JP2021056983A - 車両can bus信号を利用した機械学習基盤運転者異常感知方法および装置 - Google Patents
車両can bus信号を利用した機械学習基盤運転者異常感知方法および装置 Download PDFInfo
- Publication number
- JP2021056983A JP2021056983A JP2019207860A JP2019207860A JP2021056983A JP 2021056983 A JP2021056983 A JP 2021056983A JP 2019207860 A JP2019207860 A JP 2019207860A JP 2019207860 A JP2019207860 A JP 2019207860A JP 2021056983 A JP2021056983 A JP 2021056983A
- Authority
- JP
- Japan
- Prior art keywords
- driver
- abnormality
- time
- detecting
- anomaly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000010801 machine learning Methods 0.000 title description 6
- 239000013598 vector Substances 0.000 claims abstract description 65
- 238000001514 detection method Methods 0.000 claims abstract description 45
- 230000001788 irregular Effects 0.000 claims description 41
- 230000002547 anomalous effect Effects 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 11
- 230000015654 memory Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 abstract description 6
- 238000012706 support-vector machine Methods 0.000 description 23
- 238000013528 artificial neural network Methods 0.000 description 11
- 230000000306 recurrent effect Effects 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 10
- 230000006403 short-term memory Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000013135 deep learning Methods 0.000 description 7
- 238000007637 random forest analysis Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013136 deep learning model Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000007787 long-term memory Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011365 complex material Substances 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/40169—Flexible bus arrangements
- H04L12/40176—Flexible bus arrangements involving redundancy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/023—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
- B60R16/0231—Circuits relating to the driving or the functioning of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W40/09—Driving style or behaviour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2433—Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/59—Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
- G06V20/597—Recognising the driver's state or behaviour, e.g. attention or drowsiness
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/40052—High-speed IEEE 1394 serial bus
- H04L12/40071—Packet processing; Packet format
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L2012/40208—Bus networks characterized by the use of a particular bus standard
- H04L2012/40215—Controller Area Network CAN
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L2012/40267—Bus for use in transportation systems
- H04L2012/40273—Bus for use in transportation systems the transportation system being a vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Medical Informatics (AREA)
- Debugging And Monitoring (AREA)
- Emergency Alarm Devices (AREA)
- Alarm Systems (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
1010 プロセッサ
1020 メモリ
1030 送受信装置
1040 入力インタフェース装置
1050 出力インタフェース装置
1060 保存装置
1100 カンバス信号
1200 オートエンコーダ部
Claims (14)
- 車両の電子制御装置と通信するカンバスネットワークに基づいて運転者の異常を感知する方法において、
前記カンバスネットワークから車両の運行と関連したカンバス信号を獲得する段階;
オートエンコーダを利用して前記カンバス信号から感知ベクターを抽出する段階;および
前記感知ベクターに基づいて運転者の異常を感知する段階を含む、運転者異常感知方法。 - 前記感知ベクターは、
前記オートエンコーダを利用してカンバス信号のそれぞれに対して算出された平均自乗誤差値(MSE)を活用して抽出される、請求項1に記載の運転者異常感知方法。 - 前記平均自乗誤差値(MSE)は、
前記オートエンコーダを構成する媒介変数を調整して最小化される、請求項2に記載の運転者異常感知方法。 - 前記感知ベクターに基づいて運転者の異常を感知する段階は、
教師なし学習に基づいた異常探知モデルを通じて運転者の異常を感知する段階を含む、請求項1に記載の運転者異常感知方法。 - 教師なし学習に基づいた異常探知モデルを通じて運転者の異常を感知する段階は、
一定時間の間変則点数を抽出して運転者の異常を感知する段階を含む、請求項4に記載の運転者異常感知方法。 - 一定時間の間変則点数を抽出して運転者の異常を感知する段階は、
前記一定時間の間前記変則点数が運転者の異常と関連した第1臨界値を超過する回数に基づいて運転者の異常を感知する段階を含む、請求項5に記載の運転者異常感知方法。 - 一定時間の間変則点数(Anomaly Score)を抽出して運転者の異常を感知する段階は、
前記一定時間の間運転者の異常と関連した第2臨界値を超過する変則点数の時間による変化量を測定して運転者の異常を感知する段階を含む、請求項5に記載の運転者異常感知方法。 - 車両の電子制御装置と通信するカンバスネットワークに基づいて運転者の異常を感知する装置において、
プロセッサ;および
前記プロセッサを通じて実行される少なくとも一つの命令を保存するメモリを含み、
前記少なくとも一つの命令は、
前記カンバスネットワークから車両の運行と関連したカンバス信号を獲得するようにする命令;
オートエンコーダを利用して前記カンバス信号から感知ベクターを抽出するようにする命令;および
前記感知ベクターに基づいて運転者の異常を感知するようにする命令を含む、運転者異常感知装置。 - 前記感知ベクターは、
前記オートエンコーダを利用してカンバス信号のそれぞれに対して算出された平均自乗誤差値(MSE)を活用して抽出される、請求項8に記載の運転者異常感知装置。 - 前記平均自乗誤差値(MSE)は、
前記オートエンコーダを構成する媒介変数を調整して最小化される、請求項9に記載の運転者異常感知装置。 - 前記感知ベクターに基づいて運転者の異常を感知するようにする命令は、
教師なし学習に基づいた異常探知モデルを通じて運転者の異常を感知するようにする命令を含む、請求項8に記載の運転者異常感知装置。 - 教師なし学習に基づいた異常探知モデルを通じて運転者の異常を感知するようにする命令は、
一定時間の間変則点数を抽出して運転者の異常を感知するようにする命令を含む、請求項11に記載の運転者異常感知装置。 - 一定時間の間変則点数を抽出して運転者の異常を感知するようにする命令は、
前記一定時間の間前記変則点数が運転者の異常と関連した第1臨界値を超過する回数に基づいて運転者の異常を感知するようにする命令を含む、請求項12に記載の運転者異常感知装置。 - 一定時間の間変則点数を抽出して運転者の異常を感知するようにする命令は、
前記一定時間の間運転者の異常と関連した第2臨界値を超過する変則点数の時間による変化量を測定して運転者の異常を感知するようにする命令を含む、請求項12に記載の運転者異常感知装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0118628 | 2019-09-26 | ||
KR20190118628 | 2019-09-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021056983A true JP2021056983A (ja) | 2021-04-08 |
JP7212607B2 JP7212607B2 (ja) | 2023-01-25 |
Family
ID=75163582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019207860A Active JP7212607B2 (ja) | 2019-09-26 | 2019-11-18 | 車両can bus信号を利用した機械学習基盤運転者異常感知方法および装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11529960B2 (ja) |
JP (1) | JP7212607B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210073883A (ko) * | 2019-12-11 | 2021-06-21 | 현대자동차주식회사 | 양방향 차량상태정보 제공이 가능한 정보공유 플랫폼, 이를 갖는 시스템, 그리고 이의 방법 |
US11973769B1 (en) * | 2020-02-11 | 2024-04-30 | Bae Systems Information And Electronic Systems Integration Inc. | Auto-encoders for anomaly detection in a controller area network (CAN) |
US11820387B2 (en) * | 2021-05-10 | 2023-11-21 | Qualcomm Incorporated | Detecting driving behavior of vehicles |
US11851070B1 (en) * | 2021-07-13 | 2023-12-26 | Lytx, Inc. | Driver identification using geospatial information |
CN113992533B (zh) * | 2021-12-29 | 2022-03-22 | 湖南大学 | 一种车载can总线数据异常检测识别方法 |
CN115964676A (zh) * | 2022-12-30 | 2023-04-14 | 长安大学 | 一种无监督自动驾驶汽车故障检测方法及系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019049778A (ja) * | 2017-09-07 | 2019-03-28 | 日本電信電話株式会社 | 検知装置、検知方法及び検知プログラム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61164042A (ja) * | 1985-01-16 | 1986-07-24 | Nissan Motor Co Ltd | タ−ボチヤ−ジヤの過給圧制御装置 |
US7744099B2 (en) * | 2004-11-04 | 2010-06-29 | Driveright Holdings, Ltd. | Method and system for adjusting a vehicle aligned with an artificial horizon |
US8306931B1 (en) * | 2009-08-06 | 2012-11-06 | Data Fusion & Neural Networks, LLC | Detecting, classifying, and tracking abnormal data in a data stream |
CN105139070B (zh) * | 2015-08-27 | 2018-02-02 | 南京信息工程大学 | 基于人工神经网络和证据理论的疲劳驾驶评价方法 |
US10358143B2 (en) * | 2015-09-01 | 2019-07-23 | Ford Global Technologies, Llc | Aberrant driver classification and reporting |
US9925987B1 (en) * | 2015-12-11 | 2018-03-27 | Lytx, Inc. | Driving abnormality detection |
US10275955B2 (en) * | 2016-03-25 | 2019-04-30 | Qualcomm Incorporated | Methods and systems for utilizing information collected from multiple sensors to protect a vehicle from malware and attacks |
US10012993B1 (en) * | 2016-12-09 | 2018-07-03 | Zendrive, Inc. | Method and system for risk modeling in autonomous vehicles |
US10308242B2 (en) * | 2017-07-01 | 2019-06-04 | TuSimple | System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles |
JP6985203B2 (ja) * | 2018-04-05 | 2021-12-22 | トヨタ自動車株式会社 | 挙動予測装置 |
CN108710865B (zh) * | 2018-05-28 | 2022-04-22 | 电子科技大学 | 一种基于神经网络的司机异常行为检测方法 |
CN109034134A (zh) * | 2018-09-03 | 2018-12-18 | 深圳市尼欧科技有限公司 | 基于多任务深度卷积神经网络的异常驾驶行为检测方法 |
CN109726771B (zh) * | 2019-02-27 | 2023-05-02 | 锦图计算技术(深圳)有限公司 | 异常驾驶检测模型建立方法、装置及存储介质 |
CN110334592A (zh) * | 2019-05-27 | 2019-10-15 | 天津科技大学 | 一种司机异常行为监测和安全保障系统及其方法 |
-
2019
- 2019-11-18 JP JP2019207860A patent/JP7212607B2/ja active Active
- 2019-11-20 US US16/690,070 patent/US11529960B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019049778A (ja) * | 2017-09-07 | 2019-03-28 | 日本電信電話株式会社 | 検知装置、検知方法及び検知プログラム |
Non-Patent Citations (3)
Title |
---|
VIDYASAGAR SADHU, ET AL.: ""Deep Multi-Task Learning for Anomalous Driving Detection Using CAN Bus Scalar Sensor Data"", ARXIV:1907.00749V1, vol. version v1, JPN6021001017, 28 June 2019 (2019-06-28), pages 1 - 8, ISSN: 0004745800 * |
工藤郁弥(外3名): "「畳み込みオートエンコーダを用いた工業製品の不良検査」", 電子情報通信学会技術研究報告, vol. 118, no. 492, JPN6021001018, 4 March 2019 (2019-03-04), JP, pages 31 - 36, ISSN: 0004745801 * |
森本哲郎(外4名): "「運転者の疲労度への自動車運転状態の影響を発見するための時系列データの分析」", DEIM FORUM 2016論文集, vol. 論文番号: H8-1, JPN6021001016, 31 March 2016 (2016-03-31), pages 1 - 5, ISSN: 0004745799 * |
Also Published As
Publication number | Publication date |
---|---|
US11529960B2 (en) | 2022-12-20 |
US20210094553A1 (en) | 2021-04-01 |
JP7212607B2 (ja) | 2023-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021056983A (ja) | 車両can bus信号を利用した機械学習基盤運転者異常感知方法および装置 | |
EP3755597B1 (en) | Method for distress and road rage detection | |
JP4825132B2 (ja) | 車両の運転者による不注意を識別する方法及びコンピュータプログラム | |
US7912796B2 (en) | System and method for real-time recognition of driving patterns | |
US20190370580A1 (en) | Driver monitoring apparatus, driver monitoring method, learning apparatus, and learning method | |
US7394393B2 (en) | Adaptive driver workload estimator | |
JP2009262702A (ja) | 安全運転支援システム | |
King et al. | Early driver fatigue detection from electroencephalography signals using artificial neural networks | |
CN107848478A (zh) | 低速碰撞的自动识别和评估 | |
García et al. | Vision-based drowsiness detector for a realistic driving simulator | |
KR101276770B1 (ko) | 사용자 적응형 특이행동 검출기반의 안전운전보조시스템 | |
US20090177602A1 (en) | Systems and methods for detecting unsafe conditions | |
Ma et al. | Real-time detection of abnormal driving behavior based on long short-term memory network and regression residuals | |
US9111400B2 (en) | System for detecting abnormal driving behavior | |
WO2008127465A1 (en) | Real-time driving danger level prediction | |
JP2009073465A (ja) | 安全運転支援システム | |
JP5005492B2 (ja) | 安全運転支援システム | |
CN109964184A (zh) | 通过比较过渡预测的自主车辆控制 | |
CN117975665A (zh) | 一种dms驾驶员疲劳等级识别系统 | |
Devi et al. | Logistic Multilayer Perceptron Neural Network Classification based Driving Behavior Prediction through Vehicle Motion Data | |
Kouchak et al. | Non-intrusive distraction pattern detection using behavior triangulation method | |
Butakov et al. | Driver/vehicle response diagnostic system for the vehicle-following case | |
Adarsh et al. | Drowsiness Detection System in Real Time Based on Behavioral Characteristics of Driver using Machine Learning Approach | |
Ansari et al. | Factors influencing driver behavior and advances in monitoring methods | |
Butakov et al. | Driver/vehicle response diagnostic system for vehicle following based on gaussian mixture model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210414 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211224 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20211224 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20220118 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220222 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220301 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20220408 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20220412 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220517 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220705 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221011 |
|
C302 | Record of communication |
Free format text: JAPANESE INTERMEDIATE CODE: C302 Effective date: 20221027 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20221101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221107 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20221115 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20221220 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20221220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7212607 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |