JP2021057486A - Separator for electric double layer capacitor - Google Patents

Separator for electric double layer capacitor Download PDF

Info

Publication number
JP2021057486A
JP2021057486A JP2019180436A JP2019180436A JP2021057486A JP 2021057486 A JP2021057486 A JP 2021057486A JP 2019180436 A JP2019180436 A JP 2019180436A JP 2019180436 A JP2019180436 A JP 2019180436A JP 2021057486 A JP2021057486 A JP 2021057486A
Authority
JP
Japan
Prior art keywords
separator
electric double
double layer
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019180436A
Other languages
Japanese (ja)
Inventor
圭介 大山
Keisuke Oyama
圭介 大山
敬生 増田
Takao Masuda
敬生 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2019180436A priority Critical patent/JP2021057486A/en
Publication of JP2021057486A publication Critical patent/JP2021057486A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

To provide a separator for electric double layer capacitor, capable of achieving excellent production efficiency in alternately stacking an electrode and a separator before winding.SOLUTION: The electric double layer separator for capacitor contains fibrillation solvent spinning cellulose fiber and regenerated cellulose fiber and has a difference in surface smoothness of front and rear faces, which is 20 sec/10 cc or more.SELECTED DRAWING: None

Description

本発明は、電気二重層キャパシタ用セパレータに関する。 The present invention relates to a separator for an electric double layer capacitor.

電気二重層キャパシタは大きな電気容量を持つと共に、充放電の繰り返しに対する安定性が高いことから車両や電気機器に使用される給電源等の用途に広く使用されている。電気二重層キャパシタ用セパレータは正極と負極とが直接接しないように分離している。 Electric double layer capacitors have a large electric capacity and are highly stable against repeated charging and discharging, so they are widely used in applications such as power supply and power supply used in vehicles and electrical equipment. The separator for electric double layer capacitors is separated so that the positive electrode and the negative electrode do not come into direct contact with each other.

電気二重層キャパシタ用セパレータ(以下、単に「セパレータ」と記した場合は電気二重層キャパシタ用セパレータを指す)としては、従来、溶剤紡糸セルロース繊維や再生セルロース繊維の叩解物を主体とする紙製セパレータ(例えば、特許文献1〜3参照)や合成繊維からなるセパレータ(例えば、特許文献4参照)が使用されている。また、叩解されてなる溶剤紡糸セルロース繊維と繊維直径が9.5μm以下のレーヨン繊維とを含んでなる電気化学素子用セパレータが開示されている(例えば、特許文献5参照)。 As a separator for electric double layer capacitors (hereinafter, when simply referred to as "separator", it means a separator for electric double layer capacitors), a paper separator mainly composed of beaten material of solvent-spun cellulose fiber or regenerated cellulose fiber has been conventionally used. (See, for example, Patent Documents 1 to 3) and separators made of synthetic fibers (see, for example, Patent Document 4) are used. Further, a separator for an electrochemical element containing beaten solvent-spun cellulose fibers and rayon fibers having a fiber diameter of 9.5 μm or less is disclosed (see, for example, Patent Document 5).

電気二重層キャパシタの製造において、電極とセパレータを交互に積層して捲回するが、捲回する際にセパレータの表面の状態によってセパレータ同士がずれやすく、調整に時間がかかり、生産効率が下がるなどの問題があった。 In the manufacture of electric double layer capacitors, electrodes and separators are alternately laminated and wound, but when winding, the separators tend to shift from each other depending on the surface condition of the separator, which takes time to adjust and reduces production efficiency. There was a problem.

特開2002−231580号公報Japanese Unexamined Patent Publication No. 2002-231580 特開平11−168033号公報Japanese Unexamined Patent Publication No. 11-16803 特開2000−3834号公報Japanese Unexamined Patent Publication No. 2000-3834 特開2003−45752号公報Japanese Unexamined Patent Publication No. 2003-45752 特開2018−139283号公報Japanese Unexamined Patent Publication No. 2018-139283

本発明の課題は、上記実情を鑑みたものであって、電極とセパレータを交互に積層して捲回する際の生産効率に優れる電気二重層キャパシタ用セパレータを提供することにある。 An object of the present invention is to provide a separator for an electric double layer capacitor, which is excellent in production efficiency when electrodes and separators are alternately laminated and wound in view of the above circumstances.

フィブリル化溶剤紡糸セルロース繊維と再生セルロース繊維を含んでなる電気二重層キャパシタ用セパレータにおいて、表裏の表面平滑度の差が20sec/10cc以上であることを特徴とする電気二重層キャパシタ用セパレータ。 An electric double layer capacitor separator comprising fibrillated solvent-spun cellulose fibers and regenerated cellulose fibers, wherein the difference in surface smoothness between the front and back surfaces is 20 sec / 10 cc or more.

本発明の電気二重層キャパシタ用セパレータは、フィブリル化溶剤紡糸セルロース繊維と再生セルロース繊維を含んでなり、表裏の表面平滑度の差が20sec/10cc以上であることによって、電極とセパレータを交互に積層して捲回する際に、平滑度が高い面は電極とセパレータの接着点が増えることによってずれにくく、もしずれた場合にも平滑度が低い面に接触している電極のみをずらすことで修正がしやすいため、生産効率が向上するといった効果が得られる。 The separator for an electric double layer capacitor of the present invention contains fibrillated solvent-spun cellulose fibers and regenerated cellulose fibers, and the difference in surface smoothness between the front and back surfaces is 20 sec / 10 cc or more, so that electrodes and separators are alternately laminated. When winding, the surface with high smoothness is hard to shift due to the increase in the adhesion points between the electrode and the separator, and even if it shifts, it is corrected by shifting only the electrode in contact with the surface with low smoothness. Since it is easy to remove, the effect of improving production efficiency can be obtained.

本発明の電気二重層キャパシタ用セパレータは、フィブリル化溶剤紡糸セルロース繊維と再生セルロース繊維を含んでなる電気二重層キャパシタ用セパレータであり、セパレータにおける表裏の表面平滑度の差が20sec/10cc以上であることを特徴としている。 The separator for electric double layer capacitors of the present invention is a separator for electric double layer capacitors containing fibrillated solvent-spun cellulose fibers and regenerated cellulose fibers, and the difference in surface smoothness between the front and back surfaces of the separator is 20 sec / 10 cc or more. It is characterized by that.

本発明の電気二重層キャパシタ用セパレータにおいて、セパレータにおける表裏の表面平滑度の差は20sec/10cc以上であり、30sec/10cc以上であることがより好ましく、40sec/10cc以上であることがさらに好ましい。表面平滑度の差が20sec/10cc未満である場合には、電極とセパレータを交互に積層して捲回する際にズレが生じ、生産効率が低下する問題が発生する。表面平滑度の差の上限値は特に限定しないが、150sec/10cc以下であることが好ましい。なお、セパレータの表(おもて)とは、平滑度が高い方とし、セパレータの裏(うら)とは、平滑度が低い方とする。 In the separator for electric double layer capacitors of the present invention, the difference in surface smoothness between the front and back surfaces of the separator is 20 sec / 10 cc or more, more preferably 30 sec / 10 cc or more, and further preferably 40 sec / 10 cc or more. When the difference in surface smoothness is less than 20 sec / 10 cc, there arises a problem that the production efficiency is lowered due to a deviation when the electrodes and the separator are alternately laminated and wound. The upper limit of the difference in surface smoothness is not particularly limited, but is preferably 150 sec / 10 cc or less. The front side of the separator is the one with high smoothness, and the back side of the separator is the one with low smoothness.

本発明において、セパレータの表面平滑度は、JIS P 8119:1998に則って、ベック平滑度試験機を使用して測定した。上記試験機の10cc(10ml)の空気が流れる時間での測定結果である。 In the present invention, the surface smoothness of the separator was measured using a Beck smoothness tester in accordance with JIS P 8119: 1998. It is a measurement result in the time when 10cc (10 ml) of air of the above-mentioned tester flows.

本発明において、再生セルロース繊維としては、レーヨン、ポリノジック、キュプラ、アセテート、トリアセテートなどからなる単繊維や複合繊維を挙げることができる。これらの再生セルロース繊維は、単独で使用しても良いし、2種類以上の組み合わせで使用しても良い。また、各種の分割型複合繊維を分割させたものを使用しても良い。この中でも、レーヨン、キュプラが好ましい。レーヨン、キュプラを使用すると、フィブリル化溶剤紡糸セルロース繊維と均一に絡み合ってネットワーク構造を形成しやすいため、表面の平滑性がより高く、緻密性や機械強度に優れた電気二重層キャパシタ用セパレータを得ることができる。 In the present invention, examples of the regenerated cellulose fiber include a single fiber and a composite fiber made of rayon, polynosic, cupra, acetate, triacetate and the like. These regenerated cellulose fibers may be used alone or in combination of two or more. Moreover, you may use the thing which divided various split type composite fibers. Of these, rayon and cupra are preferable. When rayon or cupra is used, it is easy to form a network structure by uniformly entwining with fibrillated solvent-spun cellulose fibers, so that a separator for electric double layer capacitors with higher surface smoothness, fineness and mechanical strength can be obtained. be able to.

再生セルロース繊維の平均繊維径は0.1〜13.0μmが好ましく、2.5〜11.5μmがより好ましく、4.0〜10.0μmがさらに好ましい。平均繊維径が0.1μm未満の場合、繊維が細すぎて、セパレータから脱落する場合がある。平均繊維径が13.0μmより太い場合、セパレータの厚みを薄くすることが困難になる場合や緻密性が不十分となる場合がある。また、繊維本数が減るため、セパレータの機械強度が低下する場合がある。さらに、セパレータを20μm未満の低厚みにした場合、最大ポア径が拡大し、内部短絡不良率が高くなる場合がある。平均繊維径は、セパレータ断面及び表面の走査型電子顕微鏡観察により、セパレータを形成する繊維の面積を計測し、真円に換算した繊維径を計測し、無作為に選んだ100本の繊維径の平均値である。 The average fiber diameter of the regenerated cellulose fibers is preferably 0.1 to 13.0 μm, more preferably 2.5 to 11.5 μm, still more preferably 4.0 to 10.0 μm. If the average fiber diameter is less than 0.1 μm, the fibers may be too thin and fall off from the separator. If the average fiber diameter is thicker than 13.0 μm, it may be difficult to reduce the thickness of the separator or the denseness may be insufficient. Further, since the number of fibers is reduced, the mechanical strength of the separator may be lowered. Further, when the separator has a low thickness of less than 20 μm, the maximum pore diameter may increase and the internal short circuit defect rate may increase. The average fiber diameter is determined by measuring the area of the fibers forming the separator by observing the cross section of the separator and the surface with a scanning electron microscope, measuring the fiber diameter converted to a perfect circle, and selecting 100 fibers at random. It is an average value.

再生セルロース繊維の繊維長は、0.3〜10mmであることが好ましく、0.5〜7mmであることがより好ましく、1〜5mmであることがさらに好ましい。繊維長が0.3mmより短い場合、セパレータから脱落する場合がある。繊維長が10mmより長い場合、繊維がもつれてダマになることがあり、厚みむらが生じる場合がある。 The fiber length of the regenerated cellulose fiber is preferably 0.3 to 10 mm, more preferably 0.5 to 7 mm, and even more preferably 1 to 5 mm. If the fiber length is shorter than 0.3 mm, it may fall off from the separator. If the fiber length is longer than 10 mm, the fibers may become entangled and become lumpy, resulting in uneven thickness.

本発明において、セパレータに対して、再生セルロース繊維の割合は5〜40質量%であることが好ましく、7.5〜30質量%であることがより好ましく、10〜25質量%であることがさらに好ましい。再生セルロース繊維の割合が5質量%未満の場合、セパレータの機械強度が弱くなる場合がある。また、低厚みとした際に、抵抗を示すインピーダンスが大きくなり過ぎる場合がある。再生セルロース繊維の割合が40質量%を超えた場合、低坪量とした際に、電解液の保液性が不十分で、内部抵抗が高くなる場合や、セパレータの緻密性が不十分で、内部短絡不良率や放電特性のバラツキが高くなる場合がある。 In the present invention, the ratio of the regenerated cellulose fiber to the separator is preferably 5 to 40% by mass, more preferably 7.5 to 30% by mass, and further preferably 10 to 25% by mass. preferable. If the proportion of regenerated cellulose fibers is less than 5% by mass, the mechanical strength of the separator may be weakened. Further, when the thickness is reduced, the impedance indicating resistance may become too large. When the proportion of regenerated cellulose fibers exceeds 40% by mass, the liquid retention property of the electrolytic solution is insufficient and the internal resistance is high, or the denseness of the separator is insufficient when the basis weight is low. The internal short-circuit defect rate and the variation in discharge characteristics may increase.

本発明において、フィブリル化とは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下になっている繊維を指す。フィブリル化された繊維の長さと巾のアスペクト比が約20〜約100000の範囲にあることが好ましい。 In the present invention, fibrillation refers to a fiber that is not in the form of a film but mainly has a portion that is very finely divided in a direction parallel to the fiber axis, and at least a part of the fiber has a fiber diameter of 1 μm or less. Point to. The aspect ratio of the length and width of the fibrillated fibers is preferably in the range of about 20 to about 100,000.

本発明において、溶剤紡糸セルロース繊維とは、従来のビスコースレーヨンや銅アンモニアレーヨンのように、セルロースを一旦セルロース誘導体に化学的に変換させたのち再度セルロースに戻す、いわゆる再生セルロース繊維と異なり、セルロースを化学的に変化させることなく、アミンオキサイドに溶解させた紡糸原液を水中に乾湿式紡糸してセルロースを析出させた繊維を指す。溶剤紡糸セルロース繊維は、天然セルロース繊維やバクテリアセルロース繊維、再生セルロース繊維に比べ、繊維長軸方向に分子が高度に配列しているため、湿潤状態で摩擦等の機械的な力が加えられると、微細化しやすく、細くて長い繊維が生成する。この細くて長い繊維間に電解液を強固に保持するため、天然セルロース繊維、バクテリアセルロース繊維、再生セルロース繊維のフィブリル化物(微細化物)に比べ、微細化されたフィブリル化溶剤紡糸セルロース繊維は、電解液の保液性に優れる。 In the present invention, the solvent-spun cellulose fiber is different from the so-called regenerated cellulose fiber in which cellulose is once chemically converted into a cellulose derivative and then returned to cellulose, as in the case of conventional biscous rayon and copper ammonia rayon. Refers to a fiber in which cellulose is precipitated by dry-wet spinning a spinning stock solution dissolved in amine oxide in water without chemically changing. Compared to natural cellulose fibers, bacterial cellulose fibers, and regenerated cellulose fibers, solvent-spun cellulose fibers have molecules that are highly arranged in the long axis direction of the fibers. It is easy to make finer and produces fine and long fibers. In order to firmly hold the electrolytic solution between these thin and long fibers, the fibrillated solvent-spun cellulose fibers that have been made finer are electrolyzed than the fibrillated (micronized) of natural cellulose fibers, bacterial cellulose fibers, and regenerated cellulose fibers. Excellent liquid retention.

フィブリル化溶剤紡糸セルロース繊維を作製する方法としては、リファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等が挙げられる。この中でも特にリファイナーが好ましい。 As a method for producing fibrillated solvent-spun cellulose fibers, a refiner, a beater, a mill, a grinder, a rotary blade homogenizer that applies shearing force by a high-speed rotary blade, and a cylindrical inner blade that rotates at high speed are fixed. A double-cylindrical high-speed homogenizer that generates shearing force with the outer blade, an ultrasonic crusher that is miniaturized by the impact of ultrasonic waves, and a fiber suspension that is passed through a small-diameter orifice by applying a pressure difference of at least 20 MPa. A high-pressure homogenizer that applies shearing force and cutting force to fibers by making them collide with each other and rapidly decelerating them. Of these, the refiner is particularly preferable.

フィブリル化溶剤紡糸セルロース繊維の変法濾水度は75〜220mlであることが好ましく、90〜175mlであることがより好ましく、90〜120mlであることがさらに好ましい。変法濾水度が75ml未満の場合、繊維が細かくなり過ぎて、セパレータの強度が維持できずに断紙が発生しやすくなる場合がある。変法濾水度が220mlより大きい場合、セパレータの緻密性が不十分になり、内部短絡不良率が高くなる場合がある。 The modified drainage of the fibrillated solvent-spun cellulose fiber is preferably 75 to 220 ml, more preferably 90 to 175 ml, and even more preferably 90 to 120 ml. If the modified drainage degree is less than 75 ml, the fibers may become too fine, the strength of the separator cannot be maintained, and paper breakage may easily occur. If the modified drainage degree is greater than 220 ml, the separator may become insufficiently dense and the internal short-circuit defect rate may increase.

変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度を0.1質量%にした以外はJIS P8121:2012に準拠して測定した値のことである。 The modified drainage degree is measured according to JIS P8121: 2012 except that an 80-mesh wire mesh with a wire diameter of 0.14 mm and a mesh size of 0.18 mm is used as a sieving plate and the sample concentration is 0.1% by mass. It is the value that was set.

溶剤紡糸セルロース繊維の場合、微細化が進むに従って、繊維長が短くなっていき、特に試料濃度が薄いと、繊維同士の絡みが少なくなり、繊維ネットワークが形成されにくくなるため、溶剤紡糸セルロース繊維自体がふるい板の穴をすり抜けてしまう。つまり、フィブリル化溶剤紡糸セルロース繊維の場合は、JIS P8121−2:2012の測定方法では正確な濾水度が計測できない。より詳細に説明すると、天然セルロース繊維は、微細化の程度が進むほど、繊維の幹から細かいフィブリルが多数裂けた状態になるため、フィブリルを介して繊維同士が絡みやすく、繊維ネットワークを形成しやすいのに対し、溶剤紡糸セルロース繊維は微細化処理によって繊維の長軸に平行に細かく分割されやすく、分割後の繊維1本1本における繊維径の均一性が高いため、平均繊維長が短くなるほど、繊維同士が絡みにくくなり、繊維ネットワークを形成しにくいと考えられる。そこで、本発明では、フィブリル化溶剤紡糸セルロース繊維の正確な濾水度を測定するために、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1質量%にした以外はJIS P8121−2:2012に準拠して測定する変法濾水度を用いた。 In the case of solvent-spun cellulose fibers, the fiber length becomes shorter as the micronization progresses, and especially when the sample concentration is low, the fibers are less entangled with each other and it becomes difficult to form a fiber network. Therefore, the solvent-spun cellulose fibers themselves. Slip through the holes in the sieving board. That is, in the case of fibrillated solvent-spun cellulose fibers, the degree of drainage cannot be accurately measured by the measurement method of JIS P8121-2: 2012. More specifically, as the degree of miniaturization of natural cellulose fibers increases, a large number of fine fibrils are torn from the trunk of the fibers, so that the fibers are easily entangled with each other through the fibrils and easily form a fiber network. On the other hand, solvent-spun cellulose fibers are easily divided into fine fibers parallel to the long axis of the fibers by the micronization treatment, and the uniformity of the fiber diameter in each of the divided fibers is high. Therefore, the shorter the average fiber length, the more. It is considered that the fibers are less likely to be entangled with each other and it is difficult to form a fiber network. Therefore, in the present invention, in order to measure the accurate drainage degree of the fibrillated solvent-spun cellulose fiber, an 80-mesh wire mesh having a wire diameter of 0.14 mm and a mesh size of 0.18 mm is used as a sieving plate, and the sample concentration is 0.1. The modified drainage degree measured in accordance with JIS P8121-2: 2012 was used except for the mass%.

フィブリル化溶剤紡糸セルロース繊維の長さ加重平均繊維長は、0.1〜3.0mmが好ましく、0.2〜2.0mmがより好ましく、0.3〜1.1mmがさらに好ましい。繊維長が0.1mmより短いと、セパレータから脱落する場合やセパレータの機械強度が低下する場合があり、3.0mmより長いと、繊維のフィブリル化が不十分となり、内部短絡不良率が高くなる場合や繊維がもつれてダマになることがあり、厚みむらが生じる場合がある。フィブリル化溶剤紡糸セルロース繊維の長さ加重平均繊維長は、装置として、KajaaniFiberLabV3.5(Metso Automation社製)を使用して測定した。上記装置の投影繊維長(Proj)モードにおける長さ加重繊維長(L(l)、単位[mm])が「長さ加重平均繊維長」である。 The length-weighted average fiber length of the fibrillated solvent-spun cellulose fibers is preferably 0.1 to 3.0 mm, more preferably 0.2 to 2.0 mm, and even more preferably 0.3 to 1.1 mm. If the fiber length is shorter than 0.1 mm, it may fall off from the separator or the mechanical strength of the separator may decrease. If the fiber length is longer than 3.0 mm, the fiber fibrillation becomes insufficient and the internal short circuit failure rate increases. In some cases, the fibers may become entangled and become lumpy, resulting in uneven thickness. The length-weighted average fiber length of the fibrillated solvent-spun cellulose fibers was measured using Kajani FiberLab V3.5 (manufactured by Metso Automation) as an apparatus. The length-weighted fiber length (L (l), unit [mm]) in the projected fiber length (Proj) mode of the above device is the "length-weighted average fiber length".

本発明において、セパレータに対して、フィブリル化溶剤紡糸セルロース繊維の割合は、50〜90質量%であることがより好ましく、60〜80質量%であることがさらに好ましい。フィブリル化溶剤紡糸セルロース繊維の割合が50質量%未満の場合、低坪量としたときに、電解液の保液性が不十分で、内部抵抗が高くなる場合がある。また、セパレータの緻密性が不十分で、内部短絡不良率が高くなる場合がある。また表面平滑度が低下し巻きズレが発生しやすくなる場合がある。フィブリル化溶剤紡糸セルロース繊維の割合が90質量%超の場合、セパレータの機械強度が弱くなる場合がある。また、低厚みとした際に、抵抗を示すインピーダンスが大きくなり過ぎる場合がある。 In the present invention, the ratio of the fibrillated solvent-spun cellulose fiber to the separator is more preferably 50 to 90% by mass, further preferably 60 to 80% by mass. When the proportion of fibrillated solvent-spun cellulose fibers is less than 50% by mass, the liquid retention property of the electrolytic solution may be insufficient and the internal resistance may increase when the basis weight is low. In addition, the tightness of the separator may be insufficient, and the internal short-circuit defect rate may increase. In addition, the surface smoothness may decrease and winding deviation may easily occur. When the proportion of fibrillated solvent-spun cellulose fibers exceeds 90% by mass, the mechanical strength of the separator may be weakened. Further, when the thickness is reduced, the impedance indicating resistance may become too large.

本発明の電気二重層キャパシタ用セパレータは、円網式、長網式、短網式、傾斜型短網式等の抄紙方式の中から1種の抄紙方式を有する抄紙機、同種又は異種の2種以上の抄紙方式を組み合わせて有するコンビネーション抄紙機等を用いて抄紙する方法によって製造することができる。原料スラリーには、繊維原料の他に、必要に応じて、分散剤、増粘剤、無機填料、有機填料、消泡剤などを適宜添加することができ、5〜0.001質量%程度の固形分濃度に原料スラリーを調製する。この原料スラリーをさらに所定濃度に希釈して抄紙し、乾燥する。抄紙して得られた電気二重層キャパシタ用セパレータは、必要に応じて、カレンダー処理、熱カレンダー処理、熱処理などが施される。 The separator for an electric double layer capacitor of the present invention is a paper machine having one type of paper making method from among the paper making methods such as a circular net type, a long net type, a short net type, and an inclined short net type, and two of the same type or different types. It can be produced by a method of making paper using a combination paper machine or the like having a combination of more than one kind of paper making method. In addition to the fiber raw material, a dispersant, a thickener, an inorganic filler, an organic filler, an antifoaming agent and the like can be appropriately added to the raw material slurry, and the content is about 5 to 0.001% by mass. Prepare the raw material slurry to the solid content concentration. This raw material slurry is further diluted to a predetermined concentration, paper-made, and dried. The separator for an electric double layer capacitor obtained by papermaking is subjected to calendering, thermal calendering, heat treatment and the like, if necessary.

本発明において、セパレータに対する微細繊維の割合は、原料段階におけるフィブリル化溶剤紡糸セルロース繊維の微細繊維の割合、抄紙方式、抄紙網の種類、フィブリル化溶剤紡糸セルロース繊維/再生セルロース繊維の割合、抄紙時のスラリー濃度、スラリー温度、スラリー粘度、脱水強度等を適宜変更することによって、調整することができる。 In the present invention, the ratio of fine fibers to the separator is the ratio of fine fibers of fibrillated solvent-spun cellulose fibers at the raw material stage, papermaking method, type of papermaking net, ratio of fibrillated solvent-spun cellulose fibers / regenerated cellulose fibers, at the time of papermaking. It can be adjusted by appropriately changing the slurry concentration, slurry temperature, slurry viscosity, dehydration strength, and the like.

電気二重層キャパシタ用セパレータの坪量は、4〜25g/mが好ましく、5〜23g/mがより好ましく、6〜22g/mがさらに好ましい。4g/m未満では、十分な機械強度が得られない場合があり、正極と負極との間の絶縁性が不十分となる場合や、内部短絡不良率やサイクル特性が低下する場合がある。25g/mを超えると、電気二重層キャパシタの内部抵抗が高くなる場合や、放電特性が低くなる場合がある。本発明のセパレータの坪量は、JIS P8124:2011に準拠して測定した値である。 The basis weight of the separator for an electric double layer capacitor is preferably 4~25g / m 2, more preferably 5~23g / m 2, more preferably 6~22g / m 2. If it is less than 4 g / m 2 , sufficient mechanical strength may not be obtained, the insulating property between the positive electrode and the negative electrode may be insufficient, and the internal short-circuit defect rate and cycle characteristics may be lowered. If it exceeds 25 g / m 2 , the internal resistance of the electric double layer capacitor may increase or the discharge characteristics may decrease. The basis weight of the separator of the present invention is a value measured in accordance with JIS P8124: 2011.

電気二重層キャパシタ用セパレータの厚さは、6〜60μmが好ましく、7〜55μmがより好ましく、8〜50μmがさらに好ましい。6μm未満では、十分な機械強度が得られない場合や、正極と負極との間の絶縁性が不十分となる場合や、内部短絡不良率、サイクル特性が悪くなる場合がある。60μmより厚い場合、電気二重層キャパシタの内部抵抗が高くなる場合や、放電特性が低くなる場合がある。なお、本発明のセパレータの厚さは、JIS B7502:2016に規定された外側マイクロメーターにより測定された5N荷重時の値を意味する。 The thickness of the separator for an electric double layer capacitor is preferably 6 to 60 μm, more preferably 7 to 55 μm, and even more preferably 8 to 50 μm. If it is less than 6 μm, sufficient mechanical strength may not be obtained, the insulating property between the positive electrode and the negative electrode may be insufficient, the internal short circuit defect rate, and the cycle characteristics may be deteriorated. If it is thicker than 60 μm, the internal resistance of the electric double layer capacitor may increase or the discharge characteristics may decrease. The thickness of the separator of the present invention means a value under a 5N load measured by an outer micrometer specified in JIS B7502: 2016.

本発明において、表裏の表面平滑度の差を20sec/10cc以上とするためには、乾燥工程において、ヤンキードライヤー型の乾燥機を用いて、ヤンキードライヤー表面に一方の面を張り付かせて乾燥させる方法が挙げられる。 In the present invention, in order to make the difference in surface smoothness between the front and back surfaces 20 sec / 10 cc or more, in the drying step, one surface is attached to the surface of the Yankee dryer and dried by using a Yankee dryer type dryer. The method can be mentioned.

電気二重層キャパシタとは、正極及び負極の表面に形成される電気二重層に電荷を蓄積するキャパシタである。正極及び負極の表面に、より多くのイオンが吸着できるようにすることで、より大きな容量の電気二重層キャパシタが得られる。正極及び負極の表面に、より多くのイオンが吸着できるようにするためには、正極及び負極が、より大きな比表面積を有することが必要である。また、電気二重層キャパシタの正極及び負極は、電気化学的な反応を起こさないことが必要である。電気二重層キャパシタの正極及び負極には、これらの条件を満たす材料として、活性炭;黒鉛;カーボンナノファイバー、グラフェン等のナノ炭素等が主に用いられている。電解液としては、硫酸水溶液、使用電位において電気化学的な反応を起こさない塩を極性有機溶媒に溶解した溶液や、イオン液体等を用いることができる。使用電位において電気化学的な反応を起こさない塩としては、テトラエチルアンモニウムとテトラフルオロホウ酸の塩(TEA・BF)、トリエチルメチルアンモニウムとテトラフルオロホウ酸の塩(TEMA・BF)、5−アゾニアスピロ[4,4]ノナンとテトラフルオロホウ酸の塩(SBP・BF)等が例示される。また、極性有機溶媒としては、アセトニトリル;γブチロラクトン;炭酸プロピレン(PC)、炭酸エチレン(EC)、炭酸ジエチル(DEC)、炭酸エチルメチル(EMC)等の炭酸エステル等が例示される。 The electric double layer capacitor is a capacitor that stores electric charges in the electric double layer formed on the surfaces of the positive electrode and the negative electrode. By allowing more ions to be adsorbed on the surfaces of the positive electrode and the negative electrode, an electric double layer capacitor having a larger capacity can be obtained. In order to allow more ions to be adsorbed on the surfaces of the positive electrode and the negative electrode, the positive electrode and the negative electrode need to have a larger specific surface area. Further, it is necessary that the positive electrode and the negative electrode of the electric double layer capacitor do not cause an electrochemical reaction. Activated carbon; graphite; carbon nanofibers, nanocarbons such as graphene and the like are mainly used as materials satisfying these conditions for the positive electrode and the negative electrode of the electric double layer capacitor. As the electrolytic solution, an aqueous sulfuric acid solution, a solution in which a salt that does not cause an electrochemical reaction at the working potential is dissolved in a polar organic solvent, an ionic liquid, or the like can be used. Examples of salts that do not cause an electrochemical reaction at the working potential include salts of tetraethylammonium and tetrafluoroboric acid (TEA / BF 4 ), salts of triethylmethylammonium and tetrafluoroboric acid (TEMA / BF 4 ), 5-. Examples thereof include salts of azoniaspiro [4,4] nonane and tetrafluoroboric acid (SBP · BF 4 ). Examples of the polar organic solvent include acetonitrile; γ-butyrolactone; carbonic acid esters such as propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), and ethylmethyl carbonate (EMC).

以下、実施例により本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。実施例において、部数は質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples. In the examples, the number of copies is based on mass.

[実施例1]
繊度0.8dtex、繊維長3mmの再生セルロース繊維15部、平均繊維径12.7μm、繊維長4mmの溶剤紡糸セルロース繊維を、リファイナーを用いてフィブリル化させた、フィブリル化溶剤紡糸セルロース繊維(変法濾水度110ml、長さ加重平均繊維長0.95mm)85部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な原料スラリー(0.5質量%濃度)を調製した。この原料スラリーを、傾斜型短網抄紙機を使用し、湿潤シートを得て、ヤンキードライヤー温度100℃で乾燥した後、カレンダー処理を施して、坪量22.0g/m、厚さ50.2μmの電気二重層キャパシタ用セパレータを得た。なお、部数は質量基準である。
[Example 1]
Fibrilized solvent-spun cellulose fiber (modified method) obtained by fibrilizing solvent-spun cellulose fiber having a fineness of 0.8 dtex, 15 parts of regenerated cellulose fiber having a fiber length of 3 mm, an average fiber diameter of 12.7 μm, and a fiber length of 4 mm using a refiner. Eighty-five parts of a drainage degree of 110 ml and a length-weighted average fiber length of 0.95 mm) are mixed together, disaggregated in water of pulper, and a uniform raw material slurry (0.5 mass% concentration) is prepared under stirring with an agitator. Prepared. This raw material slurry was dried at a Yankee dryer temperature of 100 ° C. using a tilted short net paper machine to obtain a wet sheet, and then subjected to calendering treatment to have a basis weight of 22.0 g / m 2 and a thickness of 50. A separator for an electric double layer capacitor of 2 μm was obtained. The number of copies is based on mass.

[実施例2]
繊度0.8dtex、繊維長3mmの再生セルロース繊維25部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維75部を用いた以外は実施例1と同様な方法で坪量21.8g/m、厚さ50.5μmの電気二重層キャパシタ用セパレータを得た。
[Example 2]
Basis weight 21.8 g / m 2 in the same manner as in Example 1 except that 25 parts of regenerated cellulose fiber having a fineness of 0.8 dtex and a fiber length of 3 mm and 75 parts of fibrillated solvent-spun cellulose fiber similar to Example 1 were used. , A separator for an electric double layer capacitor having a thickness of 50.5 μm was obtained.

[実施例3]
繊度0.8dtex、繊維長3mmの再生セルロース繊維5部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維95部を用いた以外は実施例1と同様な方法で坪量22.3g/m、厚さ48.8μmの電気二重層キャパシタ用セパレータを得た。
[Example 3]
Basis weight 22.3 g / m 2 in the same manner as in Example 1 except that 5 parts of regenerated cellulose fiber having a fineness of 0.8 dtex and a fiber length of 3 mm and 95 parts of fibrillated solvent-spun cellulose fiber similar to Example 1 were used. , A separator for an electric double layer capacitor having a thickness of 48.8 μm was obtained.

[実施例4]
繊度0.8dtex、繊維長3mmの再生セルロース繊維40部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維60部を用いた以外は実施例1と同様な方法で坪量22.4g/m、厚さ49.9μmの電気二重層キャパシタ用セパレータを得た。
[Example 4]
Basis weight 22.4 g / m 2 in the same manner as in Example 1 except that 40 parts of regenerated cellulose fiber having a fineness of 0.8 dtex and a fiber length of 3 mm and 60 parts of fibrillated solvent-spun cellulose fiber similar to Example 1 were used. , A separator for an electric double layer capacitor having a thickness of 49.9 μm was obtained.

[実施例5]
繊度0.8dtex、繊維長3mmの再生セルロース繊維15部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維80部、フィブリル化天然セルロース繊維(変法濾水度250ml、長さ加重平均繊維長0.20mm)5部を用いた以外は実施例1と同様な方法で坪量21.8g/m、厚さ50.0μmの電気二重層キャパシタ用セパレータを得た。
[Example 5]
15 parts of regenerated cellulose fiber with fineness of 0.8 dtex and fiber length of 3 mm, 80 parts of fibrilized solvent-spun cellulose fiber similar to Example 1, fibrillated natural cellulose fiber (modified drainage 250 ml, length-weighted average fiber length 0) .20 mm) A separator for an electric double-layer capacitor having a basis weight of 21.8 g / m 2 and a thickness of 50.0 μm was obtained in the same manner as in Example 1 except that 5 parts were used.

[実施例6]
繊度0.8dtex、繊維長3mmの再生セルロース繊維10部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維80部、実施例5と同様のフィブリル化天然セルロース繊維10部を用いた以外は実施例1と同様な方法で坪量21.5g/m、厚さ48.0μmの電気二重層キャパシタ用セパレータを得た。
[Example 6]
Examples except that 10 parts of regenerated cellulose fiber having a fineness of 0.8 dtex and a fiber length of 3 mm, 80 parts of fibrillated solvent-spun cellulose fiber similar to Example 1, and 10 parts of fibrillated natural cellulose fiber similar to Example 5 were used. A separator for an electric double layer capacitor having a basis weight of 21.5 g / m 2 and a thickness of 48.0 μm was obtained in the same manner as in 1.

[比較例1]
繊度0.8dtex、繊維長3mmの再生セルロース繊維60部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維40部を用いた以外は実施例1と同様な方法で坪量22.1g/m、厚さ53.1μmの電気二重層キャパシタ用セパレータを得た。
[Comparative Example 1]
Basis weight 22.1 g / m 2 in the same manner as in Example 1 except that 60 parts of regenerated cellulose fiber having a fineness of 0.8 dtex and a fiber length of 3 mm and 40 parts of fibrillated solvent-spun cellulose fiber similar to Example 1 were used. , A separator for an electric double layer capacitor having a thickness of 53.1 μm was obtained.

[比較例2]
繊度0.8dtex、繊維長3mmの再生セルロース繊維70部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維30部を用いた以外は実施例1と同様な方法で坪量21.8g/m、厚さ55.1μmの電気二重層キャパシタ用セパレータを得た。
[Comparative Example 2]
Basis weight 21.8 g / m 2 in the same manner as in Example 1 except that 70 parts of regenerated cellulose fiber having a fineness of 0.8 dtex and a fiber length of 3 mm and 30 parts of fibrillated solvent-spun cellulose fiber similar to Example 1 were used. , A separator for an electric double layer capacitor having a thickness of 55.1 μm was obtained.

[比較例3]
繊度0.8dtex、繊維長3mmの再生セルロース繊維65部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維30部、実施例5と同様のフィブリル化天然セルロース繊維5部を用いた以外は実施例1と同様な方法で坪量22.5g/m、厚さ55.0μmの電気二重層キャパシタ用セパレータを得た。
[Comparative Example 3]
Examples except that 65 parts of regenerated cellulose fiber having a fineness of 0.8 dtex and a fiber length of 3 mm, 30 parts of fibrillated solvent-spun cellulose fiber similar to Example 1, and 5 parts of fibrillated natural cellulose fiber similar to Example 5 were used. A separator for an electric double layer capacitor having a basis weight of 22.5 g / m 2 and a thickness of 55.0 μm was obtained in the same manner as in 1.

[比較例4]
繊度0.8dtex、繊維長3mmの再生セルロース繊維15部、実施例1と同様のフィブリル化溶剤紡糸セルロース繊維85部を用い、乾燥方式をヤンキードライヤーから多筒式ドライヤーに変更した以外は実施例1と同様な方法で坪量22.1g/m、厚さ54.0μmの電気二重層キャパシタ用セパレータを得た。
[Comparative Example 4]
Example 1 except that 15 parts of regenerated cellulose fiber having a fineness of 0.8 dtex and a fiber length of 3 mm and 85 parts of fibrillated solvent-spun cellulose fiber similar to Example 1 were used and the drying method was changed from a Yankee dryer to a multi-cylinder dryer. A separator for an electric double layer capacitor having a basis weight of 22.1 g / m 2 and a thickness of 54.0 μm was obtained in the same manner as in the above.

実施例及び比較例で使用した原料及びセパレータについて、下記測定及び評価を行い、結果を表1に示した。 The raw materials and separators used in Examples and Comparative Examples were measured and evaluated as follows, and the results are shown in Table 1.

[坪量]
JIS P8124:2011に準拠して坪量を測定した。
[Basis weight]
Basis weight was measured according to JIS P8124: 2011.

[厚さ]
JIS B7502:2016に規定された外側マイクロメーターにより測定された、5N荷重時の厚さを測定した。
[thickness]
The thickness under 5N load measured by an outer micrometer specified in JIS B7502: 2016 was measured.

[表面平滑度]
JIS P8119:1998に規定された方法、つまり、ベック平滑度試験機による平滑度試験方法にて、表裏の平滑度の測定を実施し、その差を算出した。
[Surface smoothness]
The smoothness of the front and back surfaces was measured by the method specified in JIS P8119: 1998, that is, the smoothness test method using a Beck smoothness tester, and the difference was calculated.

[巻きズレ評価]
作製したセパレータとアルミニウム箔からなる電極間に介在して捲回し、その巻姿を目視観察し、以下の基準で評価を行った。巻きズレが発生することで、電気二重層キャパシタ製造時の接合部を接着する工程において、接合部が密栓できず、製品歩留まりの低下等の支障をきたすことがある。
[Evaluation of winding deviation]
The separator was wound between the prepared separator and the electrode made of aluminum foil, and the wound shape was visually observed and evaluated according to the following criteria. Due to the occurrence of winding misalignment, the joint cannot be sealed in the process of adhering the joint during the manufacture of the electric double layer capacitor, which may cause problems such as a decrease in product yield.

◎:巻きズレは見られなかった。
○:ほぼ巻きズレは見られなかった。
△:0.5mm未満の巻きズレが見られたが、使える範囲である。
×:0.5mm以上の巻きズレが見られ、電池作製時に不良になる。
⊚: No winding deviation was observed.
◯: Almost no winding deviation was observed.
Δ: Winding deviation of less than 0.5 mm was observed, but it is within the usable range.
X: A winding deviation of 0.5 mm or more is observed, which causes a defect when the battery is manufactured.

Figure 2021057486
Figure 2021057486

表1に示した通り、実施例1〜5の電気二重層キャパシタ用セパレータは、表裏の表面平滑度の差が20sec/cc以上であることから、巻きズレは見られないか、ほぼ見られなかった。 As shown in Table 1, since the difference in surface smoothness between the front and back surfaces of the separators for electric double layer capacitors of Examples 1 to 5 is 20 sec / cc or more, winding deviation is not seen or almost not seen. It was.

比較例1〜4の電気二重層キャパシタ用セパレータは、表裏の表面平滑度の差が20sec/cc未満であることから、実施例1〜5と比較して、巻きズレが大きかった。 Since the difference in surface smoothness between the front and back surfaces of the separators for electric double layer capacitors of Comparative Examples 1 to 4 was less than 20 sec / cc, the winding deviation was larger than that of Examples 1 to 5.

実施例と比較例を比較することで、再生セルロース繊維とフィブリル化溶剤紡糸セルロース繊維を含んでなる電気二重層キャパシタ用セパレータにおいて、表裏の表面平滑度の差が20sec/cc以上であることによって、電気二重層キャパシタ作製時の巻きズレがしにくいという効果が得られることが判った。巻きズレが起こらなければ、電気二重層キャパシタの不良率が減り、生産効率が向上するという効果が得られる。 By comparing the examples and the comparative examples, the difference in surface smoothness between the front and back surfaces of the separator for an electric double layer capacitor including the regenerated cellulose fiber and the fibrillated solvent-spun cellulose fiber is 20 sec / cc or more. It was found that the effect of preventing winding misalignment during fabrication of an electric double layer capacitor can be obtained. If the winding deviation does not occur, the defect rate of the electric double layer capacitor is reduced, and the effect of improving the production efficiency can be obtained.

本発明の活用例としては、電気二重層キャパシタが好適である。 As an example of utilization of the present invention, an electric double layer capacitor is suitable.

Claims (1)

フィブリル化溶剤紡糸セルロース繊維と再生セルロース繊維を含んでなる電気二重層キャパシタ用セパレータにおいて、表裏の表面平滑度の差が20sec/10cc以上であることを特徴とする電気二重層キャパシタ用セパレータ。 An electric double layer capacitor separator comprising fibrillated solvent-spun cellulose fibers and regenerated cellulose fibers, wherein the difference in surface smoothness between the front and back surfaces is 20 sec / 10 cc or more.
JP2019180436A 2019-09-30 2019-09-30 Separator for electric double layer capacitor Pending JP2021057486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180436A JP2021057486A (en) 2019-09-30 2019-09-30 Separator for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180436A JP2021057486A (en) 2019-09-30 2019-09-30 Separator for electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2021057486A true JP2021057486A (en) 2021-04-08

Family

ID=75272834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180436A Pending JP2021057486A (en) 2019-09-30 2019-09-30 Separator for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2021057486A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139283A (en) * 2016-05-09 2018-09-06 三菱製紙株式会社 Separator for electrochemical element and electrochemical element arranged by use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139283A (en) * 2016-05-09 2018-09-06 三菱製紙株式会社 Separator for electrochemical element and electrochemical element arranged by use thereof

Similar Documents

Publication Publication Date Title
US9653717B2 (en) Separator for electrochemical element, process for producing separator and electrochemical element using separator
KR102398127B1 (en) Separator for electrochemical device and electrochemical device comprising same
WO2016010085A1 (en) Separator for power storage device, and power storage device using same
JP6339869B2 (en) Capacitor separator
EP3447779A1 (en) Separator for electrochemical element and electrochemical element
JP6836509B2 (en) Separator for electrochemical element and electrochemical element
RU2698471C2 (en) Accumulator separator and aluminium electrolytic capacitor
KR101827617B1 (en) Separator for electric double layer capacitors, and electric double layer capacitor
KR20180059449A (en) Separator and electrochemical device for electrochemical device
WO2016143378A1 (en) Separator for electricity storage devices and electricity storage device using said separator
JP2014056953A (en) Separator for capacitor and capacitor
JP2010239094A (en) Separator for electrolytic capacitor, and electrolytic capacitor
JP2016171048A (en) Lithium ion secondary battery separator and lithium ion secondary battery arranged by use thereof
JP2021057486A (en) Separator for electric double layer capacitor
JP7309650B2 (en) Separator for electrochemical device
JP5594845B2 (en) Electrochemical element separator
JP2011187515A (en) Separator for electrochemical element, and the electrochemical element using the same
JP2015061036A (en) Separator for capacitor
JP2020088024A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof
JP6581512B2 (en) Separator for lithium ion secondary battery
JP2004207333A (en) Separator and wound type electric double-layered capacitor using the same
JP2014036075A (en) Separator for electrolytic capacitor and electrolytic capacitor
JP2011134930A (en) Non-electric double layer type capacitor
JP2017168550A (en) Capacitor separator and capacitor using the same
JP2015060930A (en) Separator for capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221220