JP2021055986A - Heat exchanger and air conditioner including the same - Google Patents

Heat exchanger and air conditioner including the same Download PDF

Info

Publication number
JP2021055986A
JP2021055986A JP2020124428A JP2020124428A JP2021055986A JP 2021055986 A JP2021055986 A JP 2021055986A JP 2020124428 A JP2020124428 A JP 2020124428A JP 2020124428 A JP2020124428 A JP 2020124428A JP 2021055986 A JP2021055986 A JP 2021055986A
Authority
JP
Japan
Prior art keywords
rib
flat
heat exchanger
fin
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020124428A
Other languages
Japanese (ja)
Other versions
JP7209670B2 (en
Inventor
光佑 熊本
Kosuke KUMAMOTO
光佑 熊本
高藤 亮一
Ryoichi Takato
亮一 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Publication of JP2021055986A publication Critical patent/JP2021055986A/en
Application granted granted Critical
Publication of JP7209670B2 publication Critical patent/JP7209670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a heat exchanger capable of improving rigidity to insertion stress in inserting heat transfer tubes to insertion portions of a fin, and rigidity to thermal stress of the fin in brazing.SOLUTION: A heat exchanger includes a plurality of flat heat transfer tubes, and a fin 1, and the heat transfer tubes are arranged in a manner that flat portions are opposed to each other. The fin 1 has: an air flow upstream end and an air flow downstream end in an air flowing direction; insertion portions 7 formed from an air flow downstream end side to insert the heat transfer tubes; flat portions 1c respectively formed between the adjacent insertion portions 7; first ribs 3 formed in a manner of projecting from the flat portions 1c along a longitudinal direction of the insertion portions 7; second ribs 4 formed at an upper part of the insertion portions 7 in a manner of projecting from the flat portions 1c at the air flow downstream end side along a direction orthogonal to the longitudinal direction of the insertion portions 7; and L-shaped condensate water flow channels L1 respectively formed by making a rising end line at an insertion portion side of the first rib 3 and a rising end line at the air flow downstream end side of the second rib 4 intersect each other on their extension lines.SELECTED DRAWING: Figure 3B

Description

本発明は、熱交換器およびこれを備えた空気調和機に関する。 The present invention relates to a heat exchanger and an air conditioner including the heat exchanger.

空気調和機の熱交換器の製造工程において、伝熱管とフィンをろう付けする際に、それぞれ熱により軟化し、さらに熱膨張する。そのため、フィンの熱応力に対する剛性が低いと、フィンの変形により伝熱管とのろう付け部に隙間が生じ、ろう付け率(ろう付け強度、ろう付け面積)が低下する。これは、熱交換器性能の低下につながる。 In the manufacturing process of the heat exchanger of the air conditioner, when the heat transfer tube and the fins are brazed, they are softened by heat and further thermally expanded. Therefore, if the rigidity of the fin against thermal stress is low, a gap is generated in the brazed portion with the heat transfer tube due to the deformation of the fin, and the brazing rate (brazing strength, brazing area) decreases. This leads to a decrease in heat exchanger performance.

特許文献1の熱交換器は、空気と熱交換をするための冷媒が内部を流れる扁平状の複数の伝熱管と、複数の前記伝熱管の間において熱交換面を有するフィンと、を備え、複数の前記伝熱管は、当該伝熱管の扁平部が対向するように並べて配置され、前記フィンは、気流方向における一端および他端と、前記扁平部の鉛直上方に形成される第1リブを有し、前記第1リブは、前記扁平部に沿って延伸する延伸部(3a)と、前記延伸部から前記一端側の方向に前記扁平部との距離が徐々に大きくなる拡大部(3b)と、前記拡大部から前記一端側の方向に徐々に前記扁平部との距離が小さくなる縮小部(3c)を有する。この構成により扁平管上部に滞留した水を迅速に排出し、通風抵抗を低減することができる。 The heat exchanger of Patent Document 1 includes a plurality of flat heat transfer tubes through which a refrigerant for heat exchange with air flows, and fins having a heat exchange surface between the plurality of heat transfer tubes. The plurality of heat transfer tubes are arranged side by side so that the flat portions of the heat transfer tubes face each other, and the fins have one end and the other end in the airflow direction and a first rib formed vertically above the flat portion. The first rib is formed by a stretched portion (3a) extending along the flat portion and an enlarged portion (3b) in which the distance from the stretched portion to the flat portion gradually increases in the direction toward one end. It has a reduced portion (3c) in which the distance from the enlarged portion to the flat portion gradually decreases in the direction toward one end. With this configuration, the water accumulated in the upper part of the flat pipe can be quickly discharged, and the ventilation resistance can be reduced.

また、特許文献1には、第3の実施形態として、第2リブ4を、第1リブ3の上方に、フィン12の気流方向後方から第1リブ3の拡大部3bに向かって延伸するように設けることで、上方から落下してくる水滴214を第1リブ3の拡大部3bの上方に移動させることができて、より一層効率よく排水することを可能とすることが開示されている。 Further, in Patent Document 1, as a third embodiment, the second rib 4 is extended above the first rib 3 from the rear of the fin 12 in the airflow direction toward the enlarged portion 3b of the first rib 3. It is disclosed that the water droplet 214 falling from above can be moved above the enlarged portion 3b of the first rib 3 and can be drained more efficiently.

特許第6466631号公報Japanese Patent No. 6466631

特許文献1によると、排水性を考慮して、伝熱管の挿入部の周辺、あるいは風下方向の偏在した位置にリブを設ける。このため、フィンの平面部において、リブの無い領域も大きくなりやすい。このため、リブが無い領域では、各種の応力に対する剛性が低いという課題がある。
例えば、フィンの挿入部に扁平の伝熱管を挿入して取り付けるときに、フィンの厚みが薄く、かつフィン平面部の面積が広いとその剛性が低くなるため、フィンが変形したり折れ易くなるという課題がある。
また、フィン平面部である伝熱部が風上側で支える片持ち構造である場合に、特許文献1のような蛇型ビードである第1リブ3のみが設けられていると、熱交換器とのろう付け時にフィン自身や扁平の伝熱管が熱膨張することで発生する熱応力(例えば、隣り合う扁平の伝熱管で挟まれたフィン平面部が弓なり変形する応力)に耐え切れず、フィン平面部が変形してしまう。その変形量は、風下側ほど大きくなることで、フィンと扁平の伝熱管との接合率(取り付け時点の接合率および接合耐久性)も低くなるという課題がある。
According to Patent Document 1, in consideration of drainage, ribs are provided around the insertion portion of the heat transfer tube or at an unevenly distributed position in the leeward direction. Therefore, in the flat surface portion of the fin, the region without ribs tends to be large. Therefore, there is a problem that the rigidity against various stresses is low in the region without ribs.
For example, when a flat heat transfer tube is inserted into the fin insertion portion and attached, if the fin is thin and the area of the fin flat surface is large, the rigidity is low, so that the fin is easily deformed or broken. There are challenges.
Further, when the heat transfer portion which is the fin flat portion has a cantilever structure supported on the wind side, if only the first rib 3 which is a serpentine bead as in Patent Document 1 is provided, the heat exchanger and the heat exchanger The fin plane cannot withstand the thermal stress generated by the thermal expansion of the fin itself and the flat heat transfer tube during brazing (for example, the stress that the fin flat surface sandwiched between adjacent flat heat transfer tubes bows and deforms). The part is deformed. As the amount of deformation increases toward the leeward side, there is a problem that the bonding rate between the fin and the flat heat transfer tube (bonding rate at the time of attachment and bonding durability) also decreases.

本発明では、フィンの挿入部への伝熱管を挿入するときの挿入応力に対する剛性と、かつ、ろう付けするときのフィンの熱応力に対する剛性とを向上できる、フィン構造を有する熱交換器を提供する。
また、その熱交換器を備えた空気調和機を提供する。
The present invention provides a heat exchanger having a fin structure capable of improving the rigidity against the insertion stress when inserting the heat transfer tube into the insertion portion of the fin and the rigidity against the thermal stress of the fin when brazing. To do.
It also provides an air conditioner equipped with the heat exchanger.

本発明の熱交換器は、
空気と熱交換をするための冷媒が内部を流れる扁平状の複数の伝熱管と、
複数の前記伝熱管の間において熱交換面を有するフィンと、を備え、
複数の前記伝熱管は、当該伝熱管の扁平部が対向するように並べて配置され、
前記フィンは、
気流方向における気流上流端(風上端)および気流下流端(風下端)と、
前記気流下流端側から形成され、前記伝熱管が配置される挿入部と、
隣り合う前記挿入部の間に形成される平面部と、
前記挿入部の上方に、前記挿入部の長手方向に沿って、前記平面部から突出して形成される第一リブ(蛇型ビード)と、
前記挿入部の上方に、前記挿入部の長手方向と直交する方向に沿って、前記気流下流端側の前記平面部から突出して形成される第二リブ(縦型ビード)と、
前記第一リブの前記挿入部側の立ち上がり端ラインと、前記第二リブの前記気流下流端側の立上がり端ラインとが、それらの延長線上で交差(直交または実質的に直交する交差も含む)または連結されることで形成される、L字状の凝縮水(結露水)の流路と、
を有する。
The heat exchanger of the present invention
Multiple flat heat transfer tubes through which the refrigerant for heat exchange with air flows inside,
A fin having a heat exchange surface between the plurality of heat transfer tubes is provided.
The plurality of heat transfer tubes are arranged side by side so that the flat portions of the heat transfer tubes face each other.
The fins
The upstream end of the airflow (upper end of the wind) and the downstream end of the airflow (lower end of the wind) in the direction of the airflow,
An insertion portion formed from the downstream end side of the air flow and in which the heat transfer tube is arranged,
A flat surface portion formed between the adjacent insertion portions and
A first rib (snake-shaped bead) formed above the insertion portion along the longitudinal direction of the insertion portion so as to project from the flat surface portion.
A second rib (vertical bead) formed above the insertion portion along a direction orthogonal to the longitudinal direction of the insertion portion so as to project from the plane portion on the downstream end side of the air flow.
The rising end line on the insertion portion side of the first rib and the rising end line on the downstream end side of the air flow of the second rib intersect on their extension lines (including intersections orthogonal or substantially orthogonal to each other). Or the flow path of L-shaped condensed water (condensed water) formed by connecting,
Have.

本発明によれば、フィンの挿入部への伝熱管を挿入するときの挿入応力に対する剛性を向上できる。
また、ろう付けするときのフィンの熱応力に対する剛性を向上できる、
また、第二ビード(縦型ビード)により、伝熱部の風下側の熱応力に対する剛性が向上し、結果、接合率が向上する。さらに、第二ビードは、風下側に生じた凝縮水(結露水)を重力方向へ流すガイドとなり、結果、排水性が向上する。
According to the present invention, it is possible to improve the rigidity against the insertion stress when the heat transfer tube is inserted into the insertion portion of the fin.
In addition, the rigidity of the fins against thermal stress during brazing can be improved.
Further, the second bead (vertical bead) improves the rigidity of the heat transfer portion on the leeward side against thermal stress, and as a result, the bonding ratio is improved. Further, the second bead serves as a guide for flowing the condensed water (condensed water) generated on the leeward side in the direction of gravity, and as a result, the drainage property is improved.

実施形態1に係る熱交換機を備える空気調和機の概略図である。It is the schematic of the air conditioner provided with the heat exchanger which concerns on Embodiment 1. FIG. 実施形態1に係る空気調和機の熱交換器の外観を示す斜視図である。It is a perspective view which shows the appearance of the heat exchanger of the air conditioner which concerns on Embodiment 1. FIG. 実施形態1に係るフィンの形状を説明するための図である。It is a figure for demonstrating the shape of the fin which concerns on Embodiment 1. FIG. 実施形態1に係るフィンの形状の平面図である。It is a top view of the shape of the fin which concerns on Embodiment 1. FIG. 実施形態1に係るフィンの多段配置状態を説明するための図である。It is a figure for demonstrating the multi-stage arrangement state of fins which concerns on Embodiment 1. FIG. 実施形態2に係るフィンの形状の平面図である。It is a top view of the shape of the fin which concerns on Embodiment 2. FIG. 実施形態3に係るフィンの形状の平面図である。It is a top view of the shape of the fin which concerns on embodiment 3. 実施形態4に係るフィンの形状の平面図である。It is a top view of the shape of the fin which concerns on Embodiment 4. FIG. 実施形態5に係るフィンの形状の平面図である。It is a top view of the shape of the fin which concerns on embodiment 5. 実施形態6に係るフィンの形状の平面図である。It is a top view of the shape of the fin which concerns on Embodiment 6. 実施形態7に係るフィンの形状の平面図である。It is a top view of the shape of the fin which concerns on Embodiment 7. 実施形態8に係るフィンの形状の平面図である。It is a top view of the shape of the fin which concerns on embodiment 8. 実施形態9に係るフィンの形状の平面図である。FIG. 5 is a plan view of the shape of the fin according to the ninth embodiment.

以下、本発明の実施形態について図面を参照して詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る空気調和機の冷凍サイクルの構成図である。
図1に示すように、空気調和機100は、熱源側で室外(非空調空間)に設置される室外機101と、利用側で室内(空調空間)に設置される室内機108とから構成され、接続配管112a,112bによって接続されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same reference numerals are given to common parts in each figure, and duplicate description is omitted.
(First Embodiment)
FIG. 1 is a block diagram of a refrigeration cycle of an air conditioner according to the first embodiment of the present invention.
As shown in FIG. 1, the air conditioner 100 is composed of an outdoor unit 101 installed outdoors (non-air-conditioned space) on the heat source side and an indoor unit 108 installed indoors (air-conditioned space) on the user side. , Connected by connecting pipes 112a, 112b.

(空気調和機100)
室外機101は、圧縮機102と、四方弁103と、室外熱交換器104と、室外ファンモータ105と、室外ファン106と、絞り装置107を備え、室内機108は、室内熱交換器109と、室内ファンモータ110と、室内ファン111を備えている。
(Air conditioner 100)
The outdoor unit 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, an outdoor fan motor 105, an outdoor fan 106, and a throttle device 107, and the indoor unit 108 includes an indoor heat exchanger 109. , The indoor fan motor 110 and the indoor fan 111 are provided.

冷房運転中の動作を例に、空気調和機100の各要素の作用を説明する。
冷房運転時には、冷媒は図1中の実線矢印の向きに流れる。まず、圧縮機102から吐出された高温・高圧のガス冷媒は、四方弁103を経由したのちに室外熱交換器104に流れ、室外熱交換器104で外気に放熱することで凝縮し、高圧の液冷媒となる。この液冷媒は、絞り装置107の作用で減圧され、低温低圧の気液二相状態となり、接続配管112aを通じて室内機108へ流れる。室内機108に入った気液二相冷媒は、室内熱交換器109で室内空気の熱を吸熱することで蒸発し、これにより室内冷房が実現される。室内機108で蒸発したガス冷媒は、接続配管112bを通じて、室外機101へ戻り、四方弁103を通って再び圧縮機102で圧縮されることになる。これが冷房運転中の冷凍サイクルである。
The operation of each element of the air conditioner 100 will be described by taking the operation during the cooling operation as an example.
During the cooling operation, the refrigerant flows in the direction of the solid arrow in FIG. First, the high-temperature, high-pressure gas refrigerant discharged from the compressor 102 flows to the outdoor heat exchanger 104 after passing through the four-way valve 103, and is condensed by dissipating heat to the outside air in the outdoor heat exchanger 104, resulting in high pressure. It becomes a liquid refrigerant. This liquid refrigerant is depressurized by the action of the throttle device 107, becomes a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 108 through the connection pipe 112a. The gas-liquid two-phase refrigerant contained in the indoor unit 108 evaporates by absorbing the heat of the indoor air in the indoor heat exchanger 109, whereby indoor cooling is realized. The gas refrigerant evaporated in the indoor unit 108 returns to the outdoor unit 101 through the connecting pipe 112b, and is compressed again by the compressor 102 through the four-way valve 103. This is the refrigeration cycle during cooling operation.

暖房運転時は、四方弁103により冷媒流路が切り替えられ、図1中の破線矢印の方向に冷媒が流れる。まず、圧縮機102から吐出された高温・高圧のガス冷媒は、四方弁103および接続配管112bを通って室内機108に流れる。室内機108に入った高温のガス冷媒は、室内熱交換器109で室内空気に放熱することで室内暖房が実現される。このとき、ガス冷媒は凝縮し、高圧の液冷媒となる。その後、高圧の液冷媒は、接続配管112aを通って室外機101に流れる。室外機101に入った高圧の液冷媒は、絞り装置107の作用で減圧され、低温低圧の気液二相状態となり、室外熱交換器104に流れ、室外空気の熱を吸熱することで蒸発し、ガス冷媒となる。このガス冷媒は、四方弁103を通った後、圧縮機102で再び圧縮される。これが暖房運転中の冷凍サイクルである。
このように、室外熱交換器104、及び、室内熱交換器109内の冷媒の流れの向きは、冷房運転時と暖房運転時で逆向きになる。なお、冷媒としてはR32を用いているが、R410A等の別の冷媒を用いてもよい。
During the heating operation, the four-way valve 103 switches the refrigerant flow path, and the refrigerant flows in the direction of the broken line arrow in FIG. First, the high-temperature, high-pressure gas refrigerant discharged from the compressor 102 flows to the indoor unit 108 through the four-way valve 103 and the connecting pipe 112b. The high-temperature gas refrigerant that has entered the indoor unit 108 is dissipated to the indoor air by the indoor heat exchanger 109 to realize indoor heating. At this time, the gas refrigerant condenses and becomes a high-pressure liquid refrigerant. After that, the high-pressure liquid refrigerant flows to the outdoor unit 101 through the connection pipe 112a. The high-pressure liquid refrigerant that has entered the outdoor unit 101 is depressurized by the action of the throttle device 107, becomes a low-temperature low-pressure gas-liquid two-phase state, flows to the outdoor heat exchanger 104, and evaporates by absorbing the heat of the outdoor air. , Becomes a gas refrigerant. This gas refrigerant passes through the four-way valve 103 and is then compressed again by the compressor 102. This is the refrigeration cycle during heating operation.
As described above, the directions of the refrigerant flows in the outdoor heat exchanger 104 and the indoor heat exchanger 109 are opposite in the cooling operation and the heating operation. Although R32 is used as the refrigerant, another refrigerant such as R410A may be used.

(熱交換器10)
図2は、空気調和機100の熱交換器10の外観を示す斜視図であり、パラレルフロー型熱交換器を蒸発器として用いた場合の例である。
熱交換器10は、図1に示す空気調和機100の室外熱交換器104や室内熱交換器109に対応する。
図2に示すように、熱交換器10は、冷媒を分配する図中左側の流入側ヘッダと冷媒を合流させる図中右側の流出側ヘッダからなる二本のヘッダ50と、これらのヘッダ50間を接続するとともに、空気と熱交換をするための冷媒が内部を流れる複数の扁平管2(伝熱管)と、扁平管2にロウ付けされその伝熱面積を拡大する複数のフィン1と、を備える。
(Heat exchanger 10)
FIG. 2 is a perspective view showing the appearance of the heat exchanger 10 of the air conditioner 100, and is an example when a parallel flow type heat exchanger is used as an evaporator.
The heat exchanger 10 corresponds to the outdoor heat exchanger 104 and the indoor heat exchanger 109 of the air conditioner 100 shown in FIG.
As shown in FIG. 2, the heat exchanger 10 has two headers 50 composed of an inflow side header on the left side in the figure for distributing the refrigerant and an outflow side header on the right side in the figure for merging the refrigerant, and between these headers 50. A plurality of flat tubes 2 (heat transfer tubes) through which a refrigerant for heat exchange with air flows, and a plurality of fins 1 brazed to the flat tubes 2 to expand the heat transfer area. Be prepared.

図2に示すように、冷媒の流れ方向(破線矢印参照)と、空気の流れ方向(白抜き矢印参照)とは直交しており、扁平管2内を流れる冷媒と扁平管2間を流れる空気が、フィン1を介して熱交換することで、効率の良い熱交換が実現される。 As shown in FIG. 2, the flow direction of the refrigerant (see the broken line arrow) and the flow direction of the air (see the white arrow) are orthogonal to each other, and the refrigerant flowing in the flat pipe 2 and the air flowing between the flat pipes 2 However, efficient heat exchange is realized by heat exchange via the fin 1.

図A3は、熱交換器10の扁平管2にロウ付けされたフィン1の要部を示す斜視図である。
複数の扁平管2は、扁平管2の扁平部2cが対向するように並べて配置される。
図3Aおよび図3Bに示すように、フィン1は、平板状で、かつ扁平管2が挿入される挿入部7を有し、扁平管2は、扁平管2の延伸方向に並べて複数配置され、扁平管2は挿入部7に挿し込まれることによって構成される。
FIG. A3 is a perspective view showing a main part of the fin 1 brazed to the flat tube 2 of the heat exchanger 10.
The plurality of flat tubes 2 are arranged side by side so that the flat portions 2c of the flat tubes 2 face each other.
As shown in FIGS. 3A and 3B, the fin 1 has a flat plate shape and has an insertion portion 7 into which the flat tube 2 is inserted, and a plurality of flat tubes 2 are arranged side by side in the extending direction of the flat tube 2. The flat tube 2 is configured by being inserted into the insertion portion 7.

図3A〜図3Bに示すように、フィン1は、気流方向における縁部である一端部(フィン前縁)1aおよび他端部1bと、扁平管2に挟まれたフィン1の平面部1cと、扁平管2の扁平部2cの鉛直上方に形成される第1リブ3、第二リブ4、第三リブ5を有する。また、フィン1の一端部1a側に、フィン1の長手方向に沿って、長尺のリブ9が形成されている。第一リブ3は蛇型ビードと称されることがある。第二リブ4は縦桁ビードと称されることがある。一端部1aは気流上流端に相当し、他端部1bは気流下流端に相当する。 As shown in FIGS. 3A to 3B, the fin 1 includes one end (front edge of the fin) 1a and the other end 1b, which are edges in the airflow direction, and a flat surface portion 1c of the fin 1 sandwiched between the flat tubes 2. It has a first rib 3, a second rib 4, and a third rib 5 formed vertically above the flat portion 2c of the flat tube 2. Further, a long rib 9 is formed on one end portion 1a side of the fin 1 along the longitudinal direction of the fin 1. The first rib 3 is sometimes referred to as a serpentine bead. The second rib 4 is sometimes referred to as a vertical girder bead. One end 1a corresponds to the upstream end of the airflow, and the other end 1b corresponds to the downstream end of the airflow.

第一リブ3は、扁平管2の扁平部2cに沿って延伸する延伸部3aと、延伸部3aから一端部1a側の方向に扁平部2cとの距離が徐々に大きくなる拡大部3bと、拡大部3bから一端部1a側の方向に徐々に扁平部2cとの距離が小さくなる縮小部3cと、を有する。延伸部3aは、扁平管後縁2b付近の上方まで延伸させて構成されている。縮小部3cは、扁平管2の扁平部2cとなす所定の角度で徐々に縮小し、扁平管前縁2a付近の上方まで延伸する。 The first rib 3 includes a stretched portion 3a that extends along the flat portion 2c of the flat tube 2, and an enlarged portion 3b in which the distance between the stretched portion 3a and the flat portion 2c gradually increases in the direction toward one end portion 1a. It has a reduced portion 3c in which the distance from the enlarged portion 3b to the flat portion 2c gradually decreases in the direction toward one end portion 1a. The stretched portion 3a is configured to be stretched to the upper side near the trailing edge 2b of the flat tube. The reduced portion 3c is gradually reduced at a predetermined angle formed with the flat portion 2c of the flat tube 2 and extends upward near the front edge 2a of the flat tube.

第二リブ4は、扁平部2cおよび第一リブ3より鉛直上方であって他端部1b側に、挿入部7の長手方向と直交する方向に沿って直線状に形成されている。挿入部7が他端部1cを切り欠込むように形成され、伝達管2を片持ちする形態であるため、他端部1b側の平面部1cの熱変形が大きいことが予測される。第二リブ4によって、熱変形を低下させることができる。 The second rib 4 is formed vertically above the flat portion 2c and the first rib 3 and on the other end 1b side along a direction orthogonal to the longitudinal direction of the insertion portion 7. Since the insertion portion 7 is formed so as to cut out the other end portion 1c and cantilevers the transmission tube 2, it is expected that the thermal deformation of the flat surface portion 1c on the other end portion 1b side will be large. The second rib 4 can reduce thermal deformation.

第三リブ5は、扁平部2cおよび第一リブ3より鉛直上方に、扁平部2cに沿って直線状に延伸するように形成されている。 The third rib 5 is formed so as to extend linearly along the flat portion 2c vertically above the flat portion 2c and the first rib 3.

本実施形態において、第一、第二、第三リブ3、4、5の突出断面が円弧状で、突出高さが同じである。突出長手方向長さは異なるが、突出幅方向長さは同じである。 In the present embodiment, the protruding cross sections of the first, second, and third ribs 3, 4, and 5 are arcuate, and the protruding heights are the same. The length in the protruding longitudinal direction is different, but the length in the protruding width direction is the same.

図3Bに示すように、流路L1は、第一リブ3の挿入部7側の立ち上がり端ライン301と、第二リブ4の気流下流端側の立上がり端ライン401とが、それらの延長線上で交差(直交または実質的に直交する交差も含む)されることで形成される。流路L1は、外観がL字状であり、重力で落下する凝縮水(結露水)の流路として機能する。
図3Bでは、第二リブ4の気流下流端側の立上がり端ライン401が、その延長方向で、第一リブ3の気流下流端の先端に接する。流路L1の方向変換する箇所でもあり、凝縮水の流れを遮らないように流路L1が形成される。つまり、第二リブ4の気流下流端側の立上がり端ライン401が、その延長方向で、第一リブ3にぶつからないことが好ましい。
従って、本実施形態では、第二リブ4により、伝熱部の風下側の熱応力に対する剛性が向上し、結果、接合率が向上する。また、第二リブ4は、風下側に生じた凝縮水(結露水)を重力方向へ流すガイドとなり、結果、排水性が向上される。
As shown in FIG. 3B, in the flow path L1, the rising end line 301 on the insertion portion 7 side of the first rib 3 and the rising end line 401 on the downstream end side of the air flow of the second rib 4 are on their extension lines. It is formed by intersecting (including orthogonal or substantially orthogonal intersections). The flow path L1 has an L-shaped appearance and functions as a flow path for condensed water (condensed water) that falls due to gravity.
In FIG. 3B, the rising end line 401 on the downstream end side of the airflow of the second rib 4 contacts the tip of the downstream end of the airflow of the first rib 3 in the extending direction thereof. It is also a place where the direction of the flow path L1 is changed, and the flow path L1 is formed so as not to block the flow of the condensed water. That is, it is preferable that the rising end line 401 on the downstream end side of the airflow of the second rib 4 does not collide with the first rib 3 in the extending direction thereof.
Therefore, in the present embodiment, the second rib 4 improves the rigidity of the heat transfer portion on the leeward side against thermal stress, and as a result, the joining ratio is improved. Further, the second rib 4 serves as a guide for flowing the condensed water (condensed water) generated on the leeward side in the direction of gravity, and as a result, the drainage property is improved.

図3Cは、フィンの多段配置状態を示す。
フィン1の平面部1cにおいて、挿入部7の周辺部に段差部7aが形成される。この段差部7aからフィンカラー7bが立設される。挿入部7の周辺部(フィンカラーの根元部)を一段しぼりあげることで、さらに熱応力に対する剛性が向上させることができる。また、熱応力に対する剛性の向上だけでなく、伝熱管の挿入時に架かる応力に対する剛性も向上させることができる。
フィンカラー7bには、その先端から挿入部7から離れる方向に垂直に屈曲して延びる屈曲部7cが形成されている。本実施形態では屈曲部7cが4つ形成されているが、これに制限されない
フィン1が多段階に配置される際に、屈折部7cの平坦部は、段差部7aの窪み部(裏面)に当接する。これにより、隣り合うフィン1の間隔を一定にできる。
FIG. 3C shows a multi-stage arrangement of fins.
In the flat surface portion 1c of the fin 1, a stepped portion 7a is formed at the peripheral portion of the insertion portion 7. The fin collar 7b is erected from the step portion 7a. By squeezing the peripheral portion (the root portion of the fin collar) of the insertion portion 7 one step, the rigidity against thermal stress can be further improved. Further, not only the rigidity against thermal stress can be improved, but also the rigidity against stress applied when the heat transfer tube is inserted can be improved.
The fin collar 7b is formed with a bent portion 7c that bends and extends vertically from the tip thereof in a direction away from the insertion portion 7. In the present embodiment, four bent portions 7c are formed, but the present invention is not limited to this. When the fins 1 are arranged in multiple stages, the flat portion of the refracted portion 7c is formed in the recessed portion (back surface) of the stepped portion 7a. Contact. As a result, the distance between adjacent fins 1 can be made constant.

(実施形態2)
実施形態1において、平面部1cに第三リブ5が形成されていたが、第三リブ5が形成されていない構成でもよい。
図4に示す実施形態2では、第一、第二リブ3、4のみが形成されている。第二リブ4により、実施形態1と同様の作用効果を発揮する。
(Embodiment 2)
In the first embodiment, the third rib 5 is formed on the flat surface portion 1c, but the third rib 5 may not be formed.
In the second embodiment shown in FIG. 4, only the first and second ribs 3 and 4 are formed. The second rib 4 exerts the same effect as that of the first embodiment.

(実施形態3)
実施形態3のフィンの平面図を図5Aに示す。
第三リブ51は、第一リブ3の延伸部3aの上方に、かつ第二リブ4の縦方向と平行に直線状に延伸するように形成されている。
第四リブ52は、第一リブ3の拡大部3bの上方に、かつ第二リブ4の縦方向と平行に直線状に延伸するように形成されている。
第二リブ4、第三リブ51、第四リブ52のそれぞれの突出サイズは同じでもよく異なっていてもよい。
第二リブ4、第三リブ51、第四リブ52が、3列に配置されているが、その列間隔は同じでもよく異なっていてもよい。
(Embodiment 3)
A plan view of the fins of the third embodiment is shown in FIG. 5A.
The third rib 51 is formed so as to extend linearly above the extending portion 3a of the first rib 3 and parallel to the vertical direction of the second rib 4.
The fourth rib 52 is formed so as to extend linearly above the enlarged portion 3b of the first rib 3 and parallel to the vertical direction of the second rib 4.
The protrusion sizes of the second rib 4, the third rib 51, and the fourth rib 52 may be the same or different.
The second rib 4, the third rib 51, and the fourth rib 52 are arranged in three rows, but the row spacing may be the same or different.

(実施形態4)
実施形態4のフィンの平面図を図5Bに示す。実施形態3の図5Aで、第三リブ51と第四リブ52が形成されていたが、いずれか一方のみでもよい。
図5Bに示す実施形態4では、第三リブ51が省略され、第四リブ52が、延伸部3aと拡大部3bとの境界の上方に、かつ第二リブ4の縦方向と平行に直線状に延伸するように形成されている。
(Embodiment 4)
A plan view of the fins of the fourth embodiment is shown in FIG. 5B. In FIG. 5A of the third embodiment, the third rib 51 and the fourth rib 52 are formed, but only one of them may be used.
In the fourth embodiment shown in FIG. 5B, the third rib 51 is omitted, and the fourth rib 52 is linear above the boundary between the extending portion 3a and the expanding portion 3b and parallel to the vertical direction of the second rib 4. It is formed so as to extend to.

(実施形態5)
実施形態5のフィンの平面図を図5Cに示す。実施形態3の図5Aで、第三リブ51と第四リブ52が形成されていたが、いずれか一方のみでもよい。
図5Cに示す実施形態5では、第三リブ51が省略され、第四リブ52が、延伸部3aの一部と拡大部3bとに渡って上方に、矩形状に形成されている。
(Embodiment 5)
A plan view of the fins of the fifth embodiment is shown in FIG. 5C. In FIG. 5A of the third embodiment, the third rib 51 and the fourth rib 52 are formed, but only one of them may be used.
In the fifth embodiment shown in FIG. 5C, the third rib 51 is omitted, and the fourth rib 52 is formed in a rectangular shape upward over a part of the extending portion 3a and the enlarged portion 3b.

(実施形態6)
実施形態6のフィンの平面図を図5Dに示す。上記実施形態1〜5の第一リブと第二リブで形成される流路L1とは異なる構成である。
実施形態6の図5Dでは、第一リブ3の挿入部7側の立ち上がり端ライン301が、その延長方向で、第二リブ4の挿入部7側の先端に接する。流路L1の方向変換する箇所でもあり、凝縮水の流れを遮らないように流路L1が形成される。つまり、第一リブ3の挿入部7側の立ち上がり端ライン301が、その延長方向で、第二リブ4にぶつからないことが好ましい。
(Embodiment 6)
A plan view of the fins of the sixth embodiment is shown in FIG. 5D. The configuration is different from that of the flow path L1 formed by the first rib and the second rib of the first to fifth embodiments.
In FIG. 5D of the sixth embodiment, the rising end line 301 of the first rib 3 on the insertion portion 7 side comes into contact with the tip of the second rib 4 on the insertion portion 7 side in the extending direction thereof. It is also a place where the direction of the flow path L1 is changed, and the flow path L1 is formed so as not to block the flow of the condensed water. That is, it is preferable that the rising end line 301 on the insertion portion 7 side of the first rib 3 does not collide with the second rib 4 in the extending direction thereof.

(実施形態7)
実施形態7のフィンの平面図を図5Eに示す。実施形態7は、実施形態6の第一、第二リブ3、4の他に、第三リブ37が形成されている。第三リブ37は、第一リブ3を上下反転した形状である。
(Embodiment 7)
A plan view of the fins of the seventh embodiment is shown in FIG. 5E. In the seventh embodiment, the third rib 37 is formed in addition to the first and second ribs 3 and 4 of the sixth embodiment. The third rib 37 has a shape in which the first rib 3 is turned upside down.

(実施形態8)
実施形態8のフィンの平面図を図5Fに示す。実施形態8では、第一リブ3の気流下流端と、第二リブ4の下端が連結部41で連結され、第一リブ3を上下反転した形状の第三リブ37の気流下流端と、第二リブ4の上端が連結部42で連結されている。さらに、第四リブ38が、第一リブ3の延伸部3aと第三リブ37の延伸部37aとを繋ぐように形成されている。
(Embodiment 8)
A plan view of the fins of the eighth embodiment is shown in FIG. 5F. In the eighth embodiment, the downstream end of the airflow of the first rib 3 and the lower end of the second rib 4 are connected by the connecting portion 41, and the downstream end of the airflow of the third rib 37 having the shape of the first rib 3 turned upside down and the second rib. The upper ends of the two ribs 4 are connected by a connecting portion 42. Further, the fourth rib 38 is formed so as to connect the extended portion 3a of the first rib 3 and the extended portion 37a of the third rib 37.

(実施形態9)
実施形態9のフィンの平面図を図5Gに示す。実施形態8では、
第一、第二リブ3、4は、実施形態1(図3B)と同じである。
第三リブ41は、扁平部2cおよび第一リブ3より鉛直上方に、挿入部7の長手方向と交差(30〜60度の傾きで交差)する方向に沿って直線状に形成されている。
第四リブ51は、扁平部2cおよび第一リブ3より鉛直上方で、第三リブ41を間に挟んで、扁平部2cに沿って直線状に延伸するように形成されている。第四リブ51は直線状である。
(Embodiment 9)
A plan view of the fins of the ninth embodiment is shown in FIG. 5G. In the eighth embodiment
The first and second ribs 3 and 4 are the same as those in the first embodiment (FIG. 3B).
The third rib 41 is formed vertically above the flat portion 2c and the first rib 3 in a straight line along a direction intersecting the longitudinal direction of the insertion portion 7 (intersecting at an inclination of 30 to 60 degrees).
The fourth rib 51 is formed vertically above the flat portion 2c and the first rib 3 so as to extend linearly along the flat portion 2c with the third rib 41 in between. The fourth rib 51 is linear.

(別実施形態)
実施形態1から9において、挿入部7の周辺部に段差部7aが形成されていてもよく、形成されていなくてもよい。段差部がなくフィンカラーが立設されていてもよい。
実施形態1から9において、第一リブ3は、延伸部3aと、拡大部3bと、縮小部3cとを有する形状であったが、これに制限されず、扁平部に沿って延伸する直線状であってもよく、延伸部とこの延伸部から一端部1a側の方向に徐々に扁平部2cとの距離が小さくなる縮小部とを有する形状であってもよい。
また、別実施形態として、リブは、その外観形状(直線状、円弧状、異形状など)、突出断面形状(円弧状、矩形状、三角状など)、突出長手方向長さ、突出幅方向長さ、突出高さなどが、すべて同じであってもよく、異なっていてもよい。
(Separate embodiment)
In the first to ninth embodiments, the step portion 7a may or may not be formed in the peripheral portion of the insertion portion 7. The fin collar may be erected without a step.
In the first to ninth embodiments, the first rib 3 has a shape having a stretched portion 3a, an enlarged portion 3b, and a reduced portion 3c, but is not limited to this, and is a linear shape extending along a flat portion. It may be a shape having a stretched portion and a reduced portion in which the distance from the stretched portion to the flat portion 2c gradually decreases in the direction toward one end portion 1a.
Further, as another embodiment, the rib has an external shape (straight line, arc shape, irregular shape, etc.), a protruding cross-sectional shape (arc shape, rectangular shape, triangular shape, etc.), a length in the protruding longitudinal direction, and a length in the protruding width direction. The protrusion height and the like may all be the same or different.

(熱変形解析)
実施形態1から9、特許文献1(比較例)を熱変形解析シミュレーションした結果を示す。
1.解析条件
温度:600℃
フィン材料:アルミ製
伝熱管が挿入された状態を模すために、伝熱管を挿入した際に触れるフィンカラーのエッジを固定して解析した。
2.解析結果
比較例では、リブが形成されていない平面部1cにおいて、熱変形が確認された。
実施形態1から9では、リブが形成されていない平面部1cにおいて、比較例1よりも少ない熱変形が確認できた。小さい熱変形であることから、比較例1よりも、ろう付け時の熱をかけた際に応力変形がし難くなり、また、フィンと伝熱管のろう付け率(ろう付け強度、ろう付け面積)が向上する。
(Thermal deformation analysis)
The results of thermal deformation analysis simulation of Embodiments 1 to 9 and Patent Document 1 (Comparative Example) are shown.
1. 1. Analysis conditions Temperature: 600 ° C
Fin material: In order to imitate the state where the aluminum heat transfer tube is inserted, the edge of the fin collar that touches when the heat transfer tube is inserted is fixed and analyzed.
2. Analysis result In the comparative example, thermal deformation was confirmed in the flat surface portion 1c where the ribs were not formed.
In the first to ninth embodiments, less thermal deformation than in Comparative Example 1 was confirmed in the flat surface portion 1c in which the ribs were not formed. Since the thermal deformation is small, stress deformation is less likely to occur when heat is applied during brazing than in Comparative Example 1, and the brazing rate of the fins and the heat transfer tube (brazing strength, brazing area). Is improved.

(実施形態の効果)
従来技術の特許文献1のように、フィンの伝熱管に挟まれた平面部において、重力方向、風下方向にリブを偏在させると、リブのない領域の面積が大きくなりやすい。リブのない領域では、フィンの熱応力が低くなる。一方で、平面部においてリブを対象に設けると、リブが均等に配置され、リブのない領域の面積も小さくなると考えられる。しかしながら、リブを対象に設けると、リブのない領域の線形が長くなりやすく、フィンに熱をかけたときに線形に沿って変形しやすくなる。
(Effect of embodiment)
If the ribs are unevenly distributed in the direction of gravity and the leeward direction in the flat surface portion sandwiched between the heat transfer tubes of the fins as in Patent Document 1 of the prior art, the area of the region without the ribs tends to increase. In the ribless region, the thermal stress of the fins is low. On the other hand, if the ribs are provided on the flat surface portion, the ribs are evenly arranged and the area without the ribs is considered to be small. However, when the rib is provided as a target, the alignment of the region without the rib tends to be long, and when heat is applied to the fin, the alignment tends to be deformed along the alignment.

1 フィン
1a 一端部(フィン前縁)
1b 他端部
1c 平面部
2 扁平管(伝熱管)
2c 扁平部
3 第1リブ
3a 延伸部
3b 拡大部
3c 縮小部
4 第二リブ
7 挿入部
10 熱交換器
50 ヘッダ
100 空気調和機
101 室外機
102 圧縮機
103 四方弁
104 室外熱交換器
105 室外ファンモータ
106 室外ファン
107 絞り装置
108 室内機
109 室内熱交換器
110 室内ファンモータ
111 室内ファン
112a、112b 接続配管
1 Fin 1a One end (front edge of fin)
1b End end 1c Flat part 2 Flat tube (heat transfer tube)
2c Flat part 3 1st rib 3a Extension part 3b Expansion part 3c Reduction part 4 Second rib 7 Insertion part 10 Heat exchanger 50 Header 100 Air conditioner 101 Outdoor unit 102 Compressor 103 Four-way valve 104 Outdoor heat exchanger 105 Outdoor fan Motor 106 Outdoor fan 107 Squeezing device 108 Indoor unit 109 Indoor heat exchanger 110 Indoor fan Motor 111 Indoor fan 112a, 112b Connection piping

Claims (5)

空気と熱交換をするための冷媒が内部を流れる扁平状の複数の伝熱管と、
複数の前記伝熱管の間において熱交換面を有するフィンと、を備え、
複数の前記伝熱管は、当該伝熱管の扁平部が対向するように並べて配置され、
前記フィンは、
気流方向における気流上流端および気流下流端と、
前記気流下流端側から形成され、前記伝熱管が配置される挿入部と、
隣り合う前記挿入部の間に形成される平面部と、
前記挿入部の上方に、前記挿入部の長手方向に沿って、前記平面部から突出して形成される第一リブと、
前記挿入部の上方に、前記挿入部の長手方向と直交する方向に沿って、前記気流下流端側の前記平面部から突出して形成される第二リブと、
前記第一リブの前記挿入部側の立ち上がり端ラインと、前記第二リブの前記気流下流端側の立上がり端ラインとが、それらの延長線上で交差または連結されることで形成される、L字状の凝縮水の流路と、を有する、熱交換器。
Multiple flat heat transfer tubes through which the refrigerant for heat exchange with air flows inside,
A fin having a heat exchange surface between the plurality of heat transfer tubes is provided.
The plurality of heat transfer tubes are arranged side by side so that the flat portions of the heat transfer tubes face each other.
The fins
The upstream and downstream ends of the airflow in the direction of the airflow,
An insertion portion formed from the downstream end side of the air flow and in which the heat transfer tube is arranged,
A flat surface portion formed between the adjacent insertion portions and
A first rib formed above the insertion portion along the longitudinal direction of the insertion portion so as to project from the flat surface portion.
A second rib formed above the insertion portion along a direction orthogonal to the longitudinal direction of the insertion portion so as to project from the plane portion on the downstream end side of the air flow.
An L-shape formed by intersecting or connecting the rising end line of the first rib on the insertion portion side and the rising end line of the second rib on the downstream end side of the air flow on their extension lines. A heat exchanger having a flow path of condensed water in the shape of a heat exchanger.
前記第1リブは、前記扁平部に沿って延伸する延伸部と、前記延伸部から前記一端側の方向に前記扁平部との距離が徐々に大きくなる拡大部と、前記拡大部から前記一端側の方向に徐々に前記扁平部との距離が小さくなる縮小部を有する、請求項1に記載の熱交換器。 The first rib includes a stretched portion extending along the flat portion, an enlarged portion in which the distance from the stretched portion to the flat portion gradually increases in the direction of one end side, and one end side from the enlarged portion. The heat exchanger according to claim 1, further comprising a reduced portion in which the distance from the flat portion gradually decreases in the direction of the above. 前記平面部にさらに、第三リブを有する、請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, further comprising a third rib on the flat surface portion. 前記挿入部の周辺部に段差部を設け、段差部からフィンカラーが立設されている、請求項1〜3のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein a step portion is provided around the insertion portion and a fin collar is erected from the step portion. 請求項1〜4のいずれか一項に記載の熱交換器を備える、空気調和機。
An air conditioner comprising the heat exchanger according to any one of claims 1 to 4.
JP2020124428A 2019-09-30 2020-07-21 Heat exchanger and air conditioner provided with the same Active JP7209670B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019180235 2019-09-30
JP2019180235 2019-09-30

Publications (2)

Publication Number Publication Date
JP2021055986A true JP2021055986A (en) 2021-04-08
JP7209670B2 JP7209670B2 (en) 2023-01-20

Family

ID=75270435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124428A Active JP7209670B2 (en) 2019-09-30 2020-07-21 Heat exchanger and air conditioner provided with the same

Country Status (1)

Country Link
JP (1) JP7209670B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048781A (en) * 2016-09-23 2018-03-29 ダイキン工業株式会社 Heat exchanger
JP6466631B1 (en) * 2018-03-13 2019-02-06 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner equipped with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048781A (en) * 2016-09-23 2018-03-29 ダイキン工業株式会社 Heat exchanger
JP6466631B1 (en) * 2018-03-13 2019-02-06 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner equipped with the same

Also Published As

Publication number Publication date
JP7209670B2 (en) 2023-01-20

Similar Documents

Publication Publication Date Title
JP6388670B2 (en) Refrigeration cycle equipment
US11346609B2 (en) Heat exchanger
JP6734002B1 (en) Heat exchanger and refrigeration cycle device
US10557652B2 (en) Heat exchanger and air conditioner
JP2015218907A (en) Heat exchanger
WO2017135442A1 (en) Heat exchanger
JP6980117B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JPWO2018235215A1 (en) Heat exchangers, refrigeration cycle devices and air conditioners
JP2019011923A (en) Heat exchanger
JP7292510B2 (en) heat exchangers and air conditioners
JP6719657B2 (en) Heat exchanger and refrigeration cycle device
JP5081881B2 (en) Air conditioner
EP3608618B1 (en) Heat exchanger and refrigeration cycle device
JP6656368B2 (en) Fin tube type heat exchanger and heat pump device provided with this fin tube type heat exchanger
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP7209670B2 (en) Heat exchanger and air conditioner provided with the same
JP6678413B2 (en) Air conditioner
US11573056B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP5664272B2 (en) Heat exchanger and air conditioner
KR102078275B1 (en) Heat exchanger for air conditioner
JP6621928B2 (en) Heat exchanger and air conditioner
JP2015169358A (en) heat exchanger
JP6640500B2 (en) Air conditioner outdoor unit
WO2023032155A1 (en) Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230110

R150 Certificate of patent or registration of utility model

Ref document number: 7209670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150