JP2021058121A - Plant cultivation installation - Google Patents

Plant cultivation installation Download PDF

Info

Publication number
JP2021058121A
JP2021058121A JP2019183631A JP2019183631A JP2021058121A JP 2021058121 A JP2021058121 A JP 2021058121A JP 2019183631 A JP2019183631 A JP 2019183631A JP 2019183631 A JP2019183631 A JP 2019183631A JP 2021058121 A JP2021058121 A JP 2021058121A
Authority
JP
Japan
Prior art keywords
carbon dioxide
supply
absorption
tower
cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183631A
Other languages
Japanese (ja)
Other versions
JP7290099B2 (en
Inventor
次郎 中田
Jiro Nakada
次郎 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2019183631A priority Critical patent/JP7290099B2/en
Publication of JP2021058121A publication Critical patent/JP2021058121A/en
Application granted granted Critical
Publication of JP7290099B2 publication Critical patent/JP7290099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Abstract

To provide a plant cultivation installation with less supply loss of carbon dioxide.SOLUTION: A plant cultivation installation comprises: a cultivation chamber 1 in which plants are cultivated; carbon dioxide supply means A for supplying carbon dioxide; and a blower fan 6 which sends air in the cultivation chamber 1 to the carbon dioxide supply means A, and is constituted to supply carbon dioxide in the carbon dioxide supply means A into the cultivation chamber 1. The carbon dioxide supply means A comprises: an absorption tower 3 which houses absorption liquid absorbing carbon dioxide; and a regeneration tower 4 which houses absorption liquid sent from the absorption tower 3 and regenerates carbon dioxide contained in absorption liquid by heating by heating means 5, and is constituted to drive the blower fan 6 at night to supply carbon dioxide into the absorption tower 3, and supply regenerated carbon dioxide into the cultivation chamber 1 from the regeneration tower 4 in daytime.SELECTED DRAWING: Figure 1

Description

本発明は、ハウス型の植物栽培設備に関する。 The present invention relates to a house-type plant cultivation facility.

ハウス型の植物栽培設備において、植物の光合成の状況に応じて二酸化炭素の供給又は停止を行う構成が公知である(特許文献1)。 In a house-type plant cultivation facility, a configuration is known in which carbon dioxide is supplied or stopped depending on the state of photosynthesis of the plant (Patent Document 1).

特開2019−41637号公報Japanese Unexamined Patent Publication No. 2019-41637

特許文献1によると、二酸化炭素供給装置は、二酸化炭素の収容部の一例としてのガスタンクとガスバルブとを有し、ガスバルブは、制御部からの制御信号に応じて開閉され、二酸化炭素の温室への供給又は供給停止を制御する構成としているから、植物の光合成で二酸化炭素が消費されて、予め設定された範囲を下回ると、二酸化炭素の供給を行うことができ、光合成を促進できる。 According to Patent Document 1, the carbon dioxide supply device has a gas tank and a gas valve as an example of a carbon dioxide accommodating unit, and the gas valve is opened and closed in response to a control signal from the control unit to enter the carbon dioxide greenhouse. Since the configuration is such that the supply or supply stop is controlled, if carbon dioxide is consumed in the photosynthesis of the plant and falls below a preset range, carbon dioxide can be supplied and photosynthesis can be promoted.

ところが、ガスタンクには二酸化炭素を予め収容しておく必要がある。つまり、植物は、夜間は呼吸のみを行い二酸化炭素を発生させるが、日の出とともに光合成を開始するので、ハウス型栽培設備の二酸化炭素濃度が低下し、これを補うために二酸化炭素を人工的に施用するものであるからランニングコストがかかることとなる。図7に示すように、二酸化炭素は実線で示すように夜間と日中で変化し、光合成を促進するために点線で示すように人工的に二酸化炭素を補充する必要がある。 However, it is necessary to store carbon dioxide in the gas tank in advance. In other words, plants only breathe and generate carbon dioxide at night, but start photosynthesis at sunrise, so the carbon dioxide concentration in house-type cultivation equipment decreases, and carbon dioxide is artificially applied to compensate for this. Therefore, running costs will be incurred. As shown in FIG. 7, carbon dioxide changes between night and day as shown by the solid line, and it is necessary to artificially replenish carbon dioxide as shown by the dotted line in order to promote photosynthesis.

本発明は、二酸化炭素の供給ロスの少ない植物栽培設備を提供することを課題とする。 An object of the present invention is to provide a plant cultivation facility having a small carbon dioxide supply loss.

かかる課題を解決するために、請求項1記載の発明は、植物を栽培する栽培室1と、二酸化炭素を供給する二酸化炭素供給手段Aと、栽培室1内の空気を二酸化炭素供給手段Aに送る送風ファン6と、二酸化炭素供給手段Aの二酸化炭素を栽培室1内に供給する構成とした植物栽培設備とする。 In order to solve such a problem, the invention according to claim 1 uses a cultivation room 1 for cultivating a plant, a carbon dioxide supply means A for supplying carbon dioxide, and an air in the cultivation room 1 for carbon dioxide supply means A. The plant cultivation facility is configured to supply the carbon dioxide of the blowing fan 6 and the carbon dioxide supply means A into the cultivation room 1.

請求項2に記載の発明は、請求項1に記載の発明において、二酸化炭素供給手段Aは、二酸化炭素を吸収する吸収液を収容する吸収塔3と、吸収塔3から送られる吸収液を収容すると共に、加熱手段5で加熱することによって吸収液に含まれる二酸化炭素を再生する再生塔4を備え、再生された二酸化炭素を栽培室1に供給する構成とした。 The invention according to claim 2 is the invention according to claim 1, wherein the carbon dioxide supply means A accommodates an absorption tower 3 that houses an absorption liquid that absorbs carbon dioxide and an absorption liquid that is sent from the absorption tower 3. In addition, a regeneration tower 4 for regenerating carbon dioxide contained in the absorbing liquid by heating with the heating means 5 is provided, and the regenerated carbon dioxide is supplied to the cultivation room 1.

請求項3に記載の発明は、請求項2に記載の発明において、夜間に送風ファン6を駆動して吸収塔3内に二酸化炭素を供給し、日中に再生塔4から再生二酸化炭素を栽培室1に供給する構成とした。 The invention according to claim 3 is the invention according to claim 2, wherein the blower fan 6 is driven at night to supply carbon dioxide into the absorption tower 3, and the recycled carbon dioxide is cultivated from the regeneration tower 4 during the daytime. It was configured to supply to room 1.

請求項4に記載の発明は、請求項2又は請求項3に記載の発明において、再生塔4の吸収液を加熱する加熱手段をボイラ5とし、ボイラ5から発生する排ガスを吸収塔3へ供給する構成とした。 The invention according to claim 4 is the invention according to claim 2 or 3, wherein the heating means for heating the absorption liquid of the regeneration tower 4 is a boiler 5, and the exhaust gas generated from the boiler 5 is supplied to the absorption tower 3. It was configured to be.

請求項5に記載の発明は、請求項2から請求項5に記載のいずれか一に記載の発明において、送風ファン6と吸収塔3の間に除湿器12を設け、栽培室1内湿度が所定以上になると除湿器12を駆動する。 The invention according to claim 5 is the invention according to any one of claims 2 to 5, wherein a dehumidifier 12 is provided between the blower fan 6 and the absorption tower 3, and the humidity in the cultivation room 1 is adjusted. When it becomes more than a predetermined value, the dehumidifier 12 is driven.

請求項1及び請求項2に記載の発明によると、栽培室1内で発生する二酸化炭素を二酸化炭素供給手段Aを介して栽培室1に供給することで、二酸化炭素を発生させるコストを低減できる。 According to the first and second aspects of the invention, the cost of generating carbon dioxide can be reduced by supplying the carbon dioxide generated in the cultivation room 1 to the cultivation room 1 via the carbon dioxide supply means A. ..

請求項3に記載の発明によると、請求項2に記載の効果に加え、夜間は植物の呼吸から発生する二酸化炭素を吸収塔3に貯留し、日中は再生塔4で再生された二酸化炭素を栽培室1に供給することで、光合成の促進が図れる。そして植物から発生する二酸化炭素を有効に活用できる。 According to the invention of claim 3, in addition to the effect of claim 2, carbon dioxide generated from the respiration of plants is stored in the absorption tower 3 at night, and carbon dioxide regenerated in the regeneration tower 4 during the day. Is supplied to the cultivation room 1 to promote photosynthesis. And carbon dioxide generated from plants can be effectively utilized.

請求項4に記載の発明によると、請求項2又は請求項3に記載の効果に加え、ボイラ5から発生する排ガスを有効利用できる。 According to the invention of claim 4, in addition to the effect of claim 2 or 3, the exhaust gas generated from the boiler 5 can be effectively used.

請求項5に記載の発明は、請求項2から請求項4に記載の効果に加え、多湿の際に除湿器12を駆動するから、栽培室1の窓を開放しないで済み、二酸化炭素の放出を少なくできる。 In addition to the effects according to claims 2 to 4, the invention according to claim 5 drives the dehumidifier 12 when the humidity is high, so that the window of the cultivation room 1 does not need to be opened and carbon dioxide is released. Can be reduced.

本発明の実施の形態の、二酸化炭素吸収システムを備えた植物栽培設備の概要図である。It is a schematic diagram of the plant cultivation equipment provided with the carbon dioxide absorption system of the embodiment of this invention. 本発明の別の実施の形態の、二酸化炭素吸収システムを備えた植物栽培設備の概要図である。It is a schematic diagram of the plant cultivation equipment provided with the carbon dioxide absorption system of another embodiment of this invention. (A)公知の排ガス利用二酸化炭素施用システムを備えた植物栽培設備の概要図、(B)改良した排ガス利用二酸化炭素施用システムを備えた植物栽培設備の概要図である。(A) is a schematic diagram of a plant cultivation facility equipped with a known exhaust gas utilization carbon dioxide application system, and (B) is a schematic diagram of a plant cultivation facility equipped with an improved exhaust gas utilization carbon dioxide application system. 液化炭酸ガスの噴霧供給システムを備えた植物栽培設備の概要図である。It is a schematic diagram of a plant cultivation facility equipped with a spray supply system of liquefied carbon dioxide gas. (A)公知の走行防除システム概要図、(B)改良した走行防除システム概要図である。(A) is a known running control system schematic diagram, and (B) is an improved running control system schematic diagram. 改良した走行防除システムの別例を示す概要図である。It is a schematic diagram which shows another example of the improved running control system. 一日の二酸化炭素濃度の変化を示すグラフである。It is a graph which shows the change of carbon dioxide concentration in one day.

本発明の実施の形態について以下説明する。 Embodiments of the present invention will be described below.

図1は本発明の実施の形態にかかる植物栽培設備であって、図1において、この植物栽培設備は、栽培室の一例としての温室1を有する。 FIG. 1 shows a plant cultivation facility according to an embodiment of the present invention, and in FIG. 1, this plant cultivation facility has a greenhouse 1 as an example of a cultivation room.

温室1の内部には、栽培装置の一例としての培地2が設けられている。培地2は、植物の一例として例えばトマトが栽培されている。なお、栽培する植物はトマトに限定されず、目的や用途に応じて、任意の植物を栽培可能である。 Inside the greenhouse 1, a medium 2 as an example of a cultivation device is provided. In the medium 2, for example, tomato is cultivated as an example of a plant. The plant to be cultivated is not limited to tomato, and any plant can be cultivated according to the purpose and use.

温室1内の植物に光合成に必要な二酸化炭素を供給する二酸化炭素供給手段Aが設置されている。この二酸化炭素供給手段Aとして二酸化炭素吸収システムを利用する。二酸化炭素吸収システムは、吸収塔3と再生塔4を備え、二酸化炭素を含む空気を吸収塔3に送り、吸収塔3に貯留する吸収液にその二酸化炭素を吸収させる。この二酸化炭素を吸収した吸収液は再生塔4に送られるが、再生塔4に備えた加熱手段5で加熱することによって二酸化炭素を再生できる。 A carbon dioxide supply means A for supplying carbon dioxide necessary for photosynthesis to plants in greenhouse 1 is installed. A carbon dioxide absorption system is used as the carbon dioxide supply means A. The carbon dioxide absorption system includes an absorption tower 3 and a regeneration tower 4, sends air containing carbon dioxide to the absorption tower 3, and causes the absorption liquid stored in the absorption tower 3 to absorb the carbon dioxide. The absorbing liquid that has absorbed the carbon dioxide is sent to the regeneration tower 4, and the carbon dioxide can be regenerated by heating with the heating means 5 provided in the regeneration tower 4.

ところで、植物は夜間に呼吸のみを行い二酸化炭素を発生するが、日の出とともに光合成を開始し、日中は呼吸と光合成を実行している。光合成が開始すると温室1内の二酸化炭素濃度が低下する。従って二酸化炭素を補う必要がある。そこで、温室1壁部に送風ファン6を設け、夜間この送風ファン6を駆動して温室1内の空気を供給路7を介して吸収塔3に供給し、その中の吸収液に二酸化炭素を吸収させ、その吸収液を再生塔4に送って貯える。日中になると再生塔4に貯えたその吸収液を加熱手段5で加熱して二酸化炭素を再生し、再生二酸化炭素は連通路8を経由して温室1へ供給され、光合成に利用される。このように夜間に発生する二酸化炭素を有効利用することによって、人工的に二酸化炭素を施用する構成に対してコスト低廉に寄与できる。 By the way, plants only breathe at night to generate carbon dioxide, but they start photosynthesis at sunrise and breathe and photosynthesize during the day. When photosynthesis starts, the carbon dioxide concentration in greenhouse 1 decreases. Therefore, it is necessary to supplement carbon dioxide. Therefore, a blower fan 6 is provided on the wall of the greenhouse 1 and the blower fan 6 is driven at night to supply the air in the greenhouse 1 to the absorption tower 3 via the supply path 7, and carbon dioxide is supplied to the absorption liquid in the absorption tower 3. It is absorbed and the absorbed liquid is sent to the regeneration tower 4 for storage. In the daytime, the absorption liquid stored in the regeneration tower 4 is heated by the heating means 5 to regenerate carbon dioxide, and the regenerated carbon dioxide is supplied to the greenhouse 1 via the connecting passage 8 and used for photosynthesis. By effectively utilizing the carbon dioxide generated at night in this way, it is possible to contribute to a low cost for a configuration in which carbon dioxide is artificially applied.

なお、二酸化炭素吸収システムにおいて、吸収塔3と再生塔4の間に熱交換器9を備え、吸収塔3からの吸収液を蒸気にして再生塔4内に拡散できる。また、再生塔4に貯まって加熱処理された吸収液は熱交換器9を通じて蒸気化して吸収塔3に拡散還元する。さらに、夜間送風ファン6で吸収塔3に供給され二酸化炭素が取り除かれた空気は戻し連通路10を経て温室1に戻されるようになっている。 In the carbon dioxide absorption system, a heat exchanger 9 is provided between the absorption tower 3 and the regeneration tower 4, and the absorption liquid from the absorption tower 3 can be converted into vapor and diffused into the regeneration tower 4. Further, the absorption liquid stored in the regeneration tower 4 and heat-treated is vaporized through the heat exchanger 9 and diffused and reduced to the absorption tower 3. Further, the air supplied to the absorption tower 3 by the night blower fan 6 from which carbon dioxide has been removed is returned to the greenhouse 1 via the return passage 10.

前記加熱手段5としてボイラ5を使用している。ボイラ5は日中に運転するが、ボイラ5の排ガス通路11を前記吸収塔3に連通し、運転中に発生する二酸化炭素も吸収塔3に供給することにより光合成促進に利用でき、二酸化炭素の有効利用を図っている。 A boiler 5 is used as the heating means 5. Although the boiler 5 operates during the daytime, the exhaust gas passage 11 of the boiler 5 is communicated with the absorption tower 3, and carbon dioxide generated during the operation is also supplied to the absorption tower 3 so that it can be used for promoting photosynthesis. We are trying to make effective use of it.

図2は、本発明の別の実施の形態にかかる植物栽培設備を示し、温室1の夜間多湿対策において、天窓1a,1bをモータ等で開閉可能に設け、多湿時には開いて多湿対策とする構成が一般的であるが、天窓1a,1bを開くと二酸化炭素も逃げてしまうこととなる。そこで、天窓1a,1bを閉じたままで送風ファン6からの多湿空気を供給路7の途中に設けた除湿器12で除湿し、除湿後の空気を吸収塔3に供給する構成としている。 FIG. 2 shows a plant cultivation facility according to another embodiment of the present invention. In the nighttime humidity countermeasures of the greenhouse 1, skylights 1a and 1b are provided so as to be openable and closable by a motor or the like, and are opened at the time of high humidity to take measures against high humidity. However, when the skylights 1a and 1b are opened, carbon dioxide also escapes. Therefore, with the skylights 1a and 1b closed, the humidified air from the blower fan 6 is dehumidified by the dehumidifier 12 provided in the middle of the supply path 7, and the dehumidified air is supplied to the absorption tower 3.

次いで、図3に基づき、排ガス利用二酸化炭素施用システムについて説明する。温室1A内には、内部に温水が循環すべく温水パイプ15,15…を配置して培地2の近傍を加温できる構成としている。そして、温水パイプ15,15…の温水を加熱するためのボイラ16を備えている。そして、ボイラ16の排ガスを導入外気と混合して温室1A内に二酸化炭素を供給できる構成とした排ガス利用二酸化炭素施用システムが公知である(図3(A))。従来、一酸化炭素検知センサ17を設けて一酸化炭素濃度が所定以上の場合には、温室1Aへの供給路18に介在する開閉バルブ(図示せず)を閉じて供給停止するが、一酸化炭素検知センサ17が異常の場合には、一酸化炭素濃度の高いまま温室1Aに供給されてしまうこととなる。そこで、図3(B)に示すように、排ガス通路途中に二酸化炭素と不要ガスとを分離するフィルタ19を備える。このフィルタ19は例えばセルロース加工のフィルタで、加熱によって二酸化炭素を取り出すことができ、取り出された二酸化炭素を貯留部20に貯留し、温室1A内の二酸化炭素検知センサ21による二酸化炭素濃度の検出値が所定値以下になると、制御部Cは貯留部20に施用信号を出力し、温室1Aへの供給路22を介して二酸化炭素を供給制御される。このように構成すると、純粋二酸化炭素のみを光合成促進用として温室1Aに施用できる。なお、貯留部20には施用信号の有無によって開閉するバルブ手段23を有する。また、ボイラ16の温水を前記フィルタ19の加熱用に利用する構成として、装置の効率化を図っている。 Next, the exhaust gas utilization carbon dioxide application system will be described with reference to FIG. In the greenhouse 1A, hot water pipes 15, 15 ... Are arranged so that hot water circulates inside, so that the vicinity of the medium 2 can be heated. A boiler 16 for heating the hot water of the hot water pipes 15, 15 ... Is provided. An exhaust gas-based carbon dioxide application system is known in which the exhaust gas of the boiler 16 is mixed with the introduced outside air to supply carbon dioxide into the greenhouse 1A (FIG. 3 (A)). Conventionally, when a carbon monoxide detection sensor 17 is provided and the carbon monoxide concentration is equal to or higher than a predetermined value, an on-off valve (not shown) interposed in the supply path 18 to the greenhouse 1A is closed to stop the supply. If the carbon detection sensor 17 is abnormal, it will be supplied to the greenhouse 1A with a high carbon monoxide concentration. Therefore, as shown in FIG. 3B, a filter 19 for separating carbon dioxide and unnecessary gas is provided in the middle of the exhaust gas passage. This filter 19 is, for example, a cellulosic processed filter, which can extract carbon dioxide by heating, stores the extracted carbon dioxide in the storage unit 20, and detects the carbon dioxide concentration by the carbon dioxide detection sensor 21 in the greenhouse 1A. When is equal to or less than a predetermined value, the control unit C outputs an application signal to the storage unit 20 and controls the supply of carbon dioxide via the supply path 22 to the greenhouse 1A. With this configuration, only pure carbon dioxide can be applied to greenhouse 1A for promoting photosynthesis. The storage unit 20 has a valve means 23 that opens and closes depending on the presence or absence of an application signal. Further, the efficiency of the apparatus is improved by using the hot water of the boiler 16 for heating the filter 19.

次いで、図4に基づき液化炭酸ガスの噴霧供給システムについて説明する。二酸化炭素を高圧で液化させた液化炭酸ガスを水と共に霧状に噴出し光合成に利用するものである。このシステムは、液化炭酸ガスタンク25と、水タンク26と、ポンプ手段27と、配管28と、噴霧手段29等からなり、吸い上げた水を案内する配管28途中に液化炭酸ガスタンク25から供給される炭酸ガスを吸入させると、炭酸ガスは水溶性なので水に溶け、温室1B内の上部に配設した噴霧手段29から水と共に炭酸ガスを霧状に噴出する構成である。勢いよく噴出した炭酸ガスは帯電するので電磁誘導作用により植物の葉の表面に付着し易い。したがって、植物の葉の気孔から炭酸ガスを効率的に吸収できるようになり、供給した炭酸ガス(二酸化炭素)を効率よく光合成に利用できる。 Next, a spray supply system for liquefied carbon dioxide gas will be described with reference to FIG. The liquefied carbon dioxide gas obtained by liquefying carbon dioxide at high pressure is ejected together with water in the form of mist and used for photosynthesis. This system consists of a liquefied carbon dioxide gas tank 25, a water tank 26, a pump means 27, a pipe 28, a spraying means 29, etc., and carbon dioxide supplied from the liquefied carbon dioxide gas tank 25 in the middle of the pipe 28 for guiding the sucked water. When the gas is inhaled, the carbon dioxide gas is water-soluble, so it dissolves in water, and the carbon dioxide gas is ejected in the form of a mist together with water from the spraying means 29 arranged in the upper part of the greenhouse 1B. Since the carbon dioxide gas ejected vigorously is charged, it easily adheres to the surface of the leaves of the plant due to the electromagnetic induction action. Therefore, carbon dioxide gas can be efficiently absorbed from the stomata of the leaves of the plant, and the supplied carbon dioxide gas (carbon dioxide) can be efficiently used for photosynthesis.

そして、温室1B内に飽差センサ30を設け、制御部Cに検出値を送信し、制御部Cは、飽差を判定する。飽差が所定範囲、すなわち3〜6g/mでないと光合成できない知見に基づき、制御部Cにより飽差がこの所定範囲にあるときは、液化炭酸ガスタンク25に設ける電磁バルブ31を閉じ側制御する。このように構成することで、炭酸ガスを噴出させないでロスを防止できる。なお、炭酸ガスを噴出させない場合は水のみを噴出することができ、細霧冷房効果を維持できる。 Then, a saturation sensor 30 is provided in the greenhouse 1B, a detected value is transmitted to the control unit C, and the control unit C determines the saturation. Based on the finding that photosynthesis is not possible unless the saturation is within a predetermined range, that is, 3 to 6 g / m 3, when the saturation is within this predetermined range, the control unit C controls the solenoid valve 31 provided in the liquefied carbon dioxide gas tank 25 on the closed side. .. With this configuration, loss can be prevented without ejecting carbon dioxide gas. When carbon dioxide gas is not ejected, only water can be ejected, and the fine mist cooling effect can be maintained.

さらに、前記電磁バルブ31を開度調整可能に構成し、温室1B内の炭酸ガス(二酸化炭素)濃度を検出する二酸化炭素濃度センサ32を設け検出された炭酸ガス濃度に応じて電磁バルブ31開度を調整することによって、温室1B内を適正の炭酸ガス濃度に制御できる。 Further, the solenoid valve 31 is configured so that the opening degree can be adjusted, and a carbon dioxide concentration sensor 32 for detecting the carbon dioxide gas (carbon dioxide) concentration in the greenhouse 1B is provided to provide the electromagnetic valve 31 opening degree according to the detected carbon dioxide gas concentration. By adjusting the above, the inside of the greenhouse 1B can be controlled to an appropriate carbon dioxide gas concentration.

次いで、図5,図6に基づき、防除ロボットシステムについて説明する。防除ロボット35は、上下方向に複数の噴霧ノズル36,36…を配設したアーム37を備え、培地2の長手方向に設けるパイプレール38に沿って前進又は後進できる構成である。従来、上下方向に複数配設された噴霧ノズル36,36…から略定圧の薬剤が噴出できるように構成し、パイプレール38の一端側起点から他端に設ける感知手段39までの間を定速で往復する構成としている(図5(A))。しかしながら、培地2に沿って略等間隔で栽培される植物は、個々に成長高さや繁り具合が異なるものであるから、上記のように一定高さで一定速度をもって言わば一律に噴霧すると、成長の低い植物に対しては上部に無駄な防除が実行され、繁り具合が遅れた植物に対しては過剰の防除が実行されることとなる。そこで、防除ロボット35のアーム37にカメラ40を設け、進行方向前方側の植物を撮像しながら、植物の高さや存否を認識し、高さに応じて、噴霧ノズル36,36…のいずれに供給し又は閉鎖することができ、植物個々の高さに対応して噴霧ノズル36,36…から噴霧できる。また、撮像範囲から植物が無くなると前進走行を停止制御することができ、前記感知手段39を省略できる(図5(B))。 Next, the control robot system will be described with reference to FIGS. 5 and 6. The control robot 35 is provided with an arm 37 in which a plurality of spray nozzles 36, 36 ... Are arranged in the vertical direction, and can move forward or backward along a pipe rail 38 provided in the longitudinal direction of the medium 2. Conventionally, a plurality of spray nozzles 36, 36 ... Arranged in the vertical direction are configured so that a substantially constant pressure chemical can be ejected, and a constant speed is provided between the starting point on one end side of the pipe rail 38 and the sensing means 39 provided on the other end. (Fig. 5 (A)). However, since the plants cultivated along the medium 2 at substantially equal intervals have different growth heights and prosperity, if they are sprayed uniformly at a constant height and at a constant speed as described above, they will grow. Unnecessary control will be carried out on the upper part for low plants, and excessive control will be carried out for plants that are slow to grow. Therefore, a camera 40 is provided on the arm 37 of the pest control robot 35, and while photographing the plant on the front side in the traveling direction, the height and existence of the plant are recognized, and the spray nozzle 36, 36 ... Is supplied according to the height. It can be closed or closed and can be sprayed from spray nozzles 36, 36 ... Corresponding to the height of each plant. Further, when the plant disappears from the imaging range, the forward traveling can be stopped and controlled, and the sensing means 39 can be omitted (FIG. 5 (B)).

また、撮像カメラ40による撮像結果から植物の繁り具合を判定し、大いに繁っている状態では十分に薬剤噴霧するためロボットの走行速度を遅くし(イ)、繁りが遅れている状態では速度を標準又は速く(ロ)することで、略均一な薬剤噴霧を行うことができる(図6)。 In addition, the growth condition of the plant is determined from the image pickup result by the image pickup camera 40, and the running speed of the robot is slowed down in order to sufficiently spray the chemicals in the state of being very busy (a), and the speed is standardized in the state of being delayed. Alternatively, by speeding up (b), a substantially uniform drug spray can be performed (FIG. 6).

1 温室(栽培室)
3 吸収塔
4 再生塔
5 ボイラ
6 送風ファン
12 除湿器
A 二酸化炭素供給手段
1 Greenhouse (cultivation room)
3 Absorption tower 4 Regeneration tower 5 Boiler 6 Blower fan 12 Dehumidifier A Carbon dioxide supply means

Claims (5)

植物を栽培する栽培室(1)と、二酸化炭素を供給する二酸化炭素供給手段(A)と、前記栽培室(1)内の空気を前記二酸化炭素供給手段(A)に送る送風ファン(6)と、前記二酸化炭素供給手段(A)の二酸化炭素を前記栽培室(1)内に供給する構成とした植物栽培設備。 A cultivation room (1) for cultivating plants, a carbon dioxide supply means (A) for supplying carbon dioxide, and a blower fan (6) for sending air in the cultivation room (1) to the carbon dioxide supply means (A). And a plant cultivation facility configured to supply the carbon dioxide of the carbon dioxide supply means (A) into the cultivation room (1). 前記二酸化炭素供給手段(A)は、二酸化炭素を吸収する吸収液を収容する吸収塔(3)と、前記吸収塔(3)から送られる前記吸収液を収容すると共に、加熱手段(5)で加熱することによって前記吸収液に含まれる二酸化炭素を再生する再生塔(4)を備え、前記再生された二酸化炭素を前記栽培室(1)に供給する構成とした請求項1に記載の植物栽培設備。 The carbon dioxide supply means (A) includes an absorption tower (3) that houses an absorption liquid that absorbs carbon dioxide, and the absorption liquid that is sent from the absorption tower (3), and is a heating means (5). The plant cultivation according to claim 1, further comprising a regeneration tower (4) that regenerates carbon dioxide contained in the absorption liquid by heating, and supplying the regenerated carbon dioxide to the cultivation room (1). Facility. 夜間に前記送風ファン(6)を駆動して前記吸収塔(3)内に二酸化炭素を供給し、日中に前記再生塔(4)から再生された二酸化炭素を前記栽培室(1)に供給する構成とした請求項2に記載の植物栽培設備。 The blower fan (6) is driven at night to supply carbon dioxide into the absorption tower (3), and the carbon dioxide regenerated from the regeneration tower (4) is supplied to the cultivation room (1) during the daytime. The plant cultivation facility according to claim 2, which is configured to be the same. 前記再生塔(4)の吸収液を加熱する加熱手段をボイラ(5)とし、前記ボイラ(5)から発生する排ガスを前記吸収塔(3)へ供給する構成とした請求項2又は請求項3に記載の植物栽培設備。 Claim 2 or claim 3 in which the heating means for heating the absorption liquid of the regeneration tower (4) is a boiler (5), and the exhaust gas generated from the boiler (5) is supplied to the absorption tower (3). Plant cultivation equipment described in. 前記送風ファン(6)と前記吸収塔(3)の間に除湿器(12)を設け、前記栽培室(1)内の湿度が所定以上になると前記除湿器(12)を駆動するよう構成した請求項2から請求項4のいずれか一に記載の植物栽培設備。
A dehumidifier (12) is provided between the blower fan (6) and the absorption tower (3), and the dehumidifier (12) is driven when the humidity in the cultivation room (1) becomes equal to or higher than a predetermined value. The plant cultivation facility according to any one of claims 2 to 4.
JP2019183631A 2019-10-04 2019-10-04 plant cultivation equipment Active JP7290099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183631A JP7290099B2 (en) 2019-10-04 2019-10-04 plant cultivation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183631A JP7290099B2 (en) 2019-10-04 2019-10-04 plant cultivation equipment

Publications (2)

Publication Number Publication Date
JP2021058121A true JP2021058121A (en) 2021-04-15
JP7290099B2 JP7290099B2 (en) 2023-06-13

Family

ID=75379560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183631A Active JP7290099B2 (en) 2019-10-04 2019-10-04 plant cultivation equipment

Country Status (1)

Country Link
JP (1) JP7290099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924902A (en) * 2021-09-06 2022-01-14 珠海格力电器股份有限公司 Water-cooled central air conditioner CO2Circulation control method and water-cooled central air conditioner
WO2023277681A1 (en) * 2021-07-01 2023-01-05 Wfu B.V. Method for recovery of chemically absorbed co2 with low energy consumption

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309626A (en) * 1988-06-06 1989-12-14 Toshiba Corp Plant culture apparatus
JP2005254212A (en) * 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and method
JP2012016322A (en) * 2010-07-09 2012-01-26 National Institute Of Advanced Industrial Science & Technology Carbon dioxide feeder to horticultural facility, by pressure swing method utilizing carbon dioxide in flue gas
JP2013013877A (en) * 2011-07-06 2013-01-24 Jfe Steel Corp Apparatus and method for recovering co2
JP2015024398A (en) * 2013-07-29 2015-02-05 株式会社東芝 Carbon dioxide separation recovery system and operation method thereof
JP2016007163A (en) * 2014-06-24 2016-01-18 ネポン株式会社 Carbon dioxide generation system
JP2016052632A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery device
JP2018512888A (en) * 2015-03-19 2018-05-24 ロケハ リミテッド System for indoor cultivation of plants under simulated natural lighting conditions
JP2019041637A (en) * 2017-08-31 2019-03-22 井関農機株式会社 Cultivation apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309626A (en) * 1988-06-06 1989-12-14 Toshiba Corp Plant culture apparatus
JP2005254212A (en) * 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and method
JP2012016322A (en) * 2010-07-09 2012-01-26 National Institute Of Advanced Industrial Science & Technology Carbon dioxide feeder to horticultural facility, by pressure swing method utilizing carbon dioxide in flue gas
JP2013013877A (en) * 2011-07-06 2013-01-24 Jfe Steel Corp Apparatus and method for recovering co2
JP2015024398A (en) * 2013-07-29 2015-02-05 株式会社東芝 Carbon dioxide separation recovery system and operation method thereof
JP2016007163A (en) * 2014-06-24 2016-01-18 ネポン株式会社 Carbon dioxide generation system
JP2016052632A (en) * 2014-09-04 2016-04-14 本田技研工業株式会社 Carbon dioxide recovery device
JP2018512888A (en) * 2015-03-19 2018-05-24 ロケハ リミテッド System for indoor cultivation of plants under simulated natural lighting conditions
JP2019041637A (en) * 2017-08-31 2019-03-22 井関農機株式会社 Cultivation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277681A1 (en) * 2021-07-01 2023-01-05 Wfu B.V. Method for recovery of chemically absorbed co2 with low energy consumption
CN113924902A (en) * 2021-09-06 2022-01-14 珠海格力电器股份有限公司 Water-cooled central air conditioner CO2Circulation control method and water-cooled central air conditioner

Also Published As

Publication number Publication date
JP7290099B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US9161498B1 (en) Climate control system and method for a greenhouse
JP2021058121A (en) Plant cultivation installation
NL2016574B1 (en) Process to reduce the temperature of a feed of air and greenhouse.
JP2005312799A (en) Sterilization method
CN102293145A (en) Automatic control gas spray culture equipment for greenhouse and culture method adopting same
JP2017070230A (en) Individual environmental system
US8051602B2 (en) System for conditioning crops
JP2016220567A (en) Carbon dioxide supply system
WO2020116438A1 (en) Humidity control system
JP6764644B2 (en) Exhaust gas supply system and exhaust gas supply method
CN114710540B (en) Aluminum phosphide medicine warehouse remote monitoring protection system and alarm device
RU2294498C1 (en) Method of operation of chimney-type and mechanical-draft cooling tower
JP4489536B2 (en) Carbon dioxide gas application method for greenhouse cultivation
US5249430A (en) Method of and means for controlling the condition of air in an enclosure
JP6385636B2 (en) Fine fog cooling method and fine fog cooling system in plant cultivation facilities
NL1010134C2 (en) Climate control process for market gardening greenhouse, comprises cooling humid air flowing out of greenhouse and then returning it
KR100215732B1 (en) The apparatus for regulating heat and humidity and for cleaning air for cultivating mushroom
KR101522548B1 (en) Heat pump system for greenhouse heating and dehumidifying device swappable fan coil unit
JP6746069B2 (en) Plant cultivation facility
JP2008281288A (en) Mist cooler
KR102642624B1 (en) Apparatus for carbon dioxide application in crop cutivation facility and system for carbon dioxide application
JPH03290114A (en) Air-conditioning equipment for 'siitake'
JP6208113B2 (en) Air conditioner
KR101944383B1 (en) CO2 Supply System for Crop Cultivation Facilities
JP2018183164A (en) Individual environment system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R150 Certificate of patent or registration of utility model

Ref document number: 7290099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150