MPaと実施例1と比較して低い値となった。
Comparative Example 3
In the production of the carbon fiber precursor acrylic fiber bundle, the acrylonitrile-based polymer solution used in Example 1 was taken up while controlling the tension applied to the coagulated yarn to 74 mgf / filament, and the draw ratio in the air was set to 1.05 times. The same procedure as in Example 1 was carried out except that the stretching ratio in the stretching / washing tank was set to 3.00 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 3.09 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was 0.8 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle, the recessed distance / minor axis of the single fiber, and the centerline average roughness Ra of the single fiber surface were reduced as compared with Example 1. Further, the strand strength of the carbon fiber bundle was also 5500 MPa, and the breaking pressure of the pressure vessel was 110 MPa, which was lower than that of Example 1.

比較例4
炭素繊維前駆体アクリル繊維束の製造において、空中での延伸倍率を1.20倍とし、延伸・洗浄槽での延伸倍率を4.00倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を2.60倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は4.70倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は12.2倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維表面の中心線平均粗さRaは実施例1とほぼ同等であったが、単繊維の長径/短径および単繊維の凹み距離/短径は実施例1と比較して低下した。また、炭素繊維束のストランド強度も5350MPaとなり、圧力容器の破壊圧力も110MPaと実施例1と比較して低い値となった。
Comparative Example 4
In the production of carbon fiber precursor acrylic fiber bundles, the draw ratio in the air was set to 1.20 times, the draw ratio in the draw / washing tank was set to 4.00 times, and the draw ratio in a pressurized saturated steam atmosphere was set to 2. It was carried out in the same manner as in Example 1 except that it was set to .60 times. The total draw ratio from the time when the coagulated yarn is taken up to the time when the drawn yarn after treatment in the hot water tank is obtained is 4.70 times, and the total draw ratio from the time when the coagulated yarn is taken up to the time when it is drawn under a pressurized saturated steam atmosphere is 12. It was twice as much.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The average roughness Ra of the centerline surface of the carbon fiber precursor acrylic fiber bundle and the single fiber surface of the carbon fiber bundle was almost the same as that of Example 1, but the major axis / minor axis of the single fiber and the recessed distance / minor axis of the single fiber. Was lower than that of Example 1. Further, the strand strength of the carbon fiber bundle was 5350 MPa, and the breaking pressure of the pressure vessel was 110 MPa, which was lower than that of Example 1.

比較例5
炭素繊維前駆体アクリル繊維束の製造において、実施例1で用いたアクリロニトリル系重合体溶液を、凝固糸にかかる張力を49mgf/フィラメントに制御しながら引き取った後、引き取った凝固糸を空中にて1.05倍に延伸した上に、濃度を35質量%、温度を55℃のジメチルアセトアミド水溶液中にて1.50倍に延伸した。それ以降は、延伸・洗浄槽での延伸倍率を1.70倍とし、熱水槽での延伸倍率を2.00倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は5.36倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は18.7倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径、単繊維表面の中心線平均粗さRaは実施例1と比較して低下した。また単繊維の凹みは認められなかった(単繊維の凹み距離/短径=0.000)。炭素繊維束のストランド強度は6000MPaと実施例1より向上したものの、圧力容器の破壊圧力は120MPaと実施例1と比較して低い値となった。
Comparative Example 5
In the production of the carbon fiber precursor acrylic fiber bundle, the acrylonitrile-based polymer solution used in Example 1 was taken up while controlling the tension applied to the coagulated yarn to 49 mgf / filament, and then the taken coagulated yarn was taken in the air. After stretching 0.05 times, it was stretched 1.50 times in a dimethylacetamide aqueous solution having a concentration of 35% by mass and a temperature of 55 ° C. After that, the same procedure as in Example 1 was carried out except that the stretching ratio in the stretching / washing tank was 1.70 times and the stretching ratio in the hot water tank was 2.00 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 5.36 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 18. It was 7.7 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle, and the center line average roughness Ra of the surface of the single fiber were lowered as compared with Example 1. No dents in the single fibers were observed (single fiber dent distance / minor axis = 0.000). Although the strand strength of the carbon fiber bundle was 6000 MPa, which was higher than that of Example 1, the breaking pressure of the pressure vessel was 120 MPa, which was lower than that of Example 1.

比較例6
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の温度を30℃とし、凝固糸にかかる張力を85mgf/フィラメントに制御し、加圧飽和水蒸気雰囲気下での延伸倍率を4.20倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.57倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は10.8倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRaは実施例1と比較して増加した。炭素繊維束のストランド強度は6000MPaと実施例1より向上したものの、圧力容器の破壊圧力は123MPaと実施例1と比較して低い値となった。
Comparative Example 6
In the production of the carbon fiber precursor acrylic fiber bundle, the temperature of the dimethylacetamide aqueous solution, which is a coagulating liquid, is set to 30 ° C., the tension applied to the coagulated yarn is controlled to 85 mgf / filament, and the draw ratio under a pressurized saturated steam atmosphere is 4. It was carried out in the same manner as in Example 1 except that it was multiplied by 20. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.57 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was 0.8 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle, the recessed distance / minor axis of the single fiber, and the centerline average roughness Ra of the single fiber surface were increased as compared with Example 1. Although the strand strength of the carbon fiber bundle was 6000 MPa, which was higher than that of Example 1, the breaking pressure of the pressure vessel was 123 MPa, which was lower than that of Example 1.

比較例7
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度を63質量%とし、凝固糸にかかる張力を88mgf/フィラメントに制御し、加圧飽和水蒸気雰囲気下での延伸倍率を4.20倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.57倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は10.8倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRaは実施例1と比較して増加した。炭素繊維束のストランド強度は6000MPaと実施例1より向上したものの、圧力容器の破壊圧力は122MPaと実施例1と比較して低い値となった。
Comparative Example 7
In the production of the carbon fiber precursor acrylic fiber bundle, the concentration of the dimethylacetamide aqueous solution, which is a coagulating liquid, is set to 63% by mass, the tension applied to the coagulated yarn is controlled to 88 mgf / filament, and the draw ratio under a pressurized saturated steam atmosphere is adjusted. It was carried out in the same manner as in Example 1 except that it was set to 4.20 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.57 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was 0.8 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle, the recessed distance / minor axis of the single fiber, and the centerline average roughness Ra of the single fiber surface were increased as compared with Example 1. Although the strand strength of the carbon fiber bundle was 6000 MPa, which was higher than that of Example 1, the breaking pressure of the pressure vessel was 122 MPa, which was lower than that of Example 1.

比較例8
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度を65質量%とし、凝固糸にかかる張力を68mgf/フィラメントに制御し、空中での延伸を実施せず、延伸・洗浄槽での延伸倍率を3.40倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を2.00倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は3.33倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は6.66倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径および単繊維の凹み距離/短径は実施例1と比較して低下し、単繊維表面の中心線平均粗さRaは実施例1と比較して増加した。また、炭素繊維束のストランド強度は4600MPa、圧力容器の破壊圧力は90MPaと実施例1と比較して低い値となった。
Comparative Example 8
In the production of the carbon fiber precursor acrylic fiber bundle, the concentration of the dimethylacetamide aqueous solution, which is a coagulating liquid, is set to 65% by mass, the tension applied to the coagulated yarn is controlled to 68 mgf / filament, and stretching is performed without stretching in the air. The same procedure as in Example 1 was carried out except that the stretching ratio in the washing tank was 3.40 times and the stretching ratio in a pressurized saturated steam atmosphere was 2.00 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 3.33 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 6. It was .66 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle and the recessed distance / minor axis of the single fiber were lower than those in Example 1, and the centerline average roughness Ra of the single fiber surface was It increased as compared with Example 1. The strand strength of the carbon fiber bundle was 4600 MPa, and the breaking pressure of the pressure vessel was 90 MPa, which were lower than those of Example 1.

比較例9
炭素繊維前駆体アクリル繊維束の製造において、実施例1で用いたアクリロニトリル系重合体溶液を、凝固糸にかかる張力を45mgf/フィラメントに制御しながら引き取り、空中での延伸倍率を1.30倍とし、延伸・洗浄槽での延伸倍率を2.00倍とし、熱水槽での延伸倍率を1.00倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を5.00倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.60倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は13.0倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径および単繊維表面の中心線平均粗さRaは実施例1と比較して低下した。また単繊維の凹みは認められなかった(単繊維の凹み距離/短径=0.000)。また、炭素繊維束のストランド強度は5400MPa、圧力容器の破壊圧力は110MPaと実施例1と比較して低い値となった。
Comparative Example 9
In the production of the carbon fiber precursor acrylic fiber bundle, the acrylonitrile-based polymer solution used in Example 1 was taken up while controlling the tension applied to the coagulated yarn to 45 mgf / filament, and the draw ratio in the air was set to 1.30 times. Examples except that the stretching ratio in the stretching / washing tank was 2.00 times, the stretching ratio in the hot water tank was 1.00 times, and the stretching ratio in a pressurized saturated steam atmosphere was 5.00 times. It was carried out in the same manner as in 1. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.60 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 13. It was 0.0 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle and the center line average roughness Ra of the surface of the single fiber were lowered as compared with Example 1. No dents in the single fibers were observed (single fiber dent distance / minor axis = 0.000). The strand strength of the carbon fiber bundle was 5400 MPa, and the breaking pressure of the pressure vessel was 110 MPa, which were lower than those of Example 1.

比較例10
炭素繊維前駆体アクリル繊維束の製造において、凝固液中のジメチルアセトアミド水溶液の濃度を75%とした以外は実施例1と同様に実施した。
結果、凝固液より引き取った凝固糸の単繊維同士が接着し、炭素繊維前駆体アクリル繊維束を得ることが出来なかった。なお、炭素繊維前駆体アクリル繊維束の紡糸条件は表1に記載のとおりである。
Comparative Example 10
The production of the carbon fiber precursor acrylic fiber bundle was carried out in the same manner as in Example 1 except that the concentration of the dimethylacetamide aqueous solution in the coagulating liquid was 75%.
As a result, the single fibers of the coagulated yarn taken from the coagulating liquid adhered to each other, and the carbon fiber precursor acrylic fiber bundle could not be obtained. The spinning conditions for the carbon fiber precursor acrylic fiber bundle are as shown in Table 1.

実施例5
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度を68質量%とし、凝固糸にかかる張力を74mgf/フィラメントに制御し、空中での延伸倍率を1.04倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.65倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.27倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 5
In the production of the carbon fiber precursor acrylic fiber bundle, the concentration of the dimethylacetamide aqueous solution, which is a coagulating liquid, is set to 68% by mass, the tension applied to the coagulated yarn is controlled to 74 mgf / filament, and the draw ratio in the air is 1.04 times. It was carried out in the same manner as in Example 1 except that it was carried out. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.65 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 9. It was .27 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

実施例6
炭素繊維前駆体アクリル繊維束の製造において、実施例1で用いたアクリロニトリル系重合体溶液を、凝固糸にかかる張力を74mgf/フィラメントに制御しながら引き取り、延伸・洗浄槽での延伸倍率を2.50倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を3.80倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.47倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.40倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 6
In the production of the carbon fiber precursor acrylic fiber bundle, the acrylonitrile-based polymer solution used in Example 1 was taken up while controlling the tension applied to the coagulated yarn to 74 mgf / filament, and the stretching ratio in the stretching / washing tank was 2. The same procedure as in Example 1 was carried out except that the stretching ratio was set to 50 times and the stretching ratio in a pressurized saturated steam atmosphere was set to 3.80 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.47 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 9. It was .40 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

実施例7
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度および温度をそれぞれ68質量%、39℃とし、凝固糸にかかる張力を60mgf/フィラメントに制御し、空中での延伸倍率を1.04倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を3.40倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.65倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.01倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 7
In the production of the carbon fiber precursor acrylic fiber bundle, the concentration and temperature of the dimethylacetamide aqueous solution, which is a coagulating liquid, are set to 68% by mass and 39 ° C., respectively, the tension applied to the coagulated yarn is controlled to 60 mgf / filament, and the draw ratio in the air. Was 1.04 times, and the stretching ratio under a pressurized saturated steam atmosphere was 3.40 times, but the same procedure as in Example 1 was carried out. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.65 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 9. It was 0.01 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

実施例8
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度および温度をそれぞれ68質量%、39℃とし、空中での延伸倍率を1.04倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を3.40倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.65倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.01倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 8
In the production of the carbon fiber precursor acrylic fiber bundle, the concentration and temperature of the dimethylacetamide aqueous solution as a coagulating liquid were set to 68% by mass and 39 ° C., respectively, the stretching ratio in the air was set to 1.04 times, and the atmosphere was pressurized saturated steam. The same procedure as in Example 1 was carried out except that the stretching ratio was set to 3.40 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.65 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 9. It was 0.01 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

実施例9
炭素繊維前駆体アクリル繊維束の製造において、加圧飽和水蒸気雰囲気下での延伸倍率を4.20倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.57倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は10.8倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 9
The production of the carbon fiber precursor acrylic fiber bundle was carried out in the same manner as in Example 1 except that the draw ratio in a pressurized saturated water vapor atmosphere was set to 4.20 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.57 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was 0.8 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

実施例10
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度および温度をそれぞれ68質量%、39℃とし、ノズルの孔径を60μmとし、凝固糸にかかる張力を73mgf/フィラメントに制御し、空中での延伸倍率を1.07倍とし、延伸・洗浄槽での延伸倍率を2.50倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.62倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.18倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 10
In the production of the carbon fiber precursor acrylic fiber bundle, the concentration and temperature of the dimethylacetamide aqueous solution, which is a coagulating liquid, are set to 68% by mass and 39 ° C, respectively, the nozzle pore size is set to 60 μm, and the tension applied to the coagulated yarn is controlled to 73 mgf / filament. Then, the same procedure as in Example 1 was carried out except that the stretching ratio in the air was 1.07 times and the stretching ratio in the stretching / washing tank was 2.50 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.62 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 9. It was .18 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

実施例11
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度および温度をそれぞれ66質量%、39℃とし、凝固糸にかかる張力を74mgf/フィラメントに制御し、空中での延伸倍率を1.04倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を3.40倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.65倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は9.01倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
Example 11
In the production of the carbon fiber precursor acrylic fiber bundle, the concentration and temperature of the dimethylacetamide aqueous solution as the coagulating liquid were set to 66% by mass and 39 ° C., respectively, the tension applied to the coagulated yarn was controlled to 74 mgf / filament, and the draw ratio in the air. Was 1.04 times, and the stretching ratio under a pressurized saturated steam atmosphere was 3.40 times, but the same procedure as in Example 1 was carried out. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.65 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 9. It was 0.01 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.

比較例11
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の温度を30℃とし、凝固糸にかかる張力を60mgf/フィラメントに制御し、加圧飽和水蒸気雰囲気下での延伸倍率を4.20倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.57倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は10.8倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径は実施例1とほぼ同等(微増)であるが、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRaは実施例1と比較して増加した。また、炭素繊維束のストランド強度は5600MPa、圧力容器の破壊圧力は123MPaと実施例1と比較して低い値となった。
Comparative Example 11
In the production of the carbon fiber precursor acrylic fiber bundle, the temperature of the dimethylacetamide aqueous solution, which is a coagulating liquid, is set to 30 ° C., the tension applied to the coagulated yarn is controlled to 60 mgf / filament, and the draw ratio under a pressurized saturated steam atmosphere is 4. It was carried out in the same manner as in Example 1 except that it was multiplied by 20. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.57 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was 0.8 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle are almost the same (slightly increased) as in Example 1, but the dent distance / minor axis of the single fiber and the centerline average roughness of the single fiber surface are coarse. Ra increased as compared with Example 1. The strand strength of the carbon fiber bundle was 5600 MPa, and the breaking pressure of the pressure vessel was 123 MPa, which were lower than those of Example 1.

比較例12
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の温度を30℃とし、凝固糸にかかる張力を60mgf/フィラメントに制御し、延伸・洗浄槽での延伸倍率を2.50倍とし加圧飽和水蒸気雰囲気下での延伸倍率を4.20倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.47倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は10.4倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径は実施例1とほぼ同等(微増)であるが、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRaは実施例1と比較して増加した。また、炭素繊維束のストランド強度は5700MPa、圧力容器の破壊圧力も124MPaと実施例1と比較して低い値となった。
Comparative Example 12
In the production of carbon fiber precursor acrylic fiber bundles, the temperature of the dimethylacetamide aqueous solution, which is a coagulating liquid, is set to 30 ° C., the tension applied to the coagulated yarn is controlled to 60 mgf / filament, and the draw ratio in the drawing / washing tank is 2.50. The same procedure as in Example 1 was carried out except that the stretching ratio was set to 4.20 times in a pressurized saturated steam atmosphere. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.47 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was quadruple.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle are almost the same (slightly increased) as in Example 1, but the dent distance / minor axis of the single fiber and the centerline average roughness of the single fiber surface are coarse. Ra increased as compared with Example 1. The strand strength of the carbon fiber bundle was 5700 MPa, and the breaking pressure of the pressure vessel was 124 MPa, which were lower than those of Example 1.

比較例13
炭素繊維前駆体アクリル繊維束の製造において、凝固液であるジメチルアセトアミド水溶液の濃度を65質量%とし、凝固糸にかかる張力を95mgf/フィラメントに制御し、空中での延伸を実施せず、延伸・洗浄槽での延伸倍率を3.40倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を2.00倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は3.33倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は6.66倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径および単繊維の凹み距離/短径は実施例1とほぼ同等(微減)であるが、単繊維表面の中心線平均粗さRaは実施例1と比較して増加した。また、炭素繊維束のストランド強度は4400MPa、圧力容器の破壊圧力は85MPaと実施例1と比較して低い値となった。
Comparative Example 13
In the production of the carbon fiber precursor acrylic fiber bundle, the concentration of the dimethylacetamide aqueous solution, which is a coagulating liquid, is set to 65% by mass, the tension applied to the coagulated yarn is controlled to 95 mgf / filament, and stretching is performed without stretching in the air. The same procedure as in Example 1 was carried out except that the stretching ratio in the washing tank was 3.40 times and the stretching ratio in a pressurized saturated steam atmosphere was 2.00 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 3.33 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 6. It was .66 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle and the recessed distance / minor axis of the single fiber are almost the same (slightly reduced) as in Example 1, but the centerline average roughness of the single fiber surface is rough. Ra increased as compared with Example 1. The strand strength of the carbon fiber bundle was 4400 MPa, and the breaking pressure of the pressure vessel was 85 MPa, which were lower than those of Example 1.

比較例14
炭素繊維前駆体アクリル繊維束の製造において、凝固糸にかかる張力を65mgf/フィラメントに制御し、空中での延伸倍率を1.20倍とし、延伸・洗浄槽での延伸倍率を3.60倍とし、加圧飽和水蒸気雰囲気下での延伸倍率を2.60倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は4.23倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は11.0倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径および単繊維の凹み距離/短径は実施例1と比較して低下し、単繊維表面の中心線平均粗さRaは実施例1とほぼ同等であった。また、炭素繊維束のストランド強度は5400MPa、圧力容器の破壊圧力は115MPaと実施例1と比較して低い値となった。
Comparative Example 14
In the production of carbon fiber precursor acrylic fiber bundles, the tension applied to the coagulated yarn is controlled to 65 mgf / filament, the draw ratio in the air is set to 1.20 times, and the draw ratio in the draw / washing tank is set to 3.60 times. The same procedure as in Example 1 was carried out except that the stretching ratio under a pressurized saturated steam atmosphere was 2.60 times. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 4.23 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 11. It was 0.0 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle and the recessed distance / minor axis of the single fiber were lower than those in Example 1, and the centerline average roughness Ra of the single fiber surface was It was almost the same as in Example 1. The strand strength of the carbon fiber bundle was 5400 MPa, and the breaking pressure of the pressure vessel was 115 MPa, which were lower than those of Example 1.

比較例15
炭素繊維前駆体アクリル繊維束の製造において、凝固糸にかかる張力を45mgf/フィラメントに制御し、加圧飽和水蒸気雰囲気下での延伸倍率を4.20倍とした以外は実施例1と同様に実施した。凝固糸を引き取ってから熱水槽による処理後の延伸糸を得るまでの合計延伸倍率は2.57倍、凝固糸を引き取ってから加圧飽和水蒸気雰囲気下で延伸した後までの合計延伸倍率は10.8倍であった。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径および単繊維の凹み距離/短径は実施例1とほぼ同等であったが、単繊維表面の中心線平均粗さRaは実施例1と比較して低下した。また、炭素繊維束のストランド強度は5500MPa、圧力容器の破壊圧力は123MPaと実施例1と比較して低い値となった。
Comparative Example 15
In the production of the carbon fiber precursor acrylic fiber bundle, the same procedure as in Example 1 was carried out except that the tension applied to the coagulated yarn was controlled to 45 mgf / filament and the draw ratio in a pressurized saturated steam atmosphere was set to 4.20 times. did. The total draw ratio from taking the coagulated yarn to obtaining the drawn yarn after treatment in the hot water tank is 2.57 times, and the total draw ratio from taking the coagulated yarn to drawing in a pressurized saturated steam atmosphere is 10. It was 0.8 times.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle and the recessed distance / minor axis of the single fiber were almost the same as in Example 1, but the centerline average roughness Ra of the single fiber surface was almost the same. Was lower than that of Example 1. The strand strength of the carbon fiber bundle was 5500 MPa, and the breaking pressure of the pressure vessel was 123 MPa, which were lower than those of Example 1.

比較例16
炭素繊維前駆体アクリル繊維束の製造において、凝固糸にかかる張力を35mgf/フィラメントに制御した以外は実施例1と同様に実施した。
炭素繊維前駆体アクリル繊維束の紡糸条件を表1にまとめた。また得られた炭素繊維前駆体アクリル繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径および単繊維表面の中心線平均粗さRa)、ならびに得られた炭素繊維束の物性(単繊維の長径/短径、単繊維の凹み距離/短径、単繊維表面の中心線平均粗さRa、ストランド強度および得られた炭素繊維束を用いて製造した圧力容器の破壊圧力)を上記の方法に従って測定した。測定結果を表2に示す。
炭素繊維前駆体アクリル繊維束および炭素繊維束の単繊維の長径/短径および単繊維の凹み距離/短径は実施例1とほぼ同等であったが、単繊維表面の中心線平均粗さRaは実施例1と比較して低下した。また、炭素繊維束のストランド強度は5700MPaと実施例1と比較して低い値となった。
Comparative Example 16
In the production of the carbon fiber precursor acrylic fiber bundle, the same procedure as in Example 1 was carried out except that the tension applied to the coagulated yarn was controlled to 35 mgf / filament.
Table 1 summarizes the spinning conditions for the carbon fiber precursor acrylic fiber bundle. The physical properties of the obtained carbon fiber precursor acrylic fiber bundle (major axis / minor axis of the single fiber, recessed distance / minor axis of the single fiber, and centerline average roughness Ra of the surface of the single fiber), and the obtained carbon fiber bundle. Physical properties (major axis / minor axis of single fiber, recess distance / minor axis of single fiber, centerline average roughness Ra of single fiber surface, strand strength and breaking pressure of pressure vessel manufactured using the obtained carbon fiber bundle ) Was measured according to the above method. The measurement results are shown in Table 2.
The major axis / minor axis of the carbon fiber precursor acrylic fiber bundle and the single fiber of the carbon fiber bundle and the recessed distance / minor axis of the single fiber were almost the same as in Example 1, but the centerline average roughness Ra of the single fiber surface was almost the same. Was lower than that of Example 1. The strand strength of the carbon fiber bundle was 5700 MPa, which was lower than that of Example 1.

Figure 2021059834
Figure 2021059834

Figure 2021059834
Figure 2021059834

本発明の炭素繊維前駆体アクリル繊維は、単繊維の断面形状が特徴的な長径/短径を有しており、同様な長径/短径を有する断面形状を有する炭素繊維を得ることが出来る。この炭素繊維からなる炭素繊維束は樹脂組成物の含浸が優れているので、高い強度のCFRP製タンクを得るために有用である。 The carbon fiber precursor acrylic fiber of the present invention has a major axis / minor axis having a characteristic cross-sectional shape of a single fiber, and a carbon fiber having a similar major axis / minor axis cross-sectional shape can be obtained. Since the carbon fiber bundle made of this carbon fiber is excellent in impregnation with the resin composition, it is useful for obtaining a high-strength CFRP tank.

1:単繊維の断面
2:面積最小の外接矩形
3:単繊維断面と2点で接する直線
4.直線3から最も離れた領域の周上の点
X:長径
Y:短径
Z:凹み距離
1: Cross section of single fiber
2: The circumscribed rectangle with the smallest area
3: A straight line that touches the cross section of a single fiber at two points
4. A point on the circumference of the region farthest from the straight line 3
X: major axis
Y: minor diameter
Z: dent distance

Claims (10)

単繊維の表面の中心線平均粗さRaが6.0nm以上13nm以下であり、単繊維の長径/短径が1.11以上1.245以下である炭素繊維。 A carbon fiber having a center line average roughness Ra of the surface of the single fiber of 6.0 nm or more and 13 nm or less, and a major axis / minor axis of the single fiber of 1.11 or more and 1.245 or less. 単繊維の凹み距離/短径が0.011以上0.018以下である請求項1に記載の炭素繊維。 The carbon fiber according to claim 1, wherein the recess distance / minor axis of the single fiber is 0.011 or more and 0.018 or less. 前記単繊維表面の中心線平均粗さRaが10nm以下であり、前記単繊維の長径/短径が1.135以上である、請求項1に記載の炭素繊維。 The carbon fiber according to claim 1, wherein the center line average roughness Ra of the surface of the single fiber is 10 nm or less, and the major axis / minor axis of the single fiber is 1.135 or more. 前記単繊維の凹み距離/短径が0.0145以上である、請求項3に記載の炭素繊維。 The carbon fiber according to claim 3, wherein the dent distance / minor axis of the single fiber is 0.0145 or more. 単繊維表面の中心線平均粗さRaが18nm以上27nm以下であり、単繊維の長径/短径が1.11以上1.245以下である炭素繊維前駆体アクリル繊維。 A carbon fiber precursor acrylic fiber having a center line average roughness Ra of the surface of the single fiber of 18 nm or more and 27 nm or less, and a major axis / minor axis of the single fiber of 1.11 or more and 1.245 or less. 単繊維の凹み距離/短径が0.011以上0.018以下である請求項5に記載の炭素繊維前駆体アクリル繊維。 The carbon fiber precursor acrylic fiber according to claim 5, wherein the recess distance / minor axis of the single fiber is 0.011 or more and 0.018 or less. 前記単繊維表面の中心線平均粗さRaが24nm以下であり、前記単繊維の長径/短径が1.135以上である、請求項5に記載の炭素繊維前駆体アクリル繊維。 The carbon fiber precursor acrylic fiber according to claim 5, wherein the center line average roughness Ra of the surface of the single fiber is 24 nm or less, and the major axis / minor axis of the single fiber is 1.135 or more. 前記単繊維の凹み距離/短径が0.0145以上である、請求項7に記載の炭素繊維前駆体アクリル繊維。 The carbon fiber precursor acrylic fiber according to claim 7, wherein the recess distance / minor axis of the single fiber is 0.0145 or more. 下記1)〜3)の工程を含み、且つ下記4)及び5)の条件を満たす炭素繊維前駆体アクリル繊維束の製造方法。
1)凝固液濃度が65質量%以上70質量%以下であり、凝固液温度が36℃以上40℃以下である凝固液中に、アクリロニトリル系重合体溶液を紡糸口金から吐出し凝固させて、凝固糸を得ると同時に、凝固糸にかかる張力を55mgf/フィラメント以上75mgf/フィラメント以下に制御しながら引き取る工程。
2)前記1)工程にて引き取った凝固糸を空中にて1.00倍以上1.15倍以下の延伸処理を施した後、50℃以上の水を用いた、4段以上7段以下からなる洗浄・延伸槽にて2.4倍以上2.7倍以下の倍率範囲で延伸・洗浄を行い、さらに95℃以上の水を用いた熱水槽にて0.97倍以上1.1倍以下の緩和又は延伸を行って延伸糸を得る工程。
3)前記2)工程で延伸した後の延伸糸に油剤を付与して乾燥した後、130℃以上160℃以下の加圧水蒸気雰囲気下で3.0倍以上4.5倍以下に延伸する工程。
4)前記1)工程の凝固糸を凝固液より引き取ってから前記2)工程の延伸糸を得るまでの凝固糸の合計延伸倍率は2.4倍以上2.7倍以下である。
5)前記1)工程の凝固糸を引き取ってから前記3)工程の加圧水蒸気雰囲気下での延伸後までの合計延伸倍率は9.0倍以上12倍以下である。
A method for producing a carbon fiber precursor acrylic fiber bundle, which comprises the following steps 1) to 3) and satisfies the following conditions 4) and 5).
1) Acrylonitrile-based polymer solution is discharged from a spinneret to coagulate in a coagulation liquid having a coagulation liquid concentration of 65% by mass or more and 70% by mass or less and a coagulation liquid temperature of 36 ° C. or more and 40 ° C. or less. A step of obtaining a yarn and at the same time taking it while controlling the tension applied to the coagulated yarn to 55 mgf / filament or more and 75 mgf / filament or less.
2) After the coagulated yarn taken in the above 1) step is drawn in the air at 1.00 times or more and 1.15 times or less, using water at 50 ° C. or higher, from 4 steps or more and 7 steps or less. Stretching / washing is performed in a magnification range of 2.4 times or more and 2.7 times or less in a washing / stretching tank, and 0.97 times or more and 1.1 times or less in a hot water tank using water at 95 ° C. or higher. A step of obtaining a drawn yarn by relaxing or drawing the above.
3) A step of applying an oil agent to the drawn yarn after drawing in the step 2), drying the yarn, and then stretching the yarn to 3.0 times or more and 4.5 times or less in a pressurized steam atmosphere of 130 ° C. or higher and 160 ° C. or lower.
4) The total draw ratio of the coagulated yarn from the time when the coagulated yarn in the step 1) is taken from the coagulating liquid to the time when the drawn yarn in the step 2) is obtained is 2.4 times or more and 2.7 times or less.
5) The total draw ratio from the taking of the coagulated yarn in the step 1) to the drawing in the pressurized steam atmosphere of the step 3) is 9.0 times or more and 12 times or less.
下記7)〜9)工程を含む炭素繊維束の製造方法。
7)請求項5〜8のいずれか一項記載の炭素繊維前駆体アクリル繊維から構成される炭素繊維前駆体アクリル繊維束に対し、酸化性雰囲気中で200℃以上300℃以下に加熱し耐炎化繊維束とする耐炎化工程。
8)前記耐炎化繊維束を非酸化性雰囲気中、550℃以上800℃以下で加熱し前炭素化繊維束とする前炭素化工程。
9)前記前炭素化繊維束を非酸化性雰囲気中、1200℃以上3000℃以下で加熱し炭素繊維束とする高温炭素化工程。
A method for producing a carbon fiber bundle, which comprises the following steps 7) to 9).
7) The carbon fiber precursor acrylic fiber bundle composed of the carbon fiber precursor acrylic fiber according to any one of claims 5 to 8 is heated to 200 ° C. or higher and 300 ° C. or lower in an oxidizing atmosphere to make it flame resistant. Flame resistant process for making fiber bundles.
8) A pre-carbonization step in which the flame-resistant fiber bundle is heated at 550 ° C. or higher and 800 ° C. or lower in a non-oxidizing atmosphere to form a pre-carbonized fiber bundle.
9) A high-temperature carbonization step in which the pre-carbonized fiber bundle is heated at 1200 ° C. or higher and 3000 ° C. or lower in a non-oxidizing atmosphere to form a carbon fiber bundle.
JP2020218693A 2017-02-16 2020-12-28 Carbon fiber precursor acrylic fiber, carbon fiber, and production method of the same Pending JP2021059834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022178730A JP2023011895A (en) 2017-02-16 2022-11-08 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026727 2017-02-16
JP2017026727 2017-02-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018568628A Division JP6819701B2 (en) 2017-02-16 2018-02-16 Carbon fiber precursor Acrylic fiber, carbon fiber and their manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022178730A Division JP2023011895A (en) 2017-02-16 2022-11-08 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2021059834A true JP2021059834A (en) 2021-04-15

Family

ID=63169409

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018568628A Active JP6819701B2 (en) 2017-02-16 2018-02-16 Carbon fiber precursor Acrylic fiber, carbon fiber and their manufacturing method
JP2020218693A Pending JP2021059834A (en) 2017-02-16 2020-12-28 Carbon fiber precursor acrylic fiber, carbon fiber, and production method of the same
JP2022178730A Pending JP2023011895A (en) 2017-02-16 2022-11-08 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018568628A Active JP6819701B2 (en) 2017-02-16 2018-02-16 Carbon fiber precursor Acrylic fiber, carbon fiber and their manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022178730A Pending JP2023011895A (en) 2017-02-16 2022-11-08 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for the same

Country Status (7)

Country Link
EP (1) EP3584358B1 (en)
JP (3) JP6819701B2 (en)
KR (2) KR102385506B1 (en)
CN (1) CN110300819B (en)
HU (1) HUE057996T2 (en)
PT (1) PT3584358T (en)
WO (1) WO2018151255A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819701B2 (en) * 2017-02-16 2021-01-27 三菱ケミカル株式会社 Carbon fiber precursor Acrylic fiber, carbon fiber and their manufacturing method
US20220379000A1 (en) * 2019-10-08 2022-12-01 Toray Industries, Inc. Fiber bundle, method for producing same, and purification column

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098566A1 (en) * 2000-06-23 2001-12-27 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle
JP2016160560A (en) * 2015-03-04 2016-09-05 三菱レイヨン株式会社 Method for manufacturing carbon fiber bundle
WO2018151255A1 (en) * 2017-02-16 2018-08-23 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048342A (en) * 2003-07-31 2005-02-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle, method for producing the same, thermoplastic resin composition, and molded product of the same
JP5708965B2 (en) 2009-06-10 2015-04-30 三菱レイヨン株式会社 Acrylonitrile-based precursor fiber bundle and method for producing carbon fiber bundle
JP5313788B2 (en) * 2009-07-02 2013-10-09 三菱レイヨン株式会社 Carbon fiber precursor fiber bundle and method for producing the same
JP5473468B2 (en) 2009-08-10 2014-04-16 三菱レイヨン株式会社 Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
CN101694016A (en) * 2009-10-14 2010-04-14 东华大学 Method for homogenization preparation of polyacrylonitrile fiber
JP5700496B2 (en) * 2010-03-08 2015-04-15 東邦テナックス株式会社 Carbon fiber chopped strand and method for producing the same
JP5772012B2 (en) 2011-01-27 2015-09-02 東レ株式会社 Carbon fiber for filament winding molding and method for producing the same
US9683326B2 (en) * 2012-07-25 2017-06-20 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite material
JP6119168B2 (en) * 2012-10-03 2017-04-26 三菱ケミカル株式会社 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP6295874B2 (en) * 2014-07-29 2018-03-20 東レ株式会社 Carbon fiber bundle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098566A1 (en) * 2000-06-23 2001-12-27 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle
JP2016160560A (en) * 2015-03-04 2016-09-05 三菱レイヨン株式会社 Method for manufacturing carbon fiber bundle
WO2018151255A1 (en) * 2017-02-16 2018-08-23 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same

Also Published As

Publication number Publication date
HUE057996T2 (en) 2022-06-28
WO2018151255A1 (en) 2018-08-23
CN110300819B (en) 2022-06-07
JP6819701B2 (en) 2021-01-27
JP2023011895A (en) 2023-01-24
JPWO2018151255A1 (en) 2019-11-07
KR102273974B1 (en) 2021-07-06
EP3584358B1 (en) 2021-12-29
EP3584358A4 (en) 2020-01-22
KR20210082564A (en) 2021-07-05
CN110300819A (en) 2019-10-01
EP3584358A1 (en) 2019-12-25
KR20190103443A (en) 2019-09-04
PT3584358T (en) 2022-01-27
KR102385506B1 (en) 2022-04-11
US20200002850A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
JP4945684B2 (en) Acrylonitrile swelling yarn for carbon fiber, precursor fiber bundle, flame-resistant fiber bundle, carbon fiber bundle, and methods for producing them
JP5100758B2 (en) Carbon fiber strand and method for producing the same
EP2208813B1 (en) Carbon fiber strand and process for producing the same
JP2023011895A (en) Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for the same
US20160060793A1 (en) Carbon fiber bundle and method for producing same
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
US11959197B2 (en) Carbon fiber precursor acrylic fiber, carbon fiber, and method for producing same
JP7155577B2 (en) Carbon fiber precursor Acrylic fiber Carbon fiber
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
US20220170183A1 (en) Carbon fiber bundle and production method thereof
JP6729665B2 (en) Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
JPH08296124A (en) Non-circular cross section carbon fiber and carbon fiber-reinforced composite material
WO2023085284A1 (en) Carbon fibers, carbon fiber bundle, and production method for carbon fiber bundle
JP2015161056A (en) Acrylonitrile precursor fiber bundle for carbon fiber and production method thereof
JP2018159139A (en) Acrylic fiber bundle and production method of carbon fiber using the same
JP2012188767A (en) Carbon fiber precursor acrylic fiber bundle, method for manufacturing the same, and method for manufacturing carbon fiber bundle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220809