WO2019064899A1 - Motor - Google Patents
Motor Download PDFInfo
- Publication number
- WO2019064899A1 WO2019064899A1 PCT/JP2018/028639 JP2018028639W WO2019064899A1 WO 2019064899 A1 WO2019064899 A1 WO 2019064899A1 JP 2018028639 W JP2018028639 W JP 2018028639W WO 2019064899 A1 WO2019064899 A1 WO 2019064899A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat sink
- motor
- rib
- housing
- circuit board
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
- H02K9/227—Heat sinks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/22—Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
Definitions
- the present invention relates to a motor.
- Patent Document 1 discloses a structure in which a stepped storage portion for housing a capacitor which is a mounting component of a circuit board is provided inside a heat sink.
- Conventional heat sinks have a problem in that they have a low function of releasing the heat absorbed from the circuit board and its mounting components to the outside.
- one aspect of the present invention aims to provide a motor with an improved heat dissipation effect of a heat sink.
- One aspect of the motor according to the present invention is a motor main body having a rotor rotating about a central axis extending along the vertical direction and a stator located radially outward of the rotor, and located above the motor main body
- a circuit board extending in a direction orthogonal to a central axis, and a heat sink located on the lower side of the circuit board and in direct or indirect contact with the circuit board, the circuit board includes a substrate body, and the substrate And a first heat generating element mounted on the lower surface of the main body, wherein the heat sink is provided with a heat sink main body extending along the circuit board, a motor main body housing for housing the motor main body, and the first heat generating element.
- An element receiving portion for receiving a heat generating element, wherein the motor main body receiving portion and the element receiving portion separately extend downward from the heat sink main body;
- the sync body portion, the rib located between the element housing portion and the motor main body housing portion.
- a motor having an enhanced heat dissipation effect of a heat sink.
- FIG. 1 is a perspective view of a motor according to one embodiment.
- FIG. 2 is a cross-sectional view of the motor taken along line II-II of FIG.
- FIG. 3 is a cross-sectional view of the motor taken along line III-III of FIG.
- FIG. 4 is a bottom view of the motor as viewed from below.
- an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate.
- the direction is parallel to the axial direction of the central axis J described later.
- the X-axis direction is a direction orthogonal to the Z-axis direction.
- the Y-axis direction is orthogonal to both the X-axis direction and the Z-axis direction.
- the positive side (+ Z side) in the Z-axis direction is referred to as “upper side”
- the negative side (-Z side) in the Z-axis direction is referred to as “lower side”.
- the upper side and the lower side are names used merely for explanation, and do not limit the actual positional relationship or direction.
- a direction (Z-axis direction) parallel to the central axis J is simply referred to as “axial direction”
- a radial direction centered on the central axis J is simply referred to as “radial direction”.
- the circumferential direction centering around the center axis that is, around the axis of the central axis J, is simply referred to as "circumferential direction”.
- plane view means a state viewed from the axial direction.
- FIG. 1 is a perspective view of a motor 1 of the present embodiment.
- FIG. 2 is a cross-sectional view of the motor 1 taken along the line II-II in FIG.
- FIG. 3 is a cross-sectional view of the motor 1 along the line III-III in FIG.
- FIG. 4 is a bottom view of the motor 1 as viewed from below.
- the motor 1 includes a motor body 2, an upper bearing (bearing) 7 A, a lower bearing 7 B, a bearing holder 30, a circuit board 60, and a housing (heat sink, first heat sink) 50. And an upper heat sink (second heat sink) 80 and a lid 40.
- the motor body 2 has a rotor 20 and a stator 25.
- the rotor 20 rotates about a central axis J extending along the vertical direction (axial direction).
- the rotor 20 has a shaft 21, a rotor core 22, and a rotor magnet 23.
- the shaft 21 extends along the central axis J.
- the shaft 21 is rotatably supported around the central axis J by the upper bearing 7A and the lower bearing 7B.
- the rotor core 22 is fixed to the shaft 21.
- the rotor core 22 circumferentially surrounds the shaft 21.
- the rotor magnet 23 is fixed to the rotor core 22. More specifically, the rotor magnet 23 is fixed to the outer surface of the rotor core 22 along the circumferential direction.
- the rotor core 22 and the rotor magnet 23 rotate with the shaft 21.
- the stator 25 is located radially outward of the rotor 20.
- the stator 25 faces the rotor 20 in the radial direction via a gap, and surrounds the radially outer side of the rotor 20.
- the stator 25 has a stator core 27, an insulator 28 and a coil 29.
- the insulator 28 is made of an insulating material.
- the insulator 28 covers at least a part of the stator core 27.
- the coil 29 excites the stator core 27.
- the coil 29 is configured by winding a coil wire (not shown). The coil wire is wound around the teeth portion of the stator core 27 through the insulator 28.
- the end of the coil wire is drawn upward and passes through a through hole provided in the bearing holder 30 to be connected to the circuit board 60.
- a bus bar is provided between the motor body 2 and the bearing holder 30, the end of the coil wire is connected to the bus bar and the bus bar is connected to the circuit board 60.
- the upper bearing 7A rotatably supports the upper end portion of the shaft 21.
- the upper bearing 7A is located above the stator 25.
- the upper bearing 7A is supported by the bearing holder 30.
- the lower bearing 7B rotatably supports the lower end portion of the shaft 21.
- the lower bearing 7B is located below the stator 25.
- the lower bearing 7B is supported by the lower bearing holding portion 54c of the housing 50.
- the upper bearing 7A and the lower bearing 7B are ball bearings.
- the types of the upper bearing 7A and the lower bearing 7B are not particularly limited, and may be other types of bearings.
- the housing 50 is located below the circuit board 60.
- the housing 50 of the present embodiment is in direct contact with the circuit board 60 and functions as a heat sink for cooling the circuit board 60.
- the housing 50 may be in direct contact with the circuit board 60 as long as the housing 50 is in thermal contact with the circuit board 60 to cool the circuit board 60. More specifically, the housing 50 may be in contact with the circuit board 60 via a heat dissipating material such as heat dissipating grease.
- the housing 50 has a heat sink portion (heat sink main body portion) 53, a motor main body housing portion 54, and an element housing portion 55.
- the housing 50 absorbs heat generated mainly by the circuit board 60 in the heat sink portion 53.
- the housing 50 accommodates the motor body 2 in the motor body accommodating portion 54. Further, the housing 50 accommodates the capacitor (first heat generating element) 65 provided on the circuit board 60 in the element accommodating portion 55.
- the housing 50 is configured as a single member. That is, the housing 50 has a function as a heat sink, a function of housing the motor body 2 and a function of housing the capacitor 65 in a single member.
- the housing 50 may be a separate part in which at least one of the heat sink portion 53, the motor main body housing portion 54, and the element housing portion 55 is fastened by fastening means such as a screw. Further, the heat sink portion 53 and the motor main body housing portion 54 may be separate parts, and the heat sink portion 53 may be a part of the bearing holder 30.
- the housing 50 is a single member, the heat of the circuit board 60 absorbed in the heat sink portion 53 can be efficiently dissipated not only in the heat sink portion 53 but also in the motor main body housing portion 54 and the element housing portion 55. . That is, according to the present embodiment, since the housing 50 is configured as a single member, the heat dissipation effect in the housing 50 is enhanced. Further, according to the present embodiment, since the housing 50 is formed of a single member, the assembly process of the motor 1 can be simplified.
- the housing 50 is made of a metal material having high heat dissipation characteristics and sufficient rigidity.
- the housing 50 is made of an aluminum alloy.
- the housing 50 is manufactured by cutting a surface requiring accuracy after forming a schematic shape by die casting or the like.
- the heat sink portion 53 extends in a direction orthogonal to the central axis J.
- the heat sink portion 53 is located below the circuit board 60.
- the heat sink portion 53 extends along the circuit board 60 below the circuit board 60.
- the heat sink portion 53 is located between the motor body accommodating portion 54 and the element accommodating portion 55 in plan view, and connects the motor body accommodating portion 54 and the element accommodating portion 55.
- the heat sink portion 53 has an upper surface 53a facing upward and a lower surface 53b facing downward.
- a heat dissipating surface 53c is provided on the upper surface 53a of the heat sink 53.
- the heat dissipating surface 53c is in direct contact with the lower surface 61c of the substrate body 61 of the circuit board 60 directly or indirectly via a member such as a heat dissipating material. That is, the heat sink portion 53 has a heat radiation surface 53 c in contact with the substrate body 61.
- the heat sink portion 53 absorbs heat from the circuit board 60 at the heat dissipation surface 53 c to cool the circuit board 60.
- the circuit board 60 has a plurality of field effect transistors (second heat generating elements) 66 mounted on the upper surface 61 d of the substrate body 61.
- the field effect transistor 66 is also referred to as a FET (field effect transistor).
- the field effect transistor 66 is a heating element that easily generates heat in the circuit board 60. As viewed in the axial direction, at least a portion of the field effect transistor 66 overlaps the heat dissipation surface 53c. Thereby, the heat generated by the field effect transistor 66 can be effectively transferred to the heat sink portion 53 at the heat dissipation surface 53c. Thus, the temperature of the field effect transistor 66 can be prevented from rising excessively, and the operation reliability of the field effect transistor 66 can be enhanced.
- the heat-generating element overlapping the heat dissipation surface 53 c in the axial direction is the field effect transistor 66.
- the heating element overlapping the heat dissipation surface 53c may be another mounted component (element).
- the heat generating element means an element of the mounted parts that generates heat and becomes high temperature during operation.
- the heating element in addition to the field effect transistor and the capacitor, a field effect transistor driving driver integrated circuit and a power supply integrated circuit are exemplified, but the type is not limited as long as it is an element which becomes high temperature.
- the heat sink portion 53 is provided with a rib 56.
- the rib 56 protrudes downward from the lower surface 53 b of the heat sink portion 53.
- the rib 56 is located between the motor main body housing portion 54 and the element housing portion 55.
- the surface area of the heat sink portion 53 is increased. Thereby, the heat dissipation effect of the heat sink portion 53 can be enhanced.
- the rigidity of the heat sink portion 53 can be enhanced in the extending direction of the rib 56. Thereby, deformation of the heat sink portion 53 can be suppressed with respect to external stress or thermal expansion and thermal contraction.
- the rib 56 is located between the motor main body housing portion 54 and the element housing portion 55. Therefore, it is possible to suppress the deformation of the heat sink portion 53 such that the relative positional relationship between the motor main body housing portion 54 and the element housing portion 55 changes.
- the rib 56 is located immediately below the heat dissipation surface 53 c in contact with the substrate body 61. That is, when viewed in the axial direction, at least a portion of the rib 56 overlaps the heat dissipation surface 53c.
- the heat capacity of the heat sink portion 53 can be increased immediately below the heat release surface 53c, and heat can be efficiently transferred from the substrate main body 61 to the heat sink portion 53 at the heat release surface 53c.
- the heat absorbed from the circuit board 60 at the heat dissipation surface 53 c and transferred to the heat sink portion 53 can be efficiently dissipated at the rib 56.
- the rib 56 includes a first rib portion 56 a and a second rib portion 56 b.
- the first rib portion 56 a extends in the radial direction (in the present embodiment, in the X-axis direction) of the motor body housing portion 54.
- the first rib 56 a connects the motor main body housing 54 and the element housing 55.
- the second rib 56b is connected to the first rib 56a.
- the second rib 56b extends in a direction perpendicular to the first rib 56a.
- the second rib 56b extends intersecting with the first rib 56a.
- three second rib portions 56 b are provided in the heat sink portion 53.
- the first rib portion 56 a extends between the motor body housing portion 54 and the element housing portion 55 to connect them. Therefore, the rigidity of the heat sink portion 53 can be enhanced in the direction in which the motor main body housing portion 54 and the element housing portion 55 are arranged. As a result, it is possible to effectively suppress the deformation of the heat sink portion 53 in which the relative positional relationship between the motor main body housing portion 54 and the element housing portion 55 changes.
- the surface area of the heat sink 53 can be further increased by providing the second rib 56 b in addition to the first rib 56 a. Further, since the second rib portion 56b is orthogonal to and intersects the first rib portion 56a, the rigidity of the heat sink portion 53 can be enhanced also in the direction orthogonal to the first rib portion 56a.
- the rib 56 preferably includes three or more second rib portions 56 b. The rigidity of the heat sink portion 53 can be sufficiently enhanced by providing three or more second rib portions 56 b.
- the width of the second rib 56 b becomes narrower as it is separated from the first rib 56 a side.
- the second rib 56b is thicker on the side of the first rib 56a.
- the motor main body housing portion 54 has a cylindrical shape that opens on the upper side (+ Z side).
- the motor body accommodating portion 54 extends downward from the heat sink portion 53.
- the motor body accommodating portion 54 accommodates the rotor 20 and the stator 25.
- the motor body accommodating portion 54 has a cylindrical portion 54a, a bottom portion 54b, and a lower bearing holding portion 54c.
- the motor main body housing portion 54 may be a cylindrical member not having the bottom portion 54b. In this case, a bearing holder for holding a bearing is separately attached to the lower opening of the motor body housing portion 54.
- the cylindrical portion 54 a surrounds the stator 25 from the radially outer side.
- the cylindrical portion 54a is cylindrical.
- the stator core 27 and the bearing holder 30 are fixed to the inner peripheral surface of the cylindrical portion 54a.
- a heat sink portion 53 is connected to an outer peripheral surface of the cylindrical portion 54a, which is an upper end portion of the cylindrical portion 54a.
- the bottom portion 54b is located at the lower end of the cylindrical portion 54a.
- the bottom 54 b is located below the stator 25.
- the lower bearing holding portion 54c is located at the center in plan view of the bottom portion 54b.
- the lower bearing holding portion 54c holds the lower bearing 7B.
- a hole 54d penetrating in the axial direction is provided at the center of the lower bearing holding portion 54c in a plan view. The lower end portion of the shaft 21 is inserted into the hole 54 d.
- the element housing portion 55 opens on the upper side (+ Z side).
- the element housing portion 55 extends downward from the heat sink portion 53.
- the element housing portion 55 of the present embodiment houses three capacitors 65.
- the three capacitors 65 are arranged along one direction (the Y-axis direction in this embodiment) orthogonal to the central axis J. In the present embodiment, the direction in which the three capacitors 65 are arranged coincides with the direction in which the second rib 56 b extends.
- the element housing portion 55 has a longitudinal direction in which the three capacitors 65 are arranged (that is, the direction in which the second rib portion 56b extends) in plan view.
- the dimension S1 in the longitudinal direction of the element housing portion 55 is smaller than the diameter D of the motor main body housing portion 54.
- the dimension S1 in the longitudinal direction of the element housing portion 55 does not exceed the motor main body housing portion 54. Therefore, the dimension of the motor 1 can be suppressed in the direction orthogonal to the central axis J.
- the capacitor 65 has a top surface 65 b facing downward and a side surface 65 a facing in a direction orthogonal to the axial direction.
- the element housing portion 55 has a side wall portion 55a surrounding the side surface 65a of the capacitor 65, and a housing bottom portion 55b located below the capacitor 65 and axially opposed to the top surface 65b of the capacitor 65.
- the element housing portion 55 for housing the capacitor 65 is provided.
- the capacitor 65 is a heating element that easily generates heat in the circuit board 60. Therefore, the heat generated in the capacitor 65 can be effectively absorbed in the element housing portion 55.
- a heat dissipation material such as heat dissipation grease be accommodated between the side wall 55 a of the element accommodation portion 55 and the side surface 65 a of the capacitor 65.
- a heat dissipation material may be disposed between the housing bottom 55 b of the element housing 55 and the top surface 65 b of the capacitor 65.
- an explosion-proof valve may be provided on the top surface 65 b of the condenser 65. In this case, the heat dissipating material is arranged to at least avoid the explosion-proof valve.
- the element housing portion 55 may be configured to be opened downward without having the housing bottom portion 55b. Further, a part of the side wall 55 a of the element housing 55 may be opened in the horizontal direction. That is, the housing bottom 55 b and the side wall 55 a do not necessarily surround the top surface 65 b and the side surface 65 a of the capacitor 65.
- the motor main body housing portion 54 and the element housing portion 55 separately extend downward from the heat sink portion 53. That is, the motor body accommodating portion 54 and the element accommodating portion 55 are separated from each other as viewed in the axial direction. According to the present embodiment, since the motor main body housing portion 54 and the element housing portion 55 are separately extended from the heat sink portion 53, the surface area of the outer peripheral surface of the housing 50 is increased, and the heat dissipation effect of the housing 50 can be enhanced. . As described above, the motor body housing portion 54 and the element housing portion 55 may be separate parts fixed to each other via the heat sink portion 53.
- the housing 50 has an upper surface 50a facing upward.
- the upper surface 50 a is provided across the motor main body housing portion 54 of the housing 50, the element housing portion 55 and the heat sink portion 53.
- the upper surface 50 a faces the lid 40.
- the upper surface 50a is provided with a second groove 52 extending along the outer edge of the upper surface 50a.
- the second recessed groove 52 is recessed downward with respect to the upper surface 50a.
- the second recessed groove 52 extends in a plane perpendicular to the central axis J with a uniform width and a uniform depth.
- the second concave portion 52 accommodates the second convex portion 42 of the lid 40 described later.
- the bearing holder 30 is located on the upper side (+ Z side) of the stator 25.
- the bearing holder 30 supports the upper bearing 7A.
- the plan view shape of the bearing holder 30 is, for example, a circular shape concentric with the central axis J.
- the bearing holder 30 is positioned at the upper opening 54 e of the motor body housing 54 and is fixed to the inner circumferential surface of the motor body housing 54.
- the bearing holder 30 includes a doughnut-shaped disk-shaped holder main body portion 31, an upper bearing holding portion 32 positioned radially inward of the holder main body portion 31, and a holder fixing portion positioned radially outward of the holder main body portion 31. And 33.
- the upper bearing holder 32 holds the upper bearing 7A.
- the upper bearing holder 32 is located at the center of the bearing holder 30 in plan view.
- a hole 32 a penetrating in the axial direction is provided at the center of the upper bearing holder 32 in a plan view.
- the upper end portion of the shaft 21 is inserted into the hole 32a.
- the holder fixing portion 33 has a cylindrical shape that protrudes in the vertical direction at the radial outer edge of the holder main body 31.
- the outer peripheral surface of the holder fixing portion 33 radially faces the inner peripheral surface of the motor main body housing portion 54.
- the holder fixing portion 33 is fitted and fixed to the inner circumferential surface of the motor main body housing portion 54.
- At least a part of the bearing holder 30 axially overlaps the heat sink portion 53 of the housing 50. Therefore, the space above the bearing holder 30 can be made sufficiently wide. As a result, the degree of freedom of the arrangement of the circuit board 60 located above the bearing holder 30 and the arrangement of the mounted components of the circuit board 60 can be increased.
- the circuit board 60 is located above the motor body 2 and the bearing holder 30.
- the circuit board 60 extends in a direction orthogonal to the central axis J (that is, a direction orthogonal to the vertical direction).
- a coil wire extending from the coil 29 of the stator 25 is connected to the circuit board 60.
- the circuit board 60 supplies a current to the coil 29 to control the rotation of the rotor 20.
- the circuit board 60 includes a substrate main body 61, a plurality of (three in the present embodiment) capacitors (first heating elements) 65, and a plurality of field effect transistors (second heating elements) 66.
- the substrate main body 61 further includes electronic components (not shown) for controlling the rotation of the rotor 20.
- the substrate body 61 is disposed to be orthogonal to the axial direction (ie, the vertical direction).
- the substrate main body 61 has an upper surface 61 d facing upward and a lower surface 61 c facing downward. Further, the substrate body 61 has an overlap portion 61A overlapping with the motor body 2 when viewed in the vertical direction, and an overhang portion 61B positioned outside the motor body 2 when viewed in the vertical direction.
- the capacitor 65 is mounted on the lower surface 61 c of the substrate body 61.
- the capacitor 65 has a cylindrical shape extending along the axial direction.
- the capacitor 65 has a top surface 65b located on the opposite side of the substrate body 61 and facing downward, and a side surface 65a facing in a direction orthogonal to the axial direction (vertical direction).
- the capacitor 65 has the largest dimension in the axial direction (vertical direction) among the mounted components of the circuit board 60.
- the field effect transistor 66 is mounted on the upper surface 61 d of the substrate body 61.
- the field effect transistor 66 has a rectangular shape in plan view.
- electronic components such as a rotation sensor and a choke coil are mounted on one or both of the upper surface 61 d and the lower surface 61 c of the substrate main body 61.
- the capacitor 65 and the field effect transistor 66 which are heating elements are mounted on the overhang portion 61 B of the substrate main body 61.
- An upper heat sink 80 which will be described later, is located on the upper side of the overhang portion 61B.
- the upper heat sink 80 directly or indirectly contacts the field effect transistor 66 mounted on the overhang portion 61B and the upper surface 61d of the overhang portion 61B to cool them.
- the heat sink portion 53 of the housing 50 and the element housing portion 55 are located below the overhang portion 61B.
- the heat sink portion 53 and the element housing portion 55 are in direct or indirect contact with the capacitor 65 mounted on the overhang portion 61B and the lower surface 61c of the overhang portion 61B to cool them.
- the overhang portion 61B on which the heating element (the capacitor 65 and the field effect transistor 66) is mounted is sandwiched by the upper heat sink 80 and the housing 50 in the vertical direction.
- the heating elements 65 and 66 mounted on the overhang portion 61B can be effectively cooled by the upper heat sink 80 and the housing 50.
- the structure necessary for cooling the heat generating elements 65 and 66 can be It can be arranged offset with the main unit 2. Therefore, the dimension in the axial direction (vertical direction) of the motor 1 can be reduced.
- the upper heat sink 80 is located on the upper side of the circuit board 60.
- the upper heat sink 80 covers a part of the circuit board 60 from the upper side.
- the upper heat sink 80 of the present embodiment is in direct or indirect contact with the circuit board 60 to function as an upper heat sink for cooling the circuit board 60.
- the upper heat sink 80 may be in direct contact with the circuit board 60 or may be in indirect contact as long as the upper heat sink 80 thermally contacts the circuit board 60 and cools the circuit board 60. More specifically, the upper heat sink 80 may be in contact with the circuit board 60 via a heat dissipating material such as heat dissipating grease.
- the upper heat sink 80 has a heat absorbing portion 85 and fins 89 a located on the upper surface 85 a of the heat absorbing portion 85.
- the upper heat sink 80 is made of a metal material (for example, an aluminum alloy or a copper alloy) having high heat dissipation characteristics.
- the heat absorbing portion 85 has an upper surface 85 a facing upward and a lower surface 85 b facing downward. Further, the heat absorbing portion 85 is provided with a pair of screw insertion holes 85c. The screw insertion hole 85c penetrates the heat absorbing portion 85 along the axial direction. Fixing screws 88 are respectively inserted into the pair of screw insertion holes 85c. The fixing screw 88 is screwed to the heat sink portion 53 of the housing 50. As a result, the lower surface 85 b of the heat absorbing portion 85 is pressed against the upper surface 53 a of the heat sink portion 53, and the upper heat sink 80 is fixed to the housing 50.
- the upper heat sink 80 and the housing 50 are in direct contact and fixed to each other.
- the upper heat sink 80 and the housing 50 absorb heat from the circuit board 60, respectively.
- Fixing the upper heat sink 80 and the housing 50 in contact with each other causes heat transfer between the upper heat sink 80 and the housing 50. Therefore, when any one of the upper heat sink 80 and the housing 50 has a high temperature, the heat can be moved to the other side and the heat can also be radiated from the other side. As a result, the heat radiation efficiency is enhanced, and as a result, the cooling effect of the circuit board 60 can be enhanced.
- a recess 86 is provided on the lower surface 85 b of the heat absorbing portion 85.
- the field effect transistor 66 of the circuit board 60 is disposed in the recess 86.
- the recess 86 is filled with a heat dissipating material such as heat dissipating grease, for example, to efficiently transfer the heat generated by the field effect transistor 66 to the heat absorbing portion 85. That is, according to the present embodiment, the heat-radiating material is filled in the concave portion 86 accommodating the field effect transistor 66 which is a heating element, whereby the field effect transistor 66 can be effectively cooled.
- the heat dissipating material is fluid heat dissipating grease, the heat dissipating grease can be prevented from leaking out of the recess 86.
- a lid 40 is provided on the upper side of the upper heat sink 80.
- the lid 40 is provided with an opening 49 penetrating in the vertical direction.
- the upper heat sink 80 has an exposed portion 89 exposed from the opening 49 of the lid 40.
- the exposed portion 89 is located on the upper surface 85 a of the heat absorbing portion 85.
- the upper heat sink 80 since the upper heat sink 80 has the exposed portion 89, the upper heat sink 80 can efficiently dissipate the heat absorbed from the circuit board 60 from the exposed portion 89 to the outside of the motor 1. Thereby, the cooling efficiency of the circuit board 60 by the upper heat sink 80 can be enhanced.
- the exposed portion 89 of the upper heat sink 80 is located immediately above the field effect transistor 66 which is a heating element. That is, the exposed portion 89 of the upper heat sink 80 overlaps at least a part of the field effect transistor 66 when viewed in the axial direction (vertical direction). Thus, the heat transferred from the circuit board 60 to the upper heat sink 80 can be effectively dissipated at the exposed portion 89.
- the heating element overlapping the exposed portion 89 when viewed in the axial direction may be a heating element other than the field effect transistor 66 (for example, a capacitor, a driver integrated circuit for driving a field effect transistor, an integrated circuit for power supply).
- the fin 89 a is located at the exposed portion 89 of the upper heat sink 80.
- the fins 89 a protrude upward from the upper surface 85 a of the heat absorbing portion 85.
- the fin 89 a penetrates the opening 49 at the exposed portion 89.
- a plurality of fins 89 a are provided on the upper heat sink 80.
- the plurality of fins 89 a extend along one direction orthogonal to the vertical direction.
- the fins 89a extend along the X-axis direction.
- by providing the fins 89 a in the exposed portion 89 it is possible to increase the surface area of the exposed portion 89 and to enhance the heat dissipation efficiency of the upper heat sink 80 in the exposed portion 89.
- the plurality of fins 89a since the plurality of fins 89a extend in one direction, when arranging the motor 1 in the gas flowing in one direction, the fins 89a are arranged to extend along the flow direction of the gas.
- the heat radiation efficiency of the fins 89a can be enhanced.
- the case where the upper heat sink 80 has the fins 89a is illustrated.
- the upper heat sink 80 has the exposed portion 89 even if the upper heat sink 80 does not have the fins 89a, it is possible to obtain a certain effect of enhancing the heat dissipation efficiency.
- a first concave groove 81 surrounding the exposed portion 89 is provided on the upper surface 85 a of the heat absorption portion 85 as viewed in the axial direction (vertical direction).
- the first recessed groove portion 81 extends in a plane perpendicular to the central axis J with a uniform width and a uniform depth.
- the first recessed groove portion 81 is recessed downward with respect to the upper surface 85 a.
- the first convex portion 41 of the lid 40 described later is accommodated in the first concave groove 81.
- the lid 40 is located above the housing 50, the circuit board 60, and the upper heat sink 80.
- the lid 40 covers the top surface 50 a of the housing 50.
- the lid 40 covers the circuit board 60 from the upper side and protects the circuit board 60.
- the lid 40 covers the opening of the motor main body housing 54 of the housing 50 and suppresses the entry of contamination into the rotating portion of the motor main body 2 or the like.
- the lid 40 is a flat portion 45 and an outer edge 46 located at the outer edge of the flat portion 45 and projecting downward with respect to the flat portion 45, and a connector extending upward from the flat portion 45 And a part 47.
- the connector portion 47 has a cylindrical shape extending upward from the flat portion 45. Inside the connector portion 47, a connection terminal (not shown) extending upward from the circuit board 60 is provided. The connection terminal is connected to an external device (not shown) that supplies power to the circuit board 60.
- the flat portion 45 extends in a direction orthogonal to the axial direction (vertical direction). That is, the flat portion 45 extends along the circuit board 60.
- the flat portion 45 has an upper surface 45 a facing upward and a lower surface 45 b facing downward.
- the flat portion 45 is provided with an opening 49.
- the opening 49 is rectangular when viewed in the axial direction.
- the fin 89 a of the upper heat sink 80 is inserted into the opening 49.
- the upper end of the fin 89 a is located above the upper surface 45 a of the flat portion 45.
- the lower surface 45 b of the flat portion 45 is axially separated from the heat absorbing portion 85. Therefore, the flat portion 45 does not contact the upper heat sink 80.
- the lower surface 45 b of the flat portion 45 is provided with a first convex portion 41 projecting downward.
- the first convex portion 41 surrounds the opening 49 as viewed in the axial direction.
- the first convex portion 41 extends in a plane perpendicular to the central axis J with a uniform width and a uniform height.
- the first convex portion 41 is accommodated in a first concave groove portion 81 provided in the upper heat sink 80.
- the upper heat sink 80 is provided with an exposed portion 89 exposed from the opening 49. Therefore, the first convex portion 41 and the first concave groove portion 81 surround the exposed portion 89 when viewed from the axial direction (vertical direction).
- a gap is provided between the inner wall surface of the first recessed groove portion 81 and the first convex portion 41.
- the adhesive B is filled in the first recessed groove 81.
- the first convex portion 41 is accommodated in the first concave groove portion 81 filled with the adhesive B.
- the first convex portion 41 and the first concave groove portion 81 surround the exposed portion 89, intrusion of water and contamination into the interior of the motor 1 from the opening 49 of the lid 40 can be suppressed. Thereby, the dust resistance and waterproofness of the motor 1 can be enhanced.
- the adhesive B is filled in the first recessed groove portion 81, and the adhesive B closes the gap between the inner wall surface of the first recessed groove portion 81 and the first convex portion 41. For this reason, it is possible to more effectively block the entry of contamination. However, even when the filler such as the adhesive B is not filled, the first convex portion 41 is inserted into the first recessed groove portion 81, thereby forming a labyrinth structure in the intrusion path of the contamination. It is possible to suppress the entry of contamination.
- the configuration in which the first heat sink 80 is provided with the first recessed groove 81 and the lid 40 is provided with the first convex 41 is illustrated.
- the first convex portion 41 and the first concave groove portion 81 may be provided on opposite sides of the upper heat sink 80 and the lid portion 40, respectively. That is, one of the lid 40 and the upper heat sink 80 is provided with the first convex portion 41 projecting to the other side, and the other is provided with the first concave groove portion 81 accommodating the first convex portion 41. It should be done.
- the adhesive B is filled between the inner wall surface of the first recessed groove portion 81 and the first convex portion 41. Thereby, the lid 40 and the upper heat sink 80 can be fixed to each other around the exposed portion 89.
- the adhesive B since the adhesive B is filled in the first recessed groove portion 81, the adhesive B can be provided in a uniform amount along the circumferential direction, and the adhesive strength stable against the stress from each direction can be obtained. Easy to realize.
- a gap is provided between the inner wall surface of the first recessed groove portion 81 and the first convex portion 41.
- the inner wall surface of the first recessed groove portion 81 and the first convex portion 41 do not directly contact in the vertical direction and the horizontal direction. Therefore, vertical and horizontal positioning of the lid 40 with respect to the upper heat sink 80 can be performed in other portions. Specifically, lid 40 and upper heat sink 80 can be brought into contact with housing 50, and lid 40 and upper heat sink 80 can be positioned relative to housing 50, respectively. Therefore, the dimensions of each part can be managed in another member (housing 50 in the present embodiment) in which management of dimensional accuracy and surface accuracy is easy.
- the lower surface 45b of the flat portion 45 is axially separated from the heat absorbing portion 85, so the adhesive B filled in the first recessed groove portion 81 is exposed to the outside air. Thereby, the curing of the adhesive B filled in the first recessed groove portion 81 can be promoted. Further, in the step of accommodating the first convex portion 41 in the first concave groove portion 81, excess adhesive B overflowing from the first concave groove portion 81 may be released to the outside of the first concave groove portion 81. it can.
- the outer edge portion 46 protrudes downward from the outer edge of the flat portion 45.
- the outer edge portion 46 surrounds the flat portion 45 over the entire circumference when viewed in the axial direction.
- a second convex portion 42, an inner lower end surface 46a and an outer lower end surface 46b are provided.
- the second convex portion 42 protrudes downward.
- the second convex portion 42 extends in a plane perpendicular to the central axis J with a uniform width and a uniform height.
- the second protrusion 42 extends over the entire outer edge 46. Therefore, the second convex portion 42 surrounds the flat portion 45 over the entire circumference when viewed from the axial direction.
- the second convex portion 42 is accommodated in a second concave groove portion 52 provided in the housing 50.
- the second convex portion 42 and the second concave groove portion 52 surround the first convex portion 41 and the first concave groove portion 81 from the outside as viewed from the axial direction.
- a gap is provided between the inner wall surface of the second recessed groove portion 52 and the second convex portion 42.
- the adhesive B is filled in the second recessed groove 52.
- the second convex portion 42 is accommodated in the second concave groove portion 52 filled with the adhesive B. Further, since the second convex portion 42 and the second concave groove portion 52 surround the first convex portion 41 and the first concave groove portion 81 from the outer side when viewed from the axial direction, the first convex portion 41 and the first concave portion Also on the outer side than the concave groove portion 81, the entry of water and contamination into the interior of the motor 1 from between the lid portion 40 and the housing 50 can be suppressed. Thereby, the dust resistance and waterproofness of the motor 1 can be enhanced.
- the adhesive B is filled in the second recessed groove 52, and the adhesive B closes the gap between the inner wall surface of the second recessed groove 52 and the second protrusion 42. For this reason, it is possible to more effectively block the entry of contamination. However, even if the filler such as the adhesive B is not filled, the second convex portion 42 is inserted into the second recessed groove portion 52, thereby forming a labyrinth structure in the intrusion path of the contamination. It is possible to suppress the entry of contamination.
- the configuration in which the second concave portion 52 is provided in the housing 50 and the second convex portion 42 is provided in the lid 40 has been illustrated.
- the second convex portion 42 and the second concave groove portion 52 may be provided on opposite sides of the housing 50 and the lid portion 40, respectively. That is, one of the lid 40 and the housing 50 is provided with a second convex portion 42 projecting to the other side, and the other is provided with a second concave portion 52 accommodating the second convex portion 42. It should just be.
- the adhesive B is filled between the inner wall surface of the second recessed groove 52 and the second protrusion 42.
- the lid 40 can be fixed to the housing 50 at the outer edge 46 of the lid 40.
- the adhesive B since the adhesive B is filled in the second groove 52, the adhesive B can be provided in a uniform amount along the circumferential direction, and the adhesive strength stable against the stress from each direction can be obtained. Easy to realize.
- the inner lower end surface 46 a is a surface facing downward.
- the inner lower end surface 46 a is located inside the area surrounded by the second convex portion 42 in a plan view.
- the inner lower end surface 46 a contacts the upper surface 50 a of the housing 50.
- the lid 40 can be positioned in the axial direction (vertical direction) with respect to the housing 50.
- the outer lower end surface 46b is a surface facing downward.
- the outer lower end surface 46 b is located inside the area surrounded by the second convex portion 42 in a plan view.
- the outer lower end surface 46 b is axially separated from the upper surface 50 a of the housing 50.
- the adhesive B filled in the second recessed groove 52 can be exposed to the outside air, and the curing of the adhesive B can be promoted.
- the adhesive B overflowing from the second concave groove portion 52 is placed between the outer lower end surface 46b and the upper surface 50a of the housing 50. It can be stored in the gap.
- the filling amount of the adhesive B varies, the excess adhesive B can be released to the gap between the outer lower end surface 46 b and the upper surface 50 a of the housing 50.
- the filling state and the curing state of the adhesive B can be confirmed from the appearance. As a result, it is easy to ensure product quality in the manufacturing line.
- a moisture-curable adhesive as the adhesive B filled in the first recessed groove portion 81 and the second recessed groove portion 52.
- Moisture-curable adhesives cure with moisture in the air.
- the assembly of the lid 40 is performed at the end of the assembly process of the motor 1.
- the inside of the first recessed groove 81 of the upper heat sink 80 and the second recessed groove 52 of the housing 50 is filled with the uncured adhesive B.
- the lid 40 is brought close to the upper heat sink 80 and the housing 50 fixed to the upper heat sink 80 from the upper side, the first convex portion 41 is inserted into the first concave groove portion 81, and the second convex portion 42 is The second groove 52 is inserted.
- the adhesive B is cured.
- the lid 40 is assembled to the motor 1 through the above steps.
- the first convex portion 41 and the second convex portion 42 project in the same direction, and the first concave groove portion 81 and the second concave groove portion 52 open in the same direction.
- the uncured adhesive B is filled in the first recessed groove portion 81 and the second recessed groove portion 52. Since the first recessed groove 81 and the second recessed groove 52 are opened in the same direction, the uncured adhesive B can be simultaneously filled in the first recessed groove 81 and the second recessed groove 52.
- the lid 40 is lowered to set the first recessed groove 81 and the second recessed groove 52 respectively.
- a step of housing the first protrusion 41 and the second protrusion 42 can be employed. Thereby, the assembly
- the housing 50 and the lid 40 are fixed to each other by the snap fit portion 6.
- a plurality of snap fit portions 6 are provided in the motor 1 along the circumferential direction.
- the snap fit portion 6 includes a hook 43 provided on the lid 40 and a claw 58 provided on the housing 50.
- the hooked portion 43 of the lid portion 40 extends downward in a U-shape from the outer edge portion 46.
- the claws 58 protrude outward in the horizontal direction from the outer side surface of the housing 50.
- the snap fit portion 6 is provided to hold the lid portion 40 from when the lid portion 40 is assembled to the housing 50 until the adhesive B is cured.
- the lid 40 is permanently fixed to the housing 50 by the fixing function of the snap fit portion 6.
- first Convex part 42 Second convex part 49: Opening part 50: Housing (heat sink, first heat sink) 52: Second concave groove part 53: Heat sink part (heat sink main body part) 53c: Heat dissipation surface , 54: motor body housing portion, 54e opening, 55: element housing portion, 56: rib, 56a: first rib portion, 56b: second rib portion, 60: circuit board, 61: board body, 61A: Overlap part, 61 B: overhang part, 65: capacitor (first heating element, heating element) 66: field effect transistor (second heating element, heating element), 80: upper heat sink (second Heat sink), 81 ... first groove section, 89 ... exposed portion, 89a ... fin, B ... adhesives, D ... diameter, J ... central axis, S1 ... dimensions
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
- Motor Or Generator Frames (AREA)
Abstract
Provided is a motor having: a motor body including a rotor which rotates about a center axis extending vertically and a stator which is located radially outside the rotor; a circuit board which is located at the upper side of the motor body and which extends in the direction orthogonal to the center axis; and a heat sink which is located at the lower side of the circuit board and which directly or indirectly contacts the circuit board. The circuit board includes a board body and a first heat-generating element mounted on the lower surface of the board body. The heat sink includes: a heat sink body part extending along the circuit board; a motor body housing part which houses the motor body; and an element housing part which houses the first heat-generating element. The motor body housing part and the element housing part separately extend downward from the heat sink body part, and the heat sink body part includes a rib located between the motor body housing part and the element housing part.
Description
本発明は、モータに関する。
The present invention relates to a motor.
モータ本体を制御する回路基板を備えた機電一体型のモータにおいて、回路基板を冷却するヒートシンクを設けることが知られている。特許文献1には、ヒートシンクの内部に、回路基板の実装部品であるコンデンサを収容するための段差状の収納部が設けられた構造が開示されている。
It is known to provide a heat sink for cooling a circuit board in a motor-integrated motor including a circuit board for controlling the motor body. Patent Document 1 discloses a structure in which a stepped storage portion for housing a capacitor which is a mounting component of a circuit board is provided inside a heat sink.
従来のヒートシンクは、回路基板およびその実装部品から吸収した熱を外部に放出する機能が低いという問題があった。
Conventional heat sinks have a problem in that they have a low function of releasing the heat absorbed from the circuit board and its mounting components to the outside.
本発明の一つの態様は、上記問題点に鑑みて、ヒートシンクの放熱効果を高めたモータの提供を目的の一つとする。
SUMMARY OF THE INVENTION In view of the above-described problems, one aspect of the present invention aims to provide a motor with an improved heat dissipation effect of a heat sink.
本発明のモータの一つの態様は、上下方向に沿って延びる中心軸を中心として回転するロータおよび前記ロータの径方向外側に位置するステータを有するモータ本体と、前記モータ本体の上側に位置し前記中心軸に直交する方向に延びる回路基板と、前記回路基板の下側に位置し前記回路基板に直接的または間接的に接触するヒートシンクと、を備え、前記回路基板は、基板本体と、前記基板本体の下面に実装される第1の発熱素子と、を有し、前記ヒートシンクは、前記回路基板に沿って延びるヒートシンク本体部と、前記モータ本体を収容するモータ本体収容部と、前記第1の発熱素子を収容する素子収容部と、を有し、前記モータ本体収容部および前記素子収容部は、前記ヒートシンク本体部から下側に向かって別々に延び、前記ヒートシンク本体部には、前記モータ本体収容部と前記素子収容部との間に位置するリブが設けられている。
One aspect of the motor according to the present invention is a motor main body having a rotor rotating about a central axis extending along the vertical direction and a stator located radially outward of the rotor, and located above the motor main body A circuit board extending in a direction orthogonal to a central axis, and a heat sink located on the lower side of the circuit board and in direct or indirect contact with the circuit board, the circuit board includes a substrate body, and the substrate And a first heat generating element mounted on the lower surface of the main body, wherein the heat sink is provided with a heat sink main body extending along the circuit board, a motor main body housing for housing the motor main body, and the first heat generating element. An element receiving portion for receiving a heat generating element, wherein the motor main body receiving portion and the element receiving portion separately extend downward from the heat sink main body; The sync body portion, the rib located between the element housing portion and the motor main body housing portion.
本発明の一つの態様によれば、ヒートシンクの放熱効果を高めたモータが提供される。
According to one aspect of the present invention, there is provided a motor having an enhanced heat dissipation effect of a heat sink.
以下、図面を参照しながら、本発明の実施形態に係るモータ1について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。
Hereinafter, a motor 1 according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure intelligible, a scale, the number, etc. in an actual structure and each structure may be varied.
また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、後段に説明する中心軸Jの軸方向と平行な方向とする。X軸方向は、Z軸方向と直交する方向とする。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向とする。
In the drawings, an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate. In the XYZ coordinate system, the direction is parallel to the axial direction of the central axis J described later. The X-axis direction is a direction orthogonal to the Z-axis direction. The Y-axis direction is orthogonal to both the X-axis direction and the Z-axis direction.
また、以下の説明においては、Z軸方向の正の側(+Z側)を「上側」と呼び、Z軸方向の負の側(-Z側)を「下側」と呼ぶ。なお、上側および下側とは、単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。
Further, in the following description, the positive side (+ Z side) in the Z-axis direction is referred to as "upper side", and the negative side (-Z side) in the Z-axis direction is referred to as "lower side". Note that the upper side and the lower side are names used merely for explanation, and do not limit the actual positional relationship or direction. Further, unless otherwise noted, a direction (Z-axis direction) parallel to the central axis J is simply referred to as “axial direction”, and a radial direction centered on the central axis J is simply referred to as “radial direction”. The circumferential direction centering around the center axis, that is, around the axis of the central axis J, is simply referred to as "circumferential direction". Furthermore, in the following description, “plan view” means a state viewed from the axial direction.
[モータ]
図1は、本実施形態のモータ1の斜視図である。図2は、図1のII-II線に沿うモータ1の断面図である。図3は、図1のIII-III線に沿うモータ1の断面図である。また、図4は、モータ1を下側から見た底面図である。 [motor]
FIG. 1 is a perspective view of amotor 1 of the present embodiment. FIG. 2 is a cross-sectional view of the motor 1 taken along the line II-II in FIG. FIG. 3 is a cross-sectional view of the motor 1 along the line III-III in FIG. FIG. 4 is a bottom view of the motor 1 as viewed from below.
図1は、本実施形態のモータ1の斜視図である。図2は、図1のII-II線に沿うモータ1の断面図である。図3は、図1のIII-III線に沿うモータ1の断面図である。また、図4は、モータ1を下側から見た底面図である。 [motor]
FIG. 1 is a perspective view of a
図2に示すように、モータ1は、モータ本体2と、上側ベアリング(ベアリング)7Aと、下側ベアリング7Bと、ベアリングホルダ30と、回路基板60と、ハウジング(ヒートシンク、第1のヒートシンク)50と、上ヒートシンク(第2のヒートシンク)80と、蓋部40と、を備える。
As shown in FIG. 2, the motor 1 includes a motor body 2, an upper bearing (bearing) 7 A, a lower bearing 7 B, a bearing holder 30, a circuit board 60, and a housing (heat sink, first heat sink) 50. And an upper heat sink (second heat sink) 80 and a lid 40.
[モータ本体]
モータ本体2は、ロータ20およびステータ25を有する。ロータ20は、上下方向(軸方向)に沿って延びる中心軸Jを中心として回転する。ロータ20は、シャフト21と、ロータコア22と、ロータマグネット23と、を有する。シャフト21は、中心軸Jに沿って延びる。シャフト21は、上側ベアリング7Aと下側ベアリング7Bとによって、中心軸Jの軸周りに回転可能に支持される。ロータコア22は、シャフト21に固定される。ロータコア22は、シャフト21を周方向に囲んでいる。ロータマグネット23は、ロータコア22に固定される。より詳細には、ロータマグネット23は、ロータコア22の周方向に沿った外側面に固定される。ロータコア22およびロータマグネット23は、シャフト21とともに回転する。 [Motor body]
Themotor body 2 has a rotor 20 and a stator 25. The rotor 20 rotates about a central axis J extending along the vertical direction (axial direction). The rotor 20 has a shaft 21, a rotor core 22, and a rotor magnet 23. The shaft 21 extends along the central axis J. The shaft 21 is rotatably supported around the central axis J by the upper bearing 7A and the lower bearing 7B. The rotor core 22 is fixed to the shaft 21. The rotor core 22 circumferentially surrounds the shaft 21. The rotor magnet 23 is fixed to the rotor core 22. More specifically, the rotor magnet 23 is fixed to the outer surface of the rotor core 22 along the circumferential direction. The rotor core 22 and the rotor magnet 23 rotate with the shaft 21.
モータ本体2は、ロータ20およびステータ25を有する。ロータ20は、上下方向(軸方向)に沿って延びる中心軸Jを中心として回転する。ロータ20は、シャフト21と、ロータコア22と、ロータマグネット23と、を有する。シャフト21は、中心軸Jに沿って延びる。シャフト21は、上側ベアリング7Aと下側ベアリング7Bとによって、中心軸Jの軸周りに回転可能に支持される。ロータコア22は、シャフト21に固定される。ロータコア22は、シャフト21を周方向に囲んでいる。ロータマグネット23は、ロータコア22に固定される。より詳細には、ロータマグネット23は、ロータコア22の周方向に沿った外側面に固定される。ロータコア22およびロータマグネット23は、シャフト21とともに回転する。 [Motor body]
The
ステータ25は、ロータ20の径方向外側に位置する。ステータ25は、ロータ20と径方向に隙間を介して対向してロータ20の径方向外側を囲む。ステータ25は、ステータコア27と、インシュレータ28と、コイル29と、を有する。 インシュレータ28は、絶縁性を有する材料から構成される。インシュレータ28は、ステータコア27の少なくとも一部を覆う。モータ1の駆動時において、コイル29は、ステータコア27を励磁する。コイル29は、コイル線(図示略)が巻き回されて構成される。コイル線は、インシュレータ28を介してステータコア27のティース部に巻き回される。コイル線の端部は、上側に引き出され、ベアリングホルダ30に設けられた貫通孔を通過して回路基板60に接続される。また、モータ本体2とベアリングホルダ30との間にバスバーが設けられる場合には、コイル線の端部がバスバーに接続され、バスバーが回路基板60に接続される。
The stator 25 is located radially outward of the rotor 20. The stator 25 faces the rotor 20 in the radial direction via a gap, and surrounds the radially outer side of the rotor 20. The stator 25 has a stator core 27, an insulator 28 and a coil 29. The insulator 28 is made of an insulating material. The insulator 28 covers at least a part of the stator core 27. When the motor 1 is driven, the coil 29 excites the stator core 27. The coil 29 is configured by winding a coil wire (not shown). The coil wire is wound around the teeth portion of the stator core 27 through the insulator 28. The end of the coil wire is drawn upward and passes through a through hole provided in the bearing holder 30 to be connected to the circuit board 60. When a bus bar is provided between the motor body 2 and the bearing holder 30, the end of the coil wire is connected to the bus bar and the bus bar is connected to the circuit board 60.
[上側ベアリングおよび下側ベアリング]
上側ベアリング7Aは、シャフト21の上端部を回転可能に支持する。上側ベアリング7Aは、ステータ25の上側に位置する。上側ベアリング7Aは、ベアリングホルダ30に支持される。下側ベアリング7Bは、シャフト21の下端部を回転可能に支持する。下側ベアリング7Bは、ステータ25の下側に位置する。下側ベアリング7Bは、ハウジング50の下側ベアリング保持部54cに支持される。 [Upper bearing and lower bearing]
The upper bearing 7A rotatably supports the upper end portion of theshaft 21. The upper bearing 7A is located above the stator 25. The upper bearing 7A is supported by the bearing holder 30. The lower bearing 7B rotatably supports the lower end portion of the shaft 21. The lower bearing 7B is located below the stator 25. The lower bearing 7B is supported by the lower bearing holding portion 54c of the housing 50.
上側ベアリング7Aは、シャフト21の上端部を回転可能に支持する。上側ベアリング7Aは、ステータ25の上側に位置する。上側ベアリング7Aは、ベアリングホルダ30に支持される。下側ベアリング7Bは、シャフト21の下端部を回転可能に支持する。下側ベアリング7Bは、ステータ25の下側に位置する。下側ベアリング7Bは、ハウジング50の下側ベアリング保持部54cに支持される。 [Upper bearing and lower bearing]
The upper bearing 7A rotatably supports the upper end portion of the
本実施形態において、上側ベアリング7Aおよび下側ベアリング7Bは、ボールベアリングである。しかしながら、上側ベアリング7Aおよび下側ベアリング7Bの種類は、特に限定されず、他の種類のベアリングであってもよい。
In the present embodiment, the upper bearing 7A and the lower bearing 7B are ball bearings. However, the types of the upper bearing 7A and the lower bearing 7B are not particularly limited, and may be other types of bearings.
[ハウジング(ヒートシンク、第1のヒートシンク)]
ハウジング50は、回路基板60の下側に位置する。本実施形態のハウジング50は、回路基板60に直接的に接触して、回路基板60を冷却するヒートシンクとして機能する。なお、ハウジング50は、回路基板60と熱的に接触し回路基板60を冷却するものであれば、回路基板60と間接的に接触していてもよい。より具体的には、ハウジング50は、回路基板60に放熱グリスなどの放熱材を介して接触していてもよい。 [Housing (heat sink, first heat sink)]
Thehousing 50 is located below the circuit board 60. The housing 50 of the present embodiment is in direct contact with the circuit board 60 and functions as a heat sink for cooling the circuit board 60. The housing 50 may be in direct contact with the circuit board 60 as long as the housing 50 is in thermal contact with the circuit board 60 to cool the circuit board 60. More specifically, the housing 50 may be in contact with the circuit board 60 via a heat dissipating material such as heat dissipating grease.
ハウジング50は、回路基板60の下側に位置する。本実施形態のハウジング50は、回路基板60に直接的に接触して、回路基板60を冷却するヒートシンクとして機能する。なお、ハウジング50は、回路基板60と熱的に接触し回路基板60を冷却するものであれば、回路基板60と間接的に接触していてもよい。より具体的には、ハウジング50は、回路基板60に放熱グリスなどの放熱材を介して接触していてもよい。 [Housing (heat sink, first heat sink)]
The
ハウジング50は、ヒートシンク部(ヒートシンク本体部)53と、モータ本体収容部54と、素子収容部55と、を有する。ハウジング50は、ヒートシンク部53において主に回路基板60で生じた熱を吸収する。ハウジング50は、モータ本体収容部54においてモータ本体2を収容する。また、ハウジング50は、素子収容部55において、回路基板60に設けられたコンデンサ(第1の発熱素子)65を収容する。
The housing 50 has a heat sink portion (heat sink main body portion) 53, a motor main body housing portion 54, and an element housing portion 55. The housing 50 absorbs heat generated mainly by the circuit board 60 in the heat sink portion 53. The housing 50 accommodates the motor body 2 in the motor body accommodating portion 54. Further, the housing 50 accommodates the capacitor (first heat generating element) 65 provided on the circuit board 60 in the element accommodating portion 55.
ハウジング50は、単一の部材として構成される。すなわち、ハウジング50は、単一の部材においてヒートシンクとしての機能、モータ本体2を収容する機能およびコンデンサ65を収容する機能を奏する。なお、ハウジング50は、ヒートシンク部53、モータ本体収容部54および素子収容部55のうち少なくとも1つが、ネジなどの締結手段によって締結された別部品であってもよい。また、ヒートシンク部53とモータ本体収容部54とが別部品であって、ヒートシンク部53が、ベアリングホルダ30の一部であってもよい。しかしながら、ハウジング50が単一の部材であることによって、ヒートシンク部53において吸収した回路基板60の熱を、ヒートシンク部53のみならずモータ本体収容部54および素子収容部55においても効率的に放熱できる。すなわち、本実施形態によれば、ハウジング50を単一の部材として構成されるため、ハウジング50における放熱効果が高まる。また、本実施形態によれば、ハウジング50が単一の部材から構成されるため、モータ1の組み立て工程を簡素化できる。
The housing 50 is configured as a single member. That is, the housing 50 has a function as a heat sink, a function of housing the motor body 2 and a function of housing the capacitor 65 in a single member. The housing 50 may be a separate part in which at least one of the heat sink portion 53, the motor main body housing portion 54, and the element housing portion 55 is fastened by fastening means such as a screw. Further, the heat sink portion 53 and the motor main body housing portion 54 may be separate parts, and the heat sink portion 53 may be a part of the bearing holder 30. However, since the housing 50 is a single member, the heat of the circuit board 60 absorbed in the heat sink portion 53 can be efficiently dissipated not only in the heat sink portion 53 but also in the motor main body housing portion 54 and the element housing portion 55. . That is, according to the present embodiment, since the housing 50 is configured as a single member, the heat dissipation effect in the housing 50 is enhanced. Further, according to the present embodiment, since the housing 50 is formed of a single member, the assembly process of the motor 1 can be simplified.
ハウジング50は、放熱特性が高く十分な剛性を有する金属材料から構成される。一例として、ハウジング50は、アルミニウム合金から構成される。この場合、ハウジング50は、ダイカスト等によって概略形状を成形した後に、精度が必要な面を切削加工することで製造される。
The housing 50 is made of a metal material having high heat dissipation characteristics and sufficient rigidity. As an example, the housing 50 is made of an aluminum alloy. In this case, the housing 50 is manufactured by cutting a surface requiring accuracy after forming a schematic shape by die casting or the like.
ヒートシンク部53は、中心軸Jと直交する方向に延びる。ヒートシンク部53は、回路基板60の下側に位置する。ヒートシンク部53は、回路基板60の下側において、回路基板60に沿って延びる。ヒートシンク部53は、平面視においてモータ本体収容部54と素子収容部55との間に位置し、モータ本体収容部54と素子収容部55とを繋ぐ。ヒートシンク部53は、上側を向く上面53aと下側を向く下面53bと、を有する。
The heat sink portion 53 extends in a direction orthogonal to the central axis J. The heat sink portion 53 is located below the circuit board 60. The heat sink portion 53 extends along the circuit board 60 below the circuit board 60. The heat sink portion 53 is located between the motor body accommodating portion 54 and the element accommodating portion 55 in plan view, and connects the motor body accommodating portion 54 and the element accommodating portion 55. The heat sink portion 53 has an upper surface 53a facing upward and a lower surface 53b facing downward.
ヒートシンク部53の上面53aには、回路基板60の基板本体61の下面61cに直接的又は放熱材などの部材を介して間接的に接触する放熱面53cが設けられている。すなわち、ヒートシンク部53は、基板本体61と接触する放熱面53cを有する。ヒートシンク部53は、放熱面53cにおいて、回路基板60から熱を吸収して、回路基板60を冷却する。
A heat dissipating surface 53c is provided on the upper surface 53a of the heat sink 53. The heat dissipating surface 53c is in direct contact with the lower surface 61c of the substrate body 61 of the circuit board 60 directly or indirectly via a member such as a heat dissipating material. That is, the heat sink portion 53 has a heat radiation surface 53 c in contact with the substrate body 61. The heat sink portion 53 absorbs heat from the circuit board 60 at the heat dissipation surface 53 c to cool the circuit board 60.
後述するように、回路基板60は、基板本体61の上面61dに実装される複数の電界効果トランジスタ(第2の発熱素子)66を有する。電界効果トランジスタ66は、FET(Field effect transistor)とも呼ばれる。電界効果トランジスタ66は、回路基板60において、熱を生じやすい発熱素子である。軸方向から見て、電界効果トランジスタ66の少なくとも一部は、放熱面53cと重なる。これにより、電界効果トランジスタ66で生じた熱を、放熱面53cにおいて効果的にヒートシンク部53に移動させることができる。これにより、電界効果トランジスタ66の温度が高まりすぎることを抑制し、電界効果トランジスタ66の動作の信頼性を高めることができる。
As described later, the circuit board 60 has a plurality of field effect transistors (second heat generating elements) 66 mounted on the upper surface 61 d of the substrate body 61. The field effect transistor 66 is also referred to as a FET (field effect transistor). The field effect transistor 66 is a heating element that easily generates heat in the circuit board 60. As viewed in the axial direction, at least a portion of the field effect transistor 66 overlaps the heat dissipation surface 53c. Thereby, the heat generated by the field effect transistor 66 can be effectively transferred to the heat sink portion 53 at the heat dissipation surface 53c. Thus, the temperature of the field effect transistor 66 can be prevented from rising excessively, and the operation reliability of the field effect transistor 66 can be enhanced.
なお、本実施形態においては、放熱面53cと軸方向に重なる発熱素子が電界効果トランジスタ66である場合を例示した。しかしながら、放熱面53cと重なる発熱素子は、他の実装部品(素子)であってもよい。本明細書において発熱素子とは、実装部品のうち、動作時に熱を発し高温となる素子を意味する。発熱素子としては、電界効果トランジスタ、コンデンサの他に、電界効果トランジスタ駆動用ドライバ集積回路、電源用集積回路が例示されるが、高温となる素子であればその種類は限定されない。
In the present embodiment, the case is illustrated where the heat-generating element overlapping the heat dissipation surface 53 c in the axial direction is the field effect transistor 66. However, the heating element overlapping the heat dissipation surface 53c may be another mounted component (element). In the present specification, the heat generating element means an element of the mounted parts that generates heat and becomes high temperature during operation. As the heating element, in addition to the field effect transistor and the capacitor, a field effect transistor driving driver integrated circuit and a power supply integrated circuit are exemplified, but the type is not limited as long as it is an element which becomes high temperature.
図4に示すように、ヒートシンク部53には、リブ56が設けられている。リブ56は、ヒートシンク部53の下面53bから下側に突出する。リブ56は、モータ本体収容部54と素子収容部55との間に位置する。ヒートシンク部53にリブ56が設けられることで、ヒートシンク部53の表面積が大きくなる。これにより、ヒートシンク部53の放熱効果を高めることができる。また、ヒートシンク部53にリブ56が設けられることで、リブ56の延びる方向においてヒートシンク部53の剛性を高めることができる。これにより、外的な応力又は熱膨張および熱収縮に対して、ヒートシンク部53の変形を抑制することができる。特に本実施形態によれば、リブ56が、モータ本体収容部54と素子収容部55との間に位置する。このため、モータ本体収容部54と素子収容部55との相対的な位置関係が変化するようなヒートシンク部53の変形を抑制できる。
As shown in FIG. 4, the heat sink portion 53 is provided with a rib 56. The rib 56 protrudes downward from the lower surface 53 b of the heat sink portion 53. The rib 56 is located between the motor main body housing portion 54 and the element housing portion 55. By providing the rib 56 on the heat sink portion 53, the surface area of the heat sink portion 53 is increased. Thereby, the heat dissipation effect of the heat sink portion 53 can be enhanced. Further, by providing the rib 56 on the heat sink portion 53, the rigidity of the heat sink portion 53 can be enhanced in the extending direction of the rib 56. Thereby, deformation of the heat sink portion 53 can be suppressed with respect to external stress or thermal expansion and thermal contraction. In particular, according to the present embodiment, the rib 56 is located between the motor main body housing portion 54 and the element housing portion 55. Therefore, it is possible to suppress the deformation of the heat sink portion 53 such that the relative positional relationship between the motor main body housing portion 54 and the element housing portion 55 changes.
図2に示すように、リブ56は、基板本体61に接触する放熱面53cの直下に位置する。すなわち、軸方向から見て、リブ56の少なくとも一部が放熱面53cと重なる。これにより、放熱面53cの直下においてヒートシンク部53の熱容量を大きくすることができ、放熱面53cにおいて基板本体61からヒートシンク部53に効率的に熱を移動できる。加えて、放熱面53cにおいて回路基板60から吸収してヒートシンク部53に移動させた熱を、リブ56において効率的に放熱できる。
As shown in FIG. 2, the rib 56 is located immediately below the heat dissipation surface 53 c in contact with the substrate body 61. That is, when viewed in the axial direction, at least a portion of the rib 56 overlaps the heat dissipation surface 53c. Thus, the heat capacity of the heat sink portion 53 can be increased immediately below the heat release surface 53c, and heat can be efficiently transferred from the substrate main body 61 to the heat sink portion 53 at the heat release surface 53c. In addition, the heat absorbed from the circuit board 60 at the heat dissipation surface 53 c and transferred to the heat sink portion 53 can be efficiently dissipated at the rib 56.
図4に示すように、リブ56は、第1のリブ部56aと第2のリブ部56bとを含む。第1のリブ部56aは、モータ本体収容部54の径方向(本実施形態においてX軸方向)に沿って延びる。第1のリブ部56aは、モータ本体収容部54と素子収容部55とを繋ぐ。第2のリブ部56bは、第1のリブ部56aと繋がっている。第2のリブ部56bは、第1のリブ部56aに対して直交する方向に延びる。第2のリブ部56bは、第1のリブ部56aと交差して延びる。本実施形態において、第2のリブ部56bは、ヒートシンク部53に3つ設けられる。
As shown in FIG. 4, the rib 56 includes a first rib portion 56 a and a second rib portion 56 b. The first rib portion 56 a extends in the radial direction (in the present embodiment, in the X-axis direction) of the motor body housing portion 54. The first rib 56 a connects the motor main body housing 54 and the element housing 55. The second rib 56b is connected to the first rib 56a. The second rib 56b extends in a direction perpendicular to the first rib 56a. The second rib 56b extends intersecting with the first rib 56a. In the present embodiment, three second rib portions 56 b are provided in the heat sink portion 53.
本実施形態によれば、第1のリブ部56aが、モータ本体収容部54と素子収容部55との間を延びてこれらを繋ぐ。このため、モータ本体収容部54と素子収容部55とが並ぶ方向に関して、ヒートシンク部53の剛性を高めることができる。結果として、モータ本体収容部54と素子収容部55との相対的な位置関係が変化するようなヒートシンク部53の変形を効果的に抑制できる。
According to the present embodiment, the first rib portion 56 a extends between the motor body housing portion 54 and the element housing portion 55 to connect them. Therefore, the rigidity of the heat sink portion 53 can be enhanced in the direction in which the motor main body housing portion 54 and the element housing portion 55 are arranged. As a result, it is possible to effectively suppress the deformation of the heat sink portion 53 in which the relative positional relationship between the motor main body housing portion 54 and the element housing portion 55 changes.
本実施形態によれば、第1のリブ部56aに加えて第2のリブ部56bが設けられることで、ヒートシンク部53の表面積を更に増加させることができる。また、第2のリブ部56bが第1のリブ部56aと直交し交差するため、第1のリブ部56aと直交する方向についてもヒートシンク部53の剛性を高めることができる。また、リブ56は、3以上の第2のリブ部56bを含むことが好ましい。第2のリブ部56bが、3以上設けられていることで、ヒートシンク部53の剛性を十分に高めることができる。
According to the present embodiment, the surface area of the heat sink 53 can be further increased by providing the second rib 56 b in addition to the first rib 56 a. Further, since the second rib portion 56b is orthogonal to and intersects the first rib portion 56a, the rigidity of the heat sink portion 53 can be enhanced also in the direction orthogonal to the first rib portion 56a. The rib 56 preferably includes three or more second rib portions 56 b. The rigidity of the heat sink portion 53 can be sufficiently enhanced by providing three or more second rib portions 56 b.
図4に示すように、第2のリブ部56bは、第1のリブ部56a側から離れるに従い幅が狭くなる。言い換えると、第2のリブ部56bは、第1のリブ部56a側が太くなっている。このため、本実施形態の第2のリブ部56bによれば、体積が等しく一様な幅で延びるものと比較して、重量の増加を抑えつつヒートシンク部53の剛性を高めることができる。
As shown in FIG. 4, the width of the second rib 56 b becomes narrower as it is separated from the first rib 56 a side. In other words, the second rib 56b is thicker on the side of the first rib 56a. For this reason, according to the second rib portion 56b of the present embodiment, it is possible to increase the rigidity of the heat sink portion 53 while suppressing an increase in weight, as compared with the case where the volume extends equally and uniformly.
図2に示すように、モータ本体収容部54は、上側(+Z側)に開口する筒状である。モータ本体収容部54は、ヒートシンク部53から下側に向かって延びる。モータ本体収容部54は、ロータ20およびステータ25を収容する。モータ本体収容部54は、筒状部54aと、底部54bと、下側ベアリング保持部54cと、を有する。なお、モータ本体収容部54は底部54bを有していない筒状部材であってもよい。この場合、モータ本体収容部54の下側の開口には、ベアリングを保持するベアリングホルダが別途取り付けられる。
As shown in FIG. 2, the motor main body housing portion 54 has a cylindrical shape that opens on the upper side (+ Z side). The motor body accommodating portion 54 extends downward from the heat sink portion 53. The motor body accommodating portion 54 accommodates the rotor 20 and the stator 25. The motor body accommodating portion 54 has a cylindrical portion 54a, a bottom portion 54b, and a lower bearing holding portion 54c. The motor main body housing portion 54 may be a cylindrical member not having the bottom portion 54b. In this case, a bearing holder for holding a bearing is separately attached to the lower opening of the motor body housing portion 54.
筒状部54aは、ステータ25を径方向外側から囲む。本実施形態において筒状部54aは、円筒状である。筒状部54aの内周面には、ステータコア27およびベアリングホルダ30が固定される。筒状部54aの上端部であって、筒状部54aの外周面にはヒートシンク部53が接続される。
The cylindrical portion 54 a surrounds the stator 25 from the radially outer side. In the present embodiment, the cylindrical portion 54a is cylindrical. The stator core 27 and the bearing holder 30 are fixed to the inner peripheral surface of the cylindrical portion 54a. A heat sink portion 53 is connected to an outer peripheral surface of the cylindrical portion 54a, which is an upper end portion of the cylindrical portion 54a.
底部54bは、筒状部54aの下端に位置する。底部54bは、ステータ25の下側に位置する。下側ベアリング保持部54cは、底部54bの平面視中央に位置する。下側ベアリング保持部54cは、下側ベアリング7Bを保持する。下側ベアリング保持部54cの平面視中央には、軸方向に貫通する孔部54dが設けられる。孔部54dには、シャフト21の下端部が挿通される。
The bottom portion 54b is located at the lower end of the cylindrical portion 54a. The bottom 54 b is located below the stator 25. The lower bearing holding portion 54c is located at the center in plan view of the bottom portion 54b. The lower bearing holding portion 54c holds the lower bearing 7B. A hole 54d penetrating in the axial direction is provided at the center of the lower bearing holding portion 54c in a plan view. The lower end portion of the shaft 21 is inserted into the hole 54 d.
素子収容部55は、上側(+Z側)に開口する。素子収容部55は、ヒートシンク部53から下側に向かって延びる。図4に示すように、本実施形態の素子収容部55は、3つのコンデンサ65を収容する。3つのコンデンサ65は、中心軸Jと直交する一方向(本実施形態においてY軸方向)に沿って並ぶ。本実施形態において、3つのコンデンサ65が並ぶ方向は、第2のリブ部56bが延びる方向と一致する。素子収容部55は、平面視において、3つのコンデンサ65が並ぶ方向(すなわち、第2のリブ部56bが延びる方向)を長手方向とする。素子収容部55の長手方向の寸法S1は、モータ本体収容部54の直径Dより小さい。すなわち、複数のコンデンサ65を一方向に並べて配置する場合であっても、素子収容部55の長手方向の寸法S1がモータ本体収容部54を超えない。したがって、中心軸Jと直交する方向においてモータ1の寸法を抑制できる。
The element housing portion 55 opens on the upper side (+ Z side). The element housing portion 55 extends downward from the heat sink portion 53. As shown in FIG. 4, the element housing portion 55 of the present embodiment houses three capacitors 65. The three capacitors 65 are arranged along one direction (the Y-axis direction in this embodiment) orthogonal to the central axis J. In the present embodiment, the direction in which the three capacitors 65 are arranged coincides with the direction in which the second rib 56 b extends. The element housing portion 55 has a longitudinal direction in which the three capacitors 65 are arranged (that is, the direction in which the second rib portion 56b extends) in plan view. The dimension S1 in the longitudinal direction of the element housing portion 55 is smaller than the diameter D of the motor main body housing portion 54. That is, even when the plurality of capacitors 65 are arranged in one direction, the dimension S1 in the longitudinal direction of the element housing portion 55 does not exceed the motor main body housing portion 54. Therefore, the dimension of the motor 1 can be suppressed in the direction orthogonal to the central axis J.
図2に示すように、コンデンサ65は、下側を向く天面65bと、軸方向と直交する方向を向く側面65aと、を有する。素子収容部55は、コンデンサ65の側面65aを囲む側壁部55aと、コンデンサ65の下側に位置しコンデンサ65の天面65bと軸方向に対向する収容底部55bと、を有する。
As shown in FIG. 2, the capacitor 65 has a top surface 65 b facing downward and a side surface 65 a facing in a direction orthogonal to the axial direction. The element housing portion 55 has a side wall portion 55a surrounding the side surface 65a of the capacitor 65, and a housing bottom portion 55b located below the capacitor 65 and axially opposed to the top surface 65b of the capacitor 65.
本実施形態によれば、コンデンサ65を収容する素子収容部55を有する。コンデンサ65は、回路基板60において、熱を生じやすい発熱素子である。このため、コンデンサ65において発生する熱を素子収容部55において効果的に吸収することができる。なお、素子収容部55の側壁部55aとコンデンサ65の側面65aとの間には、放熱グリスなどの放熱材が収容されることが好ましい。これにより、コンデンサ65の側面65aから素子収容部55に向けて効率的に熱を移動させることができ、コンデンサ65の動作の信頼性を高めることができる。なお、素子収容部55の収容底部55bとコンデンサ65の天面65bとの間にも放熱材を配置してもよい。しかし、一般的にコンデンサ65の天面65bには、防爆弁が設けられる場合がある。この場合、放熱材は、少なくとも防爆弁を避けるように配置される。
According to the present embodiment, the element housing portion 55 for housing the capacitor 65 is provided. The capacitor 65 is a heating element that easily generates heat in the circuit board 60. Therefore, the heat generated in the capacitor 65 can be effectively absorbed in the element housing portion 55. It is preferable that a heat dissipation material such as heat dissipation grease be accommodated between the side wall 55 a of the element accommodation portion 55 and the side surface 65 a of the capacitor 65. Thus, heat can be efficiently transferred from the side surface 65 a of the capacitor 65 toward the element housing portion 55, and the reliability of the operation of the capacitor 65 can be enhanced. A heat dissipation material may be disposed between the housing bottom 55 b of the element housing 55 and the top surface 65 b of the capacitor 65. However, in general, an explosion-proof valve may be provided on the top surface 65 b of the condenser 65. In this case, the heat dissipating material is arranged to at least avoid the explosion-proof valve.
なお、素子収容部55は、収容底部55bを有さずに下側に開放された構成としてもよい。また、素子収容部55の側壁部55aの一部が水平方向に開口していてもよい。すなわち、収容底部55bおよび側壁部55aは、必ずしもコンデンサ65の天面65bおよび側面65aを全体に亘って囲んでいなくてもよい。
The element housing portion 55 may be configured to be opened downward without having the housing bottom portion 55b. Further, a part of the side wall 55 a of the element housing 55 may be opened in the horizontal direction. That is, the housing bottom 55 b and the side wall 55 a do not necessarily surround the top surface 65 b and the side surface 65 a of the capacitor 65.
本実施形態において、モータ本体収容部54および素子収容部55は、ヒートシンク部53から下側に向
かって別々に延びる。すなわち、モータ本体収容部54および素子収容部55は、軸方向から見て互いに離間している。本実施形態によれば、モータ本体収容部54と素子収容部55とが、ヒートシンク部53から別々に延びるため、ハウジング50の外周面の表面積が増加し、ハウジング50の放熱効果を高めることができる。なお、上述したように、モータ本体収容部54および素子収容部55は、ヒートシンク部53を介して互いに固定された別部品であってもよい。
In the present embodiment, the motor mainbody housing portion 54 and the element housing portion 55 separately extend downward from the heat sink portion 53. That is, the motor body accommodating portion 54 and the element accommodating portion 55 are separated from each other as viewed in the axial direction. According to the present embodiment, since the motor main body housing portion 54 and the element housing portion 55 are separately extended from the heat sink portion 53, the surface area of the outer peripheral surface of the housing 50 is increased, and the heat dissipation effect of the housing 50 can be enhanced. . As described above, the motor body housing portion 54 and the element housing portion 55 may be separate parts fixed to each other via the heat sink portion 53.
かって別々に延びる。すなわち、モータ本体収容部54および素子収容部55は、軸方向から見て互いに離間している。本実施形態によれば、モータ本体収容部54と素子収容部55とが、ヒートシンク部53から別々に延びるため、ハウジング50の外周面の表面積が増加し、ハウジング50の放熱効果を高めることができる。なお、上述したように、モータ本体収容部54および素子収容部55は、ヒートシンク部53を介して互いに固定された別部品であってもよい。
In the present embodiment, the motor main
ハウジング50は、上側を向く上面50aを有する。上面50aは、ハウジング50のモータ本体収容部54、素子収容部55およびヒートシンク部53に跨って設けられる。上面50aは、蓋部40と対向する。上面50aには、上面50aの外縁に沿って延びる第2の凹溝部52が設けられる。第2の凹溝部52は、上面50aに対して下側に凹む。第2の凹溝部52は、一様な幅および一様な深さで中心軸Jと直交する平面内を延びる。第2の凹溝部52は、後段において説明する蓋部40の第2の凸部42が収容される。
The housing 50 has an upper surface 50a facing upward. The upper surface 50 a is provided across the motor main body housing portion 54 of the housing 50, the element housing portion 55 and the heat sink portion 53. The upper surface 50 a faces the lid 40. The upper surface 50a is provided with a second groove 52 extending along the outer edge of the upper surface 50a. The second recessed groove 52 is recessed downward with respect to the upper surface 50a. The second recessed groove 52 extends in a plane perpendicular to the central axis J with a uniform width and a uniform depth. The second concave portion 52 accommodates the second convex portion 42 of the lid 40 described later.
[ベアリングホルダ]
ベアリングホルダ30は、ステータ25の上側(+Z側)に位置する。ベアリングホルダ30は、上側ベアリング7Aを支持する。ベアリングホルダ30の平面視形状は、例えば、中心軸Jと同心の円形状である。ベアリングホルダ30は、モータ本体収容部54の上側の開口54eに位置し、モータ本体収容部54の内周面に固定される。 [Bearing holder]
The bearingholder 30 is located on the upper side (+ Z side) of the stator 25. The bearing holder 30 supports the upper bearing 7A. The plan view shape of the bearing holder 30 is, for example, a circular shape concentric with the central axis J. The bearing holder 30 is positioned at the upper opening 54 e of the motor body housing 54 and is fixed to the inner circumferential surface of the motor body housing 54.
ベアリングホルダ30は、ステータ25の上側(+Z側)に位置する。ベアリングホルダ30は、上側ベアリング7Aを支持する。ベアリングホルダ30の平面視形状は、例えば、中心軸Jと同心の円形状である。ベアリングホルダ30は、モータ本体収容部54の上側の開口54eに位置し、モータ本体収容部54の内周面に固定される。 [Bearing holder]
The bearing
ベアリングホルダ30は、ドーナツ型の円板状のホルダ本体部31と、ホルダ本体部31の径方向内側に位置する上側ベアリング保持部32と、ホルダ本体部31の径方向外側に位置するホルダ固定部33と、を有する。
The bearing holder 30 includes a doughnut-shaped disk-shaped holder main body portion 31, an upper bearing holding portion 32 positioned radially inward of the holder main body portion 31, and a holder fixing portion positioned radially outward of the holder main body portion 31. And 33.
上側ベアリング保持部32は、上側ベアリング7Aを保持する。上側ベアリング保持部32は、ベアリングホルダ30の平面視中央に位置する。上側ベアリング保持部32の平面視中央には、軸方向に貫通する孔部32aが設けられる。孔部32aには、シャフト21の上端部が挿通される。ホルダ固定部33は、ホルダ本体部31の径方向外縁において上下方向に突出する筒形状である。ホルダ固定部33の外周面は、モータ本体収容部54の内周面と径方向に対向する。ホルダ固定部33は、モータ本体収容部54の内周面に嵌合され固定される。
The upper bearing holder 32 holds the upper bearing 7A. The upper bearing holder 32 is located at the center of the bearing holder 30 in plan view. A hole 32 a penetrating in the axial direction is provided at the center of the upper bearing holder 32 in a plan view. The upper end portion of the shaft 21 is inserted into the hole 32a. The holder fixing portion 33 has a cylindrical shape that protrudes in the vertical direction at the radial outer edge of the holder main body 31. The outer peripheral surface of the holder fixing portion 33 radially faces the inner peripheral surface of the motor main body housing portion 54. The holder fixing portion 33 is fitted and fixed to the inner circumferential surface of the motor main body housing portion 54.
ベアリングホルダ30は、ハウジング50のヒートシンク部53に対し少なくとも一部が軸方向に重なる。このため、ベアリングホルダ30の上側のスペースを十分に広くすることができる。結果的に、ベアリングホルダ30の上側に位置する回路基板60の配置および回路基板60の実装部品の配置の自由度を高めることができる。
At least a part of the bearing holder 30 axially overlaps the heat sink portion 53 of the housing 50. Therefore, the space above the bearing holder 30 can be made sufficiently wide. As a result, the degree of freedom of the arrangement of the circuit board 60 located above the bearing holder 30 and the arrangement of the mounted components of the circuit board 60 can be increased.
[回路基板]
回路基板60は、モータ本体2およびベアリングホルダ30の上側に位置する。回路基板60は、中心軸Jに直交する方向(すなわち、上下方向に直交する方向)に延びる。回路基板60には、ステータ25のコイル29から延びるコイル線が接続される。回路基板60は、コイル29に電流を流してロータ20の回転を制御する。 [Circuit board]
Thecircuit board 60 is located above the motor body 2 and the bearing holder 30. The circuit board 60 extends in a direction orthogonal to the central axis J (that is, a direction orthogonal to the vertical direction). A coil wire extending from the coil 29 of the stator 25 is connected to the circuit board 60. The circuit board 60 supplies a current to the coil 29 to control the rotation of the rotor 20.
回路基板60は、モータ本体2およびベアリングホルダ30の上側に位置する。回路基板60は、中心軸Jに直交する方向(すなわち、上下方向に直交する方向)に延びる。回路基板60には、ステータ25のコイル29から延びるコイル線が接続される。回路基板60は、コイル29に電流を流してロータ20の回転を制御する。 [Circuit board]
The
回路基板60は、基板本体61と、複数(本実施形態では3つ)のコンデンサ(第1の発熱素子)65と、複数の電界効果トランジスタ(第2の発熱素子)66と、を有する。なお、基板本体61は、その他に、ロータ20の回転を制御するための電子部品(図示略)を有する。
The circuit board 60 includes a substrate main body 61, a plurality of (three in the present embodiment) capacitors (first heating elements) 65, and a plurality of field effect transistors (second heating elements) 66. The substrate main body 61 further includes electronic components (not shown) for controlling the rotation of the rotor 20.
基板本体61は、軸方向(すなわち上下方向)に直交して配置される。基板本体61は、上側を向く上面61dと、下側を向く下面61cと、を有する。また、基板本体61は、上下方向から見てモータ本体2と重なるオーバーラップ部61Aと、上下方向から見てモータ本体2の外側に位置する張出部61Bと、を有する。
The substrate body 61 is disposed to be orthogonal to the axial direction (ie, the vertical direction). The substrate main body 61 has an upper surface 61 d facing upward and a lower surface 61 c facing downward. Further, the substrate body 61 has an overlap portion 61A overlapping with the motor body 2 when viewed in the vertical direction, and an overhang portion 61B positioned outside the motor body 2 when viewed in the vertical direction.
コンデンサ65は、基板本体61の下面61cに実装される。コンデンサ65は、軸方向に沿って延びる円柱形状である。コンデンサ65は、基板本体61と反対側に位置し下側を向く天面65bと、軸方向(上下方向)と直交する方向を向く側面65aと、を有する。コンデンサ65は、回路基板60の実装部品のうち、最も軸方向(上下方向)の寸法が大きい。電界効果トランジスタ66は、基板本体61の上面61dに実装される。電界効果トランジスタ66は、平面視矩形状である。基板本体61の上面61dおよび下面61cの何れか一方又は両方には、コンデンサ65および電界効果トランジスタ66の他に回転センサ、チョークコイル等の電子部品が実装される。
The capacitor 65 is mounted on the lower surface 61 c of the substrate body 61. The capacitor 65 has a cylindrical shape extending along the axial direction. The capacitor 65 has a top surface 65b located on the opposite side of the substrate body 61 and facing downward, and a side surface 65a facing in a direction orthogonal to the axial direction (vertical direction). The capacitor 65 has the largest dimension in the axial direction (vertical direction) among the mounted components of the circuit board 60. The field effect transistor 66 is mounted on the upper surface 61 d of the substrate body 61. The field effect transistor 66 has a rectangular shape in plan view. In addition to the capacitor 65 and the field effect transistor 66, electronic components such as a rotation sensor and a choke coil are mounted on one or both of the upper surface 61 d and the lower surface 61 c of the substrate main body 61.
発熱素子であるコンデンサ65および電界効果トランジスタ66は、基板本体61の張出部61Bに実装される。張出部61Bの上側には、後段に説明する上ヒートシンク80が位置する。上ヒートシンク80は、張出部61Bおよび張出部61Bの上面61dに実装された電界効果トランジスタ66と直接的又は間接的に接触してこれらを冷却する。また、張出部61Bの下側には、ハウジング50のヒートシンク部53および素子収容部55が位置する。ヒートシンク部53および素子収容部55は、張出部61Bおよび張出部61Bの下面61cに実装されたコンデンサ65と直接的又は間接的に接触してこれらを冷却する。すなわち、本実施形態によれば、発熱素子(コンデンサ65および電界効果トランジスタ66)が実装された張出部61Bは、上ヒートシンク80およびハウジング50に上下方向から挟まれる。これにより、張出部61Bに実装された発熱素子65、66を、上ヒートシンク80およびハウジング50により効果的に冷却できる。また、本実施形態によれば、冷却が必要な発熱素子65、66を基板本体61の張出部61Bに配置することで、発熱素子65、66の冷却に必要な構造を、平面視においてモータ本体2とずらして配置できる。このため、モータ1の軸方向(上下方向)の寸法を小型化できる。
The capacitor 65 and the field effect transistor 66 which are heating elements are mounted on the overhang portion 61 B of the substrate main body 61. An upper heat sink 80, which will be described later, is located on the upper side of the overhang portion 61B. The upper heat sink 80 directly or indirectly contacts the field effect transistor 66 mounted on the overhang portion 61B and the upper surface 61d of the overhang portion 61B to cool them. Further, the heat sink portion 53 of the housing 50 and the element housing portion 55 are located below the overhang portion 61B. The heat sink portion 53 and the element housing portion 55 are in direct or indirect contact with the capacitor 65 mounted on the overhang portion 61B and the lower surface 61c of the overhang portion 61B to cool them. That is, according to the present embodiment, the overhang portion 61B on which the heating element (the capacitor 65 and the field effect transistor 66) is mounted is sandwiched by the upper heat sink 80 and the housing 50 in the vertical direction. As a result, the heating elements 65 and 66 mounted on the overhang portion 61B can be effectively cooled by the upper heat sink 80 and the housing 50. Further, according to the present embodiment, by arranging the heat generating elements 65 and 66 that need to be cooled to the overhang portion 61B of the substrate main body 61, the structure necessary for cooling the heat generating elements 65 and 66 can be It can be arranged offset with the main unit 2. Therefore, the dimension in the axial direction (vertical direction) of the motor 1 can be reduced.
[上ヒートシンク(第2のヒートシンク)]
上ヒートシンク80は、回路基板60の上側に位置する。上ヒートシンク80は、回路基板60の一部を上側から覆う。本実施形態の上ヒートシンク80は、回路基板60に直接的又は間接的に接触して、回路基板60を冷却する上ヒートシンクとして機能する。なお、上ヒートシンク80は、回路基板60と熱的に接触し回路基板60を冷却するものであれば、回路基板60と直接的に接触していても間接的に接触していてもよい。より具体的には、上ヒートシンク80は、回路基板60に放熱グリスなどの放熱材を介して接触していてもよい。 [Upper heat sink (second heat sink)]
Theupper heat sink 80 is located on the upper side of the circuit board 60. The upper heat sink 80 covers a part of the circuit board 60 from the upper side. The upper heat sink 80 of the present embodiment is in direct or indirect contact with the circuit board 60 to function as an upper heat sink for cooling the circuit board 60. The upper heat sink 80 may be in direct contact with the circuit board 60 or may be in indirect contact as long as the upper heat sink 80 thermally contacts the circuit board 60 and cools the circuit board 60. More specifically, the upper heat sink 80 may be in contact with the circuit board 60 via a heat dissipating material such as heat dissipating grease.
上ヒートシンク80は、回路基板60の上側に位置する。上ヒートシンク80は、回路基板60の一部を上側から覆う。本実施形態の上ヒートシンク80は、回路基板60に直接的又は間接的に接触して、回路基板60を冷却する上ヒートシンクとして機能する。なお、上ヒートシンク80は、回路基板60と熱的に接触し回路基板60を冷却するものであれば、回路基板60と直接的に接触していても間接的に接触していてもよい。より具体的には、上ヒートシンク80は、回路基板60に放熱グリスなどの放熱材を介して接触していてもよい。 [Upper heat sink (second heat sink)]
The
上ヒートシンク80は、吸熱部85と、吸熱部85の上面85aに位置するフィン89aと、有する。上ヒートシンク80は、放熱特性が高い金属材料(例えば、アルミニウム合金又は銅合金)から構成される。
The upper heat sink 80 has a heat absorbing portion 85 and fins 89 a located on the upper surface 85 a of the heat absorbing portion 85. The upper heat sink 80 is made of a metal material (for example, an aluminum alloy or a copper alloy) having high heat dissipation characteristics.
図3に示すように、吸熱部85は、上側を向く上面85aと下側を向く下面85bとを有する。また、吸熱部85には、一対のネジ挿入孔85cが設けられている。ネジ挿入孔85cは、軸方向に沿って吸熱部85を貫通する。一対のネジ挿入孔85cには、それぞれ固定ネジ88が挿入される。固定ネジ88は、ハウジング50のヒートシンク部53にネジ止めされる。これによって、吸熱部85の下面85bが、ヒートシンク部53の上面53aに押し当てられて、上ヒートシンク80がハウジング50に固定される。
As shown in FIG. 3, the heat absorbing portion 85 has an upper surface 85 a facing upward and a lower surface 85 b facing downward. Further, the heat absorbing portion 85 is provided with a pair of screw insertion holes 85c. The screw insertion hole 85c penetrates the heat absorbing portion 85 along the axial direction. Fixing screws 88 are respectively inserted into the pair of screw insertion holes 85c. The fixing screw 88 is screwed to the heat sink portion 53 of the housing 50. As a result, the lower surface 85 b of the heat absorbing portion 85 is pressed against the upper surface 53 a of the heat sink portion 53, and the upper heat sink 80 is fixed to the housing 50.
本実施形態によれば、上ヒートシンク80とハウジング50とは、直接的に接触し互いに固定されている。上ヒートシンク80およびハウジング50は、それぞれ回路基板60から熱を吸収する。上ヒートシンク80とハウジング50が互いに接触して固定されることで、上ヒートシンク80とハウジング50との間で熱の移動が起こる。このため、上ヒートシンク80およびハウジング50のうち何れか一方が高温となった場合、他方側に熱を移動させて、他方側からも放熱することができる。これにより、放熱効率が高まり結果として回路基板60の冷却効果を高めることができる。
According to the present embodiment, the upper heat sink 80 and the housing 50 are in direct contact and fixed to each other. The upper heat sink 80 and the housing 50 absorb heat from the circuit board 60, respectively. Fixing the upper heat sink 80 and the housing 50 in contact with each other causes heat transfer between the upper heat sink 80 and the housing 50. Therefore, when any one of the upper heat sink 80 and the housing 50 has a high temperature, the heat can be moved to the other side and the heat can also be radiated from the other side. As a result, the heat radiation efficiency is enhanced, and as a result, the cooling effect of the circuit board 60 can be enhanced.
吸熱部85の下面85bには、凹部86が設けられている。凹部86には、回路基板60の電界効果トランジスタ66が配置されている。凹部86には、例えば放熱グリス等の放熱材が充填され、電界効果トランジスタ66で生じた熱を吸熱部85に効率的に移動させる。すなわち、本実施形態によれば、発熱素子である電界効果トランジスタ66を収容する凹部86に放熱材が充填されることで、電界効果トランジスタ66を効果的に冷却できる。加えて、放熱材が流動性の放熱グリスである場合には、放熱グリスが、凹部86から漏れ出すことを抑制できる。
A recess 86 is provided on the lower surface 85 b of the heat absorbing portion 85. The field effect transistor 66 of the circuit board 60 is disposed in the recess 86. The recess 86 is filled with a heat dissipating material such as heat dissipating grease, for example, to efficiently transfer the heat generated by the field effect transistor 66 to the heat absorbing portion 85. That is, according to the present embodiment, the heat-radiating material is filled in the concave portion 86 accommodating the field effect transistor 66 which is a heating element, whereby the field effect transistor 66 can be effectively cooled. In addition, when the heat dissipating material is fluid heat dissipating grease, the heat dissipating grease can be prevented from leaking out of the recess 86.
後段において説明するように、上ヒートシンク80の上側には、蓋部40が設けられている。蓋部40には、上下方向に貫通する開口部49が設けられる。上ヒートシンク80は、蓋部40の開口部49から露出する露出部89を有する。露出部89は、吸熱部85の上面85aに位置する。
As described later, a lid 40 is provided on the upper side of the upper heat sink 80. The lid 40 is provided with an opening 49 penetrating in the vertical direction. The upper heat sink 80 has an exposed portion 89 exposed from the opening 49 of the lid 40. The exposed portion 89 is located on the upper surface 85 a of the heat absorbing portion 85.
本実施形態によれば、上ヒートシンク80が露出部89を有することによって、上ヒートシンク80は、回路基板60から吸収した熱を露出部89からモータ1の外部に効率的に放熱できる。これにより、上ヒートシンク80による回路基板60の冷却効率を高めることができる。
According to the present embodiment, since the upper heat sink 80 has the exposed portion 89, the upper heat sink 80 can efficiently dissipate the heat absorbed from the circuit board 60 from the exposed portion 89 to the outside of the motor 1. Thereby, the cooling efficiency of the circuit board 60 by the upper heat sink 80 can be enhanced.
上ヒートシンク80の露出部89は、発熱素子である電界効果トランジスタ66の直上に位置する。すなわち、上ヒートシンク80の露出部89は、軸方向(上下方向)から見て、電界効果トランジスタ66の少なくとも一部と重なる。これにより、回路基板60から上ヒートシンク80に移動させた熱を、露出部89において効果的に放熱できる。なお、軸方向から見て露出部89と重なる発熱素子は、電界効果トランジスタ66以外の発熱素子(例えば、コンデンサ、電界効果トランジスタ駆動用ドライバ集積回路、電源用集積回路)であってもよい。
The exposed portion 89 of the upper heat sink 80 is located immediately above the field effect transistor 66 which is a heating element. That is, the exposed portion 89 of the upper heat sink 80 overlaps at least a part of the field effect transistor 66 when viewed in the axial direction (vertical direction). Thus, the heat transferred from the circuit board 60 to the upper heat sink 80 can be effectively dissipated at the exposed portion 89. The heating element overlapping the exposed portion 89 when viewed in the axial direction may be a heating element other than the field effect transistor 66 (for example, a capacitor, a driver integrated circuit for driving a field effect transistor, an integrated circuit for power supply).
図1に示すように、フィン89aは、上ヒートシンク80の露出部89に位置する。フィン89aは、吸熱部85の上面85aから上側に突出する。フィン89aは、露出部89において、開口部49を貫通する。
As shown in FIG. 1, the fin 89 a is located at the exposed portion 89 of the upper heat sink 80. The fins 89 a protrude upward from the upper surface 85 a of the heat absorbing portion 85. The fin 89 a penetrates the opening 49 at the exposed portion 89.
フィン89aは、上ヒートシンク80に複数設けられる。複数のフィン89aは、上下方向と直交する一方向に沿って延びる。本実施形態において、フィン89aは、X軸方向に沿って延びる。本実施形態によれば、露出部89にフィン89aが設けられることで、露出部89の表面積を大きくして露出部89における上ヒートシンク80の放熱効率を高めることができる。また、本実施形態によれば、複数のフィン89aが一方向に延びるため、一方向に流れる気体中にモータ1を配置する場合に、気体の流動方向に沿ってフィン89aが延びるように配置することで、フィン89aによる放熱効率を高めることができる。 本実施形態では、上ヒートシンク80がフィン89aを有する場合を例示した。しかしながら、上ヒートシンク80は、露出部89を有していれば、上ヒートシンク80がフィン89aを有していなくても、放熱効率を高める一定の効果を得ることができる。
A plurality of fins 89 a are provided on the upper heat sink 80. The plurality of fins 89 a extend along one direction orthogonal to the vertical direction. In the present embodiment, the fins 89a extend along the X-axis direction. According to the present embodiment, by providing the fins 89 a in the exposed portion 89, it is possible to increase the surface area of the exposed portion 89 and to enhance the heat dissipation efficiency of the upper heat sink 80 in the exposed portion 89. Further, according to the present embodiment, since the plurality of fins 89a extend in one direction, when arranging the motor 1 in the gas flowing in one direction, the fins 89a are arranged to extend along the flow direction of the gas. Thus, the heat radiation efficiency of the fins 89a can be enhanced. In the present embodiment, the case where the upper heat sink 80 has the fins 89a is illustrated. However, if the upper heat sink 80 has the exposed portion 89, even if the upper heat sink 80 does not have the fins 89a, it is possible to obtain a certain effect of enhancing the heat dissipation efficiency.
吸熱部85の上面85aには、軸方向(上下方向)から見て露出部89を囲む第1の凹溝部81が設けられる。第1の凹溝部81は、一様な幅および一様な深さで中心軸Jと直交する平面内を延びる。第1の凹溝部81は、上面85aに対して下側に凹む。第1の凹溝部81には、後段において説明する蓋部40の第1の凸部41が収容される。
A first concave groove 81 surrounding the exposed portion 89 is provided on the upper surface 85 a of the heat absorption portion 85 as viewed in the axial direction (vertical direction). The first recessed groove portion 81 extends in a plane perpendicular to the central axis J with a uniform width and a uniform depth. The first recessed groove portion 81 is recessed downward with respect to the upper surface 85 a. The first convex portion 41 of the lid 40 described later is accommodated in the first concave groove 81.
[蓋部]
図2に示すように、蓋部40は、ハウジング50、回路基板60および上ヒートシンク80の上側に位置する。蓋部40は、ハウジング50の上面50aを覆う。蓋部40は、回路基板60を上側から覆い回路基板60を保護する。また、蓋部40は、ハウジング50のモータ本体収容部54の開口を覆い、モータ本体2の回転部分などにコンタミが侵入することを抑制する。 [Lid]
As shown in FIG. 2, thelid 40 is located above the housing 50, the circuit board 60, and the upper heat sink 80. The lid 40 covers the top surface 50 a of the housing 50. The lid 40 covers the circuit board 60 from the upper side and protects the circuit board 60. In addition, the lid 40 covers the opening of the motor main body housing 54 of the housing 50 and suppresses the entry of contamination into the rotating portion of the motor main body 2 or the like.
図2に示すように、蓋部40は、ハウジング50、回路基板60および上ヒートシンク80の上側に位置する。蓋部40は、ハウジング50の上面50aを覆う。蓋部40は、回路基板60を上側から覆い回路基板60を保護する。また、蓋部40は、ハウジング50のモータ本体収容部54の開口を覆い、モータ本体2の回転部分などにコンタミが侵入することを抑制する。 [Lid]
As shown in FIG. 2, the
図1に示すように、蓋部40は、平坦部45と、平坦部45の外縁に位置し、平坦部45に対して下側に突出する外縁部46と、平坦部45から上側に延びるコネクタ部47と、を有する。
As shown in FIG. 1, the lid 40 is a flat portion 45 and an outer edge 46 located at the outer edge of the flat portion 45 and projecting downward with respect to the flat portion 45, and a connector extending upward from the flat portion 45 And a part 47.
コネクタ部47は、平坦部45から上側に延びる筒状である。コネクタ部47の内部には、回路基板60から上側に延びる接続端子(図示略)が設けられる。接続端子は、回路基板60に電力を供給する外部機器(図示略)に接続される。
The connector portion 47 has a cylindrical shape extending upward from the flat portion 45. Inside the connector portion 47, a connection terminal (not shown) extending upward from the circuit board 60 is provided. The connection terminal is connected to an external device (not shown) that supplies power to the circuit board 60.
図2に示すように、平坦部45は、軸方向(上下方向)と直交する方向に延びる。すなわち、平坦部45は、回路基板60に沿って延びる。平坦部45は、上側を向く上面45aと、下側を向く下面45bと、を有する。
As shown in FIG. 2, the flat portion 45 extends in a direction orthogonal to the axial direction (vertical direction). That is, the flat portion 45 extends along the circuit board 60. The flat portion 45 has an upper surface 45 a facing upward and a lower surface 45 b facing downward.
平坦部45には、開口部49が設けられる。開口部49は、軸方向から見て矩形状である。開口部49には、上ヒートシンク80のフィン89aが挿通する。フィン89aの上端は、平坦部45の上面45aより上側に位置する。
The flat portion 45 is provided with an opening 49. The opening 49 is rectangular when viewed in the axial direction. The fin 89 a of the upper heat sink 80 is inserted into the opening 49. The upper end of the fin 89 a is located above the upper surface 45 a of the flat portion 45.
平坦部45の下面45bは、吸熱部85と軸方向に離間している。したがって、平坦部45は、上ヒートシンク80と接触しない。平坦部45の下面45bには、下側に突出する第1の凸部41が設けられる。
The lower surface 45 b of the flat portion 45 is axially separated from the heat absorbing portion 85. Therefore, the flat portion 45 does not contact the upper heat sink 80. The lower surface 45 b of the flat portion 45 is provided with a first convex portion 41 projecting downward.
第1の凸部41は、軸方向から見て、開口部49を囲む。第1の凸部41は、一様な幅および一様な高さで中心軸Jと直交する平面内を延びる。第1の凸部41は、上ヒートシンク80に設けられた第1の凹溝部81に収容される。上ヒートシンク80には、開口部49から露出する露出部89が設けられている。したがって、第1の凸部41および第1の凹溝部81は、軸方向(上下方向)から見て露出部89を囲む。第1の凹溝部81の内壁面と、第1の凸部41との間には、隙間が設けられる。第1の凹溝部81には、接着剤Bが充填される。
The first convex portion 41 surrounds the opening 49 as viewed in the axial direction. The first convex portion 41 extends in a plane perpendicular to the central axis J with a uniform width and a uniform height. The first convex portion 41 is accommodated in a first concave groove portion 81 provided in the upper heat sink 80. The upper heat sink 80 is provided with an exposed portion 89 exposed from the opening 49. Therefore, the first convex portion 41 and the first concave groove portion 81 surround the exposed portion 89 when viewed from the axial direction (vertical direction). A gap is provided between the inner wall surface of the first recessed groove portion 81 and the first convex portion 41. The adhesive B is filled in the first recessed groove 81.
本実施形態によれば、接着剤Bが充填された第1の凹溝部81に第1の凸部41が収容されている。また、第1の凸部41および第1の凹溝部81は、露出部89を囲むため、蓋部40の開口部49からモータ1の内部に水およびコンタミが侵入することを抑制できる。これにより、モータ1の防塵性および防水性を高めることができる。
According to the present embodiment, the first convex portion 41 is accommodated in the first concave groove portion 81 filled with the adhesive B. In addition, since the first convex portion 41 and the first concave groove portion 81 surround the exposed portion 89, intrusion of water and contamination into the interior of the motor 1 from the opening 49 of the lid 40 can be suppressed. Thereby, the dust resistance and waterproofness of the motor 1 can be enhanced.
なお、本実施形態においては、第1の凹溝部81に接着剤Bが充填され、接着剤Bが第1の凹溝部81の内壁面と第1の凸部41との間の隙間を塞ぐ。このため、より効果的にコンタミの侵入を塞ぐことができる。しかしながら、接着剤Bなどの充填物が充填されていない場合であっても、第1の凸部41が第1の凹溝部81に挿入されることで、コンタミの侵入経路にラビリンス構造を構成することができ、コンタミの侵入を抑制することができる。
In the present embodiment, the adhesive B is filled in the first recessed groove portion 81, and the adhesive B closes the gap between the inner wall surface of the first recessed groove portion 81 and the first convex portion 41. For this reason, it is possible to more effectively block the entry of contamination. However, even when the filler such as the adhesive B is not filled, the first convex portion 41 is inserted into the first recessed groove portion 81, thereby forming a labyrinth structure in the intrusion path of the contamination. It is possible to suppress the entry of contamination.
また、本実施形態においては、上ヒートシンク80に第1の凹溝部81が設けられ、蓋部40に第1の凸部41が設けられる構成を例示した。しかしながら、第1の凸部41および第1の凹溝部81は、露出部89を囲んでいれば、上ヒートシンク80および蓋部40のそれぞれ反対側に設けられていてもよい。すなわち、蓋部40および上ヒートシンク80のうち、一方には他方側に突出する第1の凸部41が設けられ、他方には第1の凸部41を収容する第1の凹溝部81が設けられていればよい。
Further, in the present embodiment, the configuration in which the first heat sink 80 is provided with the first recessed groove 81 and the lid 40 is provided with the first convex 41 is illustrated. However, as long as the first convex portion 41 and the first concave groove portion 81 surround the exposed portion 89, the first convex portion 41 and the first concave groove portion 81 may be provided on opposite sides of the upper heat sink 80 and the lid portion 40, respectively. That is, one of the lid 40 and the upper heat sink 80 is provided with the first convex portion 41 projecting to the other side, and the other is provided with the first concave groove portion 81 accommodating the first convex portion 41. It should be done.
本実施形態によれば、第1の凹溝部81の内壁面と第1の凸部41との間に、接着剤Bが充填されている。これにより、露出部89の周囲において、蓋部40と上ヒートシンク80とを互いに固定することができる。加えて、接着剤Bを第1の凹溝部81に充填させるため、接着剤Bを周方向に沿って一様な量で設けることができ、各方向からの応力に対して安定した接着強度を実現しやすい。
According to the present embodiment, the adhesive B is filled between the inner wall surface of the first recessed groove portion 81 and the first convex portion 41. Thereby, the lid 40 and the upper heat sink 80 can be fixed to each other around the exposed portion 89. In addition, since the adhesive B is filled in the first recessed groove portion 81, the adhesive B can be provided in a uniform amount along the circumferential direction, and the adhesive strength stable against the stress from each direction can be obtained. Easy to realize.
本実施形態によれば、第1の凹溝部81の内壁面と第1の凸部41との間には隙間が設けられる。このため、第1の凹溝部81の内壁面と第1の凸部41とは、上下方向および水平方向において直接的に接触しない。このため、他の部分において上ヒートシンク80に対する蓋部40の上下方向および水平方向の位置決めを行うことができる。具体的には、蓋部40および上ヒートシンク80をそれぞれハウジング50に接触させ、蓋部40および上ヒートシンク80をそれぞれハウジング50に対して位置決めすることができる。したがって、寸法精度および面精度の管理が容易な他の部材(本実施形態におけるハウジング50)において、各部の寸法を管理することができる。
According to the present embodiment, a gap is provided between the inner wall surface of the first recessed groove portion 81 and the first convex portion 41. For this reason, the inner wall surface of the first recessed groove portion 81 and the first convex portion 41 do not directly contact in the vertical direction and the horizontal direction. Therefore, vertical and horizontal positioning of the lid 40 with respect to the upper heat sink 80 can be performed in other portions. Specifically, lid 40 and upper heat sink 80 can be brought into contact with housing 50, and lid 40 and upper heat sink 80 can be positioned relative to housing 50, respectively. Therefore, the dimensions of each part can be managed in another member (housing 50 in the present embodiment) in which management of dimensional accuracy and surface accuracy is easy.
本実施形態によれば、平坦部45の下面45bは、吸熱部85と軸方向に離間しているため、第1の凹溝部81に充填された接着剤Bは、外気に露出している。これにより、第1の凹溝部81に充填された接着剤Bの硬化を促進できる。また、第1の凹溝部81に第1の凸部41を収容させる工程において、第1の凹溝部81から溢れ出た過剰な接着剤Bを、第1の凹溝部81の外側に逃がすことができる。
According to the present embodiment, the lower surface 45b of the flat portion 45 is axially separated from the heat absorbing portion 85, so the adhesive B filled in the first recessed groove portion 81 is exposed to the outside air. Thereby, the curing of the adhesive B filled in the first recessed groove portion 81 can be promoted. Further, in the step of accommodating the first convex portion 41 in the first concave groove portion 81, excess adhesive B overflowing from the first concave groove portion 81 may be released to the outside of the first concave groove portion 81. it can.
外縁部46は、平坦部45の外縁から下側に突出する。外縁部46は、軸方向から見て平坦部45を一周に亘って囲む。外縁部46の下端部には、第2の凸部42と内側下端面46aと外側下端面46bとが設けられる。
The outer edge portion 46 protrudes downward from the outer edge of the flat portion 45. The outer edge portion 46 surrounds the flat portion 45 over the entire circumference when viewed in the axial direction. At the lower end portion of the outer edge portion 46, a second convex portion 42, an inner lower end surface 46a and an outer lower end surface 46b are provided.
第2の凸部42は、下側に突出する。第2の凸部42は、一様な幅および一様な高さで中心軸Jと直交する平面内を延びる。第2の凸部42は、外縁部46の全体に亘って延びる。したがって、第2の凸部42は、軸方向から見て、平坦部45を一周に亘って囲む。
The second convex portion 42 protrudes downward. The second convex portion 42 extends in a plane perpendicular to the central axis J with a uniform width and a uniform height. The second protrusion 42 extends over the entire outer edge 46. Therefore, the second convex portion 42 surrounds the flat portion 45 over the entire circumference when viewed from the axial direction.
第2の凸部42は、ハウジング50に設けられた第2の凹溝部52に収容される。第2の凸部42および第2の凹溝部52は、軸方向から見て、第1の凸部41および第1の凹溝部81を外側から囲む。第2の凹溝部52の内壁面と、第2の凸部42との間には、隙間が設けられる。第2の凹溝部52には、接着剤Bが充填される。
The second convex portion 42 is accommodated in a second concave groove portion 52 provided in the housing 50. The second convex portion 42 and the second concave groove portion 52 surround the first convex portion 41 and the first concave groove portion 81 from the outside as viewed from the axial direction. A gap is provided between the inner wall surface of the second recessed groove portion 52 and the second convex portion 42. The adhesive B is filled in the second recessed groove 52.
本実施形態によれば、接着剤Bが充填された第2の凹溝部52に第2の凸部42が収容されている。また、第2の凸部42および第2の凹溝部52は、軸方向から見て、第1の凸部41および第1の凹溝部81を外側から囲むため、第1の凸部41および第1の凹溝部81より外側においても、蓋部40とハウジング50との間からモータ1の内部に水およびコンタミが侵入することを抑制できる。これにより、モータ1の防塵性および防水性を高めることができる。
According to the present embodiment, the second convex portion 42 is accommodated in the second concave groove portion 52 filled with the adhesive B. Further, since the second convex portion 42 and the second concave groove portion 52 surround the first convex portion 41 and the first concave groove portion 81 from the outer side when viewed from the axial direction, the first convex portion 41 and the first concave portion Also on the outer side than the concave groove portion 81, the entry of water and contamination into the interior of the motor 1 from between the lid portion 40 and the housing 50 can be suppressed. Thereby, the dust resistance and waterproofness of the motor 1 can be enhanced.
なお、本実施形態においては、第2の凹溝部52に接着剤Bが充填され、接着剤Bが第2の凹溝部52の内壁面と第2の凸部42との間の隙間を塞ぐ。このため、より効果的にコンタミの侵入を塞ぐことができる。しかしながら、接着剤Bなどの充填物が充填されていない場合であっても、第2の凸部42が第2の凹溝部52に挿入されることで、コンタミの侵入経路にラビリンス構造を構成することができ、コンタミの侵入を抑制することができる。
In the present embodiment, the adhesive B is filled in the second recessed groove 52, and the adhesive B closes the gap between the inner wall surface of the second recessed groove 52 and the second protrusion 42. For this reason, it is possible to more effectively block the entry of contamination. However, even if the filler such as the adhesive B is not filled, the second convex portion 42 is inserted into the second recessed groove portion 52, thereby forming a labyrinth structure in the intrusion path of the contamination. It is possible to suppress the entry of contamination.
本実施形態においては、ハウジング50に第2の凹溝部52が設けられ、蓋部40に第2の凸部42が設けられる構成を例示した。しかし、第2の凸部42および第2の凹溝部52は、ハウジング50および蓋部40のそれぞれ反対側に設けられていてもよい。すなわち、蓋部40およびハウジング50のうち、一方には他方側に突出する第2の凸部42が設けられ、他方には第2の凸部42を収容する第2の凹溝部52が設けられていればよい。
In the present embodiment, the configuration in which the second concave portion 52 is provided in the housing 50 and the second convex portion 42 is provided in the lid 40 has been illustrated. However, the second convex portion 42 and the second concave groove portion 52 may be provided on opposite sides of the housing 50 and the lid portion 40, respectively. That is, one of the lid 40 and the housing 50 is provided with a second convex portion 42 projecting to the other side, and the other is provided with a second concave portion 52 accommodating the second convex portion 42. It should just be.
本実施形態によれば、第2の凹溝部52の内壁面と第2の凸部42との間に、接着剤Bが充填されている。これにより、蓋部40の外縁部46において、蓋部40をハウジング50に固定することができる。加えて、接着剤Bを第2の凹溝部52に充填させるため、接着剤Bを周方向に沿って一様な量で設けることができ、各方向からの応力に対して安定した接着強度を実現しやすい。
According to the present embodiment, the adhesive B is filled between the inner wall surface of the second recessed groove 52 and the second protrusion 42. Thus, the lid 40 can be fixed to the housing 50 at the outer edge 46 of the lid 40. In addition, since the adhesive B is filled in the second groove 52, the adhesive B can be provided in a uniform amount along the circumferential direction, and the adhesive strength stable against the stress from each direction can be obtained. Easy to realize.
内側下端面46aは、下側を向く面である。内側下端面46aは、平面視において第2の凸部42で囲まれた領域の内側に位置する。内側下端面46aは、ハウジング50の上面50aに接触する。内側下端面46aがハウジング50の上面50aに接触することで、ハウジング50に対し蓋部40を軸方向(上下方向)に位置決めできる。
The inner lower end surface 46 a is a surface facing downward. The inner lower end surface 46 a is located inside the area surrounded by the second convex portion 42 in a plan view. The inner lower end surface 46 a contacts the upper surface 50 a of the housing 50. When the inner lower end surface 46 a is in contact with the upper surface 50 a of the housing 50, the lid 40 can be positioned in the axial direction (vertical direction) with respect to the housing 50.
外側下端面46bは、下側を向く面である。外側下端面46bは、平面視において第2の凸部42で囲まれた領域の内側に位置する。外側下端面46bは、ハウジング50の上面50aと軸方向に離間している。これにより、第2の凹溝部52に充填された接着剤Bを外気に露出させ、接着剤Bの硬化を促進できる。また、第2の凹溝部52に第2の凸部42を収容させる工程において、第2の凹溝部52から溢れ出た接着剤Bを、外側下端面46bとハウジング50の上面50aとの間の隙間に溜めることができる。よって、接着剤Bの充填量がばらついた場合に、過剰な接着剤Bを外側下端面46bとハウジング50の上面50aとの間の隙間に逃がすことができる。加えて、外側下端面46bとハウジング50の上面50aとの間に隙間が設けられることで、接着剤Bの充填状態および硬化状態などを外観から確認することができる。このため、製造ラインにおける製品の品質確保が容易となる。
The outer lower end surface 46b is a surface facing downward. The outer lower end surface 46 b is located inside the area surrounded by the second convex portion 42 in a plan view. The outer lower end surface 46 b is axially separated from the upper surface 50 a of the housing 50. Thereby, the adhesive B filled in the second recessed groove 52 can be exposed to the outside air, and the curing of the adhesive B can be promoted. Further, in the step of accommodating the second convex portion 42 in the second concave groove portion 52, the adhesive B overflowing from the second concave groove portion 52 is placed between the outer lower end surface 46b and the upper surface 50a of the housing 50. It can be stored in the gap. Therefore, when the filling amount of the adhesive B varies, the excess adhesive B can be released to the gap between the outer lower end surface 46 b and the upper surface 50 a of the housing 50. In addition, by providing a gap between the outer lower end surface 46 b and the upper surface 50 a of the housing 50, the filling state and the curing state of the adhesive B can be confirmed from the appearance. As a result, it is easy to ensure product quality in the manufacturing line.
本実施形態において、第1の凹溝部81および第2の凹溝部52に充填される接着剤Bとして、湿気硬化型の接着剤を用いることが好ましい。湿気硬化型の接着剤は、空気中の水分により硬化する。接着剤Bとして湿気硬化型の接着剤を用いることで、水分による接着剤の劣化を抑制することができ、モータ1の防水の信頼性を高めることができる。
In the present embodiment, it is preferable to use a moisture-curable adhesive as the adhesive B filled in the first recessed groove portion 81 and the second recessed groove portion 52. Moisture-curable adhesives cure with moisture in the air. By using a moisture-curable adhesive as the adhesive B, the deterioration of the adhesive due to moisture can be suppressed, and the waterproof reliability of the motor 1 can be enhanced.
次に、モータ1の製造工程において、蓋部40を組み付ける手順について説明する。なお、本実施形態において、蓋部40の組み付けは、モータ1の組み立て工程の最後に行われる。 まず、上ヒートシンク80の第1の凹溝部81およびハウジング50の第2の凹溝部52の内部に未硬化の接着剤Bを充填する。 次いで、上ヒートシンク80および上ヒートシンク80に固定されたハウジング50に対して蓋部40を上側から近づけ、第1の凸部41を第1の凹溝部81に挿入し、第2の凸部42を第2の凹溝部52に挿入する。 次いで、接着剤Bを硬化させる。 以上の工程を経ることで、蓋部40がモータ1に組み付けられる。
Next, in the manufacturing process of the motor 1, a procedure for assembling the lid 40 will be described. In the present embodiment, the assembly of the lid 40 is performed at the end of the assembly process of the motor 1. First, the inside of the first recessed groove 81 of the upper heat sink 80 and the second recessed groove 52 of the housing 50 is filled with the uncured adhesive B. Then, the lid 40 is brought close to the upper heat sink 80 and the housing 50 fixed to the upper heat sink 80 from the upper side, the first convex portion 41 is inserted into the first concave groove portion 81, and the second convex portion 42 is The second groove 52 is inserted. Then, the adhesive B is cured. The lid 40 is assembled to the motor 1 through the above steps.
本実施形態によれば、第1の凸部41と第2の凸部42とは、同方向に突出し、第1の凹溝部81と第2の凹溝部52とは、同方向に開口する。また、第1の凹溝部81および第2の凹溝部52には、未硬化の接着剤Bが充填される。第1の凹溝部81と第2の凹溝部52とが同方向に開口するため、第1の凹溝部81および第2の凹溝部52に未硬化の接着剤Bを同時に充填できる。また、第1の凹溝部81および第2の凹溝部52に未硬化の接着剤Bを充填させた後に蓋部40を降下させて第1の凹溝部81および第2の凹溝部52にそれぞれ第1の凸部41および第2の凸部42を収容させる工程を採用できる。これにより、蓋部40の組み付け工程を簡素化できる。
According to this embodiment, the first convex portion 41 and the second convex portion 42 project in the same direction, and the first concave groove portion 81 and the second concave groove portion 52 open in the same direction. Further, the uncured adhesive B is filled in the first recessed groove portion 81 and the second recessed groove portion 52. Since the first recessed groove 81 and the second recessed groove 52 are opened in the same direction, the uncured adhesive B can be simultaneously filled in the first recessed groove 81 and the second recessed groove 52. In addition, after filling the first recessed groove 81 and the second recessed groove 52 with the uncured adhesive B, the lid 40 is lowered to set the first recessed groove 81 and the second recessed groove 52 respectively. A step of housing the first protrusion 41 and the second protrusion 42 can be employed. Thereby, the assembly | attachment process of the cover part 40 can be simplified.
図1に示すように、ハウジング50と蓋部40とは、スナップフィット部6により、互いに固定されている。スナップフィット部6は、周方向に沿ってモータ1に複数設けられている。
As shown in FIG. 1, the housing 50 and the lid 40 are fixed to each other by the snap fit portion 6. A plurality of snap fit portions 6 are provided in the motor 1 along the circumferential direction.
スナップフィット部6は、蓋部40に設けられたかかり部43と、ハウジング50に設けられた爪部58と、から構成されている。蓋部40のかかり部43は、外縁部46から下側に向かってU字状に延びる。爪部58は、ハウジング50の外側面から水平方向外側に向かって突出する。蓋部40の組み付け手順において、作業者が蓋部40を軸方向に沿ってハウジング50に近づけることで、係り部43に爪部58が嵌り、ハウジング50に蓋部40が固定される。本実施形態におい
て、スナップフィット部6は、ハウジング50に蓋部40が組み付けられてから接着剤Bが硬化するまでの間、蓋部40を保持する為に設けられている。なお、蓋部40の固定に接着剤Bを使用しない場合には、蓋部40は、スナップフィット部6の固定機能によってハウジング50に対し恒常的に固定される。
The snapfit portion 6 includes a hook 43 provided on the lid 40 and a claw 58 provided on the housing 50. The hooked portion 43 of the lid portion 40 extends downward in a U-shape from the outer edge portion 46. The claws 58 protrude outward in the horizontal direction from the outer side surface of the housing 50. In the assembling procedure of the lid 40, when the operator brings the lid 40 close to the housing 50 in the axial direction, the claws 58 fit into the engagement portions 43, and the lid 40 is fixed to the housing 50. In the present embodiment, the snap fit portion 6 is provided to hold the lid portion 40 from when the lid portion 40 is assembled to the housing 50 until the adhesive B is cured. When the adhesive B is not used to fix the lid 40, the lid 40 is permanently fixed to the housing 50 by the fixing function of the snap fit portion 6.
て、スナップフィット部6は、ハウジング50に蓋部40が組み付けられてから接着剤Bが硬化するまでの間、蓋部40を保持する為に設けられている。なお、蓋部40の固定に接着剤Bを使用しない場合には、蓋部40は、スナップフィット部6の固定機能によってハウジング50に対し恒常的に固定される。
The snap
以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
Although the embodiment and the modified example of the present invention have been described above, each configuration and the combination thereof in the embodiment and the modified example are an example, and addition and omission of the configuration are possible without departing from the spirit of the present invention , Substitution and other modifications are possible. Further, the present invention is not limited by the embodiments.
1…モータ、2…モータ本体、6…スナップフィット部、7A…上側ベアリング(ベアリング)、20…ロータ、21…シャフト、25…ステータ、30…ベアリングホルダ、40…蓋部、41…第1の凸部、42…第2の凸部、49…開口部、50…ハウジング(ヒートシンク、第1のヒートシンク)、52…第2の凹溝部、53…ヒートシンク部(ヒートシンク本体部)、53c…放熱面、54…モータ本体収容部、54e…開口、55…素子収容部、56…リブ、56a…第1のリブ部、56b…第2のリブ部、60…回路基板、61…基板本体、61A…オーバーラップ部、61B…張出部、65…コンデンサ(第1の発熱素子、発熱素子)、66…電界効果トランジスタ(第2の発熱素子、発熱素子)、80…上ヒートシンク(第2のヒートシンク)、81…第1の凹溝部、89…露出部、89a…フィン、B…接着剤、D…直径、J…中心軸、S1…寸法
DESCRIPTION OF SYMBOLS 1 ... motor, 2 ... motor main body, 6 ... snap fitting part, 7A ... upper side bearing (bearing), 20 ... rotor, 21 ... shaft, 25 ... stator, 30 ... bearing holder, 40 ... lid part, 41 ... first Convex part 42: Second convex part 49: Opening part 50: Housing (heat sink, first heat sink) 52: Second concave groove part 53: Heat sink part (heat sink main body part) 53c: Heat dissipation surface , 54: motor body housing portion, 54e opening, 55: element housing portion, 56: rib, 56a: first rib portion, 56b: second rib portion, 60: circuit board, 61: board body, 61A: Overlap part, 61 B: overhang part, 65: capacitor (first heating element, heating element) 66: field effect transistor (second heating element, heating element), 80: upper heat sink (second Heat sink), 81 ... first groove section, 89 ... exposed portion, 89a ... fin, B ... adhesives, D ... diameter, J ... central axis, S1 ... dimensions
Claims (10)
- 上下方向に沿って延びる中心軸を中心として回転するロータおよび前記ロータの径方向外側に位置するステータを有するモータ本体と、
前記モータ本体の上側に位置し前記中心軸に直交する方向に延びる回路基板と、
前記回路基板の下側に位置し前記回路基板に直接的または間接的に接触するヒートシンクと、を備え、
前記回路基板は、
基板本体と、
前記基板本体の下面に実装される第1の発熱素子と、を有し、
前記ヒートシンクは、
前記回路基板に沿って延びるヒートシンク本体部と、
前記モータ本体を収容するモータ本体収容部と、
前記第1の発熱素子を収容する素子収容部と、を有し、
前記モータ本体収容部および前記素子収容部は、前記ヒートシンク本体部から下側に向かって別々に延び、
前記ヒートシンク本体部には、前記モータ本体収容部と前記素子収容部との間に位置するリブが設けられている、モータ。 A motor body having a rotor rotating about a central axis extending along the vertical direction, and a stator located radially outward of the rotor;
A circuit board located above the motor body and extending in a direction perpendicular to the central axis;
A heat sink located below the circuit board and in direct or indirect contact with the circuit board;
The circuit board is
Substrate body,
And a first heating element mounted on the lower surface of the substrate body,
The heat sink is
A heat sink body extending along the circuit board;
A motor body accommodating portion for accommodating the motor body;
And an element accommodating portion for accommodating the first heat generating element;
The motor body housing portion and the element housing portion separately extend downward from the heat sink body portion,
The motor, wherein the heat sink main body is provided with a rib positioned between the motor main body housing and the element housing. - 前記ヒートシンクは、単一の部材として構成され、
前記ロータは、前記中心軸に沿って延びるシャフトを有し、
前記シャフトを回転可能に支持するベアリングと、前記ベアリングを支持するベアリングホルダと、を備え、
前記ベアリングホルダは、前記モータ本体収容部の上側の開口に位置し、
前記ベアリングホルダは、前記ヒートシンク本体部に対し少なくとも一部が軸方向に重なる、
請求項1に記載のモータ。 The heat sink is configured as a single member;
The rotor has a shaft extending along the central axis,
A bearing rotatably supporting the shaft; and a bearing holder supporting the bearing,
The bearing holder is located at an upper opening of the motor main body housing.
The bearing holder at least partially axially overlaps the heat sink main body portion.
The motor according to claim 1. - 前記リブは、径方向に沿って延び前記モータ本体収容部と前記素子収容部とを繋ぐ第1のリブ部を含む、
請求項1又は2に記載のモータ。 The rib includes a first rib extending along a radial direction and connecting the motor main body housing and the element housing.
A motor according to claim 1 or 2. - 前記リブは、前記第1のリブ部と繋がり前記第1のリブ部に対して直交する方向に延びる第2のリブ部を含む、
請求項3に記載のモータ。 The rib includes a second rib connected to the first rib and extending in a direction perpendicular to the first rib.
The motor according to claim 3. - 前記第2のリブ部が、前記第1のリブ部と交差して延びる、
請求項4に記載のモータ。 The second rib extends transverse to the first rib,
The motor according to claim 4. - 前記第2のリブ部は、前記第1のリブ部側から離れるに従い幅が狭くなる、
請求項4又は5に記載のモータ。 The width of the second rib portion is narrowed as it is separated from the first rib portion side.
A motor according to claim 4 or 5. - 前記リブが、3以上の前記第2のリブ部を含む、
請求項4~6の何れか一項に記載のモータ。 The rib includes three or more of the second rib portions,
A motor according to any one of claims 4 to 6. - 前記素子収容部は、軸方向から見て前記第2のリブ部が延びる方向を長手方向とし、
前記素子収容部の長手方向の寸法は、前記モータ本体収容部の直径より小さい、
請求項4~7の何れか一項に記載のモータ。 The element accommodating portion has a longitudinal direction in which a direction in which the second rib extends is seen from the axial direction.
The longitudinal dimension of the element housing portion is smaller than the diameter of the motor main body housing portion.
A motor according to any one of claims 4 to 7. - 前記回路基板は、前記基板本体の上面に実装される第2の発熱素子を有し、
前記ヒートシンク本体部は、前記基板本体の下面と接触する放熱面を有し、
軸方向から見て、前記第2の発熱素子の少なくとも一部は、前記放熱面と重なる、
請求項1~8の何れか一項に記載のモータ。 The circuit board has a second heating element mounted on the upper surface of the substrate body,
The heat sink main body has a heat dissipation surface in contact with the lower surface of the substrate main body,
When viewed in the axial direction, at least a portion of the second heating element overlaps the heat dissipation surface.
A motor according to any one of the preceding claims. - 軸方向から見て、前記リブの少なくとも一部は、前記放熱面と重なる、請求項9に記載のモータ。 The motor according to claim 9, wherein when viewed in the axial direction, at least a portion of the rib overlaps the heat dissipation surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019544355A JPWO2019064899A1 (en) | 2017-09-29 | 2018-07-31 | motor |
CN201880052592.8A CN111033975B (en) | 2017-09-29 | 2018-07-31 | Motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-191785 | 2017-09-29 | ||
JP2017191785 | 2017-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019064899A1 true WO2019064899A1 (en) | 2019-04-04 |
Family
ID=65901270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028639 WO2019064899A1 (en) | 2017-09-29 | 2018-07-31 | Motor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2019064899A1 (en) |
CN (1) | CN111033975B (en) |
WO (1) | WO2019064899A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113661640A (en) * | 2019-04-11 | 2021-11-16 | 日本电产株式会社 | Motor unit |
WO2022230007A1 (en) | 2021-04-26 | 2022-11-03 | 三菱電機株式会社 | Rotating electrical machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5875464U (en) * | 1981-11-12 | 1983-05-21 | 日立工機株式会社 | Motor bearing cooling structure |
JP2001132697A (en) * | 1999-11-09 | 2001-05-18 | Japan Servo Co Ltd | Motor fan |
JP2010034400A (en) * | 2008-07-30 | 2010-02-12 | Shindengen Electric Mfg Co Ltd | Electronic apparatus |
US20160254719A1 (en) * | 2015-02-27 | 2016-09-01 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg | Motor assembly |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3593102B2 (en) * | 2002-01-08 | 2004-11-24 | 三菱電機株式会社 | Electric power steering device |
US20120169154A1 (en) * | 2009-06-23 | 2012-07-05 | Odomotion, Inc. | Axial-flux brushless electric motor |
CN204131288U (en) * | 2014-09-23 | 2015-01-28 | 西安泰富西玛电机有限公司 | A kind of radiating ribs having magnetic conduction concurrently |
CN205811728U (en) * | 2016-06-30 | 2016-12-14 | 东莞市东联铝业有限公司 | A kind of aluminium extruded type fin on motor |
CN205992823U (en) * | 2016-09-12 | 2017-03-01 | 东元电机股份有限公司 | There is the motor frame of side typing fin |
-
2018
- 2018-07-31 JP JP2019544355A patent/JPWO2019064899A1/en active Pending
- 2018-07-31 CN CN201880052592.8A patent/CN111033975B/en active Active
- 2018-07-31 WO PCT/JP2018/028639 patent/WO2019064899A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5875464U (en) * | 1981-11-12 | 1983-05-21 | 日立工機株式会社 | Motor bearing cooling structure |
JP2001132697A (en) * | 1999-11-09 | 2001-05-18 | Japan Servo Co Ltd | Motor fan |
JP2010034400A (en) * | 2008-07-30 | 2010-02-12 | Shindengen Electric Mfg Co Ltd | Electronic apparatus |
US20160254719A1 (en) * | 2015-02-27 | 2016-09-01 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg | Motor assembly |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113661640A (en) * | 2019-04-11 | 2021-11-16 | 日本电产株式会社 | Motor unit |
CN113661640B (en) * | 2019-04-11 | 2024-04-05 | 日本电产株式会社 | Motor unit |
WO2022230007A1 (en) | 2021-04-26 | 2022-11-03 | 三菱電機株式会社 | Rotating electrical machine |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019064899A1 (en) | 2020-10-22 |
CN111033975B (en) | 2022-07-26 |
CN111033975A (en) | 2020-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111033964B (en) | Motor | |
WO2019064897A1 (en) | Motor | |
JP7002904B2 (en) | motor | |
CN109983669B (en) | Motor and electric power steering apparatus | |
US11005329B2 (en) | Electric motor with rotating first concentric cooling fins and second concentric fins on the housing | |
JP2010098816A (en) | Blower motor | |
JP2015198168A (en) | Electronic device, power converter and dynamo-electric machine | |
JP5893099B1 (en) | Electric power supply unit integrated rotating electric machine | |
CN108886291B (en) | Motor | |
JP4857924B2 (en) | Brushless motor | |
JP2019112977A (en) | Electric oil pump | |
JP2013062899A (en) | Brushless motor | |
WO2019064899A1 (en) | Motor | |
JP2004183595A (en) | Electric brushless water pump | |
JP2019112976A (en) | Electric oil pump | |
JP2019112978A (en) | Electric oil pump | |
JP6068933B2 (en) | Vehicle motor unit | |
KR20210120985A (en) | Electric motor with heat dissipation for motor shaft bearing | |
JP6852271B2 (en) | motor | |
WO2019064898A1 (en) | Motor | |
JP2021044984A (en) | Motor and electric power steering device | |
WO2019064895A1 (en) | Motor | |
JP6156206B2 (en) | Power converter and electric motor | |
JP6961990B2 (en) | Motor unit | |
JP6118052B2 (en) | Vehicle motor unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18861265 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019544355 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18861265 Country of ref document: EP Kind code of ref document: A1 |