JP2021055914A - heat pipe - Google Patents

heat pipe Download PDF

Info

Publication number
JP2021055914A
JP2021055914A JP2019179336A JP2019179336A JP2021055914A JP 2021055914 A JP2021055914 A JP 2021055914A JP 2019179336 A JP2019179336 A JP 2019179336A JP 2019179336 A JP2019179336 A JP 2019179336A JP 2021055914 A JP2021055914 A JP 2021055914A
Authority
JP
Japan
Prior art keywords
working fluid
container
heat pipe
phase
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019179336A
Other languages
Japanese (ja)
Other versions
JP7420519B2 (en
Inventor
将大 上久保
Masahiro Kamikubo
将大 上久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019179336A priority Critical patent/JP7420519B2/en
Publication of JP2021055914A publication Critical patent/JP2021055914A/en
Application granted granted Critical
Publication of JP7420519B2 publication Critical patent/JP7420519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a heat pipe having an excellent heat transport characteristic.SOLUTION: A heat pipe 1 comprises a tubular vessel 3 having an internal space S which is sealed with a working fluid F, and the tubular vessel 3 has an evaporation part 5 for making an air-phase F(g) working fluid change a phase by evaporating a liquid-phase working fluid F(L), and a condensing part 7 arranged apart from the evaporation part 5, condensing the air-phase working fluid F(g), and making the liquid-phase working fluid F(L) change a phase. The evaporation part 5 has a tubular wick structure 9 composed of a porous metal material, has an external peripheral face 11a which is located while opposing an internal peripheral face 3a of the tubular vessel 3 between the evaporation part 5 and the condensing part 7, and comprises an inner pipe member 11 composed of a non-porous metal material. A flow passage 13 in which the liquid-phase working fluid F(L) can flow along a longitudinal direction L of the tubular vessel 3 is formed in a boundary portion between the internal peripheral face 3a of the tubular vessel 3 and the external peripheral face 11a of the inner pipe member 11.SELECTED DRAWING: Figure 2

Description

本発明は、熱輸送特性を有するヒートパイプに関する。 The present invention relates to heat pipes having heat transport properties.

近年のノートパソコンをはじめとした、デジタルカメラ、携帯電話などの電気・電子機器に搭載されている半導体素子等の電子部品は、高機能化に伴う高密度搭載等により、発熱量が増大する傾向があることから、効率よく冷却できるような構成を採用することが重要である。電子部品を冷却するための手段としては、例えばヒートパイプを用いて冷却する方法が挙げられる。 In recent years, electronic components such as semiconductor elements mounted on electric and electronic devices such as digital cameras and mobile phones, including notebook computers, tend to generate more heat due to high-density mounting due to higher functionality. Therefore, it is important to adopt a configuration that enables efficient cooling. As a means for cooling the electronic component, for example, a method of cooling using a heat pipe can be mentioned.

ここでヒートパイプは、作動流体が封入された内部空間を有する管状容器(コンテナ)を備える。管状容器は、一端側部分に、液相の作動流体を蒸発させて気相の作動流体に相変化させる蒸発部を有し、他端側部分に、気相の作動流体を凝縮させて液相の作動流体に相変化させる凝縮部を有する。蒸発部で液相から気相に相変化させた作動流体は、蒸発部から凝縮部に流れる。凝縮部で気相から液相に相変化させた作動流体は、凝縮部から蒸発部に流れる。このようにして、管状容器内の蒸発部と凝縮部の間で作動流体の循環流れが形成されることによって、管状容器内の蒸発部と凝縮部の間で熱輸送を行っている。 Here, the heat pipe includes a tubular container having an internal space in which a working fluid is sealed. The tubular container has an evaporating portion on one end side that evaporates the working fluid of the liquid phase to change the working fluid of the gas phase into a phase, and condenses the working fluid of the gas phase on the other end side of the liquid phase. It has a condensing part that changes the phase to the working fluid of. The working fluid whose phase is changed from the liquid phase to the gas phase in the evaporation part flows from the evaporation part to the condensing part. The working fluid whose phase is changed from the gas phase to the liquid phase in the condensing part flows from the condensing part to the evaporating part. In this way, the circulating flow of the working fluid is formed between the evaporating part and the condensing part in the tubular container, so that heat is transferred between the evaporating part and the condensing part in the tubular container.

従来のヒートパイプとしては、例えば、コンテナの蒸発部に、粒子状の金属粉の焼結体からなるウィック構造体(以下、「ウィック構造体(金属粉)」という場合がある。)を備える構成が挙げられる。蒸発部を構成するウィック構造体(金属粉)は、液相の作動流体の保持力に優れているため、ヒートパイプが、例えば蒸発部側が凝縮部側よりも高い位置にある姿勢、いわゆるトップヒートの姿勢で設置されたとしても、ドライアウト(作動流体が枯渇する現象)を防止することができる。 As a conventional heat pipe, for example, a configuration in which a wick structure made of a sintered body of particulate metal powder (hereinafter, may be referred to as “wick structure (metal powder)”) is provided in the evaporation portion of the container. Can be mentioned. Since the wick structure (metal powder) constituting the evaporation part has excellent holding power of the working fluid of the liquid phase, the heat pipe is in a position where the evaporation part side is higher than the condensation part side, that is, the so-called top heat. Even if it is installed in the posture of, it is possible to prevent dryout (a phenomenon in which the working fluid is depleted).

また、本発明者は、特許文献1において、蒸発部と凝縮部の間にある中間部に、蒸発部のウィック構造体(金属粉)に連接するように、金属繊維の焼結体からなる別のウィック構造体(以下、「ウィック構造体(金属繊維)」という場合がある。)を形成し、中間部での毛細管力をより一層高めることによって、凝縮部から蒸発部側への液相の作動流体の還流を促進して熱輸送特性を向上させたヒートパイプを提案した。 Further, in Patent Document 1, the present inventor comprises a sintered body of metal fibers such that the intermediate portion between the evaporation portion and the condensing portion is connected to the wick structure (metal powder) of the evaporation portion. By forming a wick structure (hereinafter, sometimes referred to as "wick structure (metal fiber)") and further increasing the capillary force in the intermediate portion, the liquid phase from the condensing portion to the evaporating portion side. We proposed a heat pipe that promotes the reflux of the working fluid and improves the heat transport characteristics.

国際公開2019/131790号(特に図6)International Publication No. 2019/131790 (especially Fig. 6)

ところで、蒸発部から凝縮部に向かう気相の作動流体の一部の流れが、ウィック構造体(金属繊維)の端部付近で、ウィック構造体(金属繊維)を通る液相の作動流体の流れとぶつかり合って、いわゆるカウンターフローが生じ、作動流体の循環流れに乱れが生じる可能性がある。かかる作動流体の循環流れの乱れを抑制するようにすれば、ヒートパイプの熱輸送特性は、さらに改善されるものと考えられる。 By the way, a part of the flow of the working fluid of the gas phase from the evaporating part to the condensing part is the flow of the working fluid of the liquid phase passing through the wick structure (metal fiber) near the end of the wick structure (metal fiber). When they collide with each other, so-called counterflow occurs, which may cause turbulence in the circulating flow of the working fluid. It is considered that the heat transport characteristics of the heat pipe will be further improved by suppressing the turbulence of the circulating flow of the working fluid.

本発明の目的は、蒸発部から凝縮部に向かう気相の作動流体の循環流れの乱れを抑制して、優れた熱輸送特性を有するヒートパイプを提供することにある。 An object of the present invention is to provide a heat pipe having excellent heat transport characteristics by suppressing turbulence of the circulating flow of the working fluid of the gas phase from the evaporation part to the condensing part.

本発明者らは、液相の作動流体の保持力に優れている管状のウィック構造体(金属粉)を、管状容器(コンテナ)の蒸発部に備える構成を前提とし、熱輸送特性の更なる改善を図るための検討を行ったところ、ウィック構造体(金属粉)に連接(連結)するように、液相の作動流体が透過しない非多孔質構造材料からなる内管部材を設けることによって、上述したようなカウンターフローによる作動流体の流れの乱れが抑制されて、管状容器内の蒸発部と凝縮部の間で作動流体の良好な循環流れを形成できることを見出し、かかる知見に基づき本発明を完成させるに至った。 The present inventors are premised on a configuration in which a tubular wick structure (metal powder) having excellent holding power of a working fluid in a liquid phase is provided in an evaporating part of a tubular container (container), and further heat transport characteristics are further provided. As a result of studies for improvement, by providing an inner tube member made of a non-porous structural material that does not allow the working fluid of the liquid phase to permeate so as to be connected (connected) to the wick structure (metal powder). We have found that the turbulence of the working fluid flow due to the counterflow as described above can be suppressed and a good circulating flow of the working fluid can be formed between the evaporating part and the condensing part in the tubular container. It came to be completed.

すなわち、本発明の要旨構成は、以下のとおりである。
(1)作動流体が封入された内部空間を有する管状容器を備え、前記管状容器は、液相の作動流体を蒸発させて気相の作動流体に相変化させる蒸発部と、前記蒸発部から離隔した位置に配設され、気相の作動流体を凝縮させて液相の作動流体に相変化させる凝縮部とを有するヒートパイプにおいて、前記蒸発部は、多孔質金属材料からなる管状のウィック構造体を有し、前記蒸発部と前記凝縮部の間に、前記管状容器の内周面に対向して位置する外周面を有し、非多孔質金属材料からなる内管部材を備え、前記管状容器の前記内周面と前記内管部材の前記外周面の境界部分に、前記管状容器の長手方向に沿って前記液相の作動流体が流動可能な流路が形成されていることを特徴とするヒートパイプ。
(2)前記蒸発部は、前記管状容器の一端側部分に位置し、前記凝縮部は、前記管状容器の他端側部分に位置する、上記(1)に記載のヒートパイプ。
(3)前記蒸発部は、前記管状容器の中央部分に位置し、前記凝縮部は、前記管状容器の両端側部分に位置する、上記(1)に記載のヒートパイプ。
(4)前記管状容器の内周面に、前記管状容器の長手方向に沿って延在する複数の溝が形成され、前記境界部分に形成される流路は、前記複数の溝と前記内管部材の外周面とで区画形成される、上記(1)、(2)または(3)に記載のヒートパイプ。
(5)前記ウィック構造体は、銅粉の焼結体で構成される、上記(1)から(4)までのいずれか1項に記載のヒートパイプ。
(6)前記内管部材は、銅管である、上記(1)から(5)までのいずれか1項に記載のヒートパイプ。
That is, the gist structure of the present invention is as follows.
(1) A tubular container having an internal space in which a working fluid is sealed is provided, and the tubular container is separated from an evaporating part that evaporates the working fluid of a liquid phase and changes the phase into a working fluid of a gas phase. In a heat pipe having a condensing portion that is arranged at a predetermined position and has a condensing portion that condenses the working fluid of the gas phase and changes the phase into the working fluid of the liquid phase, the evaporating portion is a tubular wick structure made of a porous metal material. The tubular container is provided with an inner tube member made of a non-porous metal material, having an outer peripheral surface facing the inner peripheral surface of the tubular container between the evaporating portion and the condensing portion. A flow path through which the working fluid of the liquid phase can flow is formed along the longitudinal direction of the tubular container at the boundary between the inner peripheral surface and the outer peripheral surface of the inner pipe member. heat pipe.
(2) The heat pipe according to (1) above, wherein the evaporation portion is located on one end side portion of the tubular container, and the condensing portion is located on the other end side portion of the tubular container.
(3) The heat pipe according to (1) above, wherein the evaporation portion is located in the central portion of the tubular container, and the condensing portion is located in both end portions of the tubular container.
(4) A plurality of grooves extending along the longitudinal direction of the tubular container are formed on the inner peripheral surface of the tubular container, and the flow paths formed at the boundary portion are the plurality of grooves and the inner pipe. The heat pipe according to (1), (2) or (3) above, which is partitioned from the outer peripheral surface of the member.
(5) The heat pipe according to any one of (1) to (4) above, wherein the wick structure is made of a sintered body of copper powder.
(6) The heat pipe according to any one of (1) to (5) above, wherein the inner pipe member is a copper pipe.

本発明によれば、管状容器内の蒸発部と凝縮部の間で作動流体の良好な循環流れを形成でき、優れた熱輸送特性を有する。 According to the present invention, a good circulating flow of the working fluid can be formed between the evaporating part and the condensing part in the tubular container, and the working fluid has excellent heat transport characteristics.

図1は、ヒートパイプ(比較例)の内部で生じる作動流体の流れを説明するための図である。FIG. 1 is a diagram for explaining a flow of a working fluid generated inside a heat pipe (comparative example). 図2(a)〜(d)は、本発明に従う第1の実施形態のヒートパイプの内部構造を示した図であって、図2(a)が縦断面図、図2(b)が図2(a)のb−b断面図図2(c)が図2(a)のc−c断面図、図2(d)が図2(a)のd−d断面図である。2 (a) to 2 (d) are views showing the internal structure of the heat pipe of the first embodiment according to the present invention, FIG. 2 (a) is a vertical sectional view, and FIG. 2 (b) is a view. 2 (a) bb cross-sectional view FIG. 2 (c) is a cc cross-sectional view of FIG. 2 (a), and FIG. 2 (d) is a dd cross-sectional view of FIG. 2 (a). 図3は、図2のヒートパイプの内部で生じる作動流体の流れを説明するための図である。FIG. 3 is a diagram for explaining the flow of the working fluid generated inside the heat pipe of FIG. 図4は、第2の実施形態のヒートパイプの内部構造を示した縦断面図である。FIG. 4 is a vertical cross-sectional view showing the internal structure of the heat pipe of the second embodiment. 図5(a)、(b)は、内管部材の2つの変形例を示す横断面図である。5 (a) and 5 (b) are cross-sectional views showing two modified examples of the inner pipe member. 図6は、管状容器の内周面に形成した複数本の溝の形状の変形例を示したものであって、図2(b)と同じ位置で切断したときのヒートパイプのb−b断面図である。FIG. 6 shows a modified example of the shape of a plurality of grooves formed on the inner peripheral surface of the tubular container, and is a cross section of the heat pipe bb when cut at the same position as in FIG. 2 (b). It is a figure.

次に、本発明の好ましい実施形態について、以下で説明する。 Next, preferred embodiments of the present invention will be described below.

まず、図1を用いて、ヒートパイプ(比較例)の内部で生じる作動流体の流れを説明する。なお、図1および図3では、液相の作動流体F(L)が流れる方向を、黒塗り矢印で示し、気相の作動流体F(g)が流れる方向を、白抜き矢印で示している。 First, the flow of the working fluid generated inside the heat pipe (comparative example) will be described with reference to FIG. In FIGS. 1 and 3, the direction in which the working fluid F (L) of the liquid phase flows is indicated by a black arrow, and the direction in which the working fluid F (g) of the gas phase flows is indicated by a white arrow. ..

ヒートパイプ100は、蒸発部と凝縮部の間に位置する中間部での毛細管力を高めることによって熱輸送特性が向上する。しかし、ウィック構造体(金属粉)109とウィック構造体(金属繊維)110は、液相の作動流体F(L)が通る流路のサイズや性状などが異なり、ウィック構造体(金属粉)109の方が、ウィック構造体(金属繊維)110に比べて、液相の作動流体F(L)が移動する際の移動速度が遅くなる傾向がある。そのため、図1に示すように、毛細管力等によってウィック構造体(金属繊維)110を移動してきた液相の作動流体F(L)が、ウィック構造体(金属粉)109に連接されたウィック構造体(金属繊維)110の端部110aにまで到達しても、ウィック構造体(金属粉)109は、到達した液相の作動流体F(L)の全てを即座に取り込むことができない。その結果、一部の液相の作動流体F(L)は、ウィック構造体(金属粉)109に連接されたウィック構造体(金属繊維)110の端部110aに溜まるようになる。 The heat pipe 100 has improved heat transport characteristics by increasing the capillary force in the intermediate portion located between the evaporation portion and the condensing portion. However, the wick structure (metal powder) 109 and the wick structure (metal fiber) 110 differ in the size and properties of the flow path through which the working fluid F (L) of the liquid phase passes, and the wick structure (metal powder) 109 The movement speed of the liquid phase working fluid F (L) tends to be slower than that of the wick structure (metal fiber) 110. Therefore, as shown in FIG. 1, the wick structure in which the working fluid F (L) of the liquid phase that has moved the wick structure (metal fiber) 110 due to the capillary force or the like is connected to the wick structure (metal powder) 109. Even if the end 110a of the body (metal fiber) 110 is reached, the wick structure (metal powder) 109 cannot immediately take in all of the working fluid F (L) of the liquid phase that has reached it. As a result, the working fluid F (L) of a part of the liquid phase accumulates at the end 110a of the wick structure (metal fiber) 110 connected to the wick structure (metal powder) 109.

また、蒸発部105で蒸発した蒸気(気相の作動流体F(g))は、コンテナ103の内部空間S100を通って、凝縮部へ向かう。ここで、図1に示すように、気相の作動流体F(g)の一部が液相の作動流体F(L)が通る流路(とくに、端部110a付近)に侵入すると考えられる。とくに、蒸発部105への入熱量が増えてくると、蒸発部105から発生する蒸気の勢いが増し、ウィック構造体(金属繊維)110の内面を通り抜けて、蒸気が液相の作動流体F(L)が通る流路に侵入すると考えられる。 Further, the vapor (gas phase working fluid F (g)) evaporated in the evaporation section 105 passes through the internal space S100 of the container 103 and heads for the condensation section. Here, as shown in FIG. 1, it is considered that a part of the working fluid F (g) of the gas phase invades the flow path (particularly near the end 110a) through which the working fluid F (L) of the liquid phase passes. In particular, as the amount of heat input to the evaporation section 105 increases, the momentum of the vapor generated from the evaporation section 105 increases, passes through the inner surface of the wick structure (metal fiber) 110, and the vapor passes through the liquid phase working fluid F ( It is considered that it invades the flow path through which L) passes.

端部110a付近では、一部の液相の作動流体F(L)が溜まっているため、この液相の作動流体F(L)と気相の作動流体F(g)が衝突(カウンターフローCF)する可能性が高い。カウンターフローCFが生ずると、液相の作動流体F(L)の蒸発部105への流入(供給)が阻害されてしまい、ヒートパイプ100の熱輸送特性が悪化してしまう。 Since the working fluid F (L) of a part of the liquid phase is accumulated near the end 110a, the working fluid F (L) of this liquid phase and the working fluid F (g) of the gas phase collide (counterflow CF). ) Is likely to occur. When the counterflow CF is generated, the inflow (supply) of the working fluid F (L) of the liquid phase into the evaporation section 105 is hindered, and the heat transport characteristics of the heat pipe 100 are deteriorated.

本発明では、蒸発部から凝縮部に向かう気相の作動流体の循環流れの乱れを抑制して、優れた熱輸送特性を有するヒートパイプを提供することを目的とする。以下に本発明にかかるヒートパイプの構成について説明する。 An object of the present invention is to provide a heat pipe having excellent heat transport characteristics by suppressing turbulence of the circulating flow of the working fluid of the gas phase from the evaporation part to the condensing part. The configuration of the heat pipe according to the present invention will be described below.

<第1の実施形態>
図2(a)〜(d)は、本発明に従う第1の実施形態のヒートパイプの内部構造を示した図であって、図2(a)が縦断面図、図2(b)が図2(a)のb−b断面図、図2(c)が図2(a)のc−c断面図、図2(d)が図2(a)のd−d断面図である。なお、図2では、ヒートパイプの内部に封入されている作動流体の図示は省略している。
<First Embodiment>
2 (a) to 2 (d) are views showing the internal structure of the heat pipe of the first embodiment according to the present invention, FIG. 2 (a) is a vertical sectional view, and FIG. 2 (b) is a view. 2 (a) is a bb cross-sectional view, FIG. 2 (c) is a cc cross-sectional view of FIG. 2 (a), and FIG. 2 (d) is a dd cross-sectional view of FIG. 2 (a). In FIG. 2, the illustration of the working fluid sealed inside the heat pipe is omitted.

図2に示すヒートパイプ1は、作動流体Fが封入された内部空間Sを有する管状容器であるコンテナ3を備えている。 The heat pipe 1 shown in FIG. 2 includes a container 3 which is a tubular container having an internal space S in which a working fluid F is sealed.

コンテナ3は、液相の作動流体F(L)を蒸発させて気相の作動流体F(g)に相変化させる蒸発部5と、蒸発部5から離隔した位置に配設され、気相の作動流体F(g)を凝縮させて液相の作動流体F(L)に相変化させる凝縮部7とを有する。図2に示すコンテナ3は、一端側部分に蒸発部5、他端側部分に凝縮部7を有し、密閉された管として構成されている。コンテナ3の長手方向の延在形状は、図2(a)に示す直線状の他、曲部を有する形状など、特に限定されない。コンテナ3の長手方向に対して直交方向に切断したときのコンテナの外面輪郭形状は、図2(b)〜(d)に示す略円形状の他、扁平形状、四角形等の多角形状など、特に限定されない。コンテナ3の肉厚は、特に限定されないが、例えば50〜1000μmである。コンテナ3の外径寸法は、特に限定されないが、例えば、コンテナ3が略円形状の外面輪郭形状である場合には、5〜20mmの範囲であることが好ましい。また、コンテナ3は、内周面が凹凸のない平滑な面で形成されているベア管でもよいが、後述するように、内周面に、コンテナ3の長手方向に沿って延在する複数の溝(グルーブ)15が形成されたグルーブ管であることが、コンテナの全長にわたって液相の作動流体を輸送するための毛細管力を発揮させる点で好ましい。 The container 3 is arranged at a position separated from the evaporation unit 5 and the evaporation unit 5 that evaporates the working fluid F (L) of the liquid phase to change the phase to the working fluid F (g) of the gas phase, and is arranged in the gas phase. It has a condensing portion 7 that condenses the working fluid F (g) and changes the phase to the working fluid F (L) of the liquid phase. The container 3 shown in FIG. 2 has an evaporation portion 5 on one end side portion and a condensing portion 7 on the other end side portion, and is configured as a closed tube. The extending shape of the container 3 in the longitudinal direction is not particularly limited to the linear shape shown in FIG. 2A, the shape having a curved portion, and the like. The outer contour shape of the container when cut in the direction orthogonal to the longitudinal direction of the container 3 is not only the substantially circular shape shown in FIGS. 2 (b) to 2 (d), but also a flat shape, a polygonal shape such as a quadrangle, and the like. Not limited. The wall thickness of the container 3 is not particularly limited, but is, for example, 50 to 1000 μm. The outer diameter of the container 3 is not particularly limited, but for example, when the container 3 has a substantially circular outer surface contour shape, it is preferably in the range of 5 to 20 mm. Further, the container 3 may be a bare tube whose inner peripheral surface is formed of a smooth surface having no unevenness, but as will be described later, a plurality of containers extending along the longitudinal direction of the container 3 on the inner peripheral surface. A groove tube having a groove 15 formed therein is preferable in that it exerts a capillary force for transporting the working fluid of the liquid phase over the entire length of the container.

コンテナ3の材質は、特に限定されない。優れた熱伝導率を有する点から、コンテナ3には、例えば、銅、銅合金等を使用することができる。軽量化の点から、コンテナ3には、例えば、アルミニウム、アルミニウム合金等を使用することができる。高強度を有する点から、コンテナ3には、例えば、ステンレス鋼等を使用することができる。また、その他、使用状況に応じて、コンテナ3には、例えば、スズ、スズ合金、チタン、チタン合金、ニッケル、ニッケル合金等を用いてもよい。 The material of the container 3 is not particularly limited. For the container 3, for example, copper, a copper alloy, or the like can be used because it has excellent thermal conductivity. From the viewpoint of weight reduction, for example, aluminum, an aluminum alloy, or the like can be used for the container 3. For the container 3, for example, stainless steel or the like can be used because of its high strength. In addition, for the container 3, for example, tin, tin alloy, titanium, titanium alloy, nickel, nickel alloy or the like may be used depending on the usage situation.

蒸発部5は、図2では、コンテナ3の一端側部分に形成されており、熱的に接続された発熱体(図示せず)から受熱(吸熱)する機能を有する。具体的には、蒸発部5は、液相の作動流体F(L)を蒸発させて気相の作動流体F(g)に相変化させることで蒸発潜熱として発熱体から受けた熱を吸収する。蒸発部5は、コンテナ3の内周面側に管状のウィック構造体9を有している。 In FIG. 2, the evaporation unit 5 is formed on one end side of the container 3 and has a function of receiving (absorbing heat) heat from a thermally connected heating element (not shown). Specifically, the evaporation unit 5 absorbs the heat received from the heating element as latent heat of evaporation by evaporating the working fluid F (L) of the liquid phase and changing the phase to the working fluid F (g) of the gas phase. .. The evaporation unit 5 has a tubular wick structure 9 on the inner peripheral surface side of the container 3.

ウィック構造体9は、多孔質金属材料で構成され、液相の作動流体F(L)が通過できる多数の細孔を有している。ウィック構造体9は、銅粉の焼結体で構成されていることが好ましい。このような構成によれば、ウィック構造体9は、熱伝導性が高く、耐ドライアウト性などを発揮し、逆作動性を有する。逆作動性とは、蒸発部5の位置が凝縮部7の位置よりも高い場合でも機能を発揮する性能をいう。 The wick structure 9 is made of a porous metal material and has a large number of pores through which the working fluid F (L) of the liquid phase can pass. The wick structure 9 is preferably made of a sintered body of copper powder. According to such a configuration, the wick structure 9 has high thermal conductivity, exhibits dryout resistance and the like, and has reverse operability. The reverse operability means a performance that exerts a function even when the position of the evaporation part 5 is higher than the position of the condensation part 7.

ウィック構造体9の原料である金属粉の金属種は、特に限定されず、例えば、銅、銅合金等を挙げることができる。また、金属粉の平均一次粒子径は、特に限定されないが、例えば、10〜300μmの範囲にすることが好ましい。 The metal type of the metal powder that is the raw material of the wick structure 9 is not particularly limited, and examples thereof include copper and copper alloys. The average primary particle size of the metal powder is not particularly limited, but is preferably in the range of 10 to 300 μm, for example.

凝縮部7は、図2では、コンテナ3の他端側部分に形成されており、蒸発部5で相変化して輸送されてきた気相の作動流体F(g)を、熱交換手段(図示せず)によって放熱する機能を有している。具体的には、凝縮部7は、気相の作動流体F(g)を凝縮させて液相の作動流体F(L)に相変化させることで凝縮潜熱として輸送された作動流体F(g)の熱をヒートパイプ1の外部に放出する。 In FIG. 2, the condensing portion 7 is formed on the other end side portion of the container 3, and the working fluid F (g) of the gas phase that has been transported by changing the phase in the evaporating portion 5 is exchanged with heat (FIG. 2). It has a function to dissipate heat by (not shown). Specifically, the condensing unit 7 condenses the working fluid F (g) in the gas phase and changes the phase to the working fluid F (L) in the liquid phase, so that the working fluid F (g) is transported as latent heat of condensation. Heat is released to the outside of the heat pipe 1.

また、本実施形態のヒートパイプ1は、コンテナ3の内周面側であって、蒸発部5と凝縮部7の間(の中間部)に、内管部材11を備えている。 Further, the heat pipe 1 of the present embodiment is provided with an inner pipe member 11 on the inner peripheral surface side of the container 3 between the evaporation portion 5 and the condensing portion 7 (intermediate portion).

内管部材11は、コンテナ3の内周面3aに対向して位置する外周面11aを有し、液相の作動流体F(L)が通過できない非多孔質構造材料で構成されている。内管部材11は、銅管で構成することが好ましい。また、コンテナ3の内周面3aと内管部材11の外周面11aとで区画される境界部分に、コンテナ3の長手方向Lに沿って液相の作動流体F(L)を流動させる流路13が形成されている。 The inner pipe member 11 has an outer peripheral surface 11a located opposite to the inner peripheral surface 3a of the container 3, and is made of a non-porous structural material through which the working fluid F (L) of the liquid phase cannot pass. The inner pipe member 11 is preferably made of a copper pipe. Further, a flow path for flowing the working fluid F (L) of the liquid phase along the longitudinal direction L of the container 3 at the boundary portion defined by the inner peripheral surface 3a of the container 3 and the outer peripheral surface 11a of the inner pipe member 11. 13 is formed.

内管部材11は、液相の作動流体F(L)が通過できない非多孔質構造材料で構成されている。そのため、液相の作動流体F(L)は、内管部材11を径方向に通過することができずに、内管部材11との外周面11aとコンテナ3の内周面との間に形成された流路13を通って、内管部材11に連接(連結)されたウィック構造体9の端部位置まで毛細管力等によって移動する。 The inner pipe member 11 is made of a non-porous structural material through which the working fluid F (L) of the liquid phase cannot pass. Therefore, the working fluid F (L) of the liquid phase cannot pass through the inner pipe member 11 in the radial direction, and is formed between the outer peripheral surface 11a of the inner pipe member 11 and the inner peripheral surface of the container 3. It moves through the flow path 13 to the end position of the wick structure 9 connected (connected) to the inner pipe member 11 by capillary force or the like.

また、ウィック構造体9と内管部材11との連結部は、連接(連結)されている。よって、液相の作動流体F(L)は、連結部から内部空間Sに漏れることはなく、ウィック構造体9の内部に確実に移動させることが可能になる。その結果、蒸発部5で熱を吸収した気相の作動流体F(g)の凝縮部7へ向かう流れが、連結部で乱れることがなくなり、ヒートパイプ1の蒸発部5と凝縮部7との間で、作動流体Fの良好な循環流れを形成することができる。 Further, the connecting portion between the wick structure 9 and the inner pipe member 11 is connected (connected). Therefore, the working fluid F (L) of the liquid phase does not leak from the connecting portion to the internal space S, and can be reliably moved to the inside of the wick structure 9. As a result, the flow of the working fluid F (g) of the gas phase that has absorbed heat in the evaporation section 5 toward the condensing section 7 is not disturbed at the connecting section, and the evaporation section 5 and the condensing section 7 of the heat pipe 1 are not disturbed. A good circulating flow of the working fluid F can be formed between them.

内管部材11は、特許文献1や図1に記載したウィック構造体(金属繊維)110よりも薄くしても、作動流体Fの気液分離を確実に行うことができる。内管部材11の厚さは、特に限定はしないが、例えば0.1〜1.0mmで形成することができる。また、内管部材は、特許文献1や図1に記載したウィック構造体(金属繊維)110に比べて、コンテナ3内に簡単に装着できるので、生産性や歩留まりも高くすることができる。 Even if the inner pipe member 11 is thinner than the wick structure (metal fiber) 110 described in Patent Document 1 and FIG. 1, gas-liquid separation of the working fluid F can be reliably performed. The thickness of the inner tube member 11 is not particularly limited, but can be formed, for example, 0.1 to 1.0 mm. Further, since the inner pipe member can be easily mounted in the container 3 as compared with the wick structure (metal fiber) 110 described in Patent Document 1 and FIG. 1, productivity and yield can be increased.

コンテナ3の内周面3aには、コンテナ3の長手方向Lに沿って延在する複数の溝15が形成されていることが好ましい。複数の溝15の形成によって、ヒートパイプ1の内部で液相の作動流体F(L)を輸送する際に、毛細管力を発揮することができる。このため、ヒートパイプ1がトップヒートの姿勢で設置されたとしても、凝縮部7から蒸発部5への液相の作動流体F(L)の輸送を確実に行うことができる。 It is preferable that a plurality of grooves 15 extending along the longitudinal direction L of the container 3 are formed on the inner peripheral surface 3a of the container 3. By forming the plurality of grooves 15, capillary force can be exerted when the working fluid F (L) of the liquid phase is transported inside the heat pipe 1. Therefore, even if the heat pipe 1 is installed in the top heat position, the working fluid F (L) of the liquid phase can be reliably transported from the condensing unit 7 to the evaporation unit 5.

また、コンテナ3の内周面3aと内管部材11の外周面11aとで区画される境界部分に形成される流路13は、複数の溝15と内管部材11の外周面11aとで区画形成されることが好ましい。これによって、蒸発部5と凝縮部7の間に位置する中間部での毛細管力がより一層高まり、液相の作動流体F(L)の輸送速度を大きくすることができる。 Further, the flow path 13 formed at the boundary portion defined by the inner peripheral surface 3a of the container 3 and the outer peripheral surface 11a of the inner pipe member 11 is divided by a plurality of grooves 15 and the outer peripheral surface 11a of the inner pipe member 11. It is preferably formed. As a result, the capillary force in the intermediate portion located between the evaporation portion 5 and the condensing portion 7 is further increased, and the transport speed of the working fluid F (L) in the liquid phase can be increased.

本実施形態のヒートパイプ1は、コンテナ3の内周面3aが、蒸発部5が形成されている箇所では、ウィック構造体9で覆われており、蒸発部5が形成されている箇所と凝縮部7が形成されている箇所の間(の中間部)では、内管部材11で覆われており、凝縮部7が形成されている箇所では、コンテナ3の内周面が露出した状態のまま存在している。 In the heat pipe 1 of the present embodiment, the inner peripheral surface 3a of the container 3 is covered with the wick structure 9 at the portion where the evaporation portion 5 is formed, and is condensed with the portion where the evaporation portion 5 is formed. The space between (intermediate parts) where the portion 7 is formed is covered with the inner pipe member 11, and the inner peripheral surface of the container 3 remains exposed at the portion where the condensed portion 7 is formed. Existing.

<第2の実施形態>
図4は、第2の実施形態のヒートパイプ1Aの内部構造を示した縦断面図である。なお、図4に示す各構成部材は、図2に示す構成部材と同じ場合には、同じ符号を付している。
<Second embodiment>
FIG. 4 is a vertical cross-sectional view showing the internal structure of the heat pipe 1A of the second embodiment. When the constituent members shown in FIG. 4 are the same as the constituent members shown in FIG. 2, they are designated by the same reference numerals.

図4に示すヒートパイプ1Aは、作動流体Fが封入された内部空間Sを有する管状容器であるコンテナ3を備えている。コンテナ3は、蒸発部5Aが、コンテナ3の中央部分に位置し、2つの凝縮部7A、7Bが、コンテナ3の両端に位置し、蒸発部5Aと2つの凝縮部7A、7Bの間に形成される2カ所の中間部は、断熱部として構成され、コンテナ全体としては、密閉された管として構成されている。蒸発部5Aは、コンテナ3の内周面側に管状のウィック構造体9Aを有している。 The heat pipe 1A shown in FIG. 4 includes a container 3 which is a tubular container having an internal space S in which a working fluid F is sealed. In the container 3, the evaporation portion 5A is located in the central portion of the container 3, and the two condensing portions 7A and 7B are located at both ends of the container 3 and are formed between the evaporating portion 5A and the two condensing portions 7A and 7B. The middle part between the two places is configured as a heat insulating portion, and the container as a whole is configured as a closed pipe. The evaporation unit 5A has a tubular wick structure 9A on the inner peripheral surface side of the container 3.

また、本実施形態のヒートパイプ1Aは、コンテナ3の内周面側であって、蒸発部5と凝縮部7A、7Bとの間に形成される2カ所の中間部(断熱部)に、それぞれ内管部材11A、11Bを備えている。 Further, the heat pipe 1A of the present embodiment is located on the inner peripheral surface side of the container 3 at two intermediate portions (insulation portions) formed between the evaporation portion 5 and the condensation portions 7A and 7B, respectively. The inner pipe members 11A and 11B are provided.

また、コンテナ3の内周面3aと内管部材11の外周面11aとで区画される境界部分に、コンテナ3の長手方向Lに沿って液相の作動流体F(L)を流動させる流路13が形成されている。 Further, a flow path for flowing the working fluid F (L) of the liquid phase along the longitudinal direction L of the container 3 at the boundary portion defined by the inner peripheral surface 3a of the container 3 and the outer peripheral surface 11a of the inner pipe member 11. 13 is formed.

内管部材11は、液相の作動流体F(L)が通過できない非多孔質構造材料で構成されている。そのため、液相の作動流体F(L)は、内管部材11を径方向に通過することができずに、内管部材11との外周面11aとコンテナ3の内周面3aとの間に形成された流路13を通って、内管部材11に連接(連結)されたウィック構造体9の端部位置まで毛細管力等によって移動する。 The inner pipe member 11 is made of a non-porous structural material through which the working fluid F (L) of the liquid phase cannot pass. Therefore, the working fluid F (L) of the liquid phase cannot pass through the inner pipe member 11 in the radial direction, and is between the outer peripheral surface 11a of the inner pipe member 11 and the inner peripheral surface 3a of the container 3. Through the formed flow path 13, it moves to the end position of the wick structure 9 connected (connected) to the inner tube member 11 by capillary force or the like.

また、ウィック構造体9と内管部材11との連結部は、連接(連結)されている。よって、液相の作動流体F(L)は、連結部から内部空間Sに漏れることはなく、ウィック構造体9の内部に確実に移動させることが可能になる。その結果、コンテナ3の中央部に位置する蒸発部5Aで熱を吸収した気相の作動流体F(g)は、コンテナ3の両端側部分に位置する凝縮部7A、7Bの双方へ分かれて向かう2方向の流れが、連結部で乱れることがなくなり、ヒートパイプ1の蒸発部5と凝縮部7A、7Bとの間で、作動流体Fの異なる経路となる2つの循環流れを良好な状態で形成することができる。 Further, the connecting portion between the wick structure 9 and the inner pipe member 11 is connected (connected). Therefore, the working fluid F (L) of the liquid phase does not leak from the connecting portion to the internal space S, and can be reliably moved to the inside of the wick structure 9. As a result, the working fluid F (g) of the gas phase that has absorbed heat in the evaporation portion 5A located in the central portion of the container 3 is divided into both the condensing portions 7A and 7B located in both end portions of the container 3. The flow in two directions is not disturbed at the connecting portion, and two circulating flows that serve as different paths for the working fluid F are formed in good condition between the evaporation portion 5 and the condensing portions 7A and 7B of the heat pipe 1. can do.

<その他の実施形態>
その他の実施形態として、内管部材11は、第1および第2の実施形態では銅管を用いた場合を示したが、かかる構成だけには限定されず、例えば図5(a)に示すように、銅箔を丸めてC形の断面形状に形成した内管部材11Aや、図5(b)に示すように、銅箔の両端を重ね合わせた円形の断面形状に形成した内管部材11Bを用いるなど、種々の態様にすることができる。また、溝15の断面形状は、第1および第2の実施形態では、略三角形状である場合を示したが、かかる構成だけには限定されず、例えば、図6に示す他の実施形態のヒータパイプ1Bの溝15Aのような台形状の他、矩形状など種々の形状を採用することができる。
<Other Embodiments>
As another embodiment, the inner pipe member 11 shows a case where a copper pipe is used in the first and second embodiments, but the configuration is not limited to this, and is, for example, as shown in FIG. 5 (a). The inner tube member 11A formed by rolling the copper foil into a C-shaped cross-sectional shape, and the inner tube member 11B formed into a circular cross-sectional shape in which both ends of the copper foil are overlapped as shown in FIG. 5 (b). It can be made into various aspects such as using. Further, although the cross-sectional shape of the groove 15 is substantially triangular in the first and second embodiments, the cross-sectional shape is not limited to such a configuration, and for example, in the other embodiments shown in FIG. In addition to the trapezoidal shape such as the groove 15A of the heater pipe 1B, various shapes such as a rectangular shape can be adopted.

<ヒートパイプの熱輸送メカニズム>
次に、本発明のヒートパイプ1の熱輸送のメカニズムを、図2および図3に示す第1の実施形態のヒートパイプ1を用いて以下で説明する。まず、ヒートパイプ1の蒸発部5が、熱的に接続された発熱体(図示せず)から受熱すると、蒸発部5において、液相の作動流体F(L)を蒸発させて気相の作動流体F(g)に相変化することによって、蒸発潜熱として発熱体から受けた熱を吸収する。次に、蒸発部5で熱を吸収した気相の作動流体F(g)は、コンテナ3の内部空間Sである蒸気流路を通り、コンテナ3の長手方向Lに蒸発部(受熱部)5から凝縮部(放熱部)7へ流れることで、発熱体から受けた熱が、蒸発部5から凝縮部7へと輸送される。
<Heat transport mechanism of heat pipe>
Next, the mechanism of heat transport of the heat pipe 1 of the present invention will be described below using the heat pipe 1 of the first embodiment shown in FIGS. 2 and 3. First, when the evaporating part 5 of the heat pipe 1 receives heat from a thermally connected heating element (not shown), the evaporating part 5 evaporates the working fluid F (L) of the liquid phase to operate the gas phase. By changing the phase to the fluid F (g), the heat received from the heating element is absorbed as latent heat of evaporation. Next, the working fluid F (g) of the gas phase that has absorbed heat in the evaporation section 5 passes through the steam flow path that is the internal space S of the container 3, and the evaporation section (heat receiving section) 5 passes in the longitudinal direction L of the container 3. The heat received from the heating element is transported from the evaporation unit 5 to the condensing unit 7 by flowing from the evaporating unit (heat radiating unit) 7.

その後、凝縮部7へ輸送された気相の作動流体F(g)は、凝縮部7にて、熱交換手段(図示せず)によって、液相へ相変化させられる。また、輸送されてきた発熱体の熱は、凝縮潜熱としてヒートパイプ1の外部に放出される。そして、凝縮部7で熱を放出して液相に相変化した液相の作動流体F(L)が、コンテナ3の内周面に沿って、凝縮部7から蒸発部5へ還流することで、蒸発部5と凝縮部7の間の作動流体の循環流れを形成することができる。この際、液相の作動流体F(L)が、凝縮部7から蒸発部5に還流する途中である中間部では、コンテナ3の内周面3aと内管部材11の外周面11aとで区画される境界部分に、流路13が形成されている。この流路13によって、中間部での毛細管力がより一層高まり、液相の作動流体F(L)の輸送速度を大きくすることができる。また、特許文献1に記載のヒートパイプのように、中間部にウィック構造体(金属繊維)を配置した場合と比べて、作動流体F(L)の循環流れの乱れが抑制でき、この結果、熱輸送特性を格段に向上させることができる。 After that, the working fluid F (g) of the gas phase transported to the condensing unit 7 is phase-changed to the liquid phase by the heat exchange means (not shown) at the condensing unit 7. Further, the heat of the transported heating element is released to the outside of the heat pipe 1 as latent heat of condensation. Then, the working fluid F (L) of the liquid phase, which has changed to the liquid phase by releasing heat in the condensing portion 7, returns from the condensing portion 7 to the evaporating portion 5 along the inner peripheral surface of the container 3. , A circulating flow of working fluid can be formed between the evaporation unit 5 and the condensation unit 7. At this time, in the intermediate portion where the working fluid F (L) of the liquid phase is in the process of returning from the condensing portion 7 to the evaporating portion 5, the inner peripheral surface 3a of the container 3 and the outer peripheral surface 11a of the inner pipe member 11 are partitioned. A flow path 13 is formed at the boundary portion to be formed. By this flow path 13, the capillary force in the intermediate portion is further increased, and the transport speed of the working fluid F (L) in the liquid phase can be increased. Further, as compared with the case where the wick structure (metal fiber) is arranged in the intermediate portion as in the heat pipe described in Patent Document 1, the turbulence of the circulation flow of the working fluid F (L) can be suppressed, and as a result, the turbulence of the circulation flow can be suppressed. The heat transport characteristics can be significantly improved.

<ヒートパイプの製造方法>
以下、本発明のヒートパイプの製造方法の具体的な例について説明する。まず、コンテナ基材を用意する。コンテナ基材の形状は、ヒートパイプの形状に合わせて管材、板材、箔材等から適宜選択すれば良い。コンテナ基材の表面に付着した汚れ等は、ヒートパイプの熱伝達能の低下に繋がる恐れがあるため、洗浄することが好ましい。洗浄は一般的な方法で実施すれば良く、例えば溶剤脱脂、電解脱脂、エッチング、酸化処理等を行えば良い。
<Manufacturing method of heat pipe>
Hereinafter, a specific example of the method for manufacturing the heat pipe of the present invention will be described. First, a container base material is prepared. The shape of the container base material may be appropriately selected from pipe materials, plate materials, foil materials and the like according to the shape of the heat pipe. Dirt and the like adhering to the surface of the container base material may lead to a decrease in the heat transfer ability of the heat pipe, and therefore it is preferable to clean the heat pipe. The cleaning may be carried out by a general method, for example, solvent degreasing, electrolytic degreasing, etching, oxidation treatment and the like may be performed.

次に、コンテナ基材の内部中心位置に、所定形状の芯棒(例えば、ステンレス製の芯棒)を挿入配置してから、コンテナ基材の内面と芯棒の外面との間に形成された空隙部に、ウィック構造体の原料である金属粉(例えば銅粉)を装填する。 Next, a core rod having a predetermined shape (for example, a stainless steel core rod) is inserted and arranged at the inner center position of the container base material, and then formed between the inner surface of the container base material and the outer surface of the core rod. A metal powder (for example, copper powder), which is a raw material of the wick structure, is loaded into the gap.

次いで、金属粉を焼結する工程(焼結工程)と、コンテナ基材内に内管部材を装填する工程(装填工程)を行うが、かかる工程を行う順番は、順不同であり、特に限定はしない。 Next, a step of sintering the metal powder (sintering step) and a step of loading the inner tube member into the container base material (loading step) are performed, but the order in which the steps are performed is in no particular order and is not particularly limited. do not.

例えば、焼結工程後に装填工程を行う場合には、まず、水素ガスや、水素ガスと不活性ガス(N、Ar、He等)との水素含有ガスなどの還元雰囲気下で、加熱処理を施し、金属粉を焼結させることでウィック構造体(金属粉)を作製する。次いで、コンテナ基材内の芯棒を引き抜いて取り外してから、内管部材(例えば銅管)をコンテナ基材内に、焼結された金属粉の焼結体に突き当たる位置まで押し込んで装填する。 For example, when the loading step is performed after the sintering step, first, the heat treatment is performed in a reducing atmosphere such as hydrogen gas or a hydrogen-containing gas of hydrogen gas and an inert gas (N 2, Ar, He, etc.). A wick structure (metal powder) is produced by applying and sintering the metal powder. Next, the core rod in the container base material is pulled out and removed, and then the inner pipe member (for example, a copper pipe) is pushed into the container base material to a position where it abuts on the sintered body of the sintered metal powder and loaded.

また、装填工程後に焼結工程を行う場合には、まず、内管部材を、コンテナ基材内に装填された金属粉に突き当たる位置まで押し込んで装填する。このとき、内管部材の突き当てた端部が、金属粉に、例えば1〜3mm程度、埋設されるように強く押し込むことが、その後に行う焼結工程で形成される焼結体と、内管部材との強固な接合が得られる点で好ましい。その後、水素ガスや、水素ガスと不活性ガス(N、Ar、He等)との水素含有ガスなどの還元雰囲気下で、加熱処理を施し、金属粉を焼結させることでウィック構造体(金属粉)を作製する。 When the sintering step is performed after the loading step, the inner tube member is first pushed into the container base material to a position where it abuts the metal powder loaded and loaded. At this time, the abutted end portion of the inner pipe member is strongly pushed into the metal powder so as to be embedded in the metal powder, for example, about 1 to 3 mm. It is preferable in that a strong bond with the pipe member can be obtained. After that, a wick structure (N 2 , Ar, He, etc.) is heat-treated in a reducing atmosphere such as hydrogen gas or a hydrogen-containing gas of hydrogen gas and an inert gas (N 2, Ar, He, etc.), and the metal powder is sintered to form a wick structure (N 2, Ar, He, etc.). Metal powder) is produced.

内管部材の装填後、一方の端部である封入口を残してコンテナ(管材)の他方の端部だけを封止し、封入口から作動流体を注入する。作動流体を注入した後、コンテナ内部を、加熱脱気、真空脱気等の脱気処理をして減圧状態にする。その後、封入口を封止することでヒートパイプを製造する。 After loading the inner pipe member, only the other end of the container (tube material) is sealed, leaving the sealing port which is one end, and the working fluid is injected from the sealing port. After injecting the working fluid, the inside of the container is degassed by heating, vacuum degassing, etc. to reduce the pressure. After that, a heat pipe is manufactured by sealing the sealing port.

封止の方法は、特に限定されず、例えば、TIG溶接、抵抗溶接、圧接、はんだ等を挙げることができる。なお、最初に行う封止(他方の端部だけの封止)は、その後に行う脱気の際に内部の気体が抜ける部分以外を封止するために行う工程であり、また、2回目の封止(封入口の封止)は、脱気の際に内部の気体が抜ける部分を封止するために行う工程である。 The sealing method is not particularly limited, and examples thereof include TIG welding, resistance welding, pressure welding, and soldering. The first sealing (sealing only the other end) is a step performed to seal the portion other than the portion where the gas inside escapes during the subsequent degassing, and the second sealing. Sealing (sealing of the sealing port) is a step performed to seal the portion where the gas inside escapes during degassing.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept of the present invention and claims, and varies within the scope of the present invention. Can be modified to.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
実施例1のヒートパイプは、図2に示す内部構造を有する円筒状のヒートパイプ1である。コンテナ3は、例えば、長さが400mm、直径が8mmである。コンテナ3の内周面3aには、コンテナ3の全長にわたって延在し、断面が三角形状を有する60本の溝(溝幅が0.2mm、溝深さが0.2mm)を形成した。ウィック構造体(金属粉)9は、金属粉として平均粒径が0.1mmの銅粉を用い、水素ガス雰囲気下で加熱処理を施した。コンテナ3の内部の一端側部分(蒸発部5)には、長さが100mm、厚さ1mmの円環状の銅焼結体を、コンテナ3の内周面3aの溝が埋まるような状態で形成した。また、蒸発部5と凝縮部7の間には、コンテナ3の内周面3aに対向接触する外周面11aを有する内管部材11である銅管(直径が7mm、長さが100mm、厚さが0.5mm)を、ウィック構造体(金属粉)9の一端に突き当たるまでコンテナ3の内部に押し込んで装填した。コンテナ3の内周面3aに形成された複数の溝15と、内管部材11の外周面11aとで区画される境界部分には、コンテナ3の長手方向Lに沿って液相の作動流体F(L)が流動可能な流路13を形成した。内管部材11の装填後、一方の端部である封入口を残してコンテナ3の他方の端部だけを封止し、封入口から作動流体F(L)である水を注入した後、コンテナ3の内部を脱気して減圧状態とし、その後、封入口を封止することでヒートパイプ1を作製した。
(Example 1)
The heat pipe of the first embodiment is a cylindrical heat pipe 1 having an internal structure shown in FIG. The container 3 has, for example, a length of 400 mm and a diameter of 8 mm. On the inner peripheral surface 3a of the container 3, 60 grooves (groove width: 0.2 mm, groove depth: 0.2 mm) extending over the entire length of the container 3 and having a triangular cross section were formed. The wick structure (metal powder) 9 was heat-treated in a hydrogen gas atmosphere using copper powder having an average particle size of 0.1 mm as the metal powder. An annular copper sintered body having a length of 100 mm and a thickness of 1 mm is formed on one end side portion (evaporation portion 5) inside the container 3 so that a groove on the inner peripheral surface 3a of the container 3 is filled. did. Further, between the evaporation portion 5 and the condensing portion 7, a copper pipe (diameter 7 mm, length 100 mm, thickness) which is an inner pipe member 11 having an outer peripheral surface 11a facing the inner peripheral surface 3a of the container 3 is provided. 0.5 mm) was pushed into the container 3 until it hit one end of the wick structure (metal powder) 9 and loaded. At the boundary portion defined by the plurality of grooves 15 formed on the inner peripheral surface 3a of the container 3 and the outer peripheral surface 11a of the inner pipe member 11, the working fluid F of the liquid phase is formed along the longitudinal direction L of the container 3. (L) formed a flowable flow path 13. After loading the inner pipe member 11, only the other end of the container 3 is sealed, leaving the sealing port at one end, and water, which is the working fluid F (L), is injected from the sealing port, and then the container. The inside of No. 3 was degassed to reduce the pressure, and then the sealing port was sealed to prepare the heat pipe 1.

(比較例1)
比較例1のヒートパイプ100は、銅管の代わりに、図1に示すウィック構造体(金属繊維)110を配置したこと以外は実施例1のヒートパイプと同様な構成になるようにして作製した。なお、金属繊維としては、銅繊維を用いた。金属繊維の寸法を、繊維長が1.4mm、繊維径が30μmとし、ウィック構造体(金属粉)とともに加熱処理して焼結した。
(Comparative Example 1)
The heat pipe 100 of Comparative Example 1 was produced so as to have the same configuration as the heat pipe of Example 1 except that the wick structure (metal fiber) 110 shown in FIG. 1 was arranged instead of the copper pipe. .. As the metal fiber, a copper fiber was used. The dimensions of the metal fibers were such that the fiber length was 1.4 mm and the fiber diameter was 30 μm, and the metal fibers were heat-treated together with the wick structure (metal powder) and sintered.

(性能評価)
ヒートパイプの性能評価は以下の条件で行った。
1.ヒートパイプの一端側部分である蒸発部(受熱部)の外面に発熱体(発熱量30W〜150W)を装着した。
2.ヒートパイプの他端側部分である凝縮部(放熱部)に熱交換手段を装着した。
3.蒸発部と凝縮部の間の中間部は、断熱材を装着して断熱部とした。
4.水平方向に設置した状態で、蒸発部での入熱量を30Wから10Wずつ増加させていき、蒸発部の温度が非定常となる直前の入熱量の大きさを測定し、この測定した入熱量を最大熱輸送量Qmax(W)とした。
(Performance evaluation)
The performance of the heat pipe was evaluated under the following conditions.
1. 1. A heating element (heating amount 30W to 150W) was attached to the outer surface of the evaporation part (heat receiving part) which is one end side of the heat pipe.
2. A heat exchange means was attached to the condensing part (heat dissipation part), which is the other end of the heat pipe.
3. 3. A heat insulating material was attached to the intermediate part between the evaporation part and the condensing part to form a heat insulating part.
4. In the state of being installed in the horizontal direction, the amount of heat input at the evaporation part is increased by 10W from 30W, the magnitude of the amount of heat input just before the temperature of the evaporation part becomes unsteady is measured, and the measured amount of heat input is measured. The maximum heat transport amount was Qmax (W).

その結果、実施例1のヒートパイプ1は、比較例1のヒートパイプに比べて最大熱輸送量が10%増加し、ヒートパイプの性能が向上していることが分かった。 As a result, it was found that the heat pipe 1 of Example 1 had a maximum heat transport amount increased by 10% as compared with the heat pipe of Comparative Example 1, and the performance of the heat pipe was improved.

1、1A、1B ヒートパイプ
3、3A 管状容器(またはコンテナ)
5、5A 蒸発部
7、7A、7B 凝縮部
9、9A、9B ウィック構造体
11、11A、11B 内管部材(または銅管)
13 流路
15、15A 溝
F 作動流体
F(L) 液相の作動流体
F(g) 気相の作動流体
L 管状容器の長手方向
S 内部空間
1,1A, 1B heat pipe 3,3A Tubular container (or container)
5, 5A Evaporation part 7, 7A, 7B Condensing part 9, 9A, 9B Wick structure 11, 11A, 11B Inner pipe member (or copper pipe)
13 Flow path 15, 15A Groove F Working fluid F (L) Liquid phase working fluid F (g) Gas phase working fluid L Longitudinal direction of tubular container S Internal space

Claims (6)

作動流体が封入された内部空間を有する管状容器を備え、
前記管状容器は、
液相の作動流体を蒸発させて気相の作動流体に相変化させる蒸発部と、
前記蒸発部から離隔した位置に配設され、気相の作動流体を凝縮させて液相の作動流体に相変化させる凝縮部と
を有するヒートパイプにおいて、
前記蒸発部は、多孔質金属材料からなる管状のウィック構造体を有し、
前記蒸発部と前記凝縮部の間に、前記管状容器の内周面に対向して位置する外周面を有し、非多孔質金属材料からなる内管部材を備え、
前記管状容器の前記内周面と前記内管部材の前記外周面の境界部分に、前記管状容器の長手方向に沿って前記液相の作動流体が流動可能な流路が形成されていることを特徴とするヒートパイプ。
It has a tubular container with an internal space filled with working fluid.
The tubular container is
An evaporating part that evaporates the working fluid of the liquid phase and changes the phase to the working fluid of the gas phase,
In a heat pipe provided at a position separated from the evaporation portion and having a condensing portion that condenses the working fluid of the gas phase and changes the phase into the working fluid of the liquid phase.
The evaporation portion has a tubular wick structure made of a porous metal material and has a tubular wick structure.
An inner tube member having an outer peripheral surface facing the inner peripheral surface of the tubular container and made of a non-porous metal material is provided between the evaporation portion and the condensing portion.
At the boundary between the inner peripheral surface of the tubular container and the outer peripheral surface of the inner pipe member, a flow path through which the working fluid of the liquid phase can flow is formed along the longitudinal direction of the tubular container. The characteristic heat pipe.
前記蒸発部は、前記管状容器の一端側部分に位置し、前記凝縮部は、前記管状容器の他端側部分に位置する、請求項1に記載のヒートパイプ。 The heat pipe according to claim 1, wherein the evaporation portion is located on one end side portion of the tubular container, and the condensing portion is located on the other end side portion of the tubular container. 前記蒸発部は、前記管状容器の中央部分に位置し、前記凝縮部は、前記管状容器の両端側部分に位置する、請求項1に記載のヒートパイプ。 The heat pipe according to claim 1, wherein the evaporation portion is located in a central portion of the tubular container, and the condensing portion is located in both end portions of the tubular container. 前記管状容器の内周面に、前記管状容器の長手方向に沿って延在する複数の溝が形成され、
前記境界部分に形成される流路は、前記複数の溝と前記内管部材の外周面とで区画形成される、請求項1、2または3に記載のヒートパイプ。
A plurality of grooves extending along the longitudinal direction of the tubular container are formed on the inner peripheral surface of the tubular container.
The heat pipe according to claim 1, 2 or 3, wherein the flow path formed at the boundary portion is partitioned by the plurality of grooves and the outer peripheral surface of the inner pipe member.
前記ウィック構造体は、銅粉の焼結体で構成される、請求項1から4までのいずれか1項に記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 4, wherein the wick structure is made of a sintered body of copper powder. 前記内管部材は、銅管である、請求項1から5までのいずれか1項に記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 5, wherein the inner pipe member is a copper pipe.
JP2019179336A 2019-09-30 2019-09-30 heat pipe Active JP7420519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019179336A JP7420519B2 (en) 2019-09-30 2019-09-30 heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019179336A JP7420519B2 (en) 2019-09-30 2019-09-30 heat pipe

Publications (2)

Publication Number Publication Date
JP2021055914A true JP2021055914A (en) 2021-04-08
JP7420519B2 JP7420519B2 (en) 2024-01-23

Family

ID=75270421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019179336A Active JP7420519B2 (en) 2019-09-30 2019-09-30 heat pipe

Country Status (1)

Country Link
JP (1) JP7420519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237366A (en) * 2021-04-09 2021-08-10 瑞声科技(南京)有限公司 Preparation method of working medium heat dissipation element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146024A (en) * 2016-02-17 2017-08-24 古河電気工業株式会社 heat pipe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205701A (en) 2006-02-06 2007-08-16 Fujikura Ltd Flat heat pipe and its manufacturing method
CN111527367B (en) 2017-12-28 2021-11-05 古河电气工业株式会社 Heat pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146024A (en) * 2016-02-17 2017-08-24 古河電気工業株式会社 heat pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237366A (en) * 2021-04-09 2021-08-10 瑞声科技(南京)有限公司 Preparation method of working medium heat dissipation element

Also Published As

Publication number Publication date
JP7420519B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP4627212B2 (en) Cooling device with loop heat pipe
JP6560425B1 (en) heat pipe
US10184729B2 (en) Heat pipe
JP6827117B2 (en) heat pipe
TWI633269B (en) Heat pipe
US20140054014A1 (en) Heat pipe and method for making the same
TWI633266B (en) Heat pipe
WO2018190375A1 (en) Heat pipe
JP2021055914A (en) heat pipe
JP2009115346A (en) Heat pipe
JP6928841B2 (en) heat pipe
US20240011715A1 (en) Heat pipe
US20120037344A1 (en) Flat heat pipe having swirl core
JP6605918B2 (en) heat pipe
JP6960651B2 (en) Electronics, heat exchangers and evaporators
WO2018235936A1 (en) Heat pipe
JP2023158332A (en) heat pipe
JP2021131183A (en) heat pipe
TWI824419B (en) heat pipe
TWI832194B (en) steam room

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R151 Written notification of patent or utility model registration

Ref document number: 7420519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151