JP2021059488A - ガスバリア性組成物、ガスバリア材、及び積層体 - Google Patents

ガスバリア性組成物、ガスバリア材、及び積層体 Download PDF

Info

Publication number
JP2021059488A
JP2021059488A JP2020167283A JP2020167283A JP2021059488A JP 2021059488 A JP2021059488 A JP 2021059488A JP 2020167283 A JP2020167283 A JP 2020167283A JP 2020167283 A JP2020167283 A JP 2020167283A JP 2021059488 A JP2021059488 A JP 2021059488A
Authority
JP
Japan
Prior art keywords
plate
compound
alumina particles
gas barrier
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020167283A
Other languages
English (en)
Inventor
知樹 土肥
Tomoki Doi
知樹 土肥
新吾 高田
Shingo Takada
新吾 高田
一男 糸谷
Kazuo Itotani
一男 糸谷
建軍 袁
Kengun En
建軍 袁
太郎 森光
Taro Morimitsu
太郎 森光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Publication of JP2021059488A publication Critical patent/JP2021059488A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】ガスバリア性に優れるガスバリア性組成物、ガスバリア材、及び積層体を提供する。【解決手段】ガスバリア性組成物は、固体27Al NMR分析にて、静磁場強度14.1Tにおける10〜30ppmの6配位アルミニウムのピークに対する縦緩和時間T1が、5秒以上である、板状アルミナ粒子を含有する。【選択図】なし

Description

本発明は、ガスバリア性組成物、ガスバリア材、及び積層体に関する。
食品等の包装に用いられる包装材料には、内容物の保護、耐レトルト性、耐熱性、透明性、加工性といった機能が要求される。内容物の品質保持のためには、特にガスバリア性が重要となる。最近では、包装材料だけでなく、太陽電池、半導体等の電子材料に用いられる材料についても、高いガスバリア性が要求されるようになっている。
特許文献1には、水酸基を有する樹脂及びイソシアネート化合物を、粘土鉱物等の板状無機化合物及び光遮断剤と組み合わせることで、ガスバリア性等の特性が向上することが記載されている。
また、特許文献2には、リチウム又はアンモニウム交換イオン型ベントナイトと、ポリエチレングリコールにより修飾された改質リグニンとからなる粘土膜が開示されている。
国際公開第2013/027609号 特開2017−105991号公報
特許文献1に記載されているような板状無機化合物は嵩高く、また樹脂との良好な親和性を得るのが困難である。そのために添加量や分散性に限界がある。したがって、更に高いガスバリア性を得ようとして添加量を増加させるのが困難であり、また添加量を増やすと分散性の低下につながる。
また、特許文献2で用いているリグニンは、天然物に由来するポリフェノールであり、樹種、産地等により構造が異なることから、均一な品質を求める産業用途としては材料としての課題がある。また、リグニンは嵩高い構造を有するポリフェノールであり、完全な改質が難しいことから、改質リグニンを用いた粘土膜では十分な耐水性が得られない場合がある。
本発明は、上記事情に鑑みてなされたものであって、ガスバリア性、特に酸素バリア性に優れるガスバリア性組成物、ガスバリア材、及び積層体を提供する。
すなわち、本発明は、以下の態様を含む。
(1) 固体27Al NMR分析にて、静磁場強度14.1Tにおける10〜30ppmの6配位アルミニウムのピークに対する縦緩和時間Tが、5秒以上である、板状アルミナ粒子を含有するガスバリア性組成物。
(2) 前記板状アルミナ粒子がケイ素及び/又はゲルマニウムを含む、(1)に記載のガスバリア性組成物。
(3) 前記板状アルミナ粒子が表層にムライトを含む、(2)に記載のガスバリア性組成物。
(4) 前記板状アルミナ粒子がモリブデンを含む、(1)〜(3)のいずれか一項に記載のガスバリア性組成物。
(5) 前記板状アルミナ粒子100質量%に対するモリブデンの含有量が、三酸化モリブデン換算で、0.1以上1質量%以下である、(4)に記載のガスバリア性組成物。
(6) (1)〜(5)のいずれか一項に記載のガスバリア性組成物を含有するガスバリア材。
(7) コーティング剤である、(6)に記載のガスバリア材。
(8) 接着剤である、(6)に記載のガスバリア材。
(9) 基材と、(1)〜(5)のいずれか一項に記載のガスバリア性組成物を含有する層とを有する積層体。
本発明によれば、ガスバリア性、特に酸素バリア性に優れるガスバリア性組成物、ガスバリア材、及び積層体を提供することができる。
以下、本発明の一実施形態に係るガスバリア性組成物、ガスバリア材、及び積層体について詳細に説明する。
<ガスバリア性組成物>
本実施形態のガスバリア性組成物(以下、「実施形態のガスバリア性組成物」又は単に「ガスバリア性組成物」と称する場合がある)は、板状アルミナ粒子を含有する。板状アルミナ粒子は、固体27Al NMR分析にて、静磁場強度14.1Tにおける10〜30ppmの6配位アルミニウムのピークに対する縦緩和時間Tが、5秒以上である。板状アルミナ粒子は、アスペクト比が5〜500であり、固体27Al NMR分析にて、静磁場強度14.1Tにおける10〜30ppmの6配位アルミニウムのピークに対する縦緩和時間Tが、5秒以上であるものが好ましい。
本実施形態のガスバリア性組成物に含まれる板状アルミナ粒子は上記構成を有し、緻密な結晶構造であることから、上記構成を有する板状アルミナ粒子を含有する、本実施形態のガスバリア性組成物は、優れたガスバリア性を有する。
次いで、本実施形態のガスバリア性組成物に含まれる各構成成分について、以下に詳細を説明する。
[板状アルミナ粒子]
本実施形態のアルミナ粒子は板状形状を有しており、固体27Al NMR分析にて、静磁場強度14.1Tにおける10〜30ppmの6配位アルミニウムのピークに対する縦緩和時間Tが、5秒以上のものである。本実施形態のアルミナ粒子を、「板状アルミナ粒子」、「板状アルミナ」或いは単に「アルミナ粒子」とも称する。
本明細書において「板状」は、アルミナ粒子の平均粒子径を厚みで除したアスペクト比が2以上であることを指す。なお、本明細書において、「アルミナ粒子の厚み」は、走査型電子顕微鏡(SEM)により得られたイメージから、無作為に選出された少なくとも50個の板状アルミナ粒子について測定された厚みの算術平均値とする。また、「アルミナ粒子の平均粒子径」は、レーザー回折粒子径測定装置により測定された体積基準の累積粒度分布から、体積基準メジアン径D50として算出された値とする。
アルミナ粒子においては、以下に示す、厚み、粒子径、及びアスペクト比の条件は、それが板状である範囲で、どの様に組み合わせることもできる。また、これら条件で例示する数値範囲の上限値と下限値とは、自由に組み合わせることができる。
板状アルミナ粒子は、厚みが0.01μm以上5μm以下であることが好ましく、0.03μm以上5μm以下であることが好ましく、0.05μm以上5μm以下であることが好ましく、0.1μm以上3μm以下であることがより好ましく、0.15μm以上1.5μm以下であることがさらに好ましい。
さらに大粒径の板状アルミナ粒子を用いる場合には、厚みが3μm以上であることが好ましく、厚みが5μm以上60μm以下であることがより好ましい。
上記の厚みを有するアルミナ粒子は、アスペクト比が高く且つ機械的強度に優れることから好ましい。
板状アルミナ粒子は、平均粒子径(D50)が0.1μm以上500μm以下であることが好ましく、0.5μm以上100μm以下であることがより好ましく、1μm以上50μm以下であることがさらに好ましい。
より大粒径の板状アルミナ粒子を用いる場合には、平均粒子径(D50)が10μm以上であることが好ましく、20μm以上であることがより好ましく、22μm以上であることがより好ましく、25μm以上であることがさらに好ましく、31μm以上であることが特に好ましい。上記の平均粒子径の上限値は特に限定されるものではないが、一例として、実施形態の板状アルミナ粒子の平均粒子径(D50)は、10μm以上500μm以下であることが好ましく、20μm以上300μm以下であることが好ましく、22μm以上100μm以下であることがより好ましく、25μm以上100μm以下であることがさらに好ましく、31μm以上50μm以下であることが特に好ましい。
上記の下限値以上の平均粒子径(D50)を有するアルミナ粒子は、板状アルミナの板の上面又は下面の面積が大きいことから、高いガスバリア性を有する。また、上記上限値以下の平均粒子径(D50)を有するアルミナ粒子は、ガスバリア性組成物の配合に好適である。
板状アルミナ粒子は、厚みに対する平均粒子径の比率であるアスペクト比が2以上500以下であることが好ましく、5以上500以下であることが好ましく、10以上500以下であることが好ましく、13以上300以下であることがより好ましく、15以上300であることがより好ましく、20以上100以下であることがさらに好ましい。板状アルミナ粒子のアスペクト比が2以上であると、2次元の配合特性を有し得ることから好ましく、板状アルミナ粒子のアスペクト比が500以下であると、機械的強度に優れることから好ましい。アスペクト比が15以上であると、ガスバリア性がより向上するため、好ましい。
さらに大粒径の板状アルミナ粒子を用いる場合には、厚みに対する平均粒子径の比率であるアスペクト比が2以上50以下であることが好ましく、3以上30以下であることがより好ましい。
板状アルミナ粒子は、円形板状や楕円形板状であってもよいが、粒子形状は、例えば、多角板状であることが、取り扱い性や製造のし易さの点から好ましい。
板状アルミナ粒子は、どの様な製造方法に基づいて得られたものであってもよいが、よりアスペクト比が高く、より分散性に優れ、より生産性に優れる点で、モリブデン化合物(好ましくはさらにカリウム化合物)と形状制御剤の存在下でアルミニウム化合物を焼成する事により得ることが好ましい。形状制御剤は、珪素、珪素化合物、及びゲルマニウム化合物からなる群から選ばれる少なくとも一種を使用するのがよい。形状制御剤は後述のムライトのSiの供給元となることから、珪素又は珪素元素を含む珪素化合物を使用するのがより好ましい。
上記製造方法において、モリブデン化合物はフラックス剤として用いられる。本明細書中では、以下、フラックス剤としてモリブデン化合物を用いたこの製造方法を単に「フラックス法」ということがある。フラックス法については、後に詳記する。なお、かかる焼成により、モリブデン化合物がアルミニウム化合物と高温で反応し、モリブデン酸アルミニウムを形成した後、このモリブデン酸アルミニウムが、さらに、より高温でアルミナと酸化モリブデンに分解する際に、モリブデン化合物が板状アルミナ粒子内に取り込まれるものと考えられる。酸化モリブデンが昇華し、回収して、再利用することもできる。
なお、板状アルミナ粒子がムライトを表層に含む場合には、この過程で、形状制御剤として配合された珪素又は珪素原子を含む化合物とアルミニウム化合物が、モリブデンを介し反応することにより、ムライトが板状アルミナ粒子の表層に形成されるものと考えられる。ムライトの生成機構について、より詳しくは、アルミナの板表面にて、モリブデンとSi原子の反応によるMo−O−Siの形成、並びにモリブデンとAl原子の反応によるMo−O−Alの形成が起こり、高温焼成することでMoが脱離するとともにSi−O−Al結合を有するムライトが形成するものと考えられる。
板状アルミナ粒子に取り込まれない酸化モリブデンは、昇華させることにより回収して、再利用することが好ましい。こうすることで、板状アルミナ表面に付着する酸化モリブデン量を低減でき、樹脂の様な有機バインダーやガラスの様な無機バインダーなどの被分散媒体に分散させる際に、酸化モリブデンがバインダーに混入することがなく、板状アルミナ本来の性質を最大限に付与することが可能となる。
尚、本明細書においては、後記する製造方法において昇華しうる性質を有するものをフラックス剤、昇華し得ないものを形状制御剤と称するものとする。
前記板状アルミナ粒子の製造において、モリブデン及び形状制御剤を活用することにより、アルミナ粒子は高い結晶性および高いα結晶率を有し、自形を持つことから、優れた分散性、機械強度、ガスバリア性を実現することができる。
板状アルミナ粒子がムライトを表層に含む場合には、板状アルミナ粒子の表層に生成されるムライトの量は、モリブデン化合物及び形状制御剤の使用割合によって制御可能であるが、特に形状制御剤として使用される珪素又は珪素元素を含む珪素化合物の使用割合によって制御可能である。板状アルミナ粒子の表層に生成されるムライトの量の好ましい値と、原料の好ましい使用割合については、後に詳記する。
板状アルミナ粒子は、ガスバリア性向上の観点から、アスペクト比が5〜500である板状アルミナ粒子であり、固体27Al NMR分析にて、静磁場強度14.1Tにおける10〜30ppmの6配位アルミニウムのピークに対する縦緩和時間Tが、5秒以上であることが好ましい。
上記縦緩和時間Tが5秒以上であるということは、板状アルミナ粒子の結晶性が高いことを意味するものである。固体状態における縦緩和時間が大きいと結晶の対称性がよく、結晶性が高いという知見が報告されている(既報:北川進ら著「錯体化学会選書4 多核種の溶液および固体NMR」、三共出版株式会社、p80−82)。
板状アルミナ粒子において、上記縦緩和時間Tは、5秒以上が好ましく、6秒以上がより好ましく、7秒以上がさらに好ましい。
実施形態の板状アルミナ粒子において、上記縦緩和時間Tの上限値は、特に制限されるものではないが、例えば、22秒以下であってもよく、15秒以下であってもよく、12秒以下であってもよい。
上記に例示した上記縦緩和時間Tの数値範囲の一例としては、5秒以上22秒以下であってもよく、6秒以上15秒以下であってもよく、7秒以上12秒以下であってもよい。
板状アルミナ粒子は、固体27Al NMR分析にて、静磁場強度14.1Tにおける60〜90ppmの4配位アルミニウムのピークが不検出であることが好ましい。かかる板状アルミナ粒子は、異なる配位数の結晶が含まれることに起因した、結晶の対称性の歪みを起点とした破損・脱落が起こり難いものと考えられ、形状安定性により優れる傾向にある。
従来、無機物の結晶性の程度は、XRD分析等の結果により評価されることが、一般的である。しかし、本発明者らの検討により、アルミナ粒子に対する結晶性の評価について、上記縦緩和時間Tを指標とすることで、従来のXRD分析よりも精度の良い解析結果が得られることを見出だした。実施形態に係る板状アルミナ粒子は、上記縦緩和時間Tが5秒以上と大きく、アルミナ粒子の結晶性が高いといえる。すなわち、実施形態に係る板状アルミナ粒子は、おそらく結晶性が高く、化学安定性や強度も寄与することでガスバリア性に優れるものと考えられる。
板状のアルミナ粒子は、球状のアルミナ粒子と比べ、従来、結晶性の高いアルミナ粒子を得ることは難しかった。このことは、板状アルミナ粒子では、球状のアルミナ粒子とは異なり、その製造過程において結晶成長の方向に偏りを生じさせる必要があるためと考えられる。
対して、上記縦緩和時間Tの値を満たす上記のような板状アルミナ粒子は、板状形状でありながら結晶性が高いものである。そのため、優れた化学安定性を示し、さらに塗膜安定性や機械強度が高められた、非常に有用なものである。
また、板状形状の指標として、実施形態の板状アルミナ粒子は、Cu−Kα線を用いたX線回折測定で得られる回折ピークの、(006)面に対応する2θ=41.6±0.3度のピーク強度I(006)と、(113)面に対応する2θ=43.3±0.3度のピーク強度I(113)と、の比I(006)/I(113)(以下、I(006)/I(113)を、(006/113)比と略す。)が、好ましくは0.2以上30以下、より好ましくは1以上20以下であってよく、更に好ましくは3以上10以下、特に好ましくは7.5以上10以下である。この場合の板状アルミナ粒子は、例えば、平均粒子径(D50)が10μm以上、厚みが0.1μm以上である。
上記(006/113)比の値が大きいことは、(113)面に対し(006)面の比率が大きいことを意味し、(006)面の方位の結晶に対応する面が顕著に発達した平板状のアルミナ粒子であることを意味していると理解される。かかる平板状のアルミナ粒子は、板状アルミナの板形状の表面において発達した上面又は下面の面積が大きく、(113)面の方位の結晶に対応する面の形成が抑制されているので、一粒あたりの質量が小さくとも、高いガスバリア性を発揮する。
板状アルミナ粒子の等電点のpHは、例えば2〜6の範囲であり、2.5〜5の範囲であることが好ましく、3〜4の範囲であることがより好ましい。等電点のpHが上記範囲内にある板状アルミナ粒子は、静電反発力が高く、それ自体で上記した様な被分散媒体へ配合した際の分散安定性を高めることができ、更なる性能向上を意図したカップリング処理剤等の表面処理による改質がより容易となる。
等電点のpHの値は、ゼータ電位測定をゼータ電位測定装置(マルバーン社製、ゼータサイザーナノZSP)にて、試料20mgと10mM KCl水溶液10mLを泡取り錬太郎(シンキー社製、ARE−310)にて攪拌・脱泡モードで3分間攪拌し、5分静置した上澄みを測定用試料とし、自動滴定装置により、試料に0.1N HClを加え、pH=2までの範囲でゼータ電位測定を行い(印加電圧100V、Monomodlモード)、電位ゼロとなる等電点のpHを評価することで得られる。
板状アルミナ粒子は、例えば密度が3.70g/cm以上4.10g/cm以下であり、密度が3.72g/cm以上4.10g/cm以下であることが好ましく、密度が3.80g/cm以上4.10g/cm以下であることがより好ましい。
密度は、300℃3時間の条件で板状アルミナ粒子の前処理を行った後、マイクロメリティックス社製 乾式自動密度計アキュピックII1330を用いて、測定温度25℃、ヘリウムをキャリアガスとして使用した条件で測定できる。
板状アルミナ粒子は、例えば比表面積が、0.01m/g以上50m/g以下であることが好ましく、0.1m/g以上20m/g以下であることがより好ましく、0.5m/g以上10m/g以下であることがさらに好ましく、1.3m/g以上10m/g以下であることが特に好ましい。
比表面積は、BET法による窒素ガス吸着/脱着法から測定された板状アルミナ粒子1g当たりの表面積として求めることができる。
なお、この比表面積は、JIS Z 8830:BET1点法(吸着ガス:窒素)等で測定することができる。
[アルミナ]
板状アルミナ粒子に含まれる「アルミナ」は、酸化アルミニウムであり、例えば、γ、δ、θ、κ、等の各種の結晶形の遷移アルミナであっても、または遷移アルミナ中にアルミナ水和物を含んでいてもよいが、より機械的な強度または化学安定性に優れる点で、基本的にα結晶形(α型)であることが好ましい。α結晶形がアルミナの緻密な結晶構造であり、板状アルミナの機械強度または化学安定性が高められることも寄与して、ガスバリア性の向上に有利となる。
α結晶化率は、100%にできるだけ近いほうが、α結晶形本来の性質を発揮しやすくなるので好ましい。板状アルミナ粒子のα結晶化率は、例えば90%以上であり、95%以上であることが好ましく、99%以上であることがより好ましい。
〔珪素・ゲルマニウム〕
実施形態の板状アルミナ粒子は、珪素及び/又はゲルマニウムを含んでいてもよい。
当該珪素又はゲルマニウムは、形状制御剤として用いることのできる珪素、珪素化合物、及び/又はゲルマニウム化合物に由来するものであってよい。これらを活用することにより、後述する製造方法において、上記縦緩和時間Tの値を満たす板状アルミナ粒子を容易に製造することができる。
(珪素)
実施形態の板状アルミナ粒子は、珪素を含んでいてもよい。実施形態に係る板状アルミナ粒子は、珪素を表層に含んでいてもよい。
ここで「表層」とは実施形態に係る板状アルミナ粒子の表面から10nm以内のことをいう。この距離は、実施例において計測に用いたXPSの検出深さに対応する。
板状アルミナ粒子は、珪素が表層に偏在していてもよい。ここで「表層に偏在」するとは、前記表層における単位体積あたりの珪素の質量が、前記表層以外における単位体積あたりの珪素の質量よりも多い状態をいう。珪素が表層に偏在していることは、XPSによる表面分析と、XRFによる全体分析の結果を比較することで判別できる。
板状アルミナ粒子が含む珪素は、珪素単体であってもよく、珪素化合物中の珪素であってもよい。板状アルミナ粒子は、珪素又は珪素化合物として、ムライト、Si、SiO、SiO、及びアルミナと反応して生成したケイ酸アルミニウムからなる群から選択される少なくとも一種を含んでいてもよく、上記物質を表層に含んでいてもよい。ムライトについては、後述する。
板状アルミナ粒子は、形状制御剤として珪素又は珪素元素を含む珪素化合物を使用した場合、XRF分析によってSiが検出され得る。板状アルミナ粒子は、XRF分析によって取得された、Alに対するSiのモル比[Si]/[Al]が例えば0.04以下であり、0.035以下であることが好ましく、0.02以下であることがより好ましい。
また、前記モル比[Si]/[Al]の値は、特に限定されるものではないが、例えば0.003以上であり、0.004以上であることが好ましく、0.005以上であることがより好ましい。
板状アルミナ粒子は、XRF分析によって取得された、Alに対するSiのモル比[Si]/[Al]が例えば0.003以上0.04以下であり、0.004以上0.035以下であることが好ましく、0.005以上0.02以下であることがより好ましい。
前記XRF分析により取得された前記モル比[Si]/[Al]の値が、上記範囲内である板状アルミナ粒子は、板状形状が良好に形成される。また、付着物が板状アルミナ粒子の表面に付着し難く、品質に優れる。この付着物とは、SiO粒とみられ、板状アルミナ粒子表層でのムライトの生成が飽和状態となり、過剰となったSiに由来して生成されるものと考えられる。
より大粒子径の板状アルミナ粒子を用いる場合には、板状アルミナ粒子は、XRF分析によって取得された、Alに対するSiのモル比[Si]/[Al]が、0.0003以上0.01以下であることが好ましく、0.0005以上0.0025以下であることが好ましく、0.0006以上0.001以下であることがより好ましい。
板状アルミナ粒子は、その製造方法で用いた珪素又は珪素元素を含む珪素化合物に対応した、珪素を含み得るものである。板状アルミナ粒子100質量%に対する珪素の含有量は、二酸化珪素換算で、好ましくは10質量%以下であり、より好ましくは0.001〜5質量%であり、さらに好ましくは0.01〜4質量%であり、さらに好ましくは0.3〜2.5質量%であり、特に好ましくは0.6〜2.5質量%である。
珪素の含有量が上記範囲内であると、板状形状が良好に形成される。また、SiO粒とみられる付着物が板状アルミナ粒子の表面に付着し難く、品質に優れる。
より大粒子径の板状アルミナ粒子を用いる場合には、板状アルミナ粒子100質量%に対する珪素の含有量は、二酸化珪素換算で、好ましくは、10質量%以下であり、より好ましくは、0.001〜3質量%であり、さらに好ましくは、0.01〜1質量%であり、特に好ましくは、0.03〜0.3質量%である。
上記の珪素の含有量は、XRF分析により求めることができる。XRF分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
(ムライト)
実施形態の板状アルミナ粒子は、ムライトを含んでいてもよい。板状アルミナ粒子の表層にムライトを含むことにより、例えば、樹脂と混合してガスバリア性組成物を製造する場合に、樹脂とのなじみがよく、密着性が高く、より一層ガスバリア性に優れたガスバリア性組成物を提供できる。また、板状アルミナ粒子の表層にモース硬度の低いムライトを含むことにより、機器を摩耗させ難いものとすることができる。
ムライトは、板状アルミナ粒子の表層に含まれることで、ガスバリア性及び機器の摩耗低減効果が発現する。板状アルミナ粒子が表層に含んでもよい「ムライト」は、AlとSiとの複合酸化物でありAlSizと表わされるが、x、y、zの値に特に制限はない。より好ましい範囲はAlSi〜AlSi13である。なお、後述の実施例でXRDピーク強度を確認しているのはAl2.85Si6.3、AlSi6.5、Al3.67Si7.5、AlSi、又はAlSi13を含むものである。板状アルミナ粒子は、Al2.85Si6.3、AlSi6.5、Al3.67Si7.5、AlSi、およびAlSi13からなる群から選択される少なくとも一種の化合物を表層に含んでいてもよい。ここで「表層」とは板状アルミナ粒子の表面から10nm以内のことをいう。この距離は、XPSの検出深さに対応する。尚、このムライト表層は、10nm以内の非常に薄い層になり、表面及び界面におけるムライト結晶の欠陥等が多くなれば、樹脂とのなじみがさらに良好になり、結晶欠陥の無い或いは少ないムライトに比べて、更に、ガスバリア性を顕著に発揮することができる。
板状アルミナ粒子は、ムライトが表層に偏在していることが好ましい。ここで「表層に偏在」するとは、前記表層における単位体積あたりのムライトの質量が、前記表層以外における単位体積あたりのムライトの質量よりも多い状態をいう。ムライトが表層に偏在していることは、XPSによる表面分析と、XRFによる全体分析の結果を比較することで判別できる。ムライトは表層に偏在させることで、表層だけでなく表層以外(内層)にもムライトを存在させる場合に比べて、より少量で、同様水準でムライトに基づく優れたガスバリア性及び機器の摩耗低減効果を発揮することができる。
実施形態に係る板状アルミナ粒子は、形状制御剤として珪素又は珪素元素を含む珪素化合物を使用し、表層にムライトを含む場合、XPS分析によってSiが検出される。実施形態に係る板状アルミナ粒子がムライトを含む場合、XPS分析において取得された、Alに対するSiのモル比[Si]/[Al]の値が、0.15以上であることが好ましく、0.20以上であることがより好ましく、0.25以上であることがさらに好ましい。XPSの結果によれば、原料のSiOの仕込み量を増やしていくことで、[Si]/[Al]の値が上昇していくが、値はある程度までで頭打ちとなる場合がある。これは、板状アルミナ粒子上のSi量が飽和状態となったことを意味するものと考えられる。したがって、前記モル比[Si]/[Al]の値が、0.20以上のもの、特に0.25以上の板状アルミナ粒子は、表面がムライトで被覆された状態にあると考えられる。上記被覆された状態とは、板状アルミナ粒子の表面の全部がムライトで被覆されていてもよく、板状アルミナ粒子の表面の少なくとも一部がムライトで被覆されていてもよい。
前記XPS分析のモル比[Si]/[Al]の値の上限は特に限定されるものではないが、0.4以下であることが好ましく、0.35以下であることがより好ましく、0.3以下であることがさらに好ましい。
実施形態に係る板状アルミナ粒子は、XPS分析において取得された、Alに対するSiのモル比[Si]/[Al]の値が、0.15以上0.4以下であることが好ましく、0.20以上0.35以下であることがより好ましく、0.25以上0.3以下であることがさらに好ましい。
前記XPS分析において取得された、前記モル比[Si]/[Al]の値が、上記範囲である板状アルミナ粒子は、表層に含まれるムライト量が適当であり、品質に優れ、ガスバリア性及び機器の摩耗低減効果により優れる。
XPS分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
本実施形態においては、後記する板状アルミナの製造方法において、仕込んだSiO等の、珪素又は珪素元素を含む珪素化合物が高効率でムライトに変換されることにより、優れた品質の板状アルミナが得られる。
ムライトを含む実施形態に係る板状アルミナ粒子は、XRD分析によってムライト由来の回折ピークが検出される。このムライト由来の回折ピークは、珪素又は珪素元素を含む珪素化合物、例えば、SiO等の回折ピークとは明確に区別することが可能である。実施形態に係る板状アルミナ粒子は、XRD分析によって取得された、2θが35.1±0.2°に認められるα−アルミナの(104)面のピーク強度に対する、2θが26.2±0.2°に認められるムライトのピーク強度の比が、例えば0.02以上であってもよく、0.05以上であってもよく、0.1以上であってもよい。
前記ピーク強度の比の値の上限は、特に限定されるものではないが、例えば0.3以下であり、0.2以下であることが好ましく、0.12未満であることがより好ましい。
実施形態に係る板状アルミナ粒子は、XRD分析によって取得された、2θが35.1±0.2°に認められるα−アルミナの(104)面のピーク強度に対する、2θが26.2±0.2°に認められるムライトのピーク強度の比が、例えば0.02以上0.3以下であってもよく、0.05以上0.2以下であってもよく、0.1以上0.12未満であってもよい。
板状アルミナ粒子表面のムライトの有無の分析は、リガク社製、Ultima IV等の広角X線回折(XRD)装置を用いて行うことができる。
例えば、試料を0.5mm深さの測定試料用ホルダーにのせ、一定荷重で平らになるように充填し、それを上記広角X線回折(XRD)装置にセットし、Cu/Kα線、40kV/40mA、スキャンスピード2度/分、走査範囲10〜70度の条件で測定を行う。
2θ=26.2±0.2度に認められるムライトのピーク高さをA、2θ=35.1±0.2度に認められる(104)面のα−アルミナのピーク高さをBとし、2θ=30±0.2度のベースラインの値をCとして、下記の式よりムライトの有無を判定することができる。Rの値は、例えば0.02以上であってよく、0.02以上0.3以下であってもよく、0.05以上0.2以下であってもよく、0.1以上0.12未満であってもよい。
R=(A−C)/(B−C)
(R:α−アルミナの(104)面のピーク高さBに対するムライトのピークの高さAの比)
前記ピーク強度の比の値が、上記範囲内である板状アルミナ粒子は、ムライト量が適当であり、品質に優れ、ガスバリア性及び機器の摩耗低減効果により優れる。
XRD分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
ムライトを含む実施形態に係る板状アルミナ粒子は、XRF分析によってSiが検出される。
前記XRF分析により取得された前記モル比[Si]/[Al]の値は上記に例示したものであってよく、上記範囲内である板状アルミナ粒子は、ムライト量が適当であり、品質に優れ、ガスバリア性及び機器の摩耗低減効果により優れる。
実施形態に係る板状アルミナ粒子は、その製造方法で用いた珪素又は珪素元素を含む珪素化合物に基づくムライトに対応した、珪素を含むものである。実施形態に係る板状アルミナ粒子100質量%に対する珪素の含有量は上記に例示したものであってよく、珪素の含有量が上記範囲内であると、ムライト量が適当であることから好ましい。上記珪素の含有量はXRF分析により求めることができる。
XRF分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
また、前記表層のムライトは、ムライト層を形成していてもよく、ムライトとアルミナとが混在した状態であってもよい。表層のムライトとアルミナとの界面は、ムライトとアルミナとが物理的に接触した状態であってもよく、ムライトとアルミナとがSi−O−Alなどの化学結合を形成していてもよい。アルミナとSiOとの組み合わせに対して、アルミナとムライトとを必須成分とする組み合わせは、構成原子組成の類似性の高さや、フラックス法を採用した場合には、それに基づく上記Si−O−Alなどの化学結合の形成し易さの観点から、よりアルミナとムライトとが強固に結着し剥がれ難いものとすることが出来る。このことから、Si量が同等水準であれば、アルミナとムライトとを必須成分とする組み合わせは、機器をより長期間に亘ってガスバリア性及び機器の摩耗低減効果を発揮出来るため、より好ましい。アルミナとムライトとを必須成分とする組み合わせでの技術的効果は、アルミナとムライトのみでも、アルミナとムライトとシリカでも期待はできるが、どちらかと言えば、前者の二者組み合わせが技術的効果の水準はより高くなる。
(ゲルマニウム)
実施形態の板状アルミナ粒子は、ゲルマニウムを含んでいてもよい。また、板状アルミナ粒子は、ゲルマニウムを表層に含んでいてもよい。板状アルミナ粒子がゲルマニウム又はゲルマニウム化合物を含むことにより、例えば、樹脂と混合してガスバリア性組成物を製造する場合に、樹脂とのなじみがよく、密着性が高く、より一層ガスバリア性に優れたガスバリア性組成物を提供できる。また、板状アルミナ粒子の表層にモース硬度の低いゲルマニウム又はゲルマニウム化合物を含むことにより、機器を摩耗させ難いものとすることができる。
使用する原料によっても異なるが、板状アルミナ粒子は、ゲルマニウム又はゲルマニウム化合物として、例えば、Ge、GeO、GeO、GeCl、GeBr、GeI、GeS、AlGe、GeTe、GeTe3、As、GeSe、GeSAs、SiGe、LiGe、FeGe、SrGe、GaGe等の化合物、及びこれらの酸化物等からなる群から選択される少なくとも一種を含んでいてもよく、上記物質を表層に含んでいてもよい。
なお、板状アルミナ粒子が含む「ゲルマニウム又はゲルマニウム化合物」と、原料の形状制御剤として用いる「原料ゲルマニウム化合物」とは同じ種類のゲルマニウム化合物であってもよい。例えば、原料のGeOの添加により製造された板状アルミナ粒子にGeOが検出されてよい。
ゲルマニウム又はゲルマニウム化合物は、板状アルミナ粒子の表層に含まれることで、顕著なガスバリア性及び機器の摩耗低減効果が発現する。ここで「表層」とは板状アルミナ粒子の表面から10nm以内のことをいう。
板状アルミナ粒子は、ゲルマニウム又はゲルマニウム化合物が表層に偏在していることが好ましい。ここで「表層に偏在」するとは、前記表層における単位体積あたりのゲルマニウム又はゲルマニウム化合物の質量が、前記表層以外における単位体積あたりのゲルマニウム又はゲルマニウム化合物の質量よりも多い状態をいう。ゲルマニウム又はゲルマニウム化合物が表層に偏在していることは、XPSによる表面分析と、XRFによる全体分析の結果を比較することで判別できる。ゲルマニウム又はゲルマニウム化合物は表層に偏在させることで、表層だけでなく表層以外(内層)にもゲルマニウム又はゲルマニウム化合物を存在させる場合に比べて、より少量で、同様水準でゲルマニウム又はゲルマニウム化合物に基づくガスバリア性及び機器の摩耗低減効果を発揮することができる。
ゲルマニウム又はゲルマニウム化合物は、板状アルミナ粒子の表層に含まれることで、顕著なガスバリア性及び機器の摩耗低減効果が発現する。ここで「表層」とは実施形態に係る板状アルミナ粒子の表面から10nm以内のことをいう。尚、このゲルマニウムを含む表層は、10nm以内の非常に薄い層になり、例えば二酸化ゲルマニウムであった場合、表面及び界面における二酸化ゲルマニウム構造の欠陥等が多くなれば、樹脂とのなじみがさらに良好になり、構造欠陥の無い或いは少ない二酸化ゲルマニウムに比べて、更に、ガスバリア性及び機器の摩耗低減効果を顕著に発揮することができる。
実施形態に係る板状アルミナ粒子は、ゲルマニウム又はゲルマニウム化合物が表層に偏在していることが好ましい。ここで「表層に偏在」するとは、前記表層における単位体積あたりのゲルマニウム又はゲルマニウム化合物の質量が、前記表層以外における単位体積あたりのゲルマニウム又はゲルマニウム化合物の質量よりも多い状態をいう。ゲルマニウム又はゲルマニウム化合物が表層に偏在していることは、XPSによる表面分析と、XRFによる全体分析の結果を比較することで判別できる。ゲルマニウム又はゲルマニウム化合物は表層に偏在させることで、表層だけでなく表層以外(内層)にもゲルマニウム又はゲルマニウム化合物を存在させる場合に比べて、より少量で、同様水準でゲルマニウム又はゲルマニウム化合物に基づくガスバリア性及び機器の摩耗低減効果を顕著に発揮することができる。
実施形態に係る板状アルミナ粒子は、表層にゲルマニウム又はゲルマニウム化合物を含むことで、XPS分析によってGeが検出される。実施形態に係る板状アルミナ粒子は、XPS分析において取得された、Alに対するGeのモル比[Ge]/[Al]の値が、0.005以上であることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましく、0.03以上であることが特に好ましい。原料のGeOの仕込み量を増やしていくことで、[Ge]/[Al]の値が上昇していくが、値はある程度までで頭打ちとなる場合がある。これは、板状アルミナ粒子上のGe量が飽和状態となったことを意味するものと考えられる。板状アルミナ粒子の表面の全部がゲルマニウム又はゲルマニウム化合物で被覆されていてもよく、板状アルミナ粒子の表面の少なくとも一部がゲルマニウム又はゲルマニウム化合物で被覆されていてもよい。
前記XPS分析のモル比[Ge]/[Al]の値の上限は特に限定されるものではないが、0.3以下であってもよく、0.25以下であってもよく、0.2以下であってもよく、0.17以下あってもよく、0.1以下であってもよい。
実施形態に係る板状アルミナ粒子は、XPS分析において取得された、Alに対するGeのモル比[Ge]/[Al]の値が、0.005以上0.3以下であってもよく、0.005以上0.25以下であってもよく0.01以上0.2以下であってもよく、0.02以上0.17以下であってもよく、0.03以上0.1以下であってもよい。
前記XPS分析において取得された、前記モル比[Ge]/[Al]の値が、上記範囲である板状アルミナ粒子は、表層に含まれるゲルマニウム又はゲルマニウム化合物の量が適当であり、板状形状が良好に形成され、品質に優れ、ガスバリア性及び機器の摩耗低減効果により優れる。
XPS分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
本実施形態においては、後記する板状アルミナの製造方法において、形状制御剤として仕込んだGeO等の原料ゲルマニウム化合物が、高効率で板状アルミナの表層でゲルマニウムを含む層として形成されることにより、優れた品質の板状アルミナが得られる。
実施形態に係る板状アルミナ粒子は、形状制御剤としてゲルマニウム化合物を使用した場合、XRF分析によってGeが検出され得る。実施形態に係る板状アルミナ粒子は、XRF分析によって取得された、Alに対するGeのモル比[Ge]/[Al]が例えば0.08以下であり、0.05以下であることが好ましく、0.03以下であることがより好ましい。
また、前記モル比[Ge]/[Al]の値は、特に限定されるものではないが、例えば0.0005以上であり、0.001以上であることが好ましく、0.0015以上であることがより好ましい。
実施形態に係る板状アルミナ粒子は、XRF分析によって取得された、Alに対するGeのモル比[Ge]/[Al]が例えば0.0005以上0.08以下であり、0.003)1以上0.05以下であることが好ましく、0.0015以上0.03以下であることがより好ましい。
前記XRF分析により取得された前記モル比[Ge]/[Al]の値が、上記範囲内である板状アルミナ粒子は、含まれるゲルマニウム又はゲルマニウム化合物の量が適当であり、板状形状が良好に形成され、品質に優れ、ガスバリア性及び機器の摩耗低減効果により優れる。
板状アルミナ粒子は、その製造方法で用いた原料ゲルマニウム化合物に対応した、ゲルマニウムを含むものである。板状アルミナ粒子100質量%に対するゲルマニウムの含有量は、二酸化ゲルマニウム換算で、好ましくは、10質量%以下であり、より好ましくは、0.001〜5質量%であり、さらに好ましくは、0.01〜4質量%であり、特に好ましくは、0.1〜3.0質量%である。ゲルマニウムの含有量が上記範囲内であると、ゲルマニウム又はゲルマニウム化合物の量が適当であり、板状形状が良好に形成されることから好ましい。上記ゲルマニウムの含有量はXRF分析により求めることができる。
XRF分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
また、前記表層のゲルマニウム又はゲルマニウム化合物は、層を形成していてもよく、ゲルマニウム又はゲルマニウム化合物とアルミナとが混在した状態であってもよい。表層のゲルマニウム又はゲルマニウム化合物とアルミナとの界面は、ゲルマニウム又はゲルマニウム化合物とアルミナとが物理的に接触した状態であってもよく、ゲルマニウム又はゲルマニウム化合物とアルミナとがGe−O−Alなどの化学結合を形成していてもよい。
[モリブデン]
実施形態の板状アルミナ粒子は、モリブデンを含有していてもよい。また、板状アルミナ粒子は、その表層にモリブデンを含んでいるのが好ましい。
当該モリブデンは、後述するアルミナ粒子の製造方法において、フラックス剤として用いたモリブデン化合物に由来するものであってよい。
モリブデンは触媒機能、光学的機能を有する。また、モリブデンを活用することにより、後述する製造方法において、板状形状でありながら結晶性が高い、優れたガスバリア性を有する板状アルミナ粒子を製造することができる。
モリブデンの使用量を多くすることで、粒子サイズ及び上記の(006/113)比の値を満たし、得られたアルミナ粒子のガスバリア性がさらに優れたものとなる傾向がある。さらには、モリブデンを活用することにより、ムライトの形成が促進され、高アスペクト比と優れたガスバリア性を有する板状アルミナ粒子を製造することができる。
当該モリブデンとしては、特に制限されないが、モリブデン金属の他、酸化モリブデンや一部が還元されたモリブデン化合物、モリブデン酸塩等が含まれる。
モリブデン化合物のとりうる多形のいずれか、または組み合わせで板状アルミナ粒子に含まれてよく、α-MoO、β-MoO、MoO、MoO、モリブデンクラスター構造等として板状アルミナ粒子に含まれてもよい。
モリブデンの含有形態は、特に制限されず、板状アルミナ粒子の表面に付着する形態で含まれていても、アルミナの結晶構造のアルミニウムの一部に置換された形態で含まれていてもよいし、これらの組み合わせであってもよい。
XRF分析において取得された、板状アルミナ粒子100質量%に対するモリブデンの含有量は、三酸化モリブデン換算で、好ましくは、10質量%以下であり、焼成温度、焼成時間、モリブデン化合物の昇華速度を調整する事で、より好ましくは0.001〜5質量%であり、さらに好ましくは0.01〜5質量%であり、さらに好ましくは0.1〜1.5質量%であり、特に好ましくは0.1〜1質量%である。モリブデンの含有量が10質量%以下であると、アルミナのα単結晶品質を向上させることから好ましい。
より大粒子径の板状アルミナ粒子を用いる場合には、実施形態に係る板状アルミナ粒子100質量%に対するモリブデンの含有量は、三酸化モリブデン換算で、好ましくは、10質量%以下であり、焼成温度、焼成時間、モリブデン化合物の昇華速度を調整する事で、より好ましくは、0.1〜5質量%であり、さらに好ましくは、0.3〜1質量%である。
上記モリブデンの含有量はXRF分析により求めることができる。XRF分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
また、アルミナ粒子表面のMo量の分析は、上記のX線光電子分光(XPS)装置を用いて行うことができる。
[カリウム]
板状アルミナ粒子は、更にカリウムを含有していてもよい。
カリウムは後述のアルミナ粒子の製造方法においてフラックス剤として使用可能なカリウムに由来するものであってよい。
カリウムを活用することにより、後述するアルミナ粒子の製造方法において、アルミナ粒子の粒子径を適度に向上させることができる。
当該カリウムとしては、特に制限されないが、カリウム金属の他、酸化カリウムや一部が還元されたカリウム化合物等が含まれる。
カリウムの含有形態は、特に制限されず、板状アルミナ粒子の平板状アルミナの表面に付着する形態で含まれていても、アルミナの結晶構造のアルミニウムの一部に置換された形態で含まれていてもよいし、これらの組み合わせであってもよい。
XRF分析において取得された、前記アルミナ粒子100質量%に対するカリウムの含有量が、酸化カリウム(KO)換算で、0.01質量%以上であることが好ましく、0.01〜1.0質量%であることがより好ましく、0.03〜0.5質量%であることがさらに好ましく、0.05〜0.3質量%であることが特に好ましい。カリウムの含有量が上記範囲内であるアルミナ粒子は、板状形状を有し、平均粒径等の値が好適なものとなるため好ましい。
(他の原子)
他の原子は、本発明の効果を阻害しない範囲において、機械強度または電気や磁性機能付与を目的として意図的にアルミナ粒子に添加されるものを意味する。
他の原子としては、特に制限されないが、亜鉛、マンガン、カルシウム、ストロンチウム、イットリウム等が挙げられる。これらの他の原子は単独で用いても、2種以上を混合して用いてもよい。
アルミナ粒子中の他の原子の含有量は、アルミナ粒子の質量に対して、5質量%以下であることが好ましく、2質量%以下であることがより好ましい。
[不可避不純物]
アルミナ粒子は不可避不純物を含みうる。
不可避不純物は、製造で使用する金属化合物に由来したり、原料中に存在したり、製造工程において不可避的にアルミナ粒子に混入するものであり、本来は不要なものであるが、微量であり、アルミナ粒子の特性に影響を及ぼさない不純物を意味する。
不可避不純物としては、特に制限されないが、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン、セリウム、ナトリウム、等が挙げられる。これらの不可避不純物は単独で含まれていても、2種以上が含まれていてもよい。
アルミナ粒子中の不可避不純物の含有量は、アルミナ粒子の質量に対して、10000ppm以下であることが好ましく、1000ppm以下であることがより好ましく、10〜500ppmであることがさらに好ましい。
[有機化合物]
一実施形態において、板状アルミナ粒子は有機化合物を含んでいてもよい。当該有機化合物は、板状アルミナ粒子の表面に存在し、板状アルミナ粒子の表面物性を調節する機能を有する。例えば、表面に有機化合物を有する板状アルミナ粒子は樹脂との親和性が向上することから、ガスバリア性組成物として板状アルミナ粒子の機能を最大限に発現することができる。
有機化合物としては、特に制限されないが、有機シラン、アルキルホスホン酸、およびポリマーが挙げられる。
前記有機シランとしては、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリメトキシシラン、iso−プロピルトリエトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン等のアルキル基の炭素数が1〜22までのアルキルトリメトキシシランまたはアルキルトリクロロシラン類、3,3,3−トリフルオロプロピルトリメトキシシラン、トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリクロロシラン類、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−クロロメチルフェニルトリメトキシシラン、p−クロロメチルフェニルトリエトキシシラン類等が挙げられる。
前記ホスホン酸としては、例えばメチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、ヘプチルホスホン酸、オクチルホスホン酸、デシルホスホン酸、ドデシルホスホン酸、オクタデシルホスホン酸、2_エチルヘキシルホスホン酸、シクロヘキシルメチルホスホン酸、シクロヘキシルエチルホスホン酸、ベンジルホスホン酸、フェニルホスホン酸、ドデシルベンゼンホスホン酸が挙げられる。
前記ポリマーとしては、例えば、ポリ(メタ)アクリレート類を好適に用いることができる。具体的には、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリベンジル(メタ)アクリレート、ポリシクロヘキシル(メタ)アクリレート、ポリt−ブチル(メタ)アクリレート、ポリグリシジル(メタ)アクリレート、ポリペンタフルオロプロピル(メタ)アクリレート等であり、また、汎用のポリスチレン、ポリ塩化ビニル、ポリビニル酢酸エステル、エポキシ樹脂、ポリエステル、ポリイミド、ポリカーボネート等ポリマーを挙げることができる。
なお、上記有機化合物は、単独で含まれていても、2種以上を含んでいてもよい。
有機化合物の含有形態としては、特に制限されず、アルミナと共有結合により連結されていてもよいし、アルミナを被覆していてもよい。
有機化合物の含有率は、アルミナ粒子の質量に対して、20質量%以下であることが好ましく、10質量%以上0.01質量%以下であることがさらに好ましい。有機化合物の含有率が20質量%以下であると、板状アルミナ粒子由来の物性発現が容易にできることから好ましい。
<板状アルミナ粒子の製造方法>
複合粒子を構成する板状アルミナ粒子の製造方法は、特に制限されず、公知の技術が適宜適用されうるが、相対的に低温で高α結晶化率を有するアルミナを好適に制御することができる観点から、好ましくはモリブデン化合物を利用したフラックス法での製造方法が適用されうる。
より詳細には、板状アルミナ粒子の好ましい製造方法は、モリブデン化合物および形状制御剤の存在下で、アルミニウム化合物を焼成する工程(焼成工程)を含む。焼成工程は焼成対象の混合物を得る工程(混合工程)で得られた混合物を焼成する工程であってもよい。
[混合工程]
混合工程は、アルミニウム化合物と、モリブデン化合物と、形状制御剤と、を混合して混合物とする工程である。前記混合物は、さらにカリウム化合物を含むことが好ましい。以下、混合物の内容について説明する。
(アルミニウム化合物)
アルミニウム化合物は、本実施形態の板状アルミナ粒子の原料であり、熱処理によりアルミナになるものであれば特に限定されず、例えば、塩化アルミニウム、硫酸アルミニウム、塩基性酢酸アルミニウム、水酸化アルミニウム、ベーマイト、擬ベーマイト、遷移アルミナ(γ−アルミナ、δ−アルミナ、θ−アルミナなど)、α−アルミナ、二種以上の結晶相を有する混合アルミナなどが使用でき、これら前駆体としてのアルミニウム化合物の形状、粒子径、比表面積等の物理形態については、特に限定されるものではない。
下で詳記するフラックス法によれば、アルミニウム化合物の形状は、例えば、球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどのいずれであっても好適に用いることができる。
同様に、アルミニウム化合物の粒子径は、下で詳記するフラックス法によれば、数nmから数百μmまでのアルミニウム化合物の固体を好適に用いることができる。
アルミニウム化合物の比表面積も特に限定されるものではない。モリブデン化合物が効果的に作用するため、比表面積が大きい方が好ましいが、焼成条件やモリブデン化合物の使用量を調整する事で、いずれの比表面積のものでも原料として使用することができる。
また、アルミニウム化合物は、アルミニウム化合物のみからなるものであっても、アルミニウム化合物と有機化合物との複合体であってもよい。例えば、有機シランを用いて、アルミニウム化合物を修飾して得られる有機/無機複合体、ポリマーを吸着したアルミニウム化合物複合体などであっても好適に用いることができる。これらの複合体を用いる場合、有機化合物の含有率としては、特に制限はないが、板状アルミナ粒子を効率的に製造できる観点より、当該含有率は60質量%以下であることが好ましく、30質量%以下であることがより好ましい。
(形状制御剤)
実施形態に係る板状アルミナ粒子を形成するために、形状制御剤を用いることできる。形状制御剤はモリブデン化合物の存在下でアルミナ化合物を焼成によるアルミナの板状結晶成長に重要な役割を果たす。
形状制御剤の存在状態は、特に制限されず、例えば、形状制御剤とアルミニウム化合物と物理混合物、形状制御剤がアルミニウム化合物の表面または内部に均一または局在に存在した複合体などが好適に用いることができる。
また、形状制御剤をアルミニウム化合物に添加しても良いが、アルミニウム化合物中に不純物として含んでも良い。
形状制御剤は板状結晶成長に重要な役割を果たす。酸化モリブデンフラックス法では、酸化モリブデンがアルミニウム化合物と反応することでモリブデン酸アルミニウムを形成させ、次いで、このモリブデン酸アルミニウムが分解する過程における化学ポテンシャルの変化が結晶化の駆動力となっているため、自形面(113)の発達した六角両錘型の多面体粒子が形成する。実施形態の製造方法においては、形状制御剤が、α−アルミナ成長過程において粒子表面近傍に局在化することで、自形面(113)の生長が著しく阻害される結果、相対的に面方向の結晶方位の生長が速くなり、(001)面又は(006)面が成長し、板状形態を形成することができると考えられる。モリブデン化合物をフラックス剤として用いることで、α結晶化率が高い、モリブデンを含む板状アルミナ粒子をより容易に形成できる。
なお、上記メカニズムはあくまで推測のものであり、上記メカニズムと異なるメカニズムによって本発明の効果が得られる場合であっても本発明の技術的範囲に含まれる。
形状制御剤の種類については、よりアスペクト比が高く、より分散性に優れ、より生産性に優れる板状アルミナ粒子を製造可能な点からも、珪素、珪素化合物、及びゲルマニウム化合物からなる群から選ばれる少なくとも一種を用いることが好ましい。珪素又は珪素化合物と、ゲルマニウム化合物とは、併用することができる。ムライトのSiの供給元となりムライトを効率よく生産可能な観点からは、形状制御剤として珪素又は珪素元素を含む珪素化合物を用いることが好ましい。また、珪素又は珪素化合物を使用した場合よりも、よりアスペクト比が高くより粒子径の大きな板状アルミナ粒子を製造可能な点からは、形状制御剤としてゲルマニウム化合物を用いることが好ましい。
形状制御剤として、珪素又は珪素化合物を用いた上記フラックス法により、ムライトを表層に含む板状アルミナ粒子を容易に製造することができる。
形状制御剤として、原料ゲルマニウム化合物を用いた上記フラックス法により、ゲルマニウム又はゲルマニウム化合物を含む板状アルミナ粒子を容易に製造することができる。
・珪素又は珪素化合物
珪素又は珪素元素を含む珪素化合物としては、特に制限されず、公知のものが使用されうる。珪素又は珪素元素を含む珪素化合物の具体例としては、金属シリコン、有機シラン、シリコン樹脂、シリカ微粒子、シリカゲル、メソポーラスシリカ、SiC、ムライト等の人工合成シリコン化合物;バイオシリカ等の天然シリコン化合物等が挙げられる。これらのうち、アルミニウム化合物との複合、混合がより均一的に形成できる観点から、有機シラン、シリコン樹脂、シリカ微粒子を用いることが好ましい。なお、シリコン又は珪素元素を含む珪素化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。また、本発明における効果を損なわない限りにおいて、他の形状制御剤と併用して使用してもよい。
珪素又は珪素元素を含む珪素化合物の形状は、特に制限されず、例えば、球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどを好適に用いることができる。
・ゲルマニウム化合物
形状制御剤として用いる原料ゲルマニウム化合物としては、特に制限されず、公知のものが使用されうる。原料ゲルマニウム化合物の具体例としては、ゲルマニウム金属、二酸化ゲルマニウム、一酸化ゲルマニウム、四塩化ゲルマニウム、Ge−C結合を有する有機ゲルマニウム化合物等が挙げられる。なお、原料ゲルマニウム化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。また、本発明における効果を損なわない限りにおいて、他の形状制御剤と併用して使用してもよい。
原料ゲルマニウム化合物の形状は、特に制限されず、例えば、球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどを好適に用いることができる。
(モリブデン化合物)
モリブデン化合物は、モリブデン元素を含むものであり、後述するように、アルミナのα結晶成長においてフラックス剤として機能する。
モリブデン化合物としては、特に制限されないが、酸化モリブデン、モリブデン金属が酸素との結合からなる酸根アニオン(MoOx n-)を含有する化合物が挙げられる。
前記酸根アニオン(MoOx n-)を含有する化合物としては、特に制限されないが、モリブデン酸、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸リチウム、H3PMo1240、H3SiMo1240、NH4Mo712、二硫化モリブデン等が挙げられる。
モリブデン化合物に珪素を含むことも可能であり、その場合、珪素を含むモリブデン化合物がフラックス剤と形状制御剤と両方の役割を果たす。
上述のモリブデン化合物のうち、昇華し易く、かつコストの観点から、酸化モリブデンを用いることが好ましい。また、上述のモリブデン化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
また、モリブデン酸カリウム(KMo3n+1、n=1〜3)は、カリウムを含むため、後述するカリウム化合物としての機能も有しうる。実施形態の製造方法において、モリブデン酸カリウムをフラックス剤として用いることは、モリブデン化合物及びカリウム化合物をフラックス剤として用いることと同義である。
(カリウム化合物)
形状制御剤とともに、さらにカリウム化合物を併用してもよい。
カリウム化合物としては、特に制限されないが、塩化カリウム、亜塩素酸カリウム、塩素酸カリウム、硫酸カリウム、硫酸水素カリウム、亜硫酸カリウム、亜硫酸水素カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、酢酸カリウム、酸化カリウム、臭化カリウム、臭素酸カリウム、水酸化カリウム、珪酸カリウム、燐酸カリウム、燐酸水素カリウム、硫化カリウム、硫化水素カリウム、モリブデン酸カリウム、タングステン酸カリウム等が挙げられる。この際、前記カリウム化合物は、モリブデン化合物の場合と同様に、異性体を含む。これらのうち、炭酸カリウム、炭酸水素カリウム、酸化カリウム、水酸化カリウム、塩化カリウム、硫酸カリウム、モリブデン酸カリウムを用いることが好ましく、炭酸カリウム、炭酸水素カリウム、塩化カリウム、硫酸カリウム、モリブデン酸カリウムを用いることがより好ましい。
上述のカリウム化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
カリウム化合物は、ムライトがアルミナ表層に効率良く形成されることに寄与する。また、カリウム化合物は、ゲルマニウムを含む層がアルミナ表層に効率良く形成されることに寄与する。
また、カリウム化合物は、モリブデン化合物とともにフラックス剤として用いることも好ましい。
上記のうち、モリブデン酸カリウムは、モリブデンを含むため、上述のモリブデン化合物としての機能も有しうる。モリブデン酸カリウムをフラックス剤として用いた場合、モリブデン化合物及びカリウム化合物をフラックス剤として用いた場合と同様の作用を奏することができる。
原料仕込み時に用いる又は焼成に当たって昇温過程の反応で生じるカリウム化合物として、水溶性のカリウム化合物、例えばモリブデン酸カリウムは、焼成温度域でも気化することなく、焼成後に洗浄で、容易に回収できるため、モリブデン化合物が焼成炉外へ放出される量も低減され、生産コストとしても大幅に低減することができる。
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、カリウム化合物のカリウム元素に対するモリブデン化合物のモリブデン元素のモル比(モリブデン元素/カリウム元素)は、5以下であることが好ましく、0.01〜3であることがより好ましく、0.5〜1.5であることが、生産コストをより低減することができるため、さらに好ましい。前記モル比(モリブデン元素/カリウム元素)が上記範囲内にあると、粒子サイズの大きい板状アルミナ粒子が得られうることから好ましい。
(金属化合物)
金属化合物は、後述するように、アルミナの結晶成長を促進する機能を有しうる。当該金属化合物は所望により焼成時に使用されうる。なお、金属化合物は、α−アルミナの結晶成長を促進する機能を有するものであるため、本発明に係る板状アルミナ粒子の製造に必須ではない。
金属化合物としては、特に制限されないが、第II族の金属化合物、第III族の金属化合物からなる群から選択される少なくとも1つを含むことが好ましい。
前記第II族の金属化合物としては、マグネシウム化合物、カルシウム化合物、ストロンチウム化合物、バリウム化合物等が挙げられる。
前記第III族の金属化合物としては、スカンジウム化合物、イットリウム化合物、ランタン化合物、セリウム化合物等が挙げられる。
なお上述の金属化合物は、金属元素の酸化物、水酸化物、炭酸化物、塩化物を意味する。例えば、イットリウム化合物であれば、酸化イットリウム(Y)、水酸化イットリウム、炭酸化イットリウムが挙げられる。これらのうち、金属化合物は金属元素の酸化物であることが好ましい。なお、これらの金属化合物は異性体を含む。
これらのうち、第3周期元素の金属化合物、第4周期元素の金属化合物、第5周期元素の金属化合物、第6周期元素の金属化合物であることが好ましく、第4周期元素の金属化合物、第5周期元素の金属化合物であることがより好ましく、第5周期元素の金属化合物であることがさらに好ましい。具体的には、マグネシウム化合物、カルシウム化合物、イットリウム化合物、ランタン化合物、を用いることが好ましく、マグネシウム化合物、カルシウム化合物、イットリウム化合物を用いることがより好ましく、イットリウム化合物を用いることが特に好ましい。
金属化合物の添加率は、アルミニウム化合物中のアルミニウム原子の質量換算値に対して、0.02〜20質量%であることが好ましく、0.1〜20質量%であることがより好ましい。金属化合物の添加率が0.02質量%以上であると、モリブデンを含むα−アルミナの結晶成長が好適に進行しうることから好ましい。一方、金属化合物の添加率が20質量%以下であると、金属化合物由来の不純物の含有量の低い板状アルミナ粒子を得ることができることから好ましい。
[イットリウム]
金属化合物として、イットリウム化合物の存在下で、アルミニウム化合物を焼成した場合には、この焼成工程において、結晶成長がより好適に進行し、α−アルミナと水溶性イットリウム化合物が生成する。この際に、板状アルミナ粒子であるα−アルミナの表面に、当該水溶性イットリウム化合物が局在化しやすいことから、必要ならば、水、アルカリ水、これらを温めた液体等にて洗浄を行うことで、イットリウム化合物を板状アルミナ粒子から除去することができる。
上記のアルミニウム化合物、モリブデン化合物、珪素又は珪素化合物、ゲルマニウム化合物、カリウム化合物等の使用量は特に限定されないが、例えば、酸化物換算した原料全量を100質量%とした際に、以下の混合物を焼成することが挙げられる。
1)Al換算で、好ましくは50質量%以上のアルミニウム化合物、より好ましくは70質量%以上99質量%以下のアルミニウム化合物、さらに好ましくは80質量%以上94.5質量%以下のアルミニウム化合物と、
MoO換算で、好ましくは40質量%以下のモリブデン化合物、より好ましくは0.5質量%以上20質量%以下のモリブデン化合物、さらに好ましくは1質量%以上7質量%以下のモリブデン化合物と、
SiO換算又はGeO換算で、好ましくは0.1質量%以上10質量%以下の珪素、珪素化合物若しくはゲルマニウム化合物、より好ましくは0.5質量%以上7質量%未満の珪素、珪素化合物若しくはゲルマニウム化合物、さらに好ましくは0.8質量%以上4質量%以下の珪素、珪素化合物若しくはゲルマニウム化合物と、
を、混合した混合物。
より粒子径の大きな板状アルミナ粒子を得るとの観点からは、上記混合物において、MoO換算で、好ましくは7質量%以上40質量%以下のモリブデン化合物、より好ましくは9質量%以上30質量%以下のモリブデン化合物、さらに好ましくは10質量%以上17質量%以下のモリブデン化合物を使用することが好ましい。
より粒子径の大きな板状アルミナ粒子を得るとの観点からは、上記混合物において、SiO換算及び/又はGeO換算で、好ましくは0.4質量%以上10質量%未満、より好ましくは0.5質量%以上10質量%以下、特に好ましくは1質量%以上3質量%以下の珪素、珪素化合物及び/又はゲルマニウム化合物を使用することが好ましい。
上記の形状制御剤の珪素、珪素化合物及び/又はゲルマニウム化合物としては、珪素又は珪素化合物であってよく、ゲルマニウム化合物であってよい。
上記の形状制御剤としては、珪素又は珪素化合物のみを用いてもよく、ゲルマニウム化合物のみを用いてもよく、珪素又は珪素化合物とゲルマニウム化合物とのみを組み合わせて用いてもよい。
形状制御剤としてゲルマニウム化合物を用いる場合には、酸化物換算した原料全量を100質量%とした際に、GeO換算で、好ましくは0.4質量%以上1.5質量%未満、より好ましくは0.7質量%以上1.2質量%以下のゲルマニウム化合物を混合物に配合してもよい。
上記の原料配合(質量%)の条件は原料ごとに自由に組み合わせてよく、各原料配合(質量%)における下限値と上限値についても自由に組み合わせることができる。
上記の範囲で各種化合物を使用することで、上記の縦緩和時間Tの値を満たし、ガスバリア性に優れた板状アルミナ粒子を容易に製造できる。
前記混合物が、さらに上記のカリウム化合物を含む場合、カリウム化合物の使用量は、特に限定されないが、酸化物換算した原料全量を100質量%とした際に、好ましくはKO換算で5質量%以下、より好ましくは0.01質量%以上3質量%以下、さらに好ましくは0.05質量%以上1質量%以下のカリウム化合物を混合することができる。
カリウム化合物の使用により、モリブデン化合物との反応により形成されるモリブデン酸カリウムは、Si拡散の効果を及ぼし板状アルミナ粒子表面のムライト形成の促進に寄与すると考えられる。
同様に、カリウム化合物の使用により、モリブデン化合物との反応により形成されるモリブデン酸カリウムは、原料ゲルマニウム拡散の効果を及ぼし板状アルミナ粒子表面のゲルマニウム又はゲルマニウム化合物の形成の促進に寄与すると考えられる。
原料仕込み時に用いる又は焼成に当たって昇温過程の反応で生じるカリウム化合物として、水溶性のカリウム化合物、例えばモリブデン酸カリウムは、焼成温度域でも気化することなく、焼成後に洗浄で、容易に回収できるため、モリブデン化合物が焼成炉外へ放出される量も低減され、生産コストとしても大幅に低減することができる。
フラックス法においては、モリブデン化合物及びカリウム化合物をフラックス剤として用いることも好ましい。
なお、フラックス剤としての、モリブデンとカリウムとを含有する化合物は、例えば、より安価かつ入手が容易な、モリブデン化合物及びカリウム化合物を原料として焼成の過程で生じさせることができる。ここでは、モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、モリブデンとカリウムとを含有する化合物をフラックス剤として用いる場合、の両者を合わせて、モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合を例に説明する。
さらに粒子サイズの大きな板状アルミナ粒子を得るとの観点からは、上記のアルミニウム化合物、モリブデン化合物、カリウム化合物、及び珪素又は珪素化合物の使用量は、酸化物換算した原料全量を100質量%とした際に、好ましくは以下とすることができる。
2)Al換算で10質量%以上のアルミニウム化合物と、MoO換算で20質量%以上のモリブデン化合物と、KO換算で1質量%以上カリウム化合物と、SiO換算で1質量%未満の珪素又は珪素化合物と、を混合した混合物。
高品質な六角板状のアルミナの含有率をより高めることができる点では、酸化物換算した原料全量を100質量%とした際に、より好ましくは以下の混合物を使用することができる。
3)Al換算で20質量%以上70質量%以下のアルミニウム化合物と、MoO換算で30質量%以上80質量%以下のモリブデン化合物と、KO換算で5質量%以上30質量%以下のカリウム化合物と、SiO換算で0.001質量%以上0.3質量%以下の珪素又は珪素化合物と、を混合した混合物。
六角板状のアルミナの含有率をより高めることができる点では、酸化物換算した原料全量を100質量%とした際に、更に好ましくは以下の混合物を使用することができる。
4)Al換算で25質量%以上40質量%以下のアルミニウム化合物と、MoO換算で45質量%以上70質量%以下のモリブデン化合物と、KO換算で10質量%以上20質量%以下のカリウム化合物と、SiO換算で0.01質量%以上0.1質量%以下の珪素又は珪素化合物と、を混合した混合物。
六角板状のアルミナの含有率を最も高めることができ、結晶成長をより好適に進行させるために、特に好ましくは以下の混合物を使用することができる。
5)酸化物換算した原料全量を100質量%とした際に、Al換算で35質量%以上40質量%以下のアルミニウム化合物と、MoO換算で45質量%以上65質量%以下のモリブデン化合物と、KO換算で10質量%以上20質量%以下のカリウム化合物と、SiO換算で0.02質量%以上0.08質量%以下の珪素又は珪素化合物と、を混合した混合物。
上記の範囲で各種化合物を配合することで、板状で且つ粒子サイズが大きく、よりガスバリア性に優れた板状アルミナ粒子を製造することができる。特に、モリブデンの使用量を多くする傾向とし、珪素の使用量をある程度少なくする傾向とすることで、より粒子サイズ及び結晶子径を大きくでき、且つ六角板状のアルミナ粒子が得られやすくなり、上記のさらに好ましい範囲で各種化合物を配合することで、六角板状のアルミナ粒子が得られやすく、それの含有率をより高めることができ、得られたアルミナ粒子のガスバリア性がさらに優れたものとなる傾向がある。
前記混合物が、さらに上記のイットリウム化合物を含む場合、イットリウム化合物の使用量は、特に限定されないが、酸化物換算した原料全量を100質量%とした際に、好ましくはY換算で5質量%以下、より好ましくは0.01質量%以上3質量%以下のイットリウム化合物を混合することができる。結晶成長をより好適に進行させるために、さらに好ましくは、酸化物換算した原料全量を100質量%とした際に、Y換算で0.1質量%以上1質量%以下のイットリウム化合物を混合することができる。
上記の各原料の使用量の数値範囲は、それらの合計含有量が100質量%を超えない範囲において、適宜組み合わせることができる。
[焼成工程]
焼成工程は、モリブデン化合物及び形状制御剤の存在下で、アルミニウム化合物を焼成する工程である。焼成工程は、前記混合工程で得られた混合物を焼成する工程であってもよい。
板状アルミナ粒子は、例えば、モリブデン化合物および形状制御剤の存在下で、アルミニウム化合物を焼成することで得られる。上記した通り、この製造方法はフラックス法と呼ばれる。
フラックス法は、溶液法に分類される。フラックス法とは、より詳細には、結晶−フラックス2成分系状態図が共晶型を示すことを利用した結晶成長の方法である。フラックス法のメカニズムとしては、以下の通りであると推測される。すなわち、溶質およびフラックスの混合物を加熱していくと、溶質およびフラックスは液相となる。この際、フラックスは融剤であるため、換言すれば、溶質−フラックス2成分系状態図が共晶型を示すため、溶質は、その融点よりも低い温度で溶融し、液相を構成することとなる。この状態で、フラックスを蒸発させると、フラックスの濃度は低下し、換言すれば、フラックスによる前記溶質の融点低下効果が低減し、フラックスの蒸発が駆動力となって溶質の結晶成長が起こる(フラックス蒸発法)。なお、溶質およびフラックスは液相を冷却することによっても溶質の結晶成長を起こすことができる(徐冷法)。
フラックス法は、融点よりもはるかに低い温度で結晶成長をさせることができる、結晶構造を精密に制御できる、自形をもつ結晶体を形成できる等のメリットを有する。
フラックスとしてモリブデン化合物を用いたフラックス法によるα−アルミナ粒子の製造では、そのメカニズムは必ずしも明らかではないが、例えば、以下のようなメカニズムによるものと推測される。すなわち、モリブデン化合物の存在下でアルミニウム化合物を焼成すると、まず、モリブデン酸アルミニウムが形成される。この際、当該モリブデン酸アルミニウムは、上述の説明からも理解されるように、アルミナの融点よりも低温でα−アルミナ結晶を成長する。そして、例えば、モリブデン酸アルミニウムの分解、フラックスの蒸発等を経て、結晶成長が加速されることでアルミナ粒子を得ることができる。すなわち、モリブデン化合物がフラックスとして機能し、モリブデン酸アルミニウムという中間体を経由してα−アルミナ粒子が製造されるのである。
フラックス剤として、さらにカリウム化合物を用いた場合の、フラックス法によるα−アルミナ粒子の製造では、そのメカニズムは必ずしも明らかではないが、例えば、以下のようなメカニズムによるものと推測される。まず、モリブデン化合物とアルミニウム化合物が反応してモリブデン酸アルミニウムを形成する。そして、例えば、モリブデン酸アルミニウムが分解して酸化モリブデンとアルミナとなり、同時に、分解によって得られた酸化モリブデンを含むモリブデン化合物は、カリウム化合物と反応してモリブデン酸カリウムを形成する。当該モリブデン酸カリウムを含むモリブデン化合物の存在下でアルミナが結晶成長することで、実施形態に係る板状アルミナ粒子を得ることができる。
上記フラックス法により、上記の縦緩和時間Tの値を満たし、ガスバリア性に優れた板状アルミナ粒子を製造することができる。
焼成の方法は、特に限定はなく、公知慣用の方法で行う事ができる。焼成温度が700℃を超えると、アルミニウム化合物と、モリブデン化合物が反応して、モリブデン酸アルミニウムを形成する。さらに、焼成温度が900℃以上になると、モリブデン酸アルミニウムが分解し、形状制御剤の作用で板状アルミナ粒子を形成する。また、板状アルミナ粒子では、モリブデン酸アルミニウムが分解することで、アルミナと酸化モリブデンになる際に、モリブデン化合物が酸化アルミニウム粒子内に取り込まれるものと考えられる。
また、焼成温度が900℃以上になると、モリブデン酸アルミニウムの分解により得られるモリブデン化合物(例えば三酸化モリブデン)がカリウム化合物と反応し、モリブデン酸カリウムを形成するものと考えられる。
さらに、焼成温度が1000℃以上となると、モリブデンの存在下、板状アルミナ粒子の結晶成長とともに、板状アルミナ粒子表面のAlとSiOが反応し、高効率にムライトを形成するものと考えられる。
同様に、焼成温度が1000℃以上となると、モリブデンの存在下、板状アルミナ粒子の結晶成長とともに、板状アルミナ粒子表面のAlとGe化合物が反応し、高効率に二酸化ゲルマニウムやGe−O−Alを有する化合物等を形成するものと考えられる。
また、焼成する時に、アルミニウム化合物と、形状制御剤と、モリブデン化合物の状態は特に限定されず、モリブデン化合物および形状制御剤がアルミニウム化合物に作用できる同一の空間に存在すれば良い。具体的には、モリブデン化合物と形状制御剤とアルミニウム化合物との粉体を混ぜ合わせる簡便な混合、粉砕機等を用いた機械的な混合、乳鉢等を用いた混合であっても良く、乾式状態、湿式状態での混合であっても良い。
焼成温度の条件に特に限定は無く、目的とする板状アルミナ粒子の、上記縦緩和時間Tの値、(006/113)比の値、平均粒子径、アスペクト比、ムライトの形成、分散性等により、適宜、決定される。通常、焼成の温度については、最高温度がモリブデン酸アルミニウム(Al2(MoO43)の分解温度である900℃以上が好ましく、ムライトやゲルマニウム化合物が高効率に形成される1000℃以上がより好ましく、上記縦緩和時間Tが5秒以上(高結晶性)の板状アルミナ粒子を容易に得ることができる1200℃以上がより好ましい。
一般的に、焼成後に得られるα−アルミナの形状を制御しようとすると、α−アルミナの融点に近い2000℃以上の高温焼成を行う必要があるが、焼成炉へ負担や燃料コストの点から、産業上利用する為には大きな課題がある。
実施形態の製造方法は、2000℃を超えるような高温であっても実施可能であるが、1600℃以下というα−アルミナの融点よりかなり低い温度であっても、前駆体の形状にかかわりなくα結晶化率が高くアスペクト比の高い板状形状となるα−アルミナを形成することができる。
本発明の一実施形態によれば、最高焼成温度が900〜1600℃の条件であっても、アスペクト比が高く、α結晶化率が90%以上である板状アルミナ粒子の形成を低コストで効率的に行うことができ、最高温度が950〜1500℃での焼成がより好ましく、最高温度が1000〜1400℃の範囲の焼成がさらに好ましく、最高温度が1200〜1400℃での焼成が最も好ましい。
焼成の時間については、所定最高温度への昇温時間を15分〜10時間の範囲で行い、且つ焼成最高温度における保持時間を5分〜30時間の範囲で行うことが好ましい。板状アルミナ粒子の形成を効率的に行うには、10分〜15時間程度の時間の焼成保持時間であることがより好ましい。
最高温度1000〜1400℃かつ10分〜15時間の焼成保持時間の条件を選択することで、緻密なα結晶形の多角板状アルミナ粒子が凝集し難く、容易に得られる。
最高温度1200〜1400℃かつ10分〜15時間の焼成保持時間の条件を選択することで、上記縦緩和時間Tが5秒以上(高結晶性)の板状アルミナ粒子が、容易に得られる。
焼成の雰囲気としては、本発明の効果が得られるのであれば特に限定されないが、例えば、空気や酸素といった含酸素雰囲気や、窒素やアルゴン、または二酸化炭素といった不活性雰囲気が好ましく、コストの面を考慮した場合は空気雰囲気がより好ましい。
焼成するための装置としても必ずしも限定されず、いわゆる焼成炉を用いることができる。焼成炉は昇華した酸化モリブデンと反応しない材質で構成されていることが好ましく、さらに酸化モリブデンを効率的に利用するように、密閉性の高い焼成炉を用いる事が好ましい。
上記アルミナ粒子を得るに当たっては、モリブデン化合物及び形状制御剤の存在下、又は、モリブデン化合物、形状制御剤、カリウム化合物及び金属酸化物の存在下で、アルミニウム化合物を焼成する事により得ることが好ましい。
すなわち、アルミナ粒子の好ましい製造方法は、モリブデン化合物及び形状制御剤の存在下、又は、モリブデン化合物、形状制御剤及びカリウム化合物の存在下で、アルミニウム化合物を焼成する工程(焼成工程)を含む。前記混合物は、さらに上記の金属化合物を含むことが好ましい。金属化合物としては、イットリウム化合物が好ましい。
[冷却工程]
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、アルミナ粒子の製造方法は、冷却工程を含んでいてもよい。当該冷却工程は、焼成工程において結晶成長したアルミナを冷却する工程である。より具体的には、焼成工程により得られたアルミナ及び液相のフラックス剤を含む組成物を冷却する工程であってよい。
冷却速度は、特に制限されないが、1〜1000℃/時間であることが好ましく、5〜500℃/時間であることがより好ましく、50〜100℃/時間であることがさらに好ましい。冷却速度が1℃/時間以上であると、製造時間が短縮されうることから好ましい。一方、冷却速度が1000℃/時間以下であると、焼成容器がヒートショックで割れることが少なく、長く使用できることから好ましい。
冷却方法は特に制限されず、自然放冷であっても、冷却装置を使用してもよい。
[後処理工程]
実施形態に係る板状アルミナ粒子の製造方法は、後処理工程を含んでいてもよい。当該後処理工程は、板状アルミナ粒子に対する後処理工程であり、フラックス剤を除去する工程である。後処理工程は、上述の焼成工程の後に行ってもよいし、上述の冷却工程の後に行ってもよいし、焼成工程および冷却工程の後に行ってもよい。また、必要に応じて、2度以上繰り返し行ってもよい。
後処理の方法としては、洗浄および高温処理が挙げられる。これらは組み合わせて行うことができる。
前記洗浄方法としては、特に制限されないが、水、アンモニア水溶液、水酸化ナトリウム水溶液、酸性水溶液で洗浄することにより除去することができる。
この際、使用する水、アンモニア水溶液、水酸化ナトリウム水溶液、酸性水溶液の濃度、使用量、および洗浄部位、洗浄時間等を適宜変更することで、モリブデン含有量を制御することができる。
また、高温処理の方法としては、フラックスの昇華点または沸点以上に昇温する方法が挙げられる。
[粉砕工程]
焼成物は板状アルミナ粒子が凝集して、好適な粒子径の範囲を満たさない場合がある。そのため、板状アルミナ粒子は、必要に応じて、好適な粒子径の範囲を満たすように粉砕してもよい。
焼成物の粉砕の方法は特に限定されず、ボールミル、ジョークラッシャー、ジェットミル、ディスクミル、スペクトロミル、グラインダー、ミキサーミル等の従来公知の粉砕方法を適用できる。
[分級工程]
板状アルミナ粒子は、平均粒子径を調整し、粉体の流動性を向上するため、またはマトリックスを形成するためのバインダーに配合したときの粘度上昇を抑制するために、好ましくは分級処理される。「分級処理」とは、粒子の大きさによって粒子をグループ分けする操作をいう。
分級は湿式、乾式のいずれでも良いが、生産性の観点からは、乾式の分級が好ましい。乾式の分級には、篩による分級のほか、遠心力と流体抗力の差によって分級する風力分級などがあるが、分級精度の観点からは、風力分級が好ましく、コアンダ効果を利用した気流分級機、旋回気流式分級機、強制渦遠心式分級機、半自由渦遠心式分級機などの分級機を用いて行うことができる。
上記した粉砕工程や分級工程は、後述する有機化合物層形成工程の前後を含めて、必要な段階において行うことができる。これら粉砕や分級の有無やそれらの条件選定により、例えば、得られる板状アルミナ粒子の平均粒子径を調整することができる。
実施形態の板状アルミナ粒子、或いは実施形態の製造方法で得る板状アルミナ粒子は、凝集が少ないもの或いは凝集していないものが、本来の性質を発揮しやすく、それ自体の取扱性により優れており、また被分散媒体に分散させて用いる場合において、より分散性に優れる観点から、好ましい。板状アルミナ粒子の製造方法においては、上記した粉砕工程や分級工程は行わずに、凝集が少ないもの或いは凝集していないものが得られれば、左記工程を行う必要もなく、目的の優れた性質を有する板状アルミナを、生産性高く製造することが出来るので好ましい。
[有機化合物層形成工程]
一実施形態において、板状アルミナ粒子の製造方法は、有機化合物層形成工程をさらに含んでいてもよい。当該有機化合物層形成工程は、通常、焼成工程の後、または後処理工程の後に行われる。
有機化合物層を形成する方法としては、特に制限されず、公知の方法が適宜採用されうる。例えば、有機化合物を含む液をモリブデンを含む板状アルミナ粒子に接触させ、乾燥する方法が挙げられる。
なお、有機化合物層の形成に使用されうる有機化合物としては、例えば上述したものが用いられうる。
本実施形態のガスバリア性組成物は、前記板状アルミナ粒子と樹脂とを含有する樹脂組成物であることが好ましい。樹脂としては、特に限定されず、熱硬化性樹脂、熱可塑性樹脂等を例示できる。
樹脂組成物は、硬化させて樹脂組成物の硬化物とすることができ、硬化及び成形して、樹脂組成物の成形物とすることができる。成形のために、樹脂組成物に対して溶融や混練などの処理を、適宜施すことができる。成形方法としては、圧縮成型、射出成型、押出成型、発泡成形等が挙げられる。なかでも、押出成形機による押出成形が好ましく、二軸押出機による押出成形がより好ましい。
樹脂組成物をガスバリア材、コーティング剤、接着剤等として用いる場合、樹脂組成物を塗布対象に塗布して、樹脂組成物の硬化物を有する塗膜を形成することができる。
<樹脂組成物の製造方法>
当該製造方法は、板状アルミナ粒子と、樹脂とを混合する工程を含む。
板状アルミナ粒子としては、上述したものが用いられうることからここでは説明を省略する。
なお、前記板状アルミナ粒子は、表面処理されたものを用いることができる。
また、使用する板状アルミナ粒子は、1種のみ使用しても、2種以上を組み合わせて使用してもよい。
さらに、板状アルミナ粒子と他のフィラー(アルミナ、スピネル、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、炭酸マグネシウム等)とを組み合わせて使用してもよい。
板状アルミナ粒子の含有量は、樹脂組成物の質量100質量%に対して、5〜95質量%であることが好ましく、10〜90質量%であることがより好ましく、30〜80質量%であることがさらに好ましい。板状アルミナ粒子の含有量が5質量%以上であると、ガスバリア性がより一層優れたものになる。一方、板状アルミナ粒子の含有量が95質量%以下であると、成形性に優れた樹脂組成物を得ることができることから好ましい。
樹脂組成物をガスバリア材、コーティング剤、接着剤等として用いる場合、塗膜の形成を容易とする観点から、板状アルミナ粒子の含有量は、樹脂組成物の固形分質量100質量%に対して、0.1〜95質量%であることが好ましく、1〜50質量%であることがより好ましく、3〜30質量%であることがさらに好ましい。
[樹脂]
樹脂としては、特に制限されず、熱可塑性樹脂および熱硬化性樹脂が挙げられる。
前記熱可塑性樹脂としては、特に制限されず、成形材料等に使用される公知慣用の樹脂が用いられうる。具体的には、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメタクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリアミノビスマレイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ビスマレイミドトリアジン樹脂、ポリメチルペンテン樹脂、フッ化樹脂、液晶ポリマー、オレフィン−ビニルアルコール共重合体、アイオノマー樹脂、ポリアリレート樹脂、アクリロニトリル−エチレン−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体などが挙げられる。
前記熱硬化性樹脂としては、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂であり、一般的には、成形材料等に使用される公知慣用の樹脂が用いられうる。具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂等のノボラック型フェノール樹脂;未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂;ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂;脂肪鎖変性ビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂、ポリアルキレングルコール型エポキシ樹脂等のエポキシ樹脂;ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂;(メタ)アクリル樹脂やビニルエステル樹脂等のビニル樹脂:不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂等が挙げられる。
上述の樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。この際、熱可塑性樹脂を2種以上使用してもよいし、熱硬化性樹脂を2種以上使用してもよいし、熱可塑性樹脂を1種以上および熱硬化性樹脂を1種以上使用してもよい。
樹脂の含有量は、樹脂組成物の質量100質量%に対して、5〜90質量%であることが好ましく、10〜70質量%であることがより好ましい。樹脂の含有量が5質量%以上であると、樹脂組成物の接着性及び密着性が向上することから好ましい。一方、樹脂の含有量が90質量%以下であると、樹脂組成物のガスバリア性が向上することから好ましい。
[硬化剤]
樹脂組成物には、必要に応じて硬化剤を混合してもよい。
硬化剤としては、特に制限されず、公知のものが使用されうる。
具体的には、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などが挙げられる。
前記アミン系化合物としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられる。
前記アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。
前記酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
前記フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核およびアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
上述硬化剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
[硬化促進剤]
樹脂組成物には、必要に応じて硬化促進剤を混合してもよい。
硬化促進剤は、組成物を硬化する際に硬化を促進させる機能を有する。
前記硬化促進剤としては、特に制限されないが、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。
上述の硬化促進剤は単独で用いても、2種以上を組み合わせて用いてもよい。
[硬化触媒]
樹脂組成物には、必要に応じて硬化触媒を混合してもよい。
硬化触媒は、前記硬化剤の代わりに、エポキシ基を有する化合物の硬化反応を進行させる機能を有する。
硬化触媒としては、特に制限されず、公知慣用の熱重合開始剤や活性エネルギー線重合開始剤が用いられうる。
なお、硬化触媒は単独で用いても、2種以上を組み合わせて用いてもよい。
[粘度調節剤]
樹脂組成物には、必要に応じて粘度調節剤を混合してもよい。
粘度調節剤は、組成物の粘度を調整する機能を有する。
粘度調節剤としては、特に制限されず、有機ポリマー、ポリマー粒子、無機粒子等が用いられうる。
なお、粘度調節剤は単独で用いても、2種以上を組み合わせて用いてもよい。
[可塑剤]
樹脂組成物には、必要に応じて可塑剤を混合してもよい。
可塑剤は、熱可塑性合成樹脂の加工性、柔軟性、耐候性等を向上させる機能を有する。
可塑剤としては、特に制限されず、フタル酸エステル、アジピン酸エステル、リン酸エステル、トリメリット酸エステル、ポリエステル、ポリオレフィン、ポリシロキサン等が用いられうる。
なお、上述の可塑剤は単独で用いても、2種以上を組み合わせて用いてもよい。
[混合]
樹脂組成物は、板状アルミナ粒子と樹脂、さらに必要に応じてその他の配合物を混合することにより得られる。その混合方法に特に限定はなく、公知慣用の方法により、混合される。
樹脂が熱硬化性樹脂である場合、一般的な熱硬化性樹脂と板状アルミナ粒子等との混合方法としては、所定の配合量の熱硬化性樹脂と、板状アルミナ粒子、必要に応じてその他の成分をミキサー等によって充分に混合した後、三本ロール等で混練し、流動性ある液状の組成物を得る方法が挙げられる。また、別の実施形態における熱硬化性樹脂と板状アルミナ粒子等との混合方法として、所定の配合量の熱硬化性樹脂と、板状アルミナ粒子、必要に応じてその他の成分をミキサー等によって充分に混合した後、ミキシングロール、押出機等で溶融混練した後、冷却することで、固形の組成物として得る方法が挙げられる。混合状態に関して、硬化剤や触媒等を配合した場合は、硬化性樹脂とそれらの配合物が充分に均一に混合されていればよいが、板状アルミナ粒子も均一に分散混合された方がより好ましい。
樹脂が熱可塑性樹脂である場合の一般的な熱可塑性樹脂と板状アルミナ粒子等との混合方法としては、熱可塑性樹脂、板状アルミナ粒子、および必要に応じてその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー、混合ロールなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常100〜320℃の範囲である。
樹脂組成物は、更に修飾剤を含有してもよい。修飾剤としては、カップリング剤、シラン化合物、酸無水物等が挙げられる。樹脂組成物がこれらの修飾剤を含有する場合、板状アルミナ粒子の濡れ性が向上し、樹脂組成物への分散性が向上する。修飾剤は、1種を単独で用いてよく、複数種を組み合わせて用いてもよい。
カップリング剤としては、例えばシランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミカップリング剤等が挙げられる。
シランカップリング剤としては、例えばエポキシ基含有シランカップリング剤、アミノ基含有シランカップリング剤、(メタ)アクリル基含有シランカップリング剤、イソシアネート基含有シランカップリング剤等が挙げられる。エポキシ基含有シランカップリング剤としては、例えば3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。アミノ基含有シランカップリング剤としては、例えば3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチルブチリデン)プロピルアミン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が挙げられる。(メタ)アクリル基含有シランカップリング剤としては、例えば3−アクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン等が挙げられる。イソシアネート基含有シランカップリング剤としては、例えば3−イソシアネートプロピルトリエトキシシラン等が挙げられる。
チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。
ジルコニウムカップリング剤としては、例えば、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、フッ化ジルコニウム等が挙げられる。
アルミカップリング剤としては、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロポキシモノエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート等が挙げられる。
シラン化合物としては、アルコキシシラン、シラザン、シロキサン等が挙げられる。アルコキシシランとしては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等が挙げられる。シラザンとしてはヘキサメチルジシラザン等が挙げられる。シロキサンとしては加水分解性基含有シロキサン等が挙げられる。
酸無水物としては、無水コハク酸、無水マレイン酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸アルケニル無水コハク酸等が挙げられる。
修飾剤の配合量としては、特に制限されないが、樹脂の質量に対して、0.01〜5質量%であることが好ましく、0.1〜3質量%であることがより好ましい。
樹脂組成物は、使用用途に応じて溶剤を含有してもよい。溶剤としては有機溶剤が挙げられ、例えばメチルエチルケトン、アセトン、酢酸エチル、酢酸ブチル、トルエン、ジメチルホルムアミド、アセトニトリル、メチルイソブチルケトン、メタノール、エタノール、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。溶剤の種類及び使用量は使用用途によって適宜選択すればよい。
樹脂組成物は、本発明の効果を損なわない範囲で、各種の添加剤(樹脂、板状アルミナ粒子、硬化剤、硬化促進剤、硬化触媒、粘度調節剤、可塑剤及び修飾剤に該当する化合物は除く)を含有してもよい。添加剤としては、例えば、有機フィラー、無機フィラー、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、結晶核剤、酸素捕捉剤(酸素捕捉機能を有する化合物)、粘着付与剤等が例示できる。これらの各種添加剤は単独で又は二種以上組み合わせて使用される。
添加剤のうち、無機フィラーとしては、金属、金属酸化物、樹脂、鉱物等の無機物及びこれらの複合物が挙げられる。無機フィラーの具体例としては、シリカ、チタン、ジルコニア、銅、鉄、銀、マイカ、タルク、アルミニウムフレーク、ガラスフレーク及び粘土鉱物が挙げられる。これらの中でも、ガスバリア性を向上させる目的で、粘土鉱物を使用することが好ましく、粘土鉱物の中でも膨潤性無機層状化合物を使用することがより好ましい。
膨潤性無機層状化合物としては、例えば、含水ケイ酸塩(フィロケイ酸塩鉱物等)、カオリナイト族粘土鉱物(ハロイサイト等)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スティーブンサイト等)、バーミキュライト族粘土鉱物(バーミキュライト等)などが挙げられる。これらの鉱物は天然粘土鉱物であっても合成粘土鉱物であってもよい。膨潤性無機層状化合物は単独でまたは二種以上組み合わせて使用される。
酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール系化合物、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。
粘着付与剤としては、キシレン樹脂、テルペン樹脂、ロジン樹脂等が挙げられる。粘着付与剤を添加することで塗布直後の各種フィルム材料に対する粘着性を向上させることができる。粘着性付与剤の添加量は樹脂組成物全量100質量部に対して0.01〜5質量部であることが好ましい。
本実施形態のガスバリア性組成物は、ガスバリア性、特に酸素バリア性が優れているため、ガスバリア材として好適に用いることができる。
本実施形態のガスバリア材は、コーティング剤として好適に用いることができる。コーティング剤は、上述したガスバリア性組成物を含むものであればよい。コーティング剤のコーティング方法は特に限定されない。具体的な方法としては、ロールコート、グラビアコート等の各種コーティング方法を例示することができる。また、コーティング装置についても特に限定されない。本実施形態のガスバリア材は、高いガスバリア性を有することから、ガスバリア性コーティング剤として好適に利用可能である。
本実施形態のガスバリア材は、接着性に優れるため、接着剤として好適に用いることができる。接着剤の形態には特に限定はなく、液状又はペースト状の接着剤としてもよく、固形状の接着剤としてもよい。本実施形態のガスバリア材は、高いガスバリア性を有することから、この接着剤はガスバリア性接着剤として好適に利用可能である。
液状又はペースト状の接着剤の場合は、使用方法としては特に限定はないが、接着面に塗布後又は接着面の界面に注入後、接着し、硬化させてよい。
固形状の接着剤の場合は、粉末状、チップ状、又はシート状に成形した接着剤を、接着面の界面に設置し、熱溶解させることで接着し、硬化させてよい。
本実施形態の積層体は、基材と、上述したガスバリア性組成物を含有する層(以下、ガスバリア層とも称する)とを有する。ガスバリア層は、ガスバリア性組成物の硬化物からなっていてよい。ガスバリア層の成形方法は任意であり、用途によって適時選択すればよい。ガスバリア層の形状に制限はなく、板状、シート状、又はフィルム状であってもよく、立体形状を有していてもよく、基材に塗布されたものであってもよく、基材と基材の間に存在する形で成形されたものであってもよい。
板状、シート状のガスバリア層を成形する場合、例えば押し出し成形法、平面プレス、異形押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いてガスバリア性組成物を成形する方法が挙げられる。また、フィルム状のガスバリア層を成形する場合、例えば溶融押出法、溶液キャスト法、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形が挙げられる。
ガスバリア性組成物が液状である場合、塗工により成形してもよい。塗工方法としては、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法、ディスペンス法等が挙げられる。
本実施形態の積層体は、2層構造であってもよく、3層構造以上であってもよい。
基材の材質は特に限定はなく、用途に応じて適宜選択すればよく、例えば木材、金属、プラスチック、紙、シリコン又は変性シリコン等が挙げられ、異なる素材を接合して得られた基材であってもよい。基材の形状は特に制限はなく、平板、シート状、又は3次元形状全面に、若しくは一部に、曲率を有するもの等目的に応じた任意の形状であってよい。
また、基材の硬度、厚さ等にも制限はない。
積層体は、基材上に上述したガスバリア層を積層することで得ることができる。基材上に積層するガスバリア層は、基材に対し直接塗工又は直接成形により形成してもよく、ガスバリア層の成形体を積層してもよい。直接塗工する場合、塗工方法としては特に限定はなく、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。ガスバリア性組成物の硬化物からなるガスバリア層を積層する場合、未硬化又は半硬化のガスバリア性組成物層を基材上に積層してから硬化させてもよく、ガスバリア性組成物を完全硬化した硬化物層を基材上に積層してもよい。
また、積層体は、ガスバリア性組成物の硬化物に対して基材の前駆体を塗工して硬化させることで得てもよく、基材の前駆体又はガスバリア性組成物が未硬化若しくは半硬化の状態で接着させた後に硬化させることで得てもよい。基材の前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。また、実施形態のガスバリア性組成物を接着剤として用いることで積層体を作成してもよい。
以下に実施例を比較例と共に挙げて本発明を詳細に説明するが、本発明はそれら実施例によって何ら限定されるものではない。
<板状アルミナ粒子の合成>
[合成例1]板状アルミナ粒子の合成
水酸化アルミニウム(日本軽金属株式会社製、平均粒子径2μm)142.3gと、二酸化珪素(関東化学株式会社製、特級)2.8gと、三酸化モリブデン(太陽鉱工株式会社製)4.7gと、を乳鉢で混合し、混合物を得た。得られた混合物を坩堝に入れ、セラミック電気炉にて5℃/分の条件で1200℃まで昇温し、1200℃で10時間保持し焼成を行なった。その後5℃/分の条件で室温まで降温後、坩堝を取り出し、95gの薄青色の粉末を得た。得られた粉末を乳鉢で、106μm篩を通るまで解砕した。
続いて、得られた前記薄青色粉末の50gを0.5%アンモニア水の150mLに分散し、分散溶液を室温(25〜30℃)で0.5時間攪拌後、ろ過によりアンモニア水を除き、水洗浄と乾燥を行う事で、粒子表面に残存するモリブデンを除去し、47gの薄青色の粉末を得た。得られた粉末はSEM観察により形状が多角板状であり、凝集体が極めて少なく、優れた取り扱い性を有する板状形状の粒子であることが確認された。さらに、XRD測定を行ったところ、α−アルミナに由来する鋭いピーク散乱が現れ、α結晶構造以外のアルミナ結晶系ピークは観察されなく、緻密な結晶構造を有する板状アルミナであることを確認した。また、α化率は99%以上(ほぼ100%)であった。さらに、蛍光X線定量分析の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.3質量%含むものであり、ケイ素を二酸化ケイ素換算で、2.2質量%含むものであることを確認した。XPS分析結果により求められるAlに対するSiのモル比[Si]/[Al]は、0.28であった。
[合成例2]板状アルミナ粒子の合成
水酸化アルミニウム(日本軽金属株式会社製、平均粒子径2μm)を143.7g用い、二酸化珪素(関東化学株式会社製、特級)を1.9g用い、三酸化モリブデン(太陽鉱工株式会社製)4.7g用いた以外は、合成例1と同様の製法により、板状アルミナ粒子の薄青色粉末47gを得た。得られた粉末はSEM観察により形状が多角板状であり、凝集体が極めて少なく、優れた取り扱い性を有する板状形状の粒子であることが確認された。さらに、XRD測定を行ったところ、α−アルミナに由来する鋭いピーク散乱が現れ、α結晶構造以外のアルミナ結晶系ピークは観察されなく、緻密な結晶構造を有する板状アルミナであることを確認した。また、α化率は99%以上(ほぼ100%)であった。さらに、蛍光X線定量分析の結果から、得られた粒子は、モリブデンを三酸化モリブデン換算で0.3質量%含むものであり、ケイ素を二酸化ケイ素換算で、1.2質量%含むものであることを確認した。XPS分析結果により求められるAlに対するSiのモル比[Si]/[Al]は、0.26であった。
<合成例で得られた板状アルミナ粒子及び、市販の球状アルミナ粒子の評価>
[粒子径Lの計測]
合成例で得られた板状アルミナ粒子及び、市販の球状アルミナ粒子(デンカ株式会社製、DAS−30)を試料として、これらについて、レーザー回折式粒度分布計HELOS(H3355)&RODOS(株式会社日本レーザー製)を用い、分散圧3bar、引圧90mbarの条件でメディアン径D50(μm)を求め、粒子径Lとした。
[厚みDの計測]
上記試料について、走査型電子顕微鏡(SEM)を用いて、50個の厚みを測定した平均値を採用し、厚みD(μm)とした。
[アスペクト比L/D]
板状アルミナ粒子のアスペクト比は下記の式を用いて求めた。
アスペクト比 = 板状アルミナ粒子の平均粒子径L/板状アルミナ粒子の厚みD
[比表面積の計測]
上記試料を300℃3時間の条件で前処理を行った後、マイクロメリティックス社製、TriStar3000を用いて前処理後の試料の比表面積を測定した。
[XRDピーク強度比・ムライトの有無の分析]
上記試料を0.5mm深さの測定試料用ホルダーにのせ、一定荷重で平らになるように充填し、それを広角X線回折(XRD)装置(株式会社リガク製 Ultima IV)にセットし、Cu/Kα線、40kV/40mA、スキャンスピード2度/分、走査範囲10〜70度の条件で測定を行った。
2θ=26.2±0.2度に認められるムライトのピーク高さをA、2θ=35.1±0.2度に認められる(104)面のα−アルミナのピーク高さをBとし、2θ=30±0.2度のベースラインの値をCとして下記の式よりムライトの有無を判定した。
値が0.02以上はムライトが「有」とし、0.02未満はムライトが「無」と判定した。
Figure 2021059488
[α化率の分析]
上記試料を0.5mm深さの測定試料用ホルダーにのせ、一定荷重で平らになる様充填し、それを広角X線回折装置(株式会社リガク製 Ultima IV)にセットし、Cu/Kα線、40kV/40mA、スキャンスピード2度/分、走査範囲10〜70度の条件で測定を行った。α−アルミナと遷移アルミナの最強ピーク高さの比よりα化率を求めた。
[板状アルミナ粒子表層のSi量]
X線光電子分光(XPS)装置Quantera SXM(アルバックファイ社)を用い、上記試料を両面テープ上にプレス固定し、以下の条件で組成分析を行った。
(測定条件)
・X線源:単色化AlKα、ビーム径100μmφ、出力25W・測定:エリア測定(1000μm四方)、n=3
・帯電補正:C1s=284.8eV
XPS分析結果により求められる[Si]/[Al]を板状アルミナ粒子表層のSi量とした。
[板状アルミナ粒子内に含まれるSi量の分析]
蛍光X線(XRF)分析装置Primus IV(株式会社リガク製)を用い、上記試料約70mgをろ紙にとり、PPフィルムをかぶせて組成分析を行った。
XRF分析結果により求められる[Si]/[Al]を板状アルミナ粒子内のSi量とした。
XRF分析結果により求められるケイ素量を、板状アルミナ粒子100質量%に対する二酸化ケイ素換算(質量%)により求めた。
[板状アルミナ内に含まれるMo量の分析]
蛍光X線分析装置PrimusIV(株式会社リガク製)を用い、上記試料約70mgをろ紙にとり、PPフィルムをかぶせて組成分析を行った。
XRF分析結果により求められるモリブデン量を、板状アルミナ粒子100質量%に対する三酸化モリブデン換算(質量%)により求めた。
[NMRによる配位数の測定]
JEOL RESONANCE製、JNM−ECA600を用いて、静磁場強度14.1Tにて、固体27Al NMR分析を行った。各試料を、φ 4mm固体NMR試料管に採取し、測定を行った。試料ごと、90度パルス幅を測定した後、飽和回復法による緩和時間測定、シングルパルス測定を実施した。
市販試薬のγ−アルミナ(関東化学)の6配位アルミニウムのピークトップを14.6ppmとした場合の10〜30ppmに検出されたピークを6配位アルミニウムのピーク、60〜90ppmに検出されたピークを4配位アルミニウムのピークと推定した。
条件は下記のとおりである。
・MAS rate:15kHz
・プローブ:SH60T4(JEOL RESONANCE製)
14.1Tにおけるシングルパルス測定の測定条件は下記のとおりである。
・パルス延滞時間(秒):(緩和回復法により求められたT(秒)×3)
・パルス幅(μ秒):各試料の6配位アルミニウムの90度パルス幅(μ秒)/3
・積算回数:8回
・温度 :46℃
[NMRによる縦緩和時間Tの測定]
14.1Tにおける緩和回復法により、10〜30ppmに検出された6配位アルミニウムのピークに対する縦緩和時間Tを求めた。
条件は下記のとおりである。
・パルス延滞時間(秒):0.5
・飽和後待ち時間(秒):0.5〜100、Exponetial 間隔 16点
・積算回数 :1回
・温度 :46℃
原料化合物の酸化物換算の配合(全体を100質量%とする)と、合成例で得られた各板状アルミナ粒子及び、市販の球状アルミナ粒子(デンカ株式会社製、DAS−30)の評価結果を以下の表1に示す。なお、表中、「N.D.」はnot detectedの略であり、不検出であることを表す。
Figure 2021059488
<フィルムの作製>
[実施例1]
(シランカップリング剤溶液の調製)
1.0gのシランカップリング剤(3−メタクリロキシプロピルトリメトキシシラン、商品名:KBM503、信越化学工業株式会社製)、0.215gの蒸留水、10gのイソプロパノールを混合し、常温にてスターラーで攪拌することで均一溶液を得た。
(アルミナ分散液の調製)
0.95gの前記シランカップリング剤溶液と3.0gのジオール樹脂(ポリカーボネートジオール、商品名:デュラノールT5651、旭化成株式会社製)を、酢酸エチル12.5gに添加し、常温にてスターラーで撹拌することで、ジオール樹脂を完全に溶解した溶液を調製した。得られた溶液に、上記合成例1で得られた板状アルミナ粒子を1.2g添加し、常温にてスターラーで撹拌し、一定時間分散状態を保持するアルミナ分散液を調製した。
(コーティング剤溶液の調製)
8.0gの前記アルミナ分散液を超音波ホモジナイザー(SONIFIER BRANSON、日本エマソン株式会社製)で5分間処理した後、これに1.4gのイソシアネート樹脂(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体、不揮発成分:75.0%、NCO%:11.5%、商品名:タケネートD−110N、三井化学株式会社製)と5.6gの酢酸エチルを添加し、コーティング剤溶液を得た。
(コーティング剤溶液の塗工方法)
得られたコーティング剤溶液を、PETフィルム(PET#12、商品名:東洋紡エステルフィルムE5100、厚み12μm、東洋紡株式会社製)にバーコーター#20を用いて塗布量3.0g/m(固形分)となるように塗工し、80℃設定の乾燥機中に30秒間設置し溶媒を揮発させた後、40℃設定の乾燥機中に3日間設置し、樹脂を硬化させ、均一なコーティング層を有するフィルムを得た。
[実施例2]
アルミナ粒子として、合成例1で得られた板状アルミナ粒子の代わりに合成例2で得られた板状アルミナ粒子を用いた以外は、実施例1と同様の方法を用いてフィルムを作製した。
[比較例1]
アルミナ粒子として、合成例1で得られた板状アルミナ粒子の代わりに市販の球状アルミナ粒子(デンカ株式会社製、DAS−30)を用いた以外は、実施例1と同様の方法を用いてフィルムを作製した。
[比較例2]
3.0gのジオール樹脂(ポリカーボネートジオール、商品名:デュラノールT5651、旭化成株式会社製)を、酢酸エチル12.5gに添加し、常温にてスターラーで撹拌することで、ジオール樹脂を完全に溶解した溶液を調製し、このうちの8.0gを、1.4gのイソシアネート樹脂(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体、不揮発成分:75.0%、NCO%:11.5%、商品名:タケネートD−110N、三井化学株式会社製)と5.6gの酢酸エチルと混合し、コーティング剤溶液を得た。得られたコーティング剤溶液を用いて、実施例1と同様の方法でフィルムを作製した。
<フィルムの評価>
実施例1〜2及び比較例1〜2のフィルムについて、酸素透過性を評価した。評価結果を表2に示す。なお、酸素透過性の評価は以下の方法で実施した。
(酸素透過率測定方法)
得られたフィルムを、モコン社製酸素透過率測定装置OX−TRAN1/50を用いてJIS−K7126(等圧法)に準じ、23℃、0%RHおよび23℃、90%RHの雰囲気下で測定した。なお、RHは相対湿度を示す。
Figure 2021059488
表2から、実施例1〜2のフィルムは、比較例1〜2のフィルムよりも、23℃、0%RH及び23℃、90%RHの何れにおいても、酸素バリア性が優れていることが確かめられた。とくに、23℃、0%RHでの酸素バリア性において優れていることが確かめられた。
各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
本発明によれば、ガスバリア性、特に酸素バリア性に優れるガスバリア性組成物、ガスバリア材、及び積層体を提供することができる。

Claims (9)

  1. 固体27Al NMR分析にて、静磁場強度14.1Tにおける10〜30ppmの6配位アルミニウムのピークに対する縦緩和時間Tが、5秒以上である、板状アルミナ粒子を含有するガスバリア性組成物。
  2. 前記板状アルミナ粒子がケイ素及び/又はゲルマニウムを含む、請求項1に記載のガスバリア性組成物。
  3. 前記板状アルミナ粒子が表層にムライトを含む、請求項2に記載のガスバリア性組成物。
  4. 前記板状アルミナ粒子がモリブデンを含む、請求項1〜3のいずれか一項に記載のガスバリア性組成物。
  5. 前記板状アルミナ粒子100質量%に対するモリブデンの含有量が、三酸化モリブデン換算で、0.1以上1質量%以下である、請求項4に記載のガスバリア性組成物。
  6. 請求項1〜5のいずれか一項に記載のガスバリア性組成物を含有するガスバリア材。
  7. コーティング剤である、請求項6に記載のガスバリア材。
  8. 接着剤である、請求項6に記載のガスバリア材。
  9. 基材と、請求項1〜5のいずれか一項に記載のガスバリア性組成物を含有する層とを有する積層体。
JP2020167283A 2019-10-09 2020-10-01 ガスバリア性組成物、ガスバリア材、及び積層体 Pending JP2021059488A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019186074 2019-10-09
JP2019186074 2019-10-09

Publications (1)

Publication Number Publication Date
JP2021059488A true JP2021059488A (ja) 2021-04-15

Family

ID=75379647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020167283A Pending JP2021059488A (ja) 2019-10-09 2020-10-01 ガスバリア性組成物、ガスバリア材、及び積層体

Country Status (1)

Country Link
JP (1) JP2021059488A (ja)

Similar Documents

Publication Publication Date Title
JP7459801B2 (ja) 板状アルミナ粒子、板状アルミナ粒子の製造方法、及び樹脂組成物
JP7272352B2 (ja) アルミナを含有する樹脂組成物及び放熱部材
JP6753555B2 (ja) 板状アルミナ粒子、及び板状アルミナ粒子の製造方法
JP2024072854A (ja) 複合粒子の製造方法
JPWO2019194160A1 (ja) 板状アルミナを含有する樹脂組成物及び放熱部材
JP2021059488A (ja) ガスバリア性組成物、ガスバリア材、及び積層体
JP7151935B2 (ja) 板状アルミナ粒子、及び板状アルミナ粒子の製造方法
JP2021059479A (ja) ガスバリア性組成物、ガスバリア材、及び積層体
JP2021120337A (ja) 耐摩耗剤、コーティング剤、積層体、積層体の製造方法、及び基材のコーティング方法
JP2021059486A (ja) 防蝕剤、防蝕塗料、積層体、積層体の製造方法、及び基材の防蝕方法
JP6901086B2 (ja) 樹脂組成物、成形体、積層体、ガスバリア材、コーティング材及び接着剤
JP7468790B2 (ja) 複合粒子及び該複合粒子の製造方法
US20230082688A1 (en) Alumina particles, resin composition, molded body, and method for producing alumina particles
JP2022171034A (ja) 複合粒子及び該複合粒子の製造方法
JP2021059724A (ja) 耐摩耗剤、コーティング剤、積層体、積層体の製造方法、及び基材のコーティング方法
WO2024024603A1 (ja) ガーナイト粒子およびその製造方法
WO2020145341A1 (ja) 樹脂組成物、成形物、組成物、グリーンシート、焼成物及びガラスセラミックス基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521