各図においてZ軸方向は、鉛直方向である。+Z側は、鉛直方向上側であり、−Z側は、鉛直方向下側である。以下の説明では、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。また、各図に適宜示す中心軸Jは、Z軸方向、すなわち鉛直方向に延びている。以下の説明においては、中心軸Jの軸方向と平行な方向、すなわち鉛直方向を「軸方向」と呼ぶ。また、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。本実施形態において上側は、軸方向一方側に相当し、下側は、軸方向他方側に相当する。なお、鉛直方向、上側および下側とは、単に各部の配置関係等を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。
In each figure, the Z-axis direction is the vertical direction. The + Z side is the upper side in the vertical direction, and the −Z side is the lower side in the vertical direction. In the following description, the upper side in the vertical direction is simply referred to as "upper side", and the lower side in the vertical direction is simply referred to as "lower side". Further, the central axis J appropriately shown in each figure extends in the Z-axis direction, that is, in the vertical direction. In the following description, the direction parallel to the axial direction of the central axis J, that is, the vertical direction is referred to as "axial direction". Further, the radial direction centered on the central axis J is simply referred to as "diametrical direction", and the circumferential direction centered on the central axis J is simply referred to as "circumferential direction". In this embodiment, the upper side corresponds to one side in the axial direction, and the lower side corresponds to the other side in the axial direction. The vertical direction, the upper side, and the lower side are names for simply explaining the arrangement relationship of each part, and the actual arrangement relationship, etc. is an arrangement relationship other than the arrangement relationship, etc. indicated by these names. You may.
図1に示す本実施形態のモータ1は、無人飛行体に搭載されるモータである。モータ1は、無人飛行体のプロペラを回転させる。図2および図3に示すように、本実施形態のモータ1は、ハウジング10と、ロータ20と、ステータ30と、センサアセンブリ50と、圧力調整部60と、フィンアセンブリ70と、封止部材80と、上側ベアリング24と、下側ベアリング25と、を備える。本実施形態において上側ベアリング24および下側ベアリング25は、転がり軸受である。上側ベアリング24および下側ベアリング25は、例えば、ボールベアリングである。
The motor 1 of the present embodiment shown in FIG. 1 is a motor mounted on an unmanned aerial vehicle. The motor 1 rotates the propeller of the unmanned aerial vehicle. As shown in FIGS. 2 and 3, the motor 1 of the present embodiment includes a housing 10, a rotor 20, a stator 30, a sensor assembly 50, a pressure adjusting unit 60, a fin assembly 70, and a sealing member 80. And an upper bearing 24 and a lower bearing 25. In this embodiment, the upper bearing 24 and the lower bearing 25 are rolling bearings. The upper bearing 24 and the lower bearing 25 are, for example, ball bearings.
ハウジング10は、ロータ20、ステータ30、センサアセンブリ50、封止部材80、上側ベアリング24、および下側ベアリング25を内部に収容している。ハウジング10は、ハウジング本体11と、上側蓋部12と、下側蓋部13と、を有する。ハウジング本体11は、軸方向に延びる筒状である。ハウジング本体11は、例えば、中心軸Jを中心とし、軸方向両側に開口する円筒状である。ハウジング本体11の上側部分11aの外径は、ハウジング本体11の下側部分11bの外径よりも小さい。ハウジング本体11の上側部分11aの内径は、ハウジング本体11の下側部分11bの内径よりも小さい。上側部分11aの外周面と下側部分11bの外周面との軸方向の間には、段差部が設けられている。
The housing 10 internally houses the rotor 20, the stator 30, the sensor assembly 50, the sealing member 80, the upper bearing 24, and the lower bearing 25. The housing 10 has a housing main body 11, an upper lid portion 12, and a lower lid portion 13. The housing body 11 has a tubular shape extending in the axial direction. The housing body 11 has, for example, a cylindrical shape centered on the central axis J and opens on both sides in the axial direction. The outer diameter of the upper portion 11a of the housing body 11 is smaller than the outer diameter of the lower portion 11b of the housing body 11. The inner diameter of the upper portion 11a of the housing body 11 is smaller than the inner diameter of the lower portion 11b of the housing body 11. A step portion is provided between the outer peripheral surface of the upper portion 11a and the outer peripheral surface of the lower portion 11b in the axial direction.
ハウジング本体11は、孔部11c,11dを有する。孔部11c,11dは、上側部分11aに設けられている。孔部11c,11dは、上側部分11aを内周面から外周面まで径方向に貫通する。孔部11c,11dは、例えば、円形状の孔である。孔部11cの内径と孔部11dの内径とは、例えば、同じである。なお、孔部11cの内径と孔部11dの内径とは、互いに異なっていてもよい。
The housing body 11 has holes 11c and 11d. The holes 11c and 11d are provided in the upper portion 11a. The holes 11c and 11d penetrate the upper portion 11a from the inner peripheral surface to the outer peripheral surface in the radial direction. The holes 11c and 11d are, for example, circular holes. The inner diameter of the hole 11c and the inner diameter of the hole 11d are, for example, the same. The inner diameter of the hole 11c and the inner diameter of the hole 11d may be different from each other.
孔部11cは、孔部11dよりも上側に位置する。孔部11cと孔部11dとは、それぞれ周方向に沿って複数ずつ設けられている。複数の孔部11cは、例えば、周方向に沿って一周に亘って等間隔に配置されている。複数の孔部11dは、例えば、周方向に沿って一周に亘って等間隔に配置されている。孔部11cの数と孔部11dの数とは、例えば、互いに同じである。なお、孔部11cの数と孔部11dの数とは、互いに異なっていてもよい。
The hole 11c is located above the hole 11d. A plurality of holes 11c and a plurality of holes 11d are provided along the circumferential direction. The plurality of holes 11c are arranged at equal intervals, for example, along the circumferential direction. The plurality of holes 11d are arranged at equal intervals, for example, along the circumferential direction. The number of holes 11c and the number of holes 11d are, for example, the same as each other. The number of holes 11c and the number of holes 11d may be different from each other.
上側蓋部12は、ハウジング本体11の上側の端部に固定され、ハウジング本体11の上側の開口を閉じている。上側蓋部12は、ステータ30の上側に位置する蓋部に相当する。本実施形態において上側蓋部12は、第1保持部材12aと、第2保持部材40と、を有する。
The upper lid portion 12 is fixed to the upper end portion of the housing main body 11 and closes the upper opening of the housing main body 11. The upper lid portion 12 corresponds to a lid portion located above the stator 30. In the present embodiment, the upper lid portion 12 has a first holding member 12a and a second holding member 40.
第1保持部材12aは、上側ベアリング24を保持する部材である。第1保持部材12aは、底部12mと、筒部12bと、固定部12cと、ベアリング保持部12dと、を有する。底部12mは、例えば、板面が軸方向を向く板状であり、中心軸Jを中心とする円環状である。底部12mは、ハウジング本体11の上側部分11aの径方向内側に位置する。
The first holding member 12a is a member that holds the upper bearing 24. The first holding member 12a has a bottom portion 12m, a tubular portion 12b, a fixing portion 12c, and a bearing holding portion 12d. The bottom portion 12m has, for example, a plate shape in which the plate surface faces the axial direction, and is an annular shape centered on the central axis J. The bottom portion 12m is located inside the upper portion 11a of the housing body 11 in the radial direction.
筒部12bは、底部12mの径方向外縁部から上側に延びる筒状である。筒部12bは、例えば、中心軸Jを中心とする円筒状である。筒部12bは、ハウジング本体11の径方向内側に隙間を介して対向して配置されている。筒部12bは、筒部本体12gと、筒部本体12gの下側に繋がる嵌合部12hと、を有する。筒部本体12gの上側の端部は、筒部12bの上側の端部である。
The tubular portion 12b has a tubular shape extending upward from the radial outer edge portion of the bottom portion 12 m. The tubular portion 12b has, for example, a cylindrical shape centered on the central axis J. The tubular portion 12b is arranged so as to face each other on the inner side of the housing body 11 in the radial direction with a gap. The tubular portion 12b has a tubular portion main body 12g and a fitting portion 12h connected to the lower side of the tubular portion main body 12g. The upper end of the tubular body 12g is the upper end of the tubular 12b.
嵌合部12hは、底部12mの径方向外縁部に繋がる部分である。本実施形態において嵌合部12hは、筒部12bの下側の端部である。嵌合部12hの外径は、筒部本体12gの外径よりも小さい。嵌合部12hの内径は、筒部本体12gの内径よりも小さい。筒部本体12gの外周面と嵌合部12hの外周面との軸方向の間には、段差部が設けられている。
The fitting portion 12h is a portion connected to the radial outer edge portion of the bottom portion 12m. In the present embodiment, the fitting portion 12h is a lower end portion of the tubular portion 12b. The outer diameter of the fitting portion 12h is smaller than the outer diameter of the tubular portion main body 12g. The inner diameter of the fitting portion 12h is smaller than the inner diameter of the tubular portion main body 12g. A step portion is provided between the outer peripheral surface of the tubular portion main body 12g and the outer peripheral surface of the fitting portion 12h in the axial direction.
本実施形態において筒部12bとハウジング本体11との径方向の間には、Oリング12iが設けられている。Oリング12iは、筒部本体12gのうち上側の端部の外周面とハウジング本体11のうち上側の端部の内周面との径方向の間に設けられている。Oリング12iは、筒部本体12gの外周面とハウジング本体11の内周面とに接触して、筒部本体12gの外周面とハウジング本体11の内周面との間を封止している。Oリング12iは、例えば、筒部本体12gの外周面に設けられた溝に嵌め込まれて、筒部12bに保持されている。
In the present embodiment, an O-ring 12i is provided between the tubular portion 12b and the housing body 11 in the radial direction. The O-ring 12i is provided between the outer peripheral surface of the upper end portion of the tubular portion main body 12g and the inner peripheral surface of the upper end portion of the housing main body 11 in the radial direction. The O-ring 12i is in contact with the outer peripheral surface of the tubular body 12g and the inner peripheral surface of the housing body 11 to seal between the outer peripheral surface of the tubular body 12g and the inner peripheral surface of the housing body 11. .. The O-ring 12i is, for example, fitted into a groove provided on the outer peripheral surface of the tubular portion main body 12g and held by the tubular portion 12b.
固定部12cは、筒部12bの上側の端部から径方向外側に突出している。固定部12cは、ハウジング本体11の上側の端部に接触している。固定部12cは、ハウジング本体11の上側の端部にボルトで固定されている。これにより、上側蓋部12は、ハウジング本体11に固定されている。図1に示すように、固定部12cは、周方向に沿って複数設けられている。複数の固定部12cは、例えば、周方向に沿って一周に亘って等間隔に配置されている。固定部12cは、例えば、4つ設けられている。固定部12cは、周方向に延びている。固定部12cのそれぞれは、2つのボルトによってハウジング本体11に固定されている。
The fixing portion 12c projects radially outward from the upper end portion of the tubular portion 12b. The fixing portion 12c is in contact with the upper end portion of the housing body 11. The fixing portion 12c is bolted to the upper end portion of the housing body 11. As a result, the upper lid portion 12 is fixed to the housing main body 11. As shown in FIG. 1, a plurality of fixing portions 12c are provided along the circumferential direction. The plurality of fixing portions 12c are arranged at equal intervals, for example, along the circumferential direction. For example, four fixing portions 12c are provided. The fixed portion 12c extends in the circumferential direction. Each of the fixing portions 12c is fixed to the housing body 11 by two bolts.
図2および図3に示すように、ベアリング保持部12dは、底部12mの径方向内縁部に繋がっている。ベアリング保持部12dは、底部12mの径方向内縁部から上側に延びる周壁部12eと、周壁部12eの上側の端部から径方向内側に突出する突出部12fと、を有する。周壁部12eは、例えば、中心軸Jを中心とする円筒状である。周壁部12eの径方向内側には、上側ベアリング24が嵌め合わされている。これにより、ベアリング保持部12dには、上側ベアリング24が嵌め合わされている。突出部12fは、例えば、中心軸Jを中心とする円環状である。突出部12fは、上側ベアリング24の外輪を上側から支持している。これにより、ベアリング保持部12dは、上側ベアリング24を上側から支持している。
As shown in FIGS. 2 and 3, the bearing holding portion 12d is connected to the radial inner edge portion of the bottom portion 12 m. The bearing holding portion 12d has a peripheral wall portion 12e extending upward from the radial inner edge portion of the bottom portion 12m, and a protruding portion 12f protruding radially inward from the upper end portion of the peripheral wall portion 12e. The peripheral wall portion 12e has, for example, a cylindrical shape centered on the central axis J. An upper bearing 24 is fitted inside the peripheral wall portion 12e in the radial direction. As a result, the upper bearing 24 is fitted to the bearing holding portion 12d. The protruding portion 12f is, for example, an annular shape centered on the central axis J. The protrusion 12f supports the outer ring of the upper bearing 24 from above. As a result, the bearing holding portion 12d supports the upper bearing 24 from above.
第2保持部材40は、封止部材80を保持する部材である。第2保持部材40は、第1保持部材12aの下側に固定されている。第2保持部材40は、ハウジング本体11の上側部分11aの径方向内側に位置する。第2保持部材40は、第2保持部材本体41と、嵌合部42と、第1支持部43と、第2支持部44と、を有する。第2保持部材本体41は、中心軸Jを囲む環状である。第2保持部材本体41は、例えば、中心軸Jを中心とする円環状である。第2保持部材本体41は、底部12mの下側に位置する。
The second holding member 40 is a member that holds the sealing member 80. The second holding member 40 is fixed to the lower side of the first holding member 12a. The second holding member 40 is located inside the upper portion 11a of the housing body 11 in the radial direction. The second holding member 40 has a second holding member main body 41, a fitting portion 42, a first support portion 43, and a second support portion 44. The second holding member main body 41 is an annular shape surrounding the central axis J. The second holding member main body 41 is, for example, an annular shape centered on the central axis J. The second holding member main body 41 is located below the bottom 12 m.
第2保持部材本体41は、第2保持部材本体41の上側の面から下側に窪む雌ネジ穴41aを有する。雌ネジ穴41aは、周方向に沿って複数設けられている。複数の雌ネジ穴41aは、例えば、周方向に沿って一周に亘って等間隔に配置されている。雌ネジ穴41aには、底部12mに設けられた孔部12kを上側から貫通するボルト81が締め込まれている。このように、本実施形態において第2保持部材40は、上側から第1保持部材12aを貫通して第2保持部材40に締め込まれるボルト81によって、第1保持部材12aに固定されている。
The second holding member main body 41 has a female screw hole 41a that is recessed downward from the upper surface of the second holding member main body 41. A plurality of female screw holes 41a are provided along the circumferential direction. The plurality of female screw holes 41a are arranged at equal intervals, for example, along the circumferential direction. A bolt 81 that penetrates the hole 12k provided in the bottom 12 m from above is tightened in the female screw hole 41a. As described above, in the present embodiment, the second holding member 40 is fixed to the first holding member 12a by the bolt 81 that penetrates the first holding member 12a from above and is fastened to the second holding member 40.
第2保持部材本体41の内周面には、止め輪45が取り付けられている。止め輪45の径方向外縁部は、第2保持部材本体41の内周面に設けられた溝に嵌め込まれている。止め輪45は、例えば、C形止め輪等である。止め輪45は、第2保持部材本体41の内周面から径方向内側に突出している。止め輪45は、封止部材80を下側から支持している。
A retaining ring 45 is attached to the inner peripheral surface of the second holding member main body 41. The radial outer edge of the retaining ring 45 is fitted into a groove provided on the inner peripheral surface of the second holding member main body 41. The retaining ring 45 is, for example, a C-shaped retaining ring or the like. The retaining ring 45 projects radially inward from the inner peripheral surface of the second holding member main body 41. The retaining ring 45 supports the sealing member 80 from below.
嵌合部42は、第2保持部材本体41の径方向外縁部から上側に突出する筒状である。嵌合部42は、例えば、中心軸Jを中心とし、上側に開口する円筒状である。嵌合部42は、第1保持部材12aの嵌合部12hの径方向外側に位置し、嵌合部12hに嵌め合わされている。すなわち、本実施形態において第1保持部材12aと第2保持部材40とは、互いに嵌め合わされる嵌合部12h,42を有する。そのため、第1保持部材12aと第2保持部材40とを相対位置精度よく互いに固定できる。
The fitting portion 42 has a tubular shape that projects upward from the radial outer edge portion of the second holding member main body 41. The fitting portion 42 has, for example, a cylindrical shape that opens upward with the central axis J as the center. The fitting portion 42 is located on the radial outer side of the fitting portion 12h of the first holding member 12a and is fitted to the fitting portion 12h. That is, in the present embodiment, the first holding member 12a and the second holding member 40 have fitting portions 12h and 42 that are fitted to each other. Therefore, the first holding member 12a and the second holding member 40 can be fixed to each other with high relative position accuracy.
嵌合部12hの外周面と嵌合部42の内周面との径方向の間には、Oリング12jが設けられている。Oリング12jは、嵌合部12hの外周面と嵌合部42の内周面とに接触して、嵌合部12hの外周面と嵌合部42の内周面との間を封止している。Oリング12jは、例えば、嵌合部12hの外周面に設けられた溝に嵌め込まれて、筒部12bに保持されている。
An O-ring 12j is provided between the outer peripheral surface of the fitting portion 12h and the inner peripheral surface of the fitting portion 42 in the radial direction. The O-ring 12j comes into contact with the outer peripheral surface of the fitting portion 12h and the inner peripheral surface of the fitting portion 42, and seals between the outer peripheral surface of the fitting portion 12h and the inner peripheral surface of the fitting portion 42. ing. The O-ring 12j is, for example, fitted into a groove provided on the outer peripheral surface of the fitting portion 12h and held by the tubular portion 12b.
第1支持部43は、第2保持部材本体41の径方向内縁部から上側に突出している。第1支持部43は、中心軸Jを囲む環状である。第1支持部43は、例えば、中心軸Jを中心とする円環状である。第1支持部43は、上側ベアリング24を下側から支持している。より詳細には、第1支持部43は、上側ベアリング24の外輪を下側から支持している。このように、本実施形態において上側ベアリング24の外輪は、ベアリング保持部12dの突出部12fと第1支持部43とによって、接触した状態で軸方向に挟まれて支持されている。
The first support portion 43 projects upward from the radial inner edge portion of the second holding member main body 41. The first support portion 43 is an annular shape surrounding the central axis J. The first support portion 43 is, for example, an annular shape centered on the central axis J. The first support portion 43 supports the upper bearing 24 from the lower side. More specifically, the first support portion 43 supports the outer ring of the upper bearing 24 from below. As described above, in the present embodiment, the outer ring of the upper bearing 24 is supported by being sandwiched and supported in the axial direction by the protruding portion 12f of the bearing holding portion 12d and the first support portion 43 in contact with each other.
本実施形態において第2保持部材40は、第1支持部43が上側ベアリング24の外輪に下側から接触することで、第1保持部材12aに対して軸方向に位置決めされている。第2保持部材40のうち第1支持部43を除く部分は、例えば、第1保持部材12aと軸方向に僅かな隙間を介して対向して配置されている。
In the present embodiment, the second holding member 40 is positioned in the axial direction with respect to the first holding member 12a by contacting the first support portion 43 with the outer ring of the upper bearing 24 from below. The portion of the second holding member 40 excluding the first support portion 43 is arranged so as to face the first holding member 12a with a slight gap in the axial direction, for example.
第2支持部44は、第2保持部材本体41の内周面のうち上側の端部から径方向内側に突出している。第2支持部44は、止め輪45の上側に位置する。第2支持部44は、中心軸Jを囲む環状である。第2支持部44は、例えば、中心軸Jを中心とする円環状である。第2支持部44は、封止部材80を上側から支持している。このように、本実施形態において封止部材80は、第2支持部44と止め輪45とによって、接触した状態で軸方向に挟まれて支持されている。これにより、封止部材80が第2保持部材40に保持されている。
The second support portion 44 projects radially inward from the upper end portion of the inner peripheral surface of the second holding member main body 41. The second support portion 44 is located above the retaining ring 45. The second support portion 44 is an annular shape that surrounds the central axis J. The second support portion 44 is, for example, an annular shape centered on the central axis J. The second support portion 44 supports the sealing member 80 from above. As described above, in the present embodiment, the sealing member 80 is supported by being sandwiched in the axial direction by the second support portion 44 and the retaining ring 45 in contact with each other. As a result, the sealing member 80 is held by the second holding member 40.
第2保持部材40の外周面は、例えば、第1保持部材12aの筒部本体12gの外周面と径方向において同じ位置に配置されている。本実施形態において、第2保持部材40の外周面は、第2保持部材本体41の外周面と嵌合部42の外周面とによって構成されている。第2保持部材40の下側の面は、孔部11dよりも上側に位置する。
The outer peripheral surface of the second holding member 40 is arranged at the same position in the radial direction as the outer peripheral surface of the tubular portion main body 12g of the first holding member 12a, for example. In the present embodiment, the outer peripheral surface of the second holding member 40 is composed of the outer peripheral surface of the second holding member main body 41 and the outer peripheral surface of the fitting portion 42. The lower surface of the second holding member 40 is located above the hole 11d.
上側蓋部12は、上側蓋部12を軸方向に貫通する貫通孔12pを有する。貫通孔12pは、第1保持部材12aと第2保持部材40とに跨って設けられている。貫通孔12pの内部は、ベアリング保持部12dの内部と、第2保持部材本体41の内部と、を含む。貫通孔12pには、ロータ20の後述するシャフト21が通されている。
The upper lid portion 12 has a through hole 12p that penetrates the upper lid portion 12 in the axial direction. The through hole 12p is provided so as to straddle the first holding member 12a and the second holding member 40. The inside of the through hole 12p includes the inside of the bearing holding portion 12d and the inside of the second holding member main body 41. A shaft 21 described later of the rotor 20 is passed through the through hole 12p.
下側蓋部13は、ハウジング本体11の下側の端部に固定され、ハウジング本体11の下側の開口を閉じている。下側蓋部13は、ステータ30の下側に位置する。本実施形態において下側蓋部13は、第1蓋部材13aと、第2蓋部材13bと、を有する。第1蓋部材13aは、中心軸Jを囲む環状の部材である。第1蓋部材13aは、ハウジング本体11の下側の端部の径方向内側に嵌め合わされて固定されている。
The lower lid portion 13 is fixed to the lower end portion of the housing body 11, and closes the lower opening of the housing body 11. The lower lid portion 13 is located below the stator 30. In the present embodiment, the lower lid portion 13 has a first lid member 13a and a second lid member 13b. The first lid member 13a is an annular member that surrounds the central axis J. The first lid member 13a is fitted and fixed to the inside of the lower end of the housing body 11 in the radial direction.
第1蓋部材13aの外周面とハウジング本体11の内周面との径方向の間には、Oリング13hが設けられている。Oリング13hは、第1蓋部材13aの外周面とハウジング本体11の内周面とに接触して、第1蓋部材13aの外周面とハウジング本体11の内周面との間を封止している。Oリング13hは、例えば、第1蓋部材13aの外周面に設けられた溝に嵌め込まれて、第1蓋部材13aに保持されている。
An O-ring 13h is provided between the outer peripheral surface of the first lid member 13a and the inner peripheral surface of the housing body 11 in the radial direction. The O-ring 13h comes into contact with the outer peripheral surface of the first lid member 13a and the inner peripheral surface of the housing body 11 to seal between the outer peripheral surface of the first lid member 13a and the inner peripheral surface of the housing body 11. ing. The O-ring 13h is, for example, fitted into a groove provided on the outer peripheral surface of the first lid member 13a and held by the first lid member 13a.
第2蓋部材13bは、第1蓋部材13aの径方向内側に固定されている。第2蓋部材13bは、底部13cと、筒部13dと、固定部13iと、ベアリング保持部13eと、を有する。底部13cは、例えば、板面が軸方向を向く板状であり、中心軸Jを中心とする円環状である。底部13cは、ハウジング本体11の下側部分11bの径方向内側に位置する。底部13cは、底部13cを軸方向に貫通する孔部13gを有する。孔部13gは、周方向に沿って複数設けられている。
The second lid member 13b is fixed to the inside of the first lid member 13a in the radial direction. The second lid member 13b has a bottom portion 13c, a tubular portion 13d, a fixing portion 13i, and a bearing holding portion 13e. The bottom portion 13c has, for example, a plate shape in which the plate surface faces the axial direction, and is an annular shape centered on the central axis J. The bottom portion 13c is located radially inside the lower portion 11b of the housing body 11. The bottom portion 13c has a hole portion 13g that penetrates the bottom portion 13c in the axial direction. A plurality of holes 13g are provided along the circumferential direction.
筒部13dは、底部13cの径方向外縁部から下側に延びる筒状である。筒部13dの下側部分の外径は、筒部13dの上側部分の外径よりも大きい。筒部13dの下側部分の内径は、筒部13dの上側部分の内径よりも大きい。筒部13dの下側部分の内周面と筒部13dの上側部分の内周面との軸方向の間には、段差部13fが設けられている。筒部13dの下側部分は、第1蓋部材13aの径方向内側に嵌め合わされている。
The tubular portion 13d has a tubular shape extending downward from the radial outer edge portion of the bottom portion 13c. The outer diameter of the lower portion of the tubular portion 13d is larger than the outer diameter of the upper portion of the tubular portion 13d. The inner diameter of the lower portion of the tubular portion 13d is larger than the inner diameter of the upper portion of the tubular portion 13d. A step portion 13f is provided between the inner peripheral surface of the lower portion of the tubular portion 13d and the inner peripheral surface of the upper portion of the tubular portion 13d in the axial direction. The lower portion of the tubular portion 13d is fitted inward in the radial direction of the first lid member 13a.
筒部13dの下側部分の外周面と第1蓋部材13aの内周面との径方向の間には、Oリング13jが設けられている。Oリング13jは、筒部13dの下側部分の外周面と第1蓋部材13aの内周面とに接触して、筒部13dの下側部分の外周面と第1蓋部材13aの内周面との間を封止している。Oリング13jは、例えば、筒部13dの下側部分の外周面に設けられた溝に嵌め込まれて、第2蓋部材13bに保持されている。
An O-ring 13j is provided between the outer peripheral surface of the lower portion of the tubular portion 13d and the inner peripheral surface of the first lid member 13a in the radial direction. The O-ring 13j comes into contact with the outer peripheral surface of the lower portion of the tubular portion 13d and the inner peripheral surface of the first lid member 13a, and the outer peripheral surface of the lower portion of the tubular portion 13d and the inner circumference of the first lid member 13a. It seals between the surface. The O-ring 13j is, for example, fitted into a groove provided on the outer peripheral surface of the lower portion of the tubular portion 13d and held by the second lid member 13b.
固定部13iは、筒部13dの下側の端部から径方向外側に突出している。固定部13iは、第1蓋部材13aの下側の端部に接触している。固定部13iは、第1蓋部材13aの下側の端部にボルトで固定されている。
The fixing portion 13i projects radially outward from the lower end portion of the tubular portion 13d. The fixing portion 13i is in contact with the lower end portion of the first lid member 13a. The fixing portion 13i is bolted to the lower end portion of the first lid member 13a.
ベアリング保持部13eは、底部13cの径方向内縁部に繋がっている。ベアリング保持部13eは、下側に底部を有し、上側に開口する円筒状である。ベアリング保持部13eの径方向内側には、下側ベアリング25が嵌め合わされて保持されている。
The bearing holding portion 13e is connected to the radial inner edge portion of the bottom portion 13c. The bearing holding portion 13e has a bottom portion on the lower side and has a cylindrical shape that opens on the upper side. A lower bearing 25 is fitted and held inside the bearing holding portion 13e in the radial direction.
ロータ20は、中心軸Jを中心として回転可能である。ロータ20は、上側ベアリング24および下側ベアリング25によって回転可能に支持されている。ロータ20は、シャフト21と、ロータ本体20aと、スペーサ26と、プロペラ取付部27と、を有する。
The rotor 20 can rotate about the central axis J. The rotor 20 is rotatably supported by an upper bearing 24 and a lower bearing 25. The rotor 20 includes a shaft 21, a rotor body 20a, a spacer 26, and a propeller mounting portion 27.
シャフト21は、中心軸Jを中心として延びている。シャフト21は、中心軸Jを中心として軸方向に延びる円柱状である。シャフト21の下側部分は、ハウジング10の内部に収容されている。シャフト21の下側の端部は、下側ベアリング25によって回転可能に支持されている。シャフト21の上側部分は、貫通孔12pを介して、ハウジング10の外部に突出している。シャフト21の上側部分は、ハウジング本体11の上側部分11aおよび筒部12bの径方向内側に位置する。シャフト21の上側部分は、上側ベアリング24によって回転可能に支持されている。上側ベアリング24は、シャフト21のうち後述する密閉室90から上側に突出した部分を回転可能に支持するベアリングである。
The shaft 21 extends about the central axis J. The shaft 21 is a columnar shape extending in the axial direction about the central axis J. The lower portion of the shaft 21 is housed inside the housing 10. The lower end of the shaft 21 is rotatably supported by a lower bearing 25. The upper portion of the shaft 21 projects to the outside of the housing 10 through the through hole 12p. The upper portion of the shaft 21 is located radially inside the upper portion 11a and the tubular portion 12b of the housing body 11. The upper portion of the shaft 21 is rotatably supported by the upper bearing 24. The upper bearing 24 is a bearing that rotatably supports a portion of the shaft 21 that protrudes upward from the closed chamber 90, which will be described later.
ロータ本体20aは、シャフト21に固定されている。より詳細には、ロータ本体20aは、シャフト21の下側部分の外周面に固定されている。ロータ本体20aは、ハウジング10の内部に収容されている。ロータ本体20aは、ロータコア22と、マグネット23と、を有する。ロータコア22は、シャフト21を囲む環状である。ロータコア22は、シャフト21の外周面に嵌め合わされて固定されている。マグネット23は、ロータコア22の外周面に固定されている。マグネット23の下端部は、ロータコア22よりも下側に突出している。
The rotor body 20a is fixed to the shaft 21. More specifically, the rotor body 20a is fixed to the outer peripheral surface of the lower portion of the shaft 21. The rotor body 20a is housed inside the housing 10. The rotor body 20a has a rotor core 22 and a magnet 23. The rotor core 22 is an annular shape surrounding the shaft 21. The rotor core 22 is fitted and fixed to the outer peripheral surface of the shaft 21. The magnet 23 is fixed to the outer peripheral surface of the rotor core 22. The lower end of the magnet 23 projects below the rotor core 22.
スペーサ26は、軸方向に延び、軸方向両側に開口する円筒状の部材である。スペーサ26は、シャフト21の上側部分に嵌め合わされている。スペーサ26は、上側ベアリング24の上側に位置する。スペーサ26の下端部は、上側ベアリング24の内輪によって下側から支持されている。
The spacer 26 is a cylindrical member that extends in the axial direction and opens on both sides in the axial direction. The spacer 26 is fitted to the upper portion of the shaft 21. The spacer 26 is located above the upper bearing 24. The lower end of the spacer 26 is supported from below by the inner ring of the upper bearing 24.
プロペラ取付部27は、シャフト21の上側の端部に固定されている。プロペラ取付部27は、シャフト21よりも径方向外側に広がっている。プロペラ取付部27は、スペーサ26の上側の端部によって下側から支持されている。プロペラ取付部27には、図示しない無人飛行体のプロペラが取り付けられる。
The propeller mounting portion 27 is fixed to the upper end of the shaft 21. The propeller mounting portion 27 extends radially outward of the shaft 21. The propeller mounting portion 27 is supported from below by the upper end of the spacer 26. A propeller of an unmanned aerial vehicle (not shown) is attached to the propeller attachment portion 27.
ステータ30は、ハウジング10の内部に収容されている。ステータ30は、ロータ20と隙間を介して対向している。ステータ30は、ロータ20の径方向外側に位置する。ステータ30は、ステータコア31と、インシュレータ32と、複数のコイル33と、を有する。ステータコア31は、ロータ20を囲む環状である。ステータコア31は、マグネット23の径方向外側に隙間を介して対向して配置されている。ステータコア31の外周面は、ハウジング本体11の下側部分11bの内周面に固定されている。インシュレータ32は、ステータコア31に取り付けられている。複数のコイル33は、インシュレータ32を介してステータコア31に取り付けられている。
The stator 30 is housed inside the housing 10. The stator 30 faces the rotor 20 via a gap. The stator 30 is located radially outside the rotor 20. The stator 30 includes a stator core 31, an insulator 32, and a plurality of coils 33. The stator core 31 is an annular shape surrounding the rotor 20. The stator core 31 is arranged so as to face each other with a gap on the outer side in the radial direction of the magnet 23. The outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the lower portion 11b of the housing body 11. The insulator 32 is attached to the stator core 31. The plurality of coils 33 are attached to the stator core 31 via the insulator 32.
センサアセンブリ50は、ハウジング10の内部に収容されている。センサアセンブリ50は、ロータ本体20aの下側に位置する。センサアセンブリ50は、下側蓋部13の第2蓋部材13bに固定されている。センサアセンブリ50は、センサホルダ51と、回転センサ52と、回路基板53と、を有する。センサホルダ51は、ベアリング保持部13eに嵌め合わされて固定されている。
The sensor assembly 50 is housed inside the housing 10. The sensor assembly 50 is located below the rotor body 20a. The sensor assembly 50 is fixed to the second lid member 13b of the lower lid portion 13. The sensor assembly 50 includes a sensor holder 51, a rotation sensor 52, and a circuit board 53. The sensor holder 51 is fitted and fixed to the bearing holding portion 13e.
回転センサ52は、センサホルダ51に保持されている。回転センサ52は、マグネット23の磁界を検出可能な磁気センサである。回転センサ52は、例えば、ホールIC等のホール素子である。回転センサ52は、マグネット23の磁界を検出することで、ロータ20の回転を検出する。図示は省略するが、回転センサ52は、周方向に沿って複数設けられている。回転センサ52は、マグネット23のうちロータコア22よりも下側に突出する部分の径方向内側に位置する。なお、回転センサ52は、磁気抵抗素子であってもよい。回路基板53は、センサホルダ51に固定されている。回路基板53には、回転センサ52の端子が電気的に接続されている。
The rotation sensor 52 is held by the sensor holder 51. The rotation sensor 52 is a magnetic sensor capable of detecting the magnetic field of the magnet 23. The rotation sensor 52 is, for example, a Hall element such as a Hall IC. The rotation sensor 52 detects the rotation of the rotor 20 by detecting the magnetic field of the magnet 23. Although not shown, a plurality of rotation sensors 52 are provided along the circumferential direction. The rotation sensor 52 is located radially inside the portion of the magnet 23 that protrudes below the rotor core 22. The rotation sensor 52 may be a magnetoresistive element. The circuit board 53 is fixed to the sensor holder 51. The terminals of the rotation sensor 52 are electrically connected to the circuit board 53.
圧力調整部60は、後述する密閉室90内の圧力を調整可能な部分である。圧力調整部60は、下側蓋部13に固定されている。より詳細には、圧力調整部60は、第2蓋部材13bの下側に固定されている。本実施形態において圧力調整部60は、後述するフィン71aよりも下側に位置する。
The pressure adjusting unit 60 is a portion capable of adjusting the pressure in the closed chamber 90, which will be described later. The pressure adjusting portion 60 is fixed to the lower lid portion 13. More specifically, the pressure adjusting unit 60 is fixed to the lower side of the second lid member 13b. In the present embodiment, the pressure adjusting unit 60 is located below the fin 71a described later.
本実施形態において圧力調整部60は、容積が可変の容器状である。圧力調整部60は、上側に開口している。圧力調整部60の内部は、第2蓋部材13bの孔部13gを介して、ハウジング10の内部と繋がっている。圧力調整部60は、例えば、ゴム製である。圧力調整部60は、変形部61と、固定部62と、底板部63と、を有する。
In the present embodiment, the pressure adjusting unit 60 is in the shape of a container having a variable volume. The pressure adjusting unit 60 is open on the upper side. The inside of the pressure adjusting portion 60 is connected to the inside of the housing 10 via the hole portion 13g of the second lid member 13b. The pressure adjusting unit 60 is made of rubber, for example. The pressure adjusting portion 60 includes a deforming portion 61, a fixing portion 62, and a bottom plate portion 63.
変形部61は、軸方向に伸縮可能な蛇腹構造を有する円筒状である。すなわち、本実施形態において圧力調整部60は、蛇腹構造を有する。変形部61の上側部分は、筒部13dの径方向内側に位置する。なお、図2においては、例えば、変形部61が最も縮んだ状態を示している。図3においては、変形部61が図2の状態よりも軸方向に伸びて、圧力調整部60の容積が増加した状態を示している。
The deformed portion 61 has a cylindrical shape having a bellows structure that can be expanded and contracted in the axial direction. That is, in the present embodiment, the pressure adjusting unit 60 has a bellows structure. The upper portion of the deformed portion 61 is located inside the tubular portion 13d in the radial direction. In addition, in FIG. 2, for example, the deformed portion 61 is shown in the most contracted state. FIG. 3 shows a state in which the deformed portion 61 extends in the axial direction from the state shown in FIG. 2 and the volume of the pressure adjusting portion 60 is increased.
固定部62は、変形部61の上側の端部から径方向外側に突出している。固定部62は、板面が軸方向を向く板状である。固定部62は、第2蓋部材13bの段差部13fにおける下側を向く段差面に固定されている。これにより、圧力調整部60が下側蓋部13に固定されている。底板部63は、変形部61の下側の端部を閉じている。底板部63は、中心軸Jを中心とする円板状である。
The fixed portion 62 projects radially outward from the upper end of the deformed portion 61. The fixing portion 62 has a plate shape in which the plate surface faces the axial direction. The fixing portion 62 is fixed to the stepped surface facing downward in the stepped portion 13f of the second lid member 13b. As a result, the pressure adjusting portion 60 is fixed to the lower lid portion 13. The bottom plate portion 63 closes the lower end portion of the deformed portion 61. The bottom plate portion 63 has a disk shape centered on the central axis J.
フィンアセンブリ70は、ハウジング10の外周面に設けられている。より詳細には、フィンアセンブリ70は、ハウジング本体11の上側部分11aの外周面に設けられている。本実施形態においてフィンアセンブリ70のほぼ全体は、ステータ30よりも上側に位置する。
The fin assembly 70 is provided on the outer peripheral surface of the housing 10. More specifically, the fin assembly 70 is provided on the outer peripheral surface of the upper portion 11a of the housing body 11. In this embodiment, almost the entire fin assembly 70 is located above the stator 30.
図4に示すように、フィンアセンブリ70は、フィン部材71と、下側キャップ部材72と、上側キャップ部材73と、下側リング部材74と、上側リング部材75と、を有する。フィン部材71は、複数のフィン71aと、複数の連結部71bと、を有する。すなわち、モータ1は、複数のフィン71aを備える。
As shown in FIG. 4, the fin assembly 70 includes a fin member 71, a lower cap member 72, an upper cap member 73, a lower ring member 74, and an upper ring member 75. The fin member 71 has a plurality of fins 71a and a plurality of connecting portions 71b. That is, the motor 1 includes a plurality of fins 71a.
本実施形態においてフィン71aは、板面が周方向を向き、軸方向に長い長方形板状である。複数のフィン71aは、周方向に沿って一周に亘って等間隔に配置されている。図5に示すように、本実施形態においてフィン71aは、中空のフィンである。フィン71aは、周方向に隙間を介して対向する一対の板部71c,71dが径方向外端部で連結されて構成されている。フィン71aの内部は、軸方向両側および径方向内側に開口している。
In the present embodiment, the fin 71a has a rectangular plate shape in which the plate surface faces the circumferential direction and is long in the axial direction. The plurality of fins 71a are arranged at equal intervals over one circumference along the circumferential direction. As shown in FIG. 5, in the present embodiment, the fin 71a is a hollow fin. The fin 71a is configured by connecting a pair of plate portions 71c and 71d facing each other with a gap in the circumferential direction at the outer end portion in the radial direction. The inside of the fin 71a is open on both sides in the axial direction and inward in the radial direction.
図6に示すように、フィン71aは、ハウジング本体11の上側部分11aの径方向外側に位置する。本実施形態においてフィン71aの少なくとも一部は、コイル33よりも上側に位置する。フィン71aは、例えば、下側の端部を除いて、コイル33よりも上側に位置する。本実施形態においてフィン71aの全体は、ステータ30のステータコア31よりも上側に位置する。フィン71aは、ハウジング本体11の上側部分11aの外周面から僅かに径方向外側に離れて配置されている。すなわち、ハウジング本体11の外周面とフィン71aとの間には、環状の隙間Gが設けられている。複数のフィン71aの内部は、隙間Gを介して互いに繋がっている。本実施形態においてフィン71aは、後述する密閉室90内の冷却媒体Rの熱を外部に放出可能な放熱部に相当する。
As shown in FIG. 6, the fin 71a is located radially outside the upper portion 11a of the housing body 11. In this embodiment, at least a part of the fins 71a is located above the coil 33. The fin 71a is located above the coil 33, except for the lower end, for example. In the present embodiment, the entire fin 71a is located above the stator core 31 of the stator 30. The fins 71a are arranged slightly radially outward from the outer peripheral surface of the upper portion 11a of the housing body 11. That is, an annular gap G is provided between the outer peripheral surface of the housing body 11 and the fins 71a. The insides of the plurality of fins 71a are connected to each other via a gap G. In the present embodiment, the fin 71a corresponds to a heat radiating portion capable of releasing the heat of the cooling medium R in the closed chamber 90, which will be described later, to the outside.
図5に示すように、連結部71bは、板面が径方向を向き、軸方向に長い長方形板状である。連結部71bは、周方向に隣り合うフィン71aの径方向内端部同士を連結している。より詳細には、連結部71bは、周方向に隣り合う一対のフィン71aのうち一方のフィン71aの板部71cと、周方向に隣り合う一対のフィン71aのうち他方のフィン71aの板部71dと、を連結している。複数の連結部71bによって複数のフィン71aが連結されることで、フィン部材71は、全体として中心軸Jを囲む円環状に構成されている。
As shown in FIG. 5, the connecting portion 71b has a rectangular plate shape in which the plate surface faces in the radial direction and is long in the axial direction. The connecting portion 71b connects the radial inner ends of the fins 71a adjacent to each other in the circumferential direction. More specifically, the connecting portion 71b includes a plate portion 71c of one of the pair of fins 71a adjacent to each other in the circumferential direction and a plate portion 71d of the other fin 71a of the pair of fins 71a adjacent to each other in the circumferential direction. And are connected. By connecting the plurality of fins 71a by the plurality of connecting portions 71b, the fin member 71 is formed in an annular shape surrounding the central axis J as a whole.
本実施形態においてフィン部材71は、金属製である。すなわち、本実施形態において複数のフィン71aは、金属製である。フィン71aを構成する金属は、例えば、アルミニウム等の熱伝導率が比較的高い金属である。フィン71aの熱伝導率は、圧力調整部60の熱伝導率よりも高い。
In this embodiment, the fin member 71 is made of metal. That is, in the present embodiment, the plurality of fins 71a are made of metal. The metal constituting the fin 71a is, for example, a metal having a relatively high thermal conductivity such as aluminum. The thermal conductivity of the fin 71a is higher than the thermal conductivity of the pressure adjusting unit 60.
下側キャップ部材72は、フィン部材71の下側の端部に取り付けられている。下側キャップ部材72は、複数のフィン71aの下側の開口を閉じている。下側キャップ部材72は、環状部72aと、複数の下側脚部72bと、を有する。環状部72aは、中心軸Jを中心とする円環状である。環状部72aは、複数のスリット72dを有する。スリット72dは、環状部72aの内周面から径方向外側に窪み、軸方向両側に開口している。複数のスリット72dは、例えば、周方向に沿って一周に亘って等間隔に配置されている。スリット72dには、フィン71aの径方向内縁部が上側から挿入されている。
The lower cap member 72 is attached to the lower end of the fin member 71. The lower cap member 72 closes the lower openings of the plurality of fins 71a. The lower cap member 72 has an annular portion 72a and a plurality of lower leg portions 72b. The annular portion 72a is an annular shape centered on the central axis J. The annular portion 72a has a plurality of slits 72d. The slit 72d is recessed radially outward from the inner peripheral surface of the annular portion 72a and is open on both sides in the axial direction. The plurality of slits 72d are arranged at equal intervals, for example, along the circumferential direction. The radial inner edge of the fin 71a is inserted into the slit 72d from above.
複数の下側脚部72bは、環状部72aから径方向外側に延びている。複数の下側脚部72bは、例えば、周方向に沿って一周に亘って等間隔に配置されている。各下側脚部72bは、各スリット72dの径方向外側に位置する。下側脚部72bは、それぞれ複数のフィン71aの下側の端部に取り付けられている。各下側脚部72bは、各フィン71aの下側の開口を閉じている。下側脚部72bの径方向外側の端部は、フィン71aよりも径方向外側に位置する。下側脚部72bは、下側脚部72bの上側の面から下側に窪む溝部72cを有する。溝部72cは、上側から見て、径方向内側に開口する細長のU字形状である。溝部72cには、フィン71aの下側の端部が上側から挿し込まれている。
The plurality of lower leg portions 72b extend radially outward from the annular portion 72a. The plurality of lower leg portions 72b are arranged at equal intervals, for example, along the circumferential direction. Each lower leg 72b is located radially outward of each slit 72d. The lower leg portions 72b are attached to the lower end portions of the plurality of fins 71a, respectively. Each lower leg 72b closes the lower opening of each fin 71a. The radial outer end of the lower leg 72b is located radially outer of the fin 71a. The lower leg portion 72b has a groove portion 72c that is recessed downward from the upper surface of the lower leg portion 72b. The groove portion 72c has an elongated U-shape that opens inward in the radial direction when viewed from above. The lower end of the fin 71a is inserted into the groove 72c from above.
図1に示すように、上側キャップ部材73は、フィン部材71の上側の端部に取り付けられている。上側キャップ部材73は、複数のフィン71aの上側の開口を閉じている。上側キャップ部材73は、下側キャップ部材72を軸方向に反転させた形状と同様の形状である。図4に示すように、上側キャップ部材73は、環状部73aと、複数の上側脚部73bと、を有する。
As shown in FIG. 1, the upper cap member 73 is attached to the upper end of the fin member 71. The upper cap member 73 closes the upper openings of the plurality of fins 71a. The upper cap member 73 has the same shape as the lower cap member 72 inverted in the axial direction. As shown in FIG. 4, the upper cap member 73 has an annular portion 73a and a plurality of upper leg portions 73b.
環状部73aは、中心軸Jを中心とする円環状である。環状部73aには、環状部72aと同様に、フィン71aの上側の端部が挿入されたスリットが設けられている。複数の上側脚部73bは、環状部73aから径方向外側に延びている。複数の上側脚部73bは、例えば、周方向に沿って一周に亘って等間隔に配置されている。上側脚部73bは、それぞれ複数のフィン71aの上側の端部に取り付けられている。各上側脚部73bは、各フィン71aの上側の開口を閉じている。図6に示すように、フィン71aの上側の端部は、上側脚部73bに設けられた溝部73cに下側から挿し込まれている。
The annular portion 73a is an annular shape centered on the central axis J. Similar to the annular portion 72a, the annular portion 73a is provided with a slit into which the upper end portion of the fin 71a is inserted. The plurality of upper leg portions 73b extend radially outward from the annular portion 73a. The plurality of upper leg portions 73b are arranged at equal intervals, for example, along the circumferential direction. The upper leg portions 73b are attached to the upper end portions of the plurality of fins 71a, respectively. Each upper leg 73b closes the upper opening of each fin 71a. As shown in FIG. 6, the upper end portion of the fin 71a is inserted from the lower side into the groove portion 73c provided in the upper leg portion 73b.
下側リング部材74は、下側キャップ部材72の下側に位置する。下側リング部材74は、中心軸Jを囲む環状である。下側リング部材74は、例えば、中心軸Jを中心とする円環状である。下側リング部材74は、基部74aと、内筒部74bと、複数の突出板部74cと、を有する。
The lower ring member 74 is located below the lower cap member 72. The lower ring member 74 is an annular shape surrounding the central axis J. The lower ring member 74 is, for example, an annular shape centered on the central axis J. The lower ring member 74 has a base portion 74a, an inner cylinder portion 74b, and a plurality of protruding plate portions 74c.
基部74aは、中心軸Jを中心とする円環状である。図5に示すように、基部74aの上側には、環状部72aが固定されている。基部74aは、基部74aの内周面に設けられた溝部74dを有する。溝部74dは、中心軸Jを中心とする円環状である。溝部74dには、Oリング76aが嵌め込まれている。
The base portion 74a is an annular shape centered on the central axis J. As shown in FIG. 5, an annular portion 72a is fixed on the upper side of the base portion 74a. The base portion 74a has a groove portion 74d provided on the inner peripheral surface of the base portion 74a. The groove portion 74d is an annular shape centered on the central axis J. An O-ring 76a is fitted in the groove portion 74d.
図6に示すように、基部74aは、ハウジング本体11の上側部分11aのうち下側の端部の径方向外側に位置する。基部74aは、ハウジング本体11の上側部分11aのうち下側の端部に嵌め合わされている。基部74aの内周面とハウジング本体11の外周面との間は、Oリング76aによって封止されている。
As shown in FIG. 6, the base portion 74a is located on the radial outer side of the lower end portion of the upper portion 11a of the housing main body 11. The base portion 74a is fitted to the lower end portion of the upper portion 11a of the housing main body 11. The inner peripheral surface of the base portion 74a and the outer peripheral surface of the housing body 11 are sealed by an O-ring 76a.
内筒部74bは、基部74aの径方向内縁部から上側に突出する筒状である。内筒部74bは、例えば、中心軸Jを中心とする円筒状である。図5に示すように、内筒部74bは、環状部72aの径方向内側に位置する。内筒部74bと環状部72aとは、連結部71bの下側の端部を径方向に挟んでいる。
The inner cylinder portion 74b has a tubular shape that projects upward from the radial inner edge portion of the base portion 74a. The inner cylinder portion 74b has, for example, a cylindrical shape centered on the central axis J. As shown in FIG. 5, the inner cylinder portion 74b is located inside the annular portion 72a in the radial direction. The inner cylinder portion 74b and the annular portion 72a sandwich the lower end portion of the connecting portion 71b in the radial direction.
図4に示すように、突出板部74cは、基部74aのうち内筒部74bよりも径方向外側に位置する部分から上側に突出している。突出板部74cは、板面が周方向を向く板状である。複数の突出板部74cは、例えば、周方向に沿って一周に亘って等間隔に配置されている。突出板部74cの径方向内側の端部は、内筒部74bの外周面に繋がっている。図5に示すように、突出板部74cは、スリット72dに挿入されている。突出板部74cは、スリット72d内においてフィン71aの板部71cと板部71dとの周方向の間に位置する。
As shown in FIG. 4, the projecting plate portion 74c projects upward from a portion of the base portion 74a located radially outward of the inner cylinder portion 74b. The protruding plate portion 74c has a plate shape in which the plate surface faces the circumferential direction. The plurality of projecting plate portions 74c are arranged at equal intervals, for example, along the circumferential direction. The radial inner end of the protruding plate portion 74c is connected to the outer peripheral surface of the inner cylinder portion 74b. As shown in FIG. 5, the protruding plate portion 74c is inserted into the slit 72d. The protruding plate portion 74c is located in the slit 72d between the plate portion 71c of the fin 71a and the plate portion 71d in the circumferential direction.
図6に示すように、下側リング部材74の内周面は、フィン71aの径方向内端部よりも径方向内側に位置する。下側リング部材74の内周面は、基部74aの内周面と内筒部74bの内周面とによって構成されている。
As shown in FIG. 6, the inner peripheral surface of the lower ring member 74 is located radially inside the fin 71a at the radial inner end. The inner peripheral surface of the lower ring member 74 is composed of an inner peripheral surface of the base portion 74a and an inner peripheral surface of the inner cylinder portion 74b.
図4に示すように、上側リング部材75は、上側キャップ部材73の上側に位置する。上側リング部材75は、中心軸Jを囲む環状である。上側リング部材75は、例えば、中心軸Jを中心とする円環状である。上側リング部材75は、基部75aと、内筒部75bと、複数の突出板部75cと、固定部75eと、を有する。上側リング部材75のうち固定部75eを除いた部分は、下側リング部材74を軸方向に反転させた形状と同様の形状である。
As shown in FIG. 4, the upper ring member 75 is located above the upper cap member 73. The upper ring member 75 is an annular shape surrounding the central axis J. The upper ring member 75 is, for example, an annular shape centered on the central axis J. The upper ring member 75 has a base portion 75a, an inner cylinder portion 75b, a plurality of projecting plate portions 75c, and a fixing portion 75e. The portion of the upper ring member 75 excluding the fixing portion 75e has the same shape as the lower ring member 74 inverted in the axial direction.
基部75aは、中心軸Jを中心とする円環状である。基部75aの下側には、環状部73aが固定されている。図6に示すように、基部75aは、基部75aの内周面に設けられた溝部75dを有する。溝部75dは、中心軸Jを中心とする円環状である。溝部75dには、Oリング76bが嵌め込まれている。
The base portion 75a is an annular shape centered on the central axis J. An annular portion 73a is fixed to the lower side of the base portion 75a. As shown in FIG. 6, the base portion 75a has a groove portion 75d provided on the inner peripheral surface of the base portion 75a. The groove portion 75d is an annular shape centered on the central axis J. An O-ring 76b is fitted in the groove portion 75d.
基部75aは、ハウジング本体11の上側部分11aのうち上側の端部の径方向外側に位置する。基部75aは、ハウジング本体11の上側部分11aのうち上側の端部に嵌め合わされている。基部75aの内周面とハウジング本体11の外周面との間は、Oリング76bによって封止されている。
The base portion 75a is located on the radial outer side of the upper end portion of the upper portion 11a of the housing main body 11. The base portion 75a is fitted to the upper end portion of the upper portion 11a of the housing main body 11. The inner peripheral surface of the base portion 75a and the outer peripheral surface of the housing body 11 are sealed by an O-ring 76b.
内筒部75bは、基部75aの径方向内縁部から下側に突出する筒状である。内筒部75bは、例えば、中心軸Jを中心とする円筒状である。内筒部75bは、環状部73aの径方向内側に位置する。内筒部75bと環状部73aとは、連結部71bの上側の端部を径方向に挟んでいる。
The inner cylinder portion 75b has a tubular shape that projects downward from the radial inner edge portion of the base portion 75a. The inner cylinder portion 75b has, for example, a cylindrical shape centered on the central axis J. The inner cylinder portion 75b is located inside the annular portion 73a in the radial direction. The inner cylinder portion 75b and the annular portion 73a sandwich the upper end portion of the connecting portion 71b in the radial direction.
突出板部75cは、基部75aのうち内筒部75bよりも径方向外側に位置する部分から下側に突出している。突出板部75cは、板面が周方向を向く板状である。複数の突出板部75cは、例えば、周方向に沿って一周に亘って等間隔に配置されている。突出板部75cの径方向内側の端部は、内筒部75bの外周面に繋がっている。図示は省略するが、突出板部75cは、環状部73aに設けられたスリットに挿入されている。突出板部75cは、スリット内においてフィン71aの板部71cと板部71dとの周方向の間に位置する。
The projecting plate portion 75c projects downward from a portion of the base portion 75a located radially outward of the inner cylinder portion 75b. The protruding plate portion 75c has a plate shape in which the plate surface faces the circumferential direction. The plurality of projecting plate portions 75c are arranged at equal intervals, for example, along the circumferential direction. The radial inner end of the protruding plate portion 75c is connected to the outer peripheral surface of the inner cylinder portion 75b. Although not shown, the protruding plate portion 75c is inserted into a slit provided in the annular portion 73a. The protruding plate portion 75c is located in the slit between the plate portion 71c of the fin 71a and the plate portion 71d in the circumferential direction.
図4に示すように、固定部75eは、基部75aの上側の端部から径方向内側に突出している。固定部75eは、ハウジング本体11の上側の端部に接触している。固定部75eは、ハウジング本体11の上側の端部にボルトで固定されている。これにより、フィンアセンブリ70は、ハウジング本体11に固定されている。図1に示すように、固定部75eは、周方向に沿って複数設けられている。複数の固定部75eは、例えば、周方向に沿って一周に亘って等間隔に配置されている。固定部75eは、例えば、4つ設けられている。固定部75eは、周方向に延びている。固定部75eのそれぞれは、周方向に隣り合う固定部12c同士の間に位置する。
As shown in FIG. 4, the fixing portion 75e projects radially inward from the upper end portion of the base portion 75a. The fixing portion 75e is in contact with the upper end portion of the housing body 11. The fixing portion 75e is bolted to the upper end portion of the housing body 11. As a result, the fin assembly 70 is fixed to the housing body 11. As shown in FIG. 1, a plurality of fixing portions 75e are provided along the circumferential direction. The plurality of fixed portions 75e are arranged at equal intervals, for example, along the circumferential direction. For example, four fixing portions 75e are provided. The fixed portion 75e extends in the circumferential direction. Each of the fixed portions 75e is located between the fixed portions 12c adjacent to each other in the circumferential direction.
図6に示すように、上側リング部材75の内周面は、フィン71aの径方向内端部よりも径方向内側に位置する。上側リング部材75の内周面は、基部75aの内周面と内筒部75bの内周面とによって構成されている。本実施形態では、下側リング部材74の内周面および上側リング部材75の内周面がフィン71aの径方向内端部よりも径方向内側に位置することで、複数のフィン71aとハウジング本体11との径方向の間に隙間Gが設けられている。
As shown in FIG. 6, the inner peripheral surface of the upper ring member 75 is located radially inside the fin 71a at the radial inner end. The inner peripheral surface of the upper ring member 75 is composed of an inner peripheral surface of the base portion 75a and an inner peripheral surface of the inner cylinder portion 75b. In the present embodiment, the inner peripheral surface of the lower ring member 74 and the inner peripheral surface of the upper ring member 75 are located radially inside the inner end portion of the fin 71a in the radial direction, so that the plurality of fins 71a and the housing main body are located. A gap G is provided between the diameter of the 11 and the 11 in the radial direction.
本実施形態では、フィン71aの下側の端部が下側キャップ部材72に設けられた溝部72cに挿し込まれ、かつ、板部71c,71d同士の間に下側リング部材74の突出板部74cが挿入されている。また、フィン71aの上側の端部が上側キャップ部材73に設けられた溝部73cに挿し込まれ、かつ、板部71c,71d同士の間に上側リング部材75の突出板部75cが挿入されている。これらにより、板部71c,71d同士が周方向に接触することを抑制でき、中空のフィン71aが開いた状態を好適に維持できる。
In the present embodiment, the lower end of the fin 71a is inserted into the groove 72c provided in the lower cap member 72, and the protruding plate portion of the lower ring member 74 is sandwiched between the plate portions 71c and 71d. 74c is inserted. Further, the upper end portion of the fin 71a is inserted into the groove portion 73c provided in the upper cap member 73, and the protruding plate portion 75c of the upper ring member 75 is inserted between the plate portions 71c and 71d. .. As a result, it is possible to prevent the plate portions 71c and 71d from coming into contact with each other in the circumferential direction, and it is possible to suitably maintain the state in which the hollow fins 71a are open.
図2および図3に示すように、封止部材80は、第2保持部材40に保持されている。封止部材80は、シャフト21を囲む円環状である。封止部材80は、貫通孔12pに嵌め合わされている。より詳細には、封止部材80は、第2保持部材本体41の径方向内側に嵌め合わされている。封止部材80は、上側ベアリング24の下側に位置する。封止部材80の外径は、上側ベアリング24の外径よりも小さい。
As shown in FIGS. 2 and 3, the sealing member 80 is held by the second holding member 40. The sealing member 80 is an annular shape surrounding the shaft 21. The sealing member 80 is fitted into the through hole 12p. More specifically, the sealing member 80 is fitted inside the second holding member main body 41 in the radial direction. The sealing member 80 is located below the upper bearing 24. The outer diameter of the sealing member 80 is smaller than the outer diameter of the upper bearing 24.
本実施形態において封止部材80は、径方向内側にリップ部を有するリップシールである。封止部材80のリップ部は、シャフト21の外周面に接触している。これにより、封止部材80は、シャフト21の外周面と貫通孔12pの内周面との間を封止している。すなわち、上側ベアリング24の下側には、シャフト21の外周面と貫通孔12pの内周面との間を封止する封止部材80が設けられている。
In the present embodiment, the sealing member 80 is a lip seal having a lip portion inside in the radial direction. The lip portion of the sealing member 80 is in contact with the outer peripheral surface of the shaft 21. As a result, the sealing member 80 seals between the outer peripheral surface of the shaft 21 and the inner peripheral surface of the through hole 12p. That is, on the lower side of the upper bearing 24, a sealing member 80 is provided to seal between the outer peripheral surface of the shaft 21 and the inner peripheral surface of the through hole 12p.
モータ1は、密閉された密閉室90を備える。密閉室90の少なくとも一部は、ハウジング10によって構成されている。本実施形態において密閉室90は、ハウジング10と圧力調整部60とフィンアセンブリ70とによって構成されている。密閉室90には、冷却媒体Rが収容されている。冷却媒体Rは、常温で液体の物質である。常温とは、例えば、5℃以上、35℃以下である。以下の説明においては、液体の状態の冷却媒体Rを冷却液RLと呼び、気体の状態の冷却媒体RをガスRGと呼ぶ。
The motor 1 includes a closed closed chamber 90. At least a part of the closed chamber 90 is composed of a housing 10. In the present embodiment, the closed chamber 90 is composed of a housing 10, a pressure adjusting unit 60, and a fin assembly 70. The cooling medium R is housed in the closed chamber 90. The cooling medium R is a substance that is liquid at room temperature. The normal temperature is, for example, 5 ° C. or higher and 35 ° C. or lower. In the following description, the cooling medium R in the liquid state is referred to as the cooling liquid RL, and the cooling medium R in the gaseous state is referred to as the gas RG.
本実施形態において冷却媒体Rは、絶縁性を有する。そのため、密閉室90内において冷却媒体Rに接触するモータ1の各部に対して絶縁処理を施す必要がない。したがって、モータ1を製造する工数を低減できる。冷却媒体Rは、例えば、フッ素系化合物である。フッ素系化合物は、フッ素原子を含む化合物であれば、特に限定されない。冷却媒体Rには、潤滑剤が混合されている。本実施形態において冷却媒体Rに混合された潤滑剤は、ボールベアリングに使用される潤滑剤である。
In the present embodiment, the cooling medium R has an insulating property. Therefore, it is not necessary to insulate each part of the motor 1 that comes into contact with the cooling medium R in the closed chamber 90. Therefore, the man-hours for manufacturing the motor 1 can be reduced. The cooling medium R is, for example, a fluorine-based compound. The fluorine-based compound is not particularly limited as long as it is a compound containing a fluorine atom. A lubricant is mixed in the cooling medium R. The lubricant mixed in the cooling medium R in the present embodiment is a lubricant used for ball bearings.
本実施形態において冷却媒体Rは、密閉室90の内部全体に充填されている。図2は、液体の冷却媒体Rである冷却液RLによって密閉室90の内部全体が満たされた第1状態S1を示している。図3は、冷却液RLと気体の冷却媒体RであるガスRGとによって密閉室90の内部全体が満たされた第2状態S2を示している。
In the present embodiment, the cooling medium R is filled in the entire inside of the closed chamber 90. FIG. 2 shows a first state S1 in which the entire inside of the closed chamber 90 is filled with the cooling liquid RL, which is the cooling medium R of the liquid. FIG. 3 shows a second state S2 in which the entire inside of the closed chamber 90 is filled with the coolant RL and the gas RG which is the gas cooling medium R.
密閉室90は、冷却室91と、放熱室92と、延伸部93と、第1接続部94と、第2接続部95と、圧力調整室96と、を有する。冷却室91は、ハウジング本体11の下側部分11bと上側蓋部12と下側蓋部13とによって囲まれて構成されている。すなわち、下側部分11bと上側蓋部12と下側蓋部13とは、密閉室90の壁部の一部を構成している。冷却室91には、シャフト21の下側部分とロータ本体20aとステータ30と下側ベアリング25とセンサアセンブリ50とが収容されている。すなわち、冷却室91には、複数のコイル33が収容されている。
The closed chamber 90 includes a cooling chamber 91, a heat radiating chamber 92, an extending portion 93, a first connecting portion 94, a second connecting portion 95, and a pressure adjusting chamber 96. The cooling chamber 91 is configured to be surrounded by the lower portion 11b of the housing main body 11, the upper lid portion 12, and the lower lid portion 13. That is, the lower portion 11b, the upper lid portion 12, and the lower lid portion 13 form a part of the wall portion of the closed chamber 90. The cooling chamber 91 houses the lower portion of the shaft 21, the rotor body 20a, the stator 30, the lower bearing 25, and the sensor assembly 50. That is, a plurality of coils 33 are housed in the cooling chamber 91.
シャフト21の上側部分は、貫通孔12pを介して冷却室91から上側に突出して、密閉室90の外部に配置されている。すなわち、シャフト21は、一部が密閉室90に収容され、かつ、貫通孔12pを介して密閉室90から上側に突出している。貫通孔12pとシャフト21との間は封止部材80によって封止されているため、貫通孔12pから密閉室90内の冷却媒体Rが漏れることが抑制されている。本実施形態では、封止部材80によって、冷却液RLおよびガスRGの両方が貫通孔12pから漏れることを抑制できる。
The upper portion of the shaft 21 projects upward from the cooling chamber 91 through the through hole 12p and is arranged outside the closed chamber 90. That is, a part of the shaft 21 is housed in the closed chamber 90 and protrudes upward from the closed chamber 90 through the through hole 12p. Since the through hole 12p and the shaft 21 are sealed by the sealing member 80, leakage of the cooling medium R in the sealing chamber 90 from the through hole 12p is suppressed. In the present embodiment, the sealing member 80 can prevent both the coolant RL and the gas RG from leaking from the through hole 12p.
放熱室92は、フィンアセンブリ70とハウジング本体11の上側部分11aとによって囲まれて構成されている。放熱室92の内部は、フィン71aの内部および隙間Gを含む。すなわち、密閉室90の内部は、フィン71aの内部および隙間Gを含む。放熱室92は、冷却室91よりも径方向外側に位置する。放熱室92は、下側の端部を除いて、冷却室91よりも上側に位置する。放熱室92の下側の端部は、冷却室91における上側の端部の径方向外側に位置する。
The heat radiating chamber 92 is surrounded by the fin assembly 70 and the upper portion 11a of the housing body 11. The inside of the heat radiating chamber 92 includes the inside of the fin 71a and the gap G. That is, the inside of the closed chamber 90 includes the inside of the fin 71a and the gap G. The heat radiating chamber 92 is located radially outside the cooling chamber 91. The heat radiating chamber 92 is located above the cooling chamber 91, except for the lower end. The lower end of the heat radiating chamber 92 is located radially outside the upper end of the cooling chamber 91.
延伸部93は、冷却室91から上側に延びている。本実施形態において延伸部93は、コイル33の上側に位置する。延伸部93の上側の端部は、上側キャップ部材73の下端部とほぼ同じ軸方向位置に位置する。延伸部93の上側の端部は閉じられている。本実施形態において延伸部93は、ハウジング本体11と筒部12bとの径方向の間に設けられている。延伸部93は、中心軸Jを囲む円筒状である。
The extending portion 93 extends upward from the cooling chamber 91. In the present embodiment, the stretched portion 93 is located above the coil 33. The upper end of the stretched portion 93 is located at substantially the same axial position as the lower end of the upper cap member 73. The upper end of the stretched portion 93 is closed. In the present embodiment, the stretched portion 93 is provided between the housing main body 11 and the tubular portion 12b in the radial direction. The stretched portion 93 has a cylindrical shape surrounding the central axis J.
第1接続部94は、孔部11cによって構成されている。第1接続部94は、延伸部93の上端部から径方向外側に延びて放熱室92に繋がっている。これにより、第1接続部94は、延伸部93の内部とフィン71aの内部とを繋いでいる。より詳細には、第1接続部94は、隙間Gの上端部に繋がり、隙間Gを介して延伸部93の内部とフィン71aの内部とを繋いでいる。
The first connecting portion 94 is composed of a hole portion 11c. The first connecting portion 94 extends radially outward from the upper end portion of the extending portion 93 and is connected to the heat radiating chamber 92. As a result, the first connecting portion 94 connects the inside of the extending portion 93 and the inside of the fin 71a. More specifically, the first connecting portion 94 is connected to the upper end portion of the gap G, and connects the inside of the extending portion 93 and the inside of the fin 71a via the gap G.
第2接続部95は、孔部11dによって構成されている。第2接続部95は、第1接続部94よりも下側に位置する。第2接続部95は、冷却室91の上側の端部から径方向外側に延びて放熱室92に繋がっている。これにより、第2接続部95は、フィン71aの内部と冷却室91の内部とを繋いでいる。より詳細には、第2接続部95は、フィン71aの内部の下端部と冷却室91の内部の上端部とを繋いでいる。
The second connecting portion 95 is composed of a hole portion 11d. The second connection portion 95 is located below the first connection portion 94. The second connecting portion 95 extends radially outward from the upper end portion of the cooling chamber 91 and is connected to the heat radiating chamber 92. As a result, the second connecting portion 95 connects the inside of the fin 71a and the inside of the cooling chamber 91. More specifically, the second connecting portion 95 connects the lower end portion inside the fin 71a and the upper end portion inside the cooling chamber 91.
圧力調整室96は、圧力調整部60と下側蓋部13とによって囲まれて構成されている。圧力調整室96の内部は、圧力調整部60の内部を含む。すなわち、密閉室90の内部は、圧力調整部60の内部を含む。圧力調整室96は、冷却室91の下側に位置する。圧力調整室96の内部は、複数の孔部13gを介して、冷却室91の内部と繋がっている。
The pressure adjusting chamber 96 is surrounded by a pressure adjusting portion 60 and a lower lid portion 13. The inside of the pressure adjusting chamber 96 includes the inside of the pressure adjusting unit 60. That is, the inside of the closed chamber 90 includes the inside of the pressure adjusting unit 60. The pressure adjusting chamber 96 is located below the cooling chamber 91. The inside of the pressure adjusting chamber 96 is connected to the inside of the cooling chamber 91 via a plurality of holes 13g.
本実施形態によれば、密閉室90には、複数のコイル33とロータ20の少なくとも一部とが収容されている。そのため、密閉室90に収容された冷却媒体Rによって、発熱体であるコイル33を冷却でき、ステータ30を好適に冷却できる。また、ロータ20の少なくとも一部が密閉室90に収容されているため、密閉室90内の冷却媒体Rをロータ20によって攪拌することができる。これにより、密閉室90内において冷却媒体Rを好適に循環させることができ、ステータ30をより好適に冷却できる。したがって、ステータ30の冷却効率を向上できる。また、冷却媒体Rによってロータ20の少なくとも一部を冷却することもできる。また、本実施形態では、冷却室91にセンサアセンブリ50も収容されているため、冷却媒体Rによってセンサアセンブリ50を冷却することもできる。
According to the present embodiment, the closed chamber 90 contains a plurality of coils 33 and at least a part of the rotor 20. Therefore, the coil 33, which is a heating element, can be cooled by the cooling medium R housed in the closed chamber 90, and the stator 30 can be suitably cooled. Further, since at least a part of the rotor 20 is housed in the closed chamber 90, the cooling medium R in the closed chamber 90 can be agitated by the rotor 20. As a result, the cooling medium R can be suitably circulated in the closed chamber 90, and the stator 30 can be cooled more preferably. Therefore, the cooling efficiency of the stator 30 can be improved. Further, at least a part of the rotor 20 can be cooled by the cooling medium R. Further, in the present embodiment, since the sensor assembly 50 is also housed in the cooling chamber 91, the sensor assembly 50 can be cooled by the cooling medium R.
このように、本実施形態によれば、ステータ30だけでなく、密閉室90に収容されたモータ1の各部を冷却することができる。以下の説明においては、密閉室90に収容された冷却媒体Rによって冷却されるモータ1の部分を総称して「ステータ30等」と呼ぶ場合がある。
As described above, according to the present embodiment, not only the stator 30 but also each part of the motor 1 housed in the closed chamber 90 can be cooled. In the following description, the portion of the motor 1 cooled by the cooling medium R housed in the closed chamber 90 may be generically referred to as “stator 30 or the like”.
また、複数のコイル33とロータ20の少なくとも一部とが密閉室90に収容されるため、密閉室90を構成するためにロータ20とステータ30との間に仕切りを設ける必要がない。これにより、ロータ20とステータ30との径方向のギャップを小さくできる。したがって、モータ1の出力を向上できる。
Further, since the plurality of coils 33 and at least a part of the rotor 20 are housed in the closed chamber 90, it is not necessary to provide a partition between the rotor 20 and the stator 30 in order to form the closed chamber 90. As a result, the radial gap between the rotor 20 and the stator 30 can be reduced. Therefore, the output of the motor 1 can be improved.
また、モータ1には、放熱部としてのフィン71aが設けられている。そのため、フィン71aを介して、密閉室90内の冷却媒体Rの熱を外部に放出できる。これにより、ステータ30等から冷却媒体Rに放出された熱をモータ1の外部に放出して、冷却媒体Rを冷却することができる。したがって、冷却媒体Rによってステータ30等をより好適に冷却でき、ステータ30等の冷却効率をより向上できる。また、放熱部としてのフィン71aによって密閉室90内に収容されたまま冷却媒体Rを冷却できるため、例えば冷却媒体Rをモータ1の外部に導いて別装置で冷却する等の必要がない。したがって、モータ1の構造が複雑化することを抑制でき、かつ、モータ1が大型化することを抑制できる。本実施形態では、フィン71aが金属製であるため、フィン71aの熱伝導率を比較的高くしやすい。そのため、フィン71aを介して冷却媒体Rの熱を好適に外部に放出できる。
Further, the motor 1 is provided with fins 71a as a heat radiating portion. Therefore, the heat of the cooling medium R in the closed chamber 90 can be released to the outside through the fins 71a. As a result, the heat released from the stator 30 or the like to the cooling medium R can be released to the outside of the motor 1 to cool the cooling medium R. Therefore, the cooling medium R can more preferably cool the stator 30 and the like, and the cooling efficiency of the stator 30 and the like can be further improved. Further, since the cooling medium R can be cooled while being housed in the closed chamber 90 by the fins 71a as the heat radiating portion, it is not necessary to guide the cooling medium R to the outside of the motor 1 and cool it by another device, for example. Therefore, it is possible to prevent the structure of the motor 1 from becoming complicated, and it is possible to prevent the motor 1 from becoming large in size. In the present embodiment, since the fin 71a is made of metal, the thermal conductivity of the fin 71a tends to be relatively high. Therefore, the heat of the cooling medium R can be suitably released to the outside through the fins 71a.
本実施形態では、冷却室91においてモータ1の各部を冷却して温度が上昇した冷却媒体Rは、延伸部93を介して上側に移動し、第1接続部94から放熱室92の内部に流入する。放熱室92の内部に流入した冷却媒体Rの熱は、フィン71aを介して、モータ1の外部に放出される。フィン71aによってモータ1の外部に熱が放出され温度が低下した冷却媒体Rは、放熱室92内を下側に移動し、第2接続部95から冷却室91に戻る。このように、本実施形態によれば、密閉室90が冷却室91と延伸部93と第1接続部94と第2接続部95とを有するため、冷却室91と放熱室92との間、すなわち冷却室91とフィン71aの内部との間で、好適に冷却媒体Rを循環させることができる。これにより、フィン71aを介して冷却された比較的温度の低い冷却媒体Rを冷却室91に流入させることができ、ステータ30等を好適に冷却できる。本実施形態では、上述したようにロータ20によって密閉室90内の冷却媒体Rを攪拌できるため、冷却室91と放熱室92との間での冷却媒体Rの循環をより好適に生じさせやすい。
In the present embodiment, the cooling medium R whose temperature has risen by cooling each part of the motor 1 in the cooling chamber 91 moves upward through the stretching portion 93 and flows into the inside of the heat radiating chamber 92 from the first connecting portion 94. To do. The heat of the cooling medium R that has flowed into the heat radiating chamber 92 is released to the outside of the motor 1 via the fins 71a. The cooling medium R whose temperature is lowered by releasing heat to the outside of the motor 1 by the fins 71a moves downward in the heat radiating chamber 92 and returns to the cooling chamber 91 from the second connection portion 95. As described above, according to the present embodiment, since the closed chamber 90 has the cooling chamber 91, the extending portion 93, the first connecting portion 94, and the second connecting portion 95, the space between the cooling chamber 91 and the heat radiating chamber 92 That is, the cooling medium R can be suitably circulated between the cooling chamber 91 and the inside of the fin 71a. As a result, the cooling medium R having a relatively low temperature cooled through the fins 71a can flow into the cooling chamber 91, and the stator 30 and the like can be suitably cooled. In the present embodiment, since the cooling medium R in the closed chamber 90 can be agitated by the rotor 20 as described above, the circulation of the cooling medium R between the cooling chamber 91 and the heat radiating chamber 92 is more likely to occur.
ここで、コイル33における発熱量が比較的小さい場合には、冷却媒体Rは、冷却液RLのまま密閉室90内を循環する。一方、モータ1の回転数が上昇する等によりコイル33の発熱量が比較的大きくなった場合には、冷却液RLの一部が気化してガスRGとなる。そのため、冷却液RLが気化する際の気化熱によってステータ30等をより好適に冷却できる。したがって、ステータ30等の冷却効率をより向上できる。
Here, when the calorific value in the coil 33 is relatively small, the cooling medium R circulates in the closed chamber 90 as the coolant RL. On the other hand, when the calorific value of the coil 33 becomes relatively large due to an increase in the rotation speed of the motor 1, a part of the coolant RL is vaporized to become a gas RG. Therefore, the stator 30 and the like can be more preferably cooled by the heat of vaporization when the coolant RL is vaporized. Therefore, the cooling efficiency of the stator 30 and the like can be further improved.
冷却液RLの一部が気化してガスRGとなる場合、図6に示すように、ガスRGが延伸部93を介して上側に移動し、第1接続部94から放熱室92の内部に流入する。放熱室92に流入したガスRGは、フィン71aを介して冷却されることで凝縮して冷却液RLとなり、第2接続部95から再び冷却室91に流入する。なお、冷却液RLの温度は、ガスRGの温度以下になる。そのため、冷却室91に再び流入する際に冷却媒体RがガスRGから冷却液RLになっているならば、冷却液RLの温度がどのような温度であっても、再び流入した冷却媒体R、すなわち冷却液RLによって、ステータ30等を好適に冷却できる。
When a part of the coolant RL is vaporized to become a gas RG, as shown in FIG. 6, the gas RG moves upward through the extending portion 93 and flows into the inside of the heat radiating chamber 92 from the first connecting portion 94. To do. The gas RG that has flowed into the heat radiating chamber 92 is cooled via the fins 71a to be condensed into a coolant RL, and flows into the cooling chamber 91 again from the second connection portion 95. The temperature of the coolant RL is equal to or lower than the temperature of the gas RG. Therefore, if the cooling medium R changes from the gas RG to the coolant RL when it flows into the cooling chamber 91 again, the cooling medium R that has flowed in again, regardless of the temperature of the coolant RL, That is, the stator 30 and the like can be suitably cooled by the coolant RL.
ここで、ステータ30等の熱によって冷却媒体Rの温度が上昇した場合、冷却媒体Rの体積が膨張するため、密閉室90内の圧力が上昇しやすい。特に、冷却液RLの一部が気化してガスRGとなった場合、冷却媒体Rの体積が大きく膨張し、密閉室90内の圧力が大きく上昇しやすい。これに対して、本実施形態によれば、密閉室90内の圧力を調整可能な圧力調整部60が設けられている。そのため、圧力調整部60によって密閉室90内の圧力が上昇することを抑制できる。
Here, when the temperature of the cooling medium R rises due to the heat of the stator 30 or the like, the volume of the cooling medium R expands, so that the pressure in the closed chamber 90 tends to rise. In particular, when a part of the cooling liquid RL is vaporized to become a gas RG, the volume of the cooling medium R expands greatly, and the pressure in the closed chamber 90 tends to rise significantly. On the other hand, according to the present embodiment, the pressure adjusting unit 60 capable of adjusting the pressure in the closed chamber 90 is provided. Therefore, it is possible to prevent the pressure in the closed chamber 90 from rising by the pressure adjusting unit 60.
具体的に本実施形態では、圧力調整部60は、容積が可変の容器状である。そのため、冷却媒体Rの体積が膨張した場合、圧力調整部60の容積が大きくなり、密閉室90内の圧力を逃がすことができる。本実施形態では、圧力調整部60は蛇腹構造を有するため、図3に示すように、蛇腹構造によって圧力調整部60が軸方向に伸び、圧力調整部60の容積が大きくなる。これにより、密閉室90内の圧力を逃がすことができ、密閉室90内の圧力が上昇することを抑制できる。
Specifically, in the present embodiment, the pressure adjusting unit 60 has a container shape having a variable volume. Therefore, when the volume of the cooling medium R expands, the volume of the pressure adjusting unit 60 becomes large, and the pressure in the closed chamber 90 can be released. In the present embodiment, since the pressure adjusting unit 60 has a bellows structure, as shown in FIG. 3, the pressure adjusting unit 60 extends in the axial direction due to the bellows structure, and the volume of the pressure adjusting unit 60 increases. As a result, the pressure in the closed chamber 90 can be released, and the increase in the pressure in the closed chamber 90 can be suppressed.
また、モータ1においてはコイル33が最も温度が高くなりやすいため、コイル33に接触する冷却媒体Rは、特に温度が高くなりやすい。そのため、コイル33の周辺において冷却媒体Rの上昇が生じやすい。これに対して、本実施形態によれば、延伸部93は、コイル33の上側に位置する。そのため、コイル33から上昇する冷却媒体Rを延伸部93に流入させやすく、冷却室91と放熱室92との間で冷却媒体Rを循環させやすい。また、コイル33の周辺において冷却液RLの一部が気化してガスRGとなった場合には、ガスRGを延伸部93に導きやすく、ガスRGを放熱室92へと流入させやすい。そのため、フィン71aによってガスRGを冷却しやすく、ガスRGを冷却液RLに戻しやすい。
Further, in the motor 1, since the coil 33 tends to have the highest temperature, the cooling medium R in contact with the coil 33 tends to have a particularly high temperature. Therefore, the cooling medium R tends to rise around the coil 33. On the other hand, according to the present embodiment, the stretching portion 93 is located on the upper side of the coil 33. Therefore, the cooling medium R rising from the coil 33 can easily flow into the stretching portion 93, and the cooling medium R can be easily circulated between the cooling chamber 91 and the heat radiating chamber 92. Further, when a part of the coolant RL is vaporized to become a gas RG around the coil 33, the gas RG can be easily guided to the extending portion 93, and the gas RG can easily flow into the heat radiating chamber 92. Therefore, the fins 71a can easily cool the gas RG, and the gas RG can be easily returned to the coolant RL.
また、本実施形態によれば、延伸部93は、ハウジング本体11と筒部12bとの径方向の間に設けられている。そのため、コイル33の上側に延伸部93を容易に設けることができる。また、冷却室91から放熱室92まで冷却媒体Rを導く延伸部93を比較的狭くしやすく、密閉室90全体の容積を小さくしやすい。これにより、モータ1の質量が大きくなることを抑制できる。
Further, according to the present embodiment, the stretched portion 93 is provided between the housing main body 11 and the tubular portion 12b in the radial direction. Therefore, the extension portion 93 can be easily provided on the upper side of the coil 33. Further, the extending portion 93 that guides the cooling medium R from the cooling chamber 91 to the heat radiating chamber 92 can be relatively narrowed, and the volume of the entire closed chamber 90 can be easily reduced. As a result, it is possible to prevent the mass of the motor 1 from increasing.
また、本実施形態によれば、密閉室90には、ロータ本体20aが収容されている。そのため、ロータ本体20aによって密閉室90内の冷却媒体Rをより好適に攪拌できる。これにより、密閉室90内において冷却媒体Rをより好適に循環させることができ、ステータ30等の冷却効率をより向上できる。
Further, according to the present embodiment, the rotor main body 20a is housed in the closed chamber 90. Therefore, the cooling medium R in the closed chamber 90 can be more preferably agitated by the rotor body 20a. As a result, the cooling medium R can be more preferably circulated in the closed chamber 90, and the cooling efficiency of the stator 30 and the like can be further improved.
また、本実施形態によれば、放熱部がハウジング10の外側面に設けられた中空のフィン71aである。そのため、上述したようにフィン71aの内部に冷却媒体Rを流入させることで、例えば放熱部が中実のフィンである場合に比べて、フィン71aを介して冷却媒体Rからモータ1の外部へと熱を放出しやすい。これにより、ステータ30等の冷却効率をより向上できる。
Further, according to the present embodiment, the heat radiating portion is a hollow fin 71a provided on the outer surface of the housing 10. Therefore, by allowing the cooling medium R to flow into the fins 71a as described above, for example, as compared with the case where the heat radiating portion is a solid fin, the cooling medium R is moved from the cooling medium R to the outside of the motor 1 via the fins 71a. Easy to release heat. Thereby, the cooling efficiency of the stator 30 and the like can be further improved.
また、本実施形態によれば、下側リング部材74と上側リング部材75とが設けられることで、複数のフィン71aとハウジング本体11との径方向の間に、複数のフィン71aの内部同士を繋ぐ環状の隙間Gが設けられている。そのため、第1接続部94を介して放熱室92に流入した冷却媒体Rを、隙間Gを介して複数のフィン71aの内部に流入させやすい。また、本実施形態によれば、上述したように、溝部72c,73cおよび突出板部74c,75cによって、中空のフィン71aが開いた状態を好適に維持できる。そのため、フィン71aの内部に冷却媒体Rをより流入させやすい。
Further, according to the present embodiment, by providing the lower ring member 74 and the upper ring member 75, the insides of the plurality of fins 71a are placed between the plurality of fins 71a and the housing body 11 in the radial direction. An annular gap G for connecting is provided. Therefore, the cooling medium R that has flowed into the heat radiating chamber 92 through the first connection portion 94 is likely to flow into the inside of the plurality of fins 71a through the gap G. Further, according to the present embodiment, as described above, the groove portions 72c and 73c and the protruding plate portions 74c and 75c can suitably maintain the state in which the hollow fins 71a are open. Therefore, the cooling medium R is more likely to flow into the fin 71a.
また、例えば、図3に示すように冷却液RLの一部が気化してガスRGになる場合、ガスRGは、密閉室90の上側部分に溜まる。ガスRGは比較的温度が高いため、ガスRGに露出したステータ30等の部分は、冷却されにくくなる。特に発熱体であるコイル33がガスRGに露出する状態となると、ステータ30の冷却効率を向上しにくくなる虞がある。
Further, for example, when a part of the coolant RL is vaporized to become a gas RG as shown in FIG. 3, the gas RG is accumulated in the upper portion of the closed chamber 90. Since the temperature of the gas RG is relatively high, the portion of the stator 30 or the like exposed to the gas RG is less likely to be cooled. In particular, when the coil 33, which is a heating element, is exposed to the gas RG, it may be difficult to improve the cooling efficiency of the stator 30.
これに対して、本実施形態によれば、フィン71aの少なくとも一部は、コイル33よりも上側に位置する。そのため、気化したガスRGが中空のフィン71aの内部のうちコイル33よりも上側に位置する部分に流れることで、コイル33がガスRGに露出することを抑制できる。これにより、コイル33が冷却液RLに浸漬した状態を維持しやすく、ステータ30を好適に冷却できる。したがって、ステータ30の冷却効率を向上できる。本実施形態において図3に示す第2状態S2では、例えば、ガスRGは、放熱室92、延伸部93、および第1接続部94に溜まり、冷却室91および圧力調整室96には溜まらない。
On the other hand, according to the present embodiment, at least a part of the fins 71a is located above the coil 33. Therefore, it is possible to prevent the coil 33 from being exposed to the gas RG by flowing the vaporized gas RG to a portion of the inside of the hollow fin 71a located above the coil 33. As a result, it is easy to maintain the state in which the coil 33 is immersed in the coolant RL, and the stator 30 can be suitably cooled. Therefore, the cooling efficiency of the stator 30 can be improved. In the second state S2 shown in FIG. 3 in the present embodiment, for example, the gas RG accumulates in the heat radiating chamber 92, the extending portion 93, and the first connecting portion 94, and does not accumulate in the cooling chamber 91 and the pressure adjusting chamber 96.
また、本実施形態によれば、フィン71aの全体は、ステータコア31よりも上側に位置する。そのため、冷却液RLの一部が気化してガスRGが生じる場合に、フィン71aの内部にガスRGを好適に流入させつつ、ステータ30が冷却液RLに浸漬した状態としやすい。これにより、フィン71aにおいてガスRGと外気との間で好適に熱交換を行いつつ、ステータ30を冷却液RLによって冷却しやすい。したがって、ステータ30の冷却効率をより向上できる。また、フィン71aがステータコア31の径方向外側に位置する場合に比べて、フィン71aの軸方向の寸法を小さくしやすい。そのため、モータ1を軽量化しやすい。
Further, according to the present embodiment, the entire fin 71a is located above the stator core 31. Therefore, when a part of the coolant RL is vaporized to generate the gas RG, the stator 30 is likely to be immersed in the coolant RL while the gas RG is suitably flowed into the fin 71a. As a result, the stator 30 can be easily cooled by the coolant RL while the fins 71a preferably exchange heat between the gas RG and the outside air. Therefore, the cooling efficiency of the stator 30 can be further improved. Further, the axial dimension of the fin 71a can be easily reduced as compared with the case where the fin 71a is located on the outer side in the radial direction of the stator core 31. Therefore, the weight of the motor 1 can be easily reduced.
また、本実施形態によれば、圧力調整部60は、放熱部であるフィン71aよりも下側に位置する。そのため、ステータ30等の熱によって温度が比較的高くなった冷却媒体Rが圧力調整部60には流れにくく、冷却媒体Rをフィン71aの近くに流しやすくできる。本実施形態では、冷却媒体Rをフィン71aの内部へと流しやすくできる。これにより、冷却媒体Rの熱をフィン71aからモータ1の外部へと好適に放出することができる。したがって、ステータ30等の冷却効率をより向上できる。
Further, according to the present embodiment, the pressure adjusting unit 60 is located below the fin 71a which is a heat radiating unit. Therefore, the cooling medium R whose temperature has become relatively high due to the heat of the stator 30 or the like does not easily flow into the pressure adjusting unit 60, and the cooling medium R can easily flow near the fins 71a. In the present embodiment, the cooling medium R can be easily flowed into the fin 71a. As a result, the heat of the cooling medium R can be suitably released from the fins 71a to the outside of the motor 1. Therefore, the cooling efficiency of the stator 30 and the like can be further improved.
また、本実施形態によれば、放熱部であるフィン71aの熱伝導率は、圧力調整部60の熱伝導率よりも高い。そのため、温度が上昇した冷却媒体Rを圧力調整部60よりもフィン71aへと流しやすくできることで、フィン71aを介して、冷却媒体Rの熱をより好適にモータ1の外部へと放出できる。これにより、ステータ30等の冷却効率をより向上できる。特に本実施形態のように圧力調整部60がゴム製である場合等には、圧力調整部60の熱伝導率が比較的低くなりやすい。そのため、温度が上昇した冷却媒体R、特にガスRGが、圧力調整部60に流入しても冷却媒体Rの熱を外部に放出しにくい。したがって、温度が上昇した冷却媒体Rを、圧力調整部60に流れにくく、フィン71aに流しやすくできることによる効果をより有用に得られる。
Further, according to the present embodiment, the thermal conductivity of the fin 71a, which is the heat radiating portion, is higher than the thermal conductivity of the pressure adjusting portion 60. Therefore, since the cooling medium R whose temperature has risen can be more easily flowed to the fins 71a than the pressure adjusting unit 60, the heat of the cooling medium R can be more preferably released to the outside of the motor 1 through the fins 71a. Thereby, the cooling efficiency of the stator 30 and the like can be further improved. In particular, when the pressure adjusting unit 60 is made of rubber as in the present embodiment, the thermal conductivity of the pressure adjusting unit 60 tends to be relatively low. Therefore, even if the cooling medium R whose temperature has risen, particularly the gas RG, flows into the pressure adjusting unit 60, it is difficult to release the heat of the cooling medium R to the outside. Therefore, the effect of making it difficult for the cooling medium R whose temperature has risen to flow into the pressure adjusting unit 60 and making it easy to flow into the fins 71a can be obtained more usefully.
また、本実施形態によれば、冷却媒体Rは、密閉室90の内部全体に充填されている。そのため、密閉室90内に収容されたモータ1の各部全体を冷却媒体Rによって好適に冷却できる。これにより、ステータ30等の冷却効率をより向上できる。また、図2に示す第1状態S1のように冷却媒体R全体が冷却液RLである場合には、密閉室90の内部に空隙が生じない。そのため、密閉室90内において空隙と冷却液RLとの境界となる液面が生じない。これにより、第1状態S1では、密閉室90内で冷却液RLが揺れても、冷却液RLの液面同士が衝突することがない。これにより、冷却液RLが揺れることによる騒音が生じることを抑制できる。
Further, according to the present embodiment, the cooling medium R is filled in the entire inside of the closed chamber 90. Therefore, the entire part of the motor 1 housed in the closed chamber 90 can be suitably cooled by the cooling medium R. Thereby, the cooling efficiency of the stator 30 and the like can be further improved. Further, when the entire cooling medium R is the coolant RL as in the first state S1 shown in FIG. 2, no void is generated inside the closed chamber 90. Therefore, the liquid level that becomes the boundary between the void and the coolant RL does not occur in the closed chamber 90. As a result, in the first state S1, even if the coolant RL shakes in the closed chamber 90, the liquid levels of the coolant RL do not collide with each other. As a result, it is possible to suppress the generation of noise due to the shaking of the coolant RL.
また、本実施形態によれば、冷却媒体Rは、フッ素化合物である。そのため、液体としての冷却媒体R、すなわち冷却液RLの粘性を比較的低くしやすい。これにより、ロータ20によって密閉室90内の冷却液RLを攪拌する際に、冷却液RLからロータ20に加えられる抵抗を低減できる。したがって、モータ1のエネルギ損失を低減できる。
Further, according to the present embodiment, the cooling medium R is a fluorine compound. Therefore, the viscosity of the cooling medium R as a liquid, that is, the cooling liquid RL tends to be relatively low. Thereby, when the coolant RL in the closed chamber 90 is agitated by the rotor 20, the resistance applied to the rotor 20 from the coolant RL can be reduced. Therefore, the energy loss of the motor 1 can be reduced.
また、本実施形態によれば、密閉室90には、下側ベアリング25が収容されている。そのため、下側ベアリング25を密閉室90と仕切るための封止部材を設ける必要がなく、モータ1の部品点数が増加することを抑制できる。また、下側ベアリング25を密閉室90と仕切るための封止部材を設ける必要がない分、モータ1が軸方向に大型化することを抑制できる。
Further, according to the present embodiment, the lower bearing 25 is housed in the closed chamber 90. Therefore, it is not necessary to provide a sealing member for partitioning the lower bearing 25 from the sealing chamber 90, and it is possible to suppress an increase in the number of parts of the motor 1. Further, since it is not necessary to provide a sealing member for partitioning the lower bearing 25 from the sealing chamber 90, it is possible to prevent the motor 1 from becoming larger in the axial direction.
また、本実施形態によれば、冷却媒体Rには、潤滑剤が混合されている。そのため、密閉室90内に収容された下側ベアリング25に冷却媒体Rを介して潤滑剤を供給することができる。これにより、密閉室90内に収容された下側ベアリング25の潤滑性を確保することができる。また、潤滑剤が混合されることで冷却媒体Rの沸点は高くなりやすい。そのため、冷却液RLが気化して生じたガスRGの温度がより高くなる。これにより、ガスRGの温度とモータ1の外部の温度との差を大きくでき、フィン71aによる熱交換効率を向上できる。したがって、ステータ30等の冷却効率をより向上できる。
Further, according to the present embodiment, a lubricant is mixed in the cooling medium R. Therefore, the lubricant can be supplied to the lower bearing 25 housed in the closed chamber 90 via the cooling medium R. As a result, the lubricity of the lower bearing 25 housed in the closed chamber 90 can be ensured. Further, the boiling point of the cooling medium R tends to increase due to the mixing of the lubricant. Therefore, the temperature of the gas RG generated by vaporizing the coolant RL becomes higher. As a result, the difference between the temperature of the gas RG and the temperature outside the motor 1 can be increased, and the heat exchange efficiency by the fins 71a can be improved. Therefore, the cooling efficiency of the stator 30 and the like can be further improved.
また、本実施形態によれば、上側ベアリング24の下側には、シャフト21の外周面と貫通孔12pの内周面との間を封止する封止部材80が設けられている。そのため、冷却媒体Rが上側ベアリング24に接触することを封止部材80によって抑制できる。これにより、冷却媒体Rによって上側ベアリング24の潤滑剤が流されることを抑制でき、上側ベアリング24の潤滑性を好適に維持できる。したがって、上側ベアリング24によって、シャフト21を好適に支持できる。
Further, according to the present embodiment, a sealing member 80 is provided on the lower side of the upper bearing 24 to seal between the outer peripheral surface of the shaft 21 and the inner peripheral surface of the through hole 12p. Therefore, the sealing member 80 can prevent the cooling medium R from coming into contact with the upper bearing 24. As a result, it is possible to prevent the lubricant of the upper bearing 24 from flowing by the cooling medium R, and it is possible to suitably maintain the lubricity of the upper bearing 24. Therefore, the shaft 21 can be suitably supported by the upper bearing 24.
また、本実施形態によれば、上側蓋部12は、上側ベアリング24を保持する第1保持部材12aと、第1保持部材12aの下側に固定され封止部材80を保持する第2保持部材40と、を有する。そのため、第1保持部材12aと第2保持部材40とを順次組み付けていくことで、上側ベアリング24の下側に封止部材80を配置する構造を採用しやすい。
Further, according to the present embodiment, the upper lid portion 12 has a first holding member 12a for holding the upper bearing 24 and a second holding member fixed to the lower side of the first holding member 12a to hold the sealing member 80. 40 and. Therefore, by sequentially assembling the first holding member 12a and the second holding member 40, it is easy to adopt a structure in which the sealing member 80 is arranged under the upper bearing 24.
また、本実施形態によれば、第2保持部材40は、上側から第1保持部材12aを貫通して第2保持部材40に締め込まれるボルト81によって、第1保持部材12aに固定されている。そのため、以下のような上側蓋部12の組付手順を採用することができる。
Further, according to the present embodiment, the second holding member 40 is fixed to the first holding member 12a by a bolt 81 that penetrates the first holding member 12a from above and is fastened to the second holding member 40. .. Therefore, the following procedure for assembling the upper lid portion 12 can be adopted.
図7に示すように、上側蓋部12を組み付ける作業者等は、ハウジング本体11内に、封止部材80を保持した状態の第2保持部材40を配置する。このとき、第2保持部材40は、例えば、ステータ30によって下側から支持される。なお、第2保持部材40をハウジング本体11内に配置する際においてハウジング本体11内には、少なくともステータ30、シャフト21、およびロータ本体20aが収容された状態である。
As shown in FIG. 7, an operator or the like assembling the upper lid portion 12 arranges a second holding member 40 in a state of holding the sealing member 80 in the housing main body 11. At this time, the second holding member 40 is supported from below by, for example, the stator 30. When the second holding member 40 is arranged in the housing main body 11, at least the stator 30, the shaft 21, and the rotor main body 20a are housed in the housing main body 11.
次に、作業者等は、上側ベアリング24をシャフト21に上側から圧入した後、第1保持部材12aをハウジング本体11に固定する。図8に示すように、作業者等は、第1保持部材12aをハウジング本体11に固定した後、上側から孔部12kを介して雌ネジ穴41aにボルト81を締め込む。ここで第1保持部材12aはハウジング本体11に固定されているため、ボルト81を締め込んでいくことで、第2保持部材40が上側に引き上げられていく。これにより、第1保持部材12aの下側に第2保持部材40が固定される。
Next, the operator or the like press-fits the upper bearing 24 into the shaft 21 from above, and then fixes the first holding member 12a to the housing body 11. As shown in FIG. 8, after fixing the first holding member 12a to the housing main body 11, the operator or the like tightens the bolt 81 from above into the female screw hole 41a via the hole 12k. Here, since the first holding member 12a is fixed to the housing main body 11, the second holding member 40 is pulled upward by tightening the bolt 81. As a result, the second holding member 40 is fixed to the lower side of the first holding member 12a.
このように、上側から第2保持部材40に締め込まれるボルト81によって第1保持部材12aと第2保持部材40とを固定する構造とすることで、第2保持部材40を第1保持部材12aよりも先にハウジング本体11内に配置しても、第1保持部材12aの下側に第2保持部材40を固定することができる。これにより、上側ベアリング24よりも下側に封止部材80を配置する構造を容易に採用することができる。
In this way, by adopting a structure in which the first holding member 12a and the second holding member 40 are fixed by the bolts 81 tightened to the second holding member 40 from above, the second holding member 40 is fixed to the first holding member 12a. Even if it is arranged in the housing main body 11 earlier than that, the second holding member 40 can be fixed to the lower side of the first holding member 12a. As a result, a structure in which the sealing member 80 is arranged below the upper bearing 24 can be easily adopted.
なお、本明細書において「作業者等」とは、各作業を行う作業者および組立装置等を含む。各作業は、作業者のみによって行われてもよいし、組立装置のみによって行われてもよいし、作業者と組立装置とによって行われてもよい。
In addition, in this specification, "worker etc." includes a worker who performs each work, an assembly apparatus and the like. Each operation may be performed only by the operator, may be performed only by the assembling device, or may be performed by the operator and the assembling device.
また、上述した組付手順を採用する場合、第1保持部材12aと第2保持部材40とを固定する際には、第2保持部材40が第1保持部材12aによって上側から覆われている。そのため、第2保持部材40に干渉しにくく、第2保持部材40を第1保持部材12aに対して位置合わせしにくい場合がある。
Further, when the above-mentioned assembly procedure is adopted, when the first holding member 12a and the second holding member 40 are fixed, the second holding member 40 is covered from above by the first holding member 12a. Therefore, it may be difficult to interfere with the second holding member 40, and it may be difficult to align the second holding member 40 with respect to the first holding member 12a.
これに対して、本実施形態によれば、第1保持部材12aと第2保持部材40とは、互いに嵌め合わされる嵌合部12h,42を有する。そのため、嵌合部12h,42によって、第2保持部材40を第1保持部材12aに対して位置合わせできる。これにより、上述した組付手順を採用しても、第2保持部材40を第1保持部材12aに対して位置精度よく固定できる。
On the other hand, according to the present embodiment, the first holding member 12a and the second holding member 40 have fitting portions 12h and 42 that are fitted to each other. Therefore, the fitting portions 12h and 42 can align the second holding member 40 with respect to the first holding member 12a. As a result, even if the above-mentioned assembly procedure is adopted, the second holding member 40 can be fixed to the first holding member 12a with high position accuracy.
また、本実施形態によれば、第2保持部材40は、上側ベアリング24を下側から支持する第1支持部43を有する。そのため、第2保持部材40の他に上側ベアリング24を下側から支持する部材を設ける必要がない。これにより、モータ1の部品点数が増加することを抑制できる。
Further, according to the present embodiment, the second holding member 40 has a first support portion 43 that supports the upper bearing 24 from the lower side. Therefore, it is not necessary to provide a member for supporting the upper bearing 24 from the lower side in addition to the second holding member 40. As a result, it is possible to suppress an increase in the number of parts of the motor 1.
本発明は上述の実施形態に限られず、本発明の技術的思想の範囲内において、他の構成を採用することもできる。密閉室に収容される部位は、複数のコイルとシャフトの一部とを含むならば、他のどのような部位を含んでいてもよいし、含んでいなくてもよい。密閉室には、ロータ本体が収容されなくてもよい。
The present invention is not limited to the above-described embodiment, and other configurations may be adopted within the scope of the technical idea of the present invention. The portion housed in the closed chamber may or may not include any other portion as long as it includes a plurality of coils and a part of the shaft. The rotor body does not have to be housed in the closed chamber.
放熱部の構成は、密閉室内の冷却媒体の熱を外部に放出可能であれば、特に限定されない。放熱部は、ステータコアの径方向外側に配置されてもよい。この場合、例えば、上述した実施形態において、フィン71aの下端部がステータコア31の径方向外側まで延びていてもよい。放熱部は、中実のフィンであってもよい。放熱部がフィンである場合、フィンの数は、特に限定されない。放熱部は、例えば、ウォータジャケットであってもよい。放熱部の材料は、特に限定されず、金属以外の材料であってもよい。
The configuration of the heat radiating portion is not particularly limited as long as the heat of the cooling medium in the closed chamber can be released to the outside. The heat radiating portion may be arranged on the radial outer side of the stator core. In this case, for example, in the above-described embodiment, the lower end portion of the fin 71a may extend to the outside in the radial direction of the stator core 31. The heat radiating portion may be a solid fin. When the heat radiating portion is a fin, the number of fins is not particularly limited. The heat radiating portion may be, for example, a water jacket. The material of the heat radiating portion is not particularly limited, and may be a material other than metal.
圧力調整部の構成は、密閉室内の圧力を調整可能ならば、特に限定されない。圧力調整部は、蛇腹構造を有しなくてもよい。圧力調整部は、容器状でなくてもよい。圧力調整部は、例えば、密閉室を構成する壁部の一部を構成する弾性部材であってもよい。圧力調整部は、いずれの位置に設けられてもよい。圧力調整部の材料は、特に限定されず、例えば、金属であってもよい。
The configuration of the pressure adjusting unit is not particularly limited as long as the pressure in the closed chamber can be adjusted. The pressure adjusting unit does not have to have a bellows structure. The pressure adjusting unit does not have to be in the shape of a container. The pressure adjusting portion may be, for example, an elastic member forming a part of a wall portion forming the closed chamber. The pressure adjusting unit may be provided at any position. The material of the pressure adjusting unit is not particularly limited, and may be, for example, metal.
シャフトを回転可能に支持するベアリングは、すべてのベアリングが密閉室の外部に配置されていてもよい。すなわち、上述した実施形態においては、上側ベアリング24および下側ベアリング25が、共に密閉室90の外部に配置されていてもよい。例えば、下側ベアリング25を密閉室90の外部に配置する場合には、上述した封止部材80と同様の封止部材を下側ベアリング25の上側に設けてもよい。
For bearings that rotatably support the shaft, all bearings may be located outside the closed chamber. That is, in the above-described embodiment, the upper bearing 24 and the lower bearing 25 may both be arranged outside the closed chamber 90. For example, when the lower bearing 25 is arranged outside the closed chamber 90, a sealing member similar to the sealing member 80 described above may be provided on the upper side of the lower bearing 25.
第1保持部材と第2保持部材とを固定する方法および手順は、特に限定されない。ステータの軸方向一方側に位置する蓋部は、単一の部材であってもよい。すなわち、例えば、上述した実施形態において、上側蓋部12は、第1保持部材12aと第2保持部材40とが一体成形された単一の部材であってもよい。
The method and procedure for fixing the first holding member and the second holding member are not particularly limited. The lid portion located on one side in the axial direction of the stator may be a single member. That is, for example, in the above-described embodiment, the upper lid portion 12 may be a single member in which the first holding member 12a and the second holding member 40 are integrally molded.
冷却媒体は、密閉室内の冷却対象を冷却できるならば、その種類等は特に限定されない。冷却媒体は、フッ素化合物でなくてもよい。冷却媒体は、絶縁性を有しなくてもよい。この場合、ステータ等に絶縁処理を施してもよい。冷却媒体は、密閉室の内部の一部のみに収容されていてもよい。
The type of the cooling medium is not particularly limited as long as it can cool the object to be cooled in the closed chamber. The cooling medium does not have to be a fluorine compound. The cooling medium does not have to have insulating properties. In this case, the stator or the like may be insulated. The cooling medium may be contained only in a part of the inside of the closed chamber.
上述した実施形態のモータの用途は、特に限定されない。モータは、無人飛行体以外の機器に搭載されてもよい。本明細書において説明した構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
The application of the motor of the above-described embodiment is not particularly limited. The motor may be mounted on equipment other than the unmanned aerial vehicle. The configurations described herein can be combined as appropriate to the extent that they do not contradict each other.