JP2021052422A - 無線端末、プロセッサ、及び方法 - Google Patents

無線端末、プロセッサ、及び方法 Download PDF

Info

Publication number
JP2021052422A
JP2021052422A JP2020208845A JP2020208845A JP2021052422A JP 2021052422 A JP2021052422 A JP 2021052422A JP 2020208845 A JP2020208845 A JP 2020208845A JP 2020208845 A JP2020208845 A JP 2020208845A JP 2021052422 A JP2021052422 A JP 2021052422A
Authority
JP
Japan
Prior art keywords
cell
offset
transmission
ptm
mbms service
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020208845A
Other languages
English (en)
Other versions
JP7058714B2 (ja
Inventor
真人 藤代
Masato Fujishiro
真人 藤代
宏行 浦林
Hiroyuki Urabayashi
宏行 浦林
裕之 安達
Hiroyuki Adachi
裕之 安達
ヘンリー チャン
Henry Chang
ヘンリー チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JP2021052422A publication Critical patent/JP2021052422A/ja
Application granted granted Critical
Publication of JP7058714B2 publication Critical patent/JP7058714B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】移動通信システムにおけるSC−PTM伝送を用いて提供されるMBMSサービスを受信するためのユーザ装置、プロセッサ及び方法を提供する。【解決手段】ユーザ装置は、RRCアイドルモードにある間において、ユーザ装置のサービングセルとして用いるセルを選択するセル再選択動作を行う。ユーザ装置は、再選択動作において、複数のセルの中から、無線品質とオフセットとにより定められるランキングが最も高いセルをサービングセルとして選択する。その際、ユーザ装置が拡張カバレッジにおり、かつ、SC−PTM伝送に関する所定の条件が満たされた場合、SC−PTM伝送を用いてMBMSサービスを提供するセルに適用するオフセットとして無限大のオフセットを使用する。【選択図】図15

Description

本開示は、移動通信システムのための無線端末及び基地局に関する。
移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)において、無線端末にマルチキャスト/ブロードキャストサービスを提供するMBMS(Multimedia Broadcast Multicast Service)伝送が仕様化されている。MBMSの伝送方式としては、MBSFN(Multicast Broadcast Single Frequency Network)及びSC−PTM(Single Cell
Point−To−Multipoint)の2つの伝送方式がある。
一方、人が介在することなく通信を行うMTC(Machine Type Communication)やIoT(Internet of Things)サービスを対象とした無線端末が検討されている。このような無線端末は、低コスト化、カバレッジ広域化、及び低消費電力化を実現することが求められる。このため、3GPPにおいて、システム送受信帯域の一部のみに送受信帯域幅を制限した新たな無線端末のカテゴリが仕様化されている。このような新たなカテゴリの無線端末には、繰り返し送信(repetition)等を含む強化カバレッジ(enhanced coverage)機能が適用される。
一実施形態に係る無線端末は、SC−PTM伝送を用いて提供されるMBMSサービスを受信する。前記無線端末は、前記無線端末がRRCアイドルモードにある間において、前記無線端末のサービングセルとして用いるセルを選択するセル再選択動作を行う制御部を備える。前記セル再選択動作において、前記制御部は、複数のセルの中から、無線品質とオフセットとにより定められるランキングが最も高いセルを前記サービングセルとして選択する。前記制御部は、前記SC−PTM伝送に関する所定の条件が満たされた場合、所定のセルに適用する前記オフセットとして無限大のオフセットを設定する。
一実施形態に係る無線端末は、SC−PTM伝送を用いて提供されるMBMSサービスを受信する。前記無線端末は、前記無線端末がRRCアイドルモードにある間において、前記SC−PTM伝送を用いて提供される前記MBMSサービスを受信する受信部と、前記無線端末がユニキャスト通信を行う必要が生じたことに応じて、前記RRCアイドルモードからRRCコネクティッドモードに遷移するためのプロシージャを開始する制御部と、を備える。前記制御部は、前記プロシージャを開始する前の所定のタイミングにおいて、複数のセルの中から前記無線端末のサービングセルとして用いるセルを選択するセル再選択動作を行う。
一実施形態に係る基地局は、SC−PTM伝送を用いてMBMSサービスを提供する基地局である。前記MBMSサービス用のDRX動作に用いるDRXサイクルを無線端末に設定する制御部と、前記MBMSサービスに属するデータに対応する制御情報を繰り返し送信する第1の繰り返し送信と、前記データを繰り返し送信する第2の繰り返し送信と、を行う送信部と、を備える。前記制御部は、前記第1の繰り返し送信に要する第1の期間と、前記第2の繰り返し送信に要する第2の期間と、前記第1の繰り返し送信と前記第2の繰り返し送信との間の切り替えに要する第3の期間と、の合計以上の時間を前記DRXサイクルとして設定する。
一実施形態に係る無線端末は、SC−PTM伝送を用いて提供されるMBMSサービスを受信する。前記無線端末は、前記MBMSサービス用のDRXサイクルを用いて、前記MBMSサービスに属するデータに対応する制御情報を伝送するPDCCHを間欠的にモニタするDRX動作を行う制御部と、前記制御情報を繰り返し受信する第1の繰り返し受信と、前記データを繰り返し受信する第2の繰り返し受信と、を行う受信部と、を備える。前記DRXサイクルは、前記PDCCHをモニタすべきモニタ期間と前記PDCCHのモニタが不要な非モニタ期間と、を含む。前記制御部は、前記第2の繰り返し受信を行っている間は、前記モニタ期間であっても前記PDCCHをモニタしないように制御する。
一実施形態に係る基地局は、SC−PTM伝送を用いてMBMSサービスを提供する。前記基地局は、前記MBMSサービスに属するデータをSC−MTCHを用いて無線端末に送信する送信部と、前記MBMSサービスの提供を停止すると判断する制御部と、を備える。前記送信部は、前記MBMSサービスの提供停止に関する停止通知を前記無線端末に複数回送信する。
実施形態に係るLTEシステム(移動通信システム)の構成を示す図である。 実施形態に係るMBMSに係るネットワーク構成を示す図である。 実施形態に係るUE(無線端末)の構成を示す図である。 実施形態に係るeNB(基地局)の構成を示す図である。 実施形態に係るLTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。 実施形態に係るLTEシステムの下りリンクのチャネルの構成を示す図である。 実施形態に係るLTEシステムの無線フレームの構成を示す図である。 実施形態に係るSC−PTMの動作例を示す図である。 実施形態に係るSIB20を示す図である。 実施形態に係るSC−MCCH中のMBMS制御情報を示す図である。 実施形態に係るeMTC UE向けの下りリンク物理チャネルを示す図である。 実施形態に係るeMTC UE及びNB−IoT UE向けのランダムアクセスプロシージャを示す図である。 第1実施形態に係る動作シナリオを示す図である。 第1実施形態に係るSIBを示す図である。 第1実施形態に係るUEの動作フロー例を示す図である。 第1実施形態の変更例に係るUEの動作フロー例を示す図である。 第2実施形態に係る動作例を示す図である。 第2実施形態の変更例に係る動作例を示す図である。 第3実施形態に係る停止通知をMAC CEで送信するケースを示す図である。 第3実施形態に係る動作例を示す図である。
(移動通信システム)
実施形態に係る移動通信システムの構成について説明する。実施形態に係る移動通信システムは、3GPPで仕様が策定されているLTE(Long Term Evolution)システムである。図1は、実施形態に係るLTEシステムの構成を示す図である。図2は、MBMSに係るネットワーク構成を示す図である。
図1に示すように、LTEシステムは、無線端末(UE:User Equipment)100、無線アクセスネットワーク(E−UTRAN:Evolved−UMTS Terrestrial Radio Access Network)10、及びコアネットワーク(EPC:Evolved Packet Core)20を備える。E−UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
UE100は、移動型の通信装置である。UE100は、自身が在圏するセル(サービングセル)を管理するeNB200との無線通信を行う。
E−UTRAN10は、基地局(eNB:evolved Node−B)200を含む。eNB200は、X2インターフェイスを介して相互に接続される。eNB200は、1又は複数のセルを管理している。eNB200は、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。
EPC20は、モビリティ管理エンティティ(MME)及びサービングゲートウェイ(S−GW)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S−GWは、データの転送制御を行う。MME/S−GW300は、S1インターフェイスを介してeNB200と接続される。
MBMS向けのネットワークエンティティについて説明する。E−UTRAN10は、MCE(Multi−Cell/Multicast Coordinating Entity)11を含む。MCE11は、M2インターフェイスを介してeNB200と接続される。MCE11は、M3インターフェイスを介してMME300と接続される(図2参照)。MCE11は、MBSFN無線リソース管理・割当等を行う。具体的には、MCE11は、MBSFN伝送のスケジューリングを行う。これに対し、SC−PTM伝送のスケジューリングはeNB200により行われる。
EPC20は、MBMS GW(MBMS Gateway)21を含む。MBMS GW21は、M1インターフェイスを介してeNB200と接続される。MBMS GW21は、Smインターフェイスを介してMME300と接続される。MBMS GW21は、SG−mb及びSGi−mbインターフェイスを介してBM−SC22と接続される(図2参照)。MBMS GW21は、eNB200に対してIPマルチキャストのデータ伝送及びセッション制御等を行う。
EPC20は、BM−SC(Broadcast Multicast Service Center)22を含む。BM−SC22は、SG−mb及びSGi−mbインターフェイスを介してMBMS GW21と接続される。EPC20は、SGiインターフェイスを介してP−GW23と接続される(図2参照)。BM−SC22は、TMGI(Temporary Mobile Group Identity)の管理・割当等を行う。
EPC20の外部のネットワーク(すなわち、インターネット)には、GCS AS(Group Communication Service Application Server)31が設けられてもよい。GCS AS31は、グループ通信用のアプリケーションサーバである。GCS AS31は、MB2−U及びMB2−Cインターフェイスを介してBM−SC22と接続される。GCS AS31は、SGiインターフェイ
スを介してP−GW23と接続される。GCS AS31は、グループ通信におけるグループの管理及びデータ配信等を行う。
図3は、実施形態に係るUE100(無線端末)の構成を示す図である。図3に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、後述する各種の処理を実行する。
図4は、実施形態に係るeNB200(基地局)の構成を示す図である。図4に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する各種の処理を実行する。
バックホール通信部240は、X2インターフェイスを介して隣接eNBと接続される。バックホール通信部240は、S1インターフェイスを介してMME/S−GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。バックホール通信部240は、M1インターフェイス上で行う通信及びM2インターフェイス上で行う通信にも用いられ得る。
図5は、LTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。図5に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第
1レイヤ乃至第3レイヤに区分されている。第1レイヤは、物理(PHY)レイヤである。第2レイヤは、MAC(Medium Access Control)レイヤ、RLC(Radio Link Control)レイヤ、及びPDCP(Packet Data Convergence Protocol)レイヤを含む。第3レイヤは、RRC(Radio Resource Control)レイヤを含む。
物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータ及び制御信号が伝送される。
MACレイヤは、データの優先制御、HARQ(Hybrid ARQ)による再送処理等を行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMACレイヤは、スケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))、及びUE100への割当リソースブロックを決定する。
RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御信号が伝送される。
PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
RRCレイヤは、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードである。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドルモードである。
RRCレイヤの上位に位置するNAS(Non−Access Stratum)レイヤは、セッション管理及びモビリティ管理等を行う。
図6は、LTEシステムの下りリンクのチャネルの構成を示す図である。図6(a)は、論理チャネル(Downlink Logical Channel)とトランポートチャネル(Downlink Transport Channel)との間のマッピングを示す。
図6(a)に示すように、PCCH(Paging Control Channel)は、ページング情報、及びシステム情報変更を通知するための論理チャネルである。PCCHは、トランスポートチャネルであるPCH(Paging Channel)にマッピングされる。
BCCH(Broadcast Control Channel)は、システム情報のための論理チャネルである。BCCHは、トランスポートチャネルであるBCH(Broadcast Control Channel)及びDL−SCH(Downlink Shared Channel)にマッピングされる。
CCCH(Common Control Channel)は、UE100とeNB
200との間の送信制御情報のための論理チャネルである。CCCHは、UE100がネットワークとの間でRRC接続を有していない場合に用いられる。CCCHは、DL−SCHにマッピングされる。
DCCH(Dedicated Control Channel)は、UE100とネットワークとの間の個別制御情報を送信するための論理チャネルである。DCCHは、UE100がRRC接続を有する場合に用いられる。DCCHは、DL−SCHにマッピングされる。
DTCH(Dedicated Traffic Channel)は、データ送信のための個別論理チャネルである。DTCHは、DL−SCHにマッピングされる。
SC−MTCH(Single Cell Multicast Traffic Channel)は、SC−PTM伝送のための論理チャネルである。SC−MTCHは、SC−PTM伝送を用いてネットワークからUE100にデータ(MBMS)をマルチキャスト送信するための1対多チャネル(point−to−multipoint downlink channel)である。
SC−MCCH(Single Cell Multicast Control Channel)は、SC−PTM伝送のための論理チャネルである。SC−MCCHは、1又は複数のSC−MTCHのためのMBMS制御情報をネットワークからUE100にマルチキャスト送信するための1対多チャネル(point−to−multipoint downlink channel)である。SC−MCCHは、SC−PTM伝送を用いてMBMSを受信する又は受信に興味を持つUE100に用いられる。また、SC−MCCHは、1つのセルに1つのみ存在する。
MCCH(Multicast Control Channel)は、MBSFN伝送のための論理チャネルである。MCCHは、ネットワークからUE100へのMTCH用のMBMS制御情報の送信のために用いられる。MCCHは、トランスポートチャネルであるMCH(Multicast Channel)にマッピングされる。
MTCH(Multicast Traffic Channel)は、MBSFN伝送のための論理チャネルである。MTCHは、MCHにマッピングされる。
図6(b)は、トランポートチャネル(Downlink Transport Channel)と物理チャネル(Downlink Physical Channel)との間のマッピングを示す。
図6(b)に示すように、BCHは、PBCH(Physical Broadcast Channel)にマッピングされる。
MCHは、PMCH(Physical Multicast Channel)にマッピングされる。MCHは、複数のセルによるMBSFN伝送をサポートする。
PCH及びDL−SCHは、PDSCH(Physical Downlink Shared Channel)にマッピングされる。DL−SCHは、HARQ、リンクアダプテーション、及び動的リソース割当をサポートする。
PDCCHは、PDSCH(DL−SCH、PCH)のリソース割り当て情報及びDL−SCHに関するHARQ情報等を運搬する。また、PDCCHは、上りリンクのスケジ
ューリンググラントを運ぶ。
図7は、LTEシステムの無線フレームの構成を示す図である。LTEシステムにおいて、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)が適用される。LTEシステムにおいて、上りリンクにはSC−FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
図7に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含む。各サブフレームは、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するためのPDCCHとして用いられる領域である。各サブフレームの残りの部分は、主に下りリンクデータを伝送するためのPDSCHとして使用できる領域である。また、下りリンクにおいて、MBSFN伝送向けのサブフレームであるMBSFNサブフレームが設定され得る。
上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するためのPUCCHとして用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するためのPUSCHとして使用できる領域である。
(セル再選択動作の概要)
セル再選択動作の概要について説明する。RRCアイドルモードにあるUE100は、開始条件が満たされた場合に、現在のサービングセルに隣接する隣接セルの品質を測定し、選択条件を満たすセルの中からサービングセルとして用いるセルを選択する。
第1に、開始条件は、以下に示す通りである。
(A1)現在のサービングセルの周波数の優先度よりも高い優先度を有する周波数:
UE100は、高い優先度を有する周波数の品質を常に測定する。
(A2)現在のサービングセルの周波数の優先度と等しい優先度又は低い優先度を有する周波数:
UE100は、現在のサービングセルの品質が所定閾値を下回った場合に、等しい優先度又は低い優先度を有する周波数の品質を測定する。
第2に、選択条件は、以下に示す通りである。
(B1)隣接セルの周波数の優先度が現在のサービングセルの優先度よりも高い:
UE100は、所定期間(TreselectionRAT)に亘ってSqual>ThreshX,HighQの関係を満たすセル、若しくは、所定期間(TreselectionRAT)に亘ってSrxlev>ThreshX,HighPの関係を満たすセ
ルを選択する。このようなケースにおいて、隣接セルが満たすべき基準を“S−criteria”と称することもある。
Squalは、セル選択品質レベルを表している。Squalは、Squal=Qqualmeas-(Qqualmin+Qqualminoffset)−Qoffsettempによって算出される。Qqualmeasは、隣接セルの品質レベル(RSRQ)である。Qqualminは、最小要求品質レベルである。Qqualminoffsetは、隣接セルに定常的に適用される所定オフセットである。Qoffsettempは、隣接セルに一時的に適用されるオフセットである。ThreshX,HighQは、所定閾値である。
Srxlevは、セル選択受信レベルを表している。Srxlevは、Srxlev=Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation−Qoffsettempによって算出される。Qrxlevmeasは、隣接セルの受信レベル(RSRP)である。Qrxlevminは、最小要求受信レベルである。Qrxlevminoffsetは、隣接セルに定常的に適用される所定オフセットである。Pcompensationは、アップリンクの能力に関するパラメータである。Qoffsettempは、隣接セルに一時的に適用されるオフセットである。ThreshX,HighPは、所定閾値である。
(B2)隣接セルの周波数の優先度が現在のサービングセルの優先度と同じである:
UE100は、現在のサービングセルのランキングRs及び隣接セルのランキングRnを算出する。UE100は、所定期間(TreselectionRAT)に亘ってRsよりも高いランキングRnを有するセルを対象セルとして選択する。このようなケースにおいて、隣接セルが満たすべき基準を“R−criteria”と称することもある。
Rsは、Rs=Qmeas,s+QHyst−Qoffsettempによって算出される。Rnは、Rn=Qmeas,n−Qoffset−Qoffsettempによって算出される。Qmeas,sは、現在のサービングセルの受信レベル(RSRP)である。Qmeas,nは、隣接セルの受信レベル(RSRP)である。QHystは、現在のサービングセルが対象セルとして再選択されやすくするためのヒステリシス値である。Qoffsettempは、現在のサービングセル及び隣接セルに一時的に適用されるオフセットである。
(B3)隣接セルの周波数の優先度が現在のサービングセルの優先度よりも低い:
UE100は、所定期間(TreselectionRAT)に亘ってSqual<ThreshServing,LowQが満たされる、若しくは、所定期間(TreselectionRAT)に亘ってSrxlev<ThreshServing,LowPが満たされるという前提下において、上述した(B1)と同様の手法によって隣接セルの中から対象セルを選択する。
但し、ThreshServing,LowQ及びThreshServing,LowPは、ThreshX,HighQ及びThreshX,HighPと同様に、所定閾値である。
対象セルの選択で用いる各種パラメータは、eNB200からブロードキャストされる情報(SIB:System Information Block)に含まれる。各種パラメータは、周波数の優先度(cellReselectionPriority)、所定期間(TreselectionRAT)、各種オフセット(Qqualminoffset、Qrxlevminoffset、Qoffsettemp、QHyst、Q
offset)、各種閾値(ThreshX,HighQ、ThreshX,HighP、ThreshServing,LowQ、ThreshServing,LowP)を含む。
(SC−PTM伝送の概要)
SC−PTM伝送の概要について説明する。MBMS用の無線伝送方式としては、MBSFN及びSC−PTMの2つの伝送方式がある。MBSFN伝送においては、データは、複数のセルからなるMBSFNエリア単位で、PMCHを介して送信される。これに対し、SC−PTM伝送においては、データは、セル単位で、PDSCHを介して送信される。以下においては、UE100がSC−PTM受信を行うシナリオを主として想定するが、MBSFN伝送を想定してもよい。
UE100は、RRCコネクティッド状態でMBMSサービスを受信してもよい。UE100は、RRCアイドルモードでMBMSサービスを受信してもよい。以下において、UE100がRRCアイドルモードでMBMSサービスを受信するケースを主として想定する。
図8は、SC−PTM伝送の動作例を示す図である。
ステップS1において、UE100は、eNB200を介してEPC20からUSD(User Service Description)を取得する。USDは、各MBMSサービスの基本的な情報を提供する。USDは、MBMSサービスごとに、当該MBMSサービスを識別するTMGIと、当該MBMSサービスが提供される周波数と、当該MBMSサービスの提供開始・終了時間と、を含む。
ステップS2において、UE100は、BCCHを介してeNB200からSIB20を受信する。SIB20は、SC−MCCHの取得に必要な情報(スケジューリング情報)を含む。図9は、SIB20を示す図である。SIB20は、sc−mcch−ModificationPeriod、sc−mcch−RepetitionPeriod、sc−mcch−Offset、及びsc−mcch−Subframe等を含む。sc−mcch−ModificationPeriodは、SC−MCCHの内容が変更され得る周期を示す。sc−mcch−RepetitionPeriodは、SC−MCCHの送信(再送)時間間隔を無線フレーム数で示す。sc−mcch−Offsetは、SC−MCCHがスケジュールされる無線フレームのオフセットを示す。sc−mcch−Subframeは、SC−MCCHがスケジュールされるサブフレームを示す。
ステップS3において、UE100は、SIB20に基づいて、SC−MCCHを介してeNB200からMBMS制御情報を受信する。MBMS制御情報は、SC−PTM設定情報(SCPTM Configuration)と称されてもよい。物理レイヤにおいてSC−MCCHの送信にはSC−RNTI(Single Cell RNTI)が用いられる。図10は、SC−MCCH中のMBMS制御情報(SC−PTM設定情報)を示す図である。SC−PTM設定情報は、SC−MRB(Single Cell MBMS Point to Multipoint Radio Bearer)を介して送信されるMBMSサービスに適用可能な制御情報を含む。SC−PTM設定情報は、sc−mtch−InfoList、及びscptmNeighbourCellListを含む。sc−mtch−InfoListは、SC−PTM設定情報を送信するセルにおける各SC−MTCHの設定を含む。scptmNeighbourCellListは、SC−MRBを介してMBMSサービスを提供する隣接セルのリストである。sc−mtch−InfoListは、1又は複数のSC−MTCH−Infoを含む。各SC−MTCH−Infoは、SC−MRBを介して送信される進行中のMBMSセッショ
ンの情報(mbmsSessionInfo)、当該MBMSセッションに対応するG−RNTI(Group RNTI)、及びSC−MTCHのためのDRX情報であるsc−mtch−schedulingInfoを含む。mbmsSessionInfoは、MBMSサービスを識別するTMGI及びセッションID(sessionId)を含む。G−RNTIは、マルチキャストグループ(具体的には、特定グループ宛てのSC−MTCH)を識別するRNTIである。G−RNTIは、TMGIと1対1でマッピングされる。sc−mtch−schedulingInfoは、onDurationTimerSCPTM、drx−InactivityTimerSCPTM、schedulingPeriodStartOffsetSCPTMを含む。schedulingPeriodStartOffsetSCPTMは、SC−MTCH−SchedulingCycle及びSC−MTCH−SchedulingOffsetを含む。
ステップS4において、UE100は、SC−PTM設定情報中のSC−MTCH−SchedulingInfoに基づいて、SC−MTCHを介して、自身が興味のあるTMGIに対応するMBMSサービス(MBMSデータ)を受信する。物理レイヤにおいて、eNB200は、G−RNTIを用いてPDCCHを送信した後、PDSCHを介してMBMSデータを送信する。
なお、図8に関連して説明した制御信号(シグナリング)は一例である。制御信号は、省電力受信のための最適化等により、一部の制御信号が適宜省略されたり、制御信号の順序が入れ替わったりしてもよい。
(eMTC及びNB−IoTの概要)
eMTC及びNB−IoTの概要について説明する。実施形態において、新たなカテゴリのUE100が存在するシナリオを想定する。新たなカテゴリのUE100は、システム送受信帯域の一部のみに送受信帯域幅が制限されるUE100である。新たなUEカテゴリは、例えば、カテゴリM1及びNB(Narrow Band)−IoTカテゴリと称される。カテゴリM1は、eMTC(enhanced Machine Type Communications)UEである。NB−IoT UEは、カテゴリNB1である。カテゴリM1は、UE100の送受信帯域幅を1.08MHz(すなわち、6リソースブロックの帯域幅)に制限する。カテゴリM1は、繰り返し送信等を用いた強化カバレッジ(EC:Enhanced Coverage)機能をサポートする。NB−IoTカテゴリは、UE100の送受信帯域幅を180kHz(すなわち、1リソースブロックの帯域幅)にさらに制限する。NB−IoTカテゴリは、強化カバレッジ機能をサポートする。繰り返し送信は、複数のサブフレームを用いて同一の信号を繰り返し送信する技術である。一例として、LTEシステムのシステム帯域幅は10MHzであり、そのうちの送受信帯域幅は9MHz(すなわち、50リソースブロックの帯域幅)である。一方、カテゴリM1のUE100は、6リソースブロックよりも広い帯域幅で送信される下りリンク無線信号を受信することができないため、通常のPDCCHを受信することができない。このため、MTC向けのPDCCHであるMPDCCH(MTC−PDCCH)が導入される。同様な理由で、NB−IoT向けのPDCCHであるNPDCCH(NB−PDCCH)が導入される。
強化カバレッジ機能は、同一信号を繰り返し送信する繰り返し送信(Repetition)を含んでもよい。繰り返し送信の回数が多いほど、カバレッジを強化することができる。強化カバレッジ機能は、送信信号の電力密度を上げる電力ブースト(Power boosting)を含んでもよい。一例として、送信信号の周波数帯域幅を狭くする狭帯域送信により電力密度を上げる。送信信号の電力密度を上げるほど、カバレッジを強化することができる。強化カバレッジ機能は、送信信号に用いるMCSを下げる低MCS(Lower MCS)送信を含んでもよい。データレートが低く、誤り耐性の高いMCS
を用いて送信を行うことにより、カバレッジを強化することができる。
図11は、eMTC UE向けの下りリンク物理チャネルを示す図である。図11に示すように、eNB200は、6リソースブロック以内でMPDCCHを送信する。MPDCCHは、PDSCHを割り当てるためのスケジューリング情報を含む。一例として、MPDCCHは、当該MPDCCHが送信されるサブフレームとは異なるサブフレームのPDSCHを割り当てる。eNB200は、6リソースブロック以内でPDSCHを送信する。eNB200は、同一の信号の繰り返し送信を行うために、複数のサブフレームに亘ってPDSCHを割り当てる。カテゴリM1のUE100は、MPDCCHを受信することで割り当てPDSCHを特定し、割り当てPDSCHで送信されるデータを受信する。
図12は、eMTC UE及びNB−IoT UE向けのランダムアクセスプロシージャを示す図である。図12の初期状態において、UE100は、RRCアイドルモードにある。UE100は、RRCコネクティッドモードに遷移するためにランダムアクセスプロシージャを実行する。
UE100は、eNB200のセルをサービングセルとして選択している。UE100は、通常のカバレッジのための第1のセル選択基準(第1のS−criteria)が満たされず、強化カバレッジのための第2のセル選択基準(第2のS−criteria)が満たされた場合、自身が強化カバレッジに居ると判定してもよい。「強化カバレッジに居るUE」とは、セルにアクセスするために強化カバレッジ機能(強化カバレッジモード)を用いることが必要とされるUEを意味する。なお、eMTC UEは、強化カバレッジモードを用いることが必須である。
ステップS1001において、eNB200は、PRACH(Physical Random Access Channel)関連情報をブロードキャストシグナリング(例えば、SIB)により送信する。PRACH関連情報は、強化カバレッジレベルごとに設けられた各種のパラメータを含む。一例として、強化カバレッジレベルは、強化カバレッジレベル0乃至3の合計4つのレベルが規定される。各種のパラメータは、RSRP(Reference Signal Received Power)閾値、PRACHリソース、及び最大プリアンブル送信回数を含む。PRACHリソースは、無線リソース(時間・周波数リソース)及び信号系列(プリアンブル系列)を含む。UE100は、受信したPRACH関連情報を記憶する。
ステップS1002において、UE100は、eNB200から送信される参照信号に基づいてRSRPを測定する。
ステップS1003において、UE100は、測定したRSRPを強化カバレッジレベルごとのRSRP閾値と比較することにより、自身の強化カバレッジレベルを決定する。強化カバレッジレベルは、UE100に必要とされる強化カバレッジの度合いを示す。強化カバレッジレベルは、少なくとも繰り返し送信における送信回数(すなわち、Repetition回数)と関連する。
ステップS1004において、UE100は、自身の強化カバレッジレベルに対応するPRACHリソースを選択する。
ステップS1005において、UE100は、選択したPRACHリソースを用いてMsg 1(ランダムアクセスプリアンブル)をeNB200に送信する。eNB200は、受信したMsg 1に用いられたPRACHリソースに基づいて、UE100の強化カバレッジレベルを特定する。
ステップS1006において、eNB200は、UE100に割り当てたPUSCHリソースを示すスケジューリング情報を含むMsg 2(ランダムアクセス応答)をUE100に送信する。UE100は、Msg 2を正常に受信するまで、自身の強化カバレッジレベルに対応する最大プリアンブル送信回数までMsg 1を複数回送信し得る。
ステップS1007において、UE100は、スケジューリング情報に基づいて、Msg 3をeNB200に送信する。Msg 3は、RRC Connection Requestメッセージであってもよい。
ステップS1008において、eNB200は、Msg 4をUE100に送信する。
ステップS1009において、UE100は、Msg 4の受信に応じてRRCコネクティッドモードに遷移する。その後、eNB200は、特定した強化カバレッジレベルに基づいて、UE100への繰り返し送信等を制御する。
(第1実施形態)
上述したような移動通信システムを前提として、第1実施形態について説明する。第1実施形態は、上述した新たなカテゴリのUE100に対して、SC−PTM伝送によりファームウェア等の一括配信を行うシナリオを想定する。また、RRCアイドルモードのUE100がSC−PTM伝送により提供されるMBMSサービスを受信するケースを主として想定する。
図13は、第1実施形態に係る動作シナリオを示す図である。
図13に示すように、UE(eMTC UE又はNB−IoT UE)100は、RRCアイドルモードにおいて強化カバレッジ(Enhanced Coverage)に居る。具体的には、UE100は、eNB200−1が管理するセル#1の強化カバレッジに位置しており、セル#1をサービングセルとして選択している。eNB200−1が管理するセル#1及びeNB200−2が管理するセル#2のそれぞれは、SC−PTM伝送を用いてMBMSサービスを提供するSC−PTMセルである。eNB200−3が管理するセル#3は、SC−PTM伝送を用いてMBMSサービスを提供しない非SC−PTMセルである。
UE100は、SC−PTM伝送を用いて提供されるMBMSサービスを受信している又は受信に興味を持つ。MBMSサービスの受信に興味を持つ状態とは、未だMBMSサービスを受信していないものの、上位レイヤ等からMBMSサービスを受信するよう設定された状態であってもよい。
セル#1の強化カバレッジ及びセル#3のカバレッジは地理的に重複している。この場合、UE100は、セル#1の無線品質よりもセル#3の無線品質の方が良好であると判断し、セル#3をサービングセルとして再選択し得る。無線品質とは、例えば受信レベル(RSRP)である。この場合、UE100がMBMSサービスを受信するためには、ユニキャスト通信(ユニキャスト伝送)によりネットワークからMBMSサービスをユニキャストで受信する必要がある。但し、UE100は、ユニキャスト通信を行うためには、RRCアイドルモードからRRCコネクティッドモードに遷移する必要がある。よって、無線リソースの利用効率が悪くなるとともに、UE100の消費電力が増大する。
第1実施形態は、このような問題を解決しようとする実施形態である。第1実施形態に係るUE100は、SC−PTM伝送を用いて提供されるMBMSサービスを受信する。
UE100の制御部130は、UE100がRRCアイドルモードにある間において、UE100のサービングセルとして用いるセルを選択するセル再選択動作を行う。セル再選択動作において、UE100の制御部130は、複数のセルの中から、無線品質とオフセットとにより定められるランキングが最も高いセルをサービングセルとして選択する。UE100の制御部130は、SC−PTM伝送に関する所定の条件が満たされた場合、所定のセルに適用するオフセットとして無限大のオフセットを設定する。無限大のオフセットとは、正の無限大(+∞)であってもよいし、負の無限大(−∞)であってもよい。
所定の条件は、SC−PTM伝送によりMBMSサービスを提供するセルが複数のセルの中に存在することであってもよい。UE100は、サービングセルから受信するSIB20及び/又はSC−MCCH(例えば、scptmNeighbourCellList)に基づいて、サービングセル及び/又は隣接セルがSC−PTM伝送によりMBMSサービスを提供するか否かを判断しても良い。所定の条件は、UE100がMBMSサービスを受信している又は受信に興味を持つことであってもよい。
無限大のオフセットが適用される所定のセルは、SC−PTM伝送によりMBMSサービスを提供するセル(SC−PTMセル)であってもよい。この場合、無限大のオフセットは、所定のセルのランキングを最高ランキングにするためのオフセットであってもよい。一例として、現在のサービングセルがSC−PTMセルであり、UE100が現在のサービングセルのランキングRsを上述した計算式(すなわち、「Rs=Qmeas,s+QHyst−Qoffsettemp」)によって算出するケースを想定する。このようなケースにおいて、現在のサービングセルに適用するQoffsettempとして負の無限大の値を設定することにより、ランキングRsを最高ランキングにすることができる。或いは、QHystをオフセットの一種とみなし、現在のサービングセルに適用するQHystとして正の無限大の値を設定してもよい。
無限大のオフセットが適用される所定のセルは、SC−PTM伝送によりMBMSサービスを提供しないセル(非SC−PTMセル)であってもよい。この場合、無限大のオフセットは、所定のセルのランキングを最低ランキングにするためのオフセットであってもよい。一例として、隣接セルが非SC−PTMセルであり、UE100が隣接セルのランキングRnを上述した計算式(すなわち、「Rn=Qmeas,n−Qoffset−Qoffsettemp」)によって算出するケースを想定する。このようなケースにおいて、隣接セルに適用するQoffset及び/又はQoffsettempとして正の無限大の値を設定することにより、ランキングRnを最低ランキングにすることができる。
第1実施形態において、UE100の受信部110は、サービングセルからブロードキャストされるシステム情報ブロック(SIB)を受信してもよい。SIBは、所定のセルと関連付けられた無限大のオフセットを含んでもよい。SIBは、所定の周波数と関連付けられた無限大のオフセットを含んでもよい。もしくは、SIBは、所定のセル及び周波数に関連付けられない無限大のオフセットであってもよい。無限大のオフセットが所定のセル及び周波数に関連付けられない場合、SIBは、無限大のオフセットをSC−PTMセルに適用してよい事を示す識別子(許可フラグ)を含んでもよい。図14は、第1実施形態に係るSIBを示す図である。図14に示すように、eNB200は、SIBタイプ3(SIB3)、SIBタイプ4(SIB4)、及びSIBタイプ5(SIB5)のうち少なくとも1つをブロードキャストする。SIB3は、主にサービングセルに関するセル再選択パラメータを含むSIBである。SIB4及びSIB5は、主に隣接セルに関するセル再選択パラメータを含むSIBである。SIB3/4/5は、所定のセルのセル識別子と、当該所定のセルに適用するオフセット(無限大のオフセット)と、からなる組を少なくとも1つ含んでもよい。所定のセルと関連付けられた無限大のオフセットは、SC−MCCHに含まれてもよいし、SIB20に含まれてもよい。無限大のオフセットは、U
E100に事前設定(preconfigure)されていてもよい。
図15は、第1実施形態に係るUE100の動作フロー例を示す図である。
図15に示すように、ステップS101において、RRCアイドルモードのUE100は、強化カバレッジ機能が自身に必要とされるか否か(すなわち、自身が強化カバレッジに居るか否か)を判定する。強化カバレッジ機能が自身に必要とされない場合(ステップS101:NO)、ステップS102において、UE100は、上述した「セル再選択動作の概要」のような通常のセル再選択動作を行う。
強化カバレッジ機能が自身に必要とされる場合(ステップS101:YES)、ステップS103において、UE100は、MBMSサービスを受信している又は受信に興味を持つか否かを判定する。MBMSサービスを受信しておらず、かつMBMSサービスの受信に興味を持たない場合(ステップS103:NO)、ステップS104において、UE100は、ランキングを用いて無線品質が最も良好なセルを選択する。具体的には、UE100は、同一周波数(intra−frequency)及び別周波数(inter−frequency)について、強化カバレッジのための“S−criteria”又は“R−criteria”を用いたランキングを適用する。言い換えると、強化カバレッジに居るUE100は、周波数優先度を考慮せずに、無線品質(受信レベル)が最も良好なセルを優先的に選択する。この場合の動作は、上述した「セル再選択動作の概要」の「(B2)隣接セルの周波数の優先度が現在のサービングセルの優先度と同じである場合」の動作と同様である。但し、ステップS104において、UE100は、無限大のオフセットを用いることなくランキングを行う。
MBMSサービスを受信している又は受信に興味を持つ場合(ステップS103:YES)、ステップS105において、UE100は、SC−PTM伝送により所望のMBMSサービスを提供するセルが複数のセル(サービングセル及び隣接セル)の中に存在するか否かを判断してもよい。ステップS105で「No」の場合、処理がステップS104に進む。ステップS105で「Yes」の場合、処理がステップS106に進む。但し、ステップS105は必須ではなく、省略してもよい。
ステップS106において、UE100は、所定のセルと関連付けられた無限大のオフセットを含むSIB(又はSC−MCCH)をサービングセルから受信し、無限大のオフセットを取得する。ステップS106は、ステップS105よりも前に実行されてもよい。ステップS107において、UE100は、複数のセルの中から、無線品質(受信レベル)とオフセットとにより定められるランキングが最も高いセルをサービングセルとして選択する。上述したように、UE100は、SC−PTM伝送に関する所定の条件が満たされた場合、所定のセルに適用するオフセットとして無限大のオフセットを設定する。最高ランキングのセルが複数存在する場合、UE100は、当該複数の最高ランキングセルの中から任意のセルを選択してもよい。
(第1実施形態の変更例)
第1実施形態の変更例について、第1実施形態との相違点を主として説明する。第1実施形態の変更例において、UE100が、オフセットを用いたランキングによりセル再選択動作を行った後の動作を説明する。第1実施形態の変更例は、第1実施形態を前提としなくてもよい。すなわち、所定のセルに適用されるオフセットは、無限大でなくてもよい。
オフセットを用いたランキングによりセル再選択動作を行う場合、UE100は、無線品質が最も良好なセルをサービングセルとして選択せずに、無線品質が悪いセルをサービ
ングセルとして選択し得る。このような前提下において、UE100がユニキャスト通信を行う必要が生じた場合、現在のサービングセル、すなわち、無線品質が悪いセルに対してランダムアクセスプロシージャを実行し得る。その結果、UE100は、無線品質が悪いセルとのRRC接続を確立してしまうため、ユニキャスト通信を適切に行うことができない可能性がある。
第1実施形態の変更例は、このような問題を解決しようとする変更例である。第1実施形態の変更例に係るUE100の受信部110は、UE100がRRCアイドルモードにある間において、SC−PTM伝送を用いて提供されるMBMSサービスを受信する。UE100の制御部130は、UE100がユニキャスト通信を行う必要が生じたことに応じて、RRCアイドルモードからRRCコネクティッドモードに遷移するためのプロシージャ(ランダムアクセスプロシージャ)を開始する。UE100の制御部130は、ランダムアクセスプロシージャを開始する前の所定のタイミングにおいて、複数のセルの中からUE100のサービングセルとして用いるセルを選択するセル再選択動作を行う。
所定のタイミングは、ユニキャスト通信を行う必要が生じたと判断した後のタイミングであってもよい。UE100の制御部130は、SC−PTMよりも優先度が高い上りリンクデータが発生したこと、上りリンクのデータ又は制御信号の発生を上位レイヤ(NAS)から通知されたこと、ページングを受信したこと、の少なくとも1つの条件が満たされたことに応じて、ユニキャスト通信を行う必要が生じたと判断してもよい。所定のタイミングは、UE100がMBMSサービスの受信に興味が無くなった又はMBMSサービスの受信を中止した時点又は当該時点の後のタイミングであってもよい。
所定のタイミングは、ランダムアクセスプロシージャを行うと決定したタイミング、ランダムアクセスプロシージャ中のRRC Connection Request(又はRRC Connection Resume Request)送信の直前のタイミング、又はランダムアクセスプリアンブル送信の直前のタイミングであってもよい。
UE100の制御部130は、所定のタイミングよりも前のタイミングにおいて、MBMSサービスを提供するセルのランキングを高くするためのオフセットを用いたセル再選択動作を行う(第1実施形態参照)。言い換えると、UE100は、RRCアイドルモードにおいてMBMSサービスを受信するために、SC−PTMセルを優先的に選択するためのセル再選択動作を行う。その後、UE100の制御部130は、ランダムアクセスプロシージャを開始する前の所定のタイミングにおいて、オフセットを用いることなくセル再選択動作を行う。言い換えると、UE100は、無線品質が最も良好なセルを選択するために、上述したオフセットを除外したセル再選択動作を行う。なお、当該オフセットは、上述した無限大の値をとるものであってもよいし、有限の値をとるものであってもよい(例えば10dBなどのオフセット値)。よって、UE100は、無線品質が最も良好なセルとRRC接続を確立することができる。
図16は、第1実施形態の変更例に係るUE100の動作フロー例を示す図である。
ステップS151において、RRCアイドルモードのUE100は、MBMSサービスを提供するセル(SC−PTMセル)のランキングを高くするためのオフセットを用いたランキングによりセル再選択動作を行う。ステップS152において、UE100は、UE100がRRCアイドルモードにある間において、SC−PTM伝送を用いて提供されるMBMSサービスを受信する。
ステップS153において、UE100は、SC−PTM伝送を用いて提供されるMBMSサービスの受信を中止するか否かを判断してもよい。言い換えると、UE100は、
SC−PTM受信に興味が無くなったか否か又は受信を中止するか否かを判断してもよい。SC−PTM受信を中止する場合(ステップS153:YES)、ステップS154において、UE100は、SC−PTM受信を中止し、処理をステップS156に進める。SC−PTM受信を継続する場合(ステップS153:NO)、UE100は、処理をステップS155に進める。但し、ステップS153及びステップS154の処理は必須ではない。
ステップS155において、UE100は、ユニキャスト通信を行う必要が生じたか否かを判断する。ユニキャスト通信を行う必要が生じていない場合(ステップS155:NO)、UE100は、処理をステップS153に戻す。ユニキャスト通信を行う必要が生じた場合(ステップS155:YES)、UE100は、処理をステップS156に進める。
ステップS156において、UE100は、MBMSサービスを提供するセル(SC−PTMセル)のランキングを高くするためのオフセットを用いないランキングによりセル再選択動作を行う。セル再選択動作において、UE100は、各セルに対する無線品質測定を再度行ってセルを選択してもよい。セル再選択動作において、UE100は、既に保持している各セルの測定結果からオフセットを除外してセルを選択してもよい。具体的には、UE100は、オフセットを適用していたセルのみ、当該オフセットを除外する。或いは、UE100は、複数のテーブル(測定結果)を保持していてもよい。各テーブルは、各セルの測定結果に関するテーブルである。複数のテーブルは、オフセットを適用した測定結果テーブル、オフセットを適用していない測定結果テーブルなどを含む。予めテーブルとして保存していると、再測定及び再計算を行わずに、テーブルを読みなおせばよいので、動作が高速になる。
ステップS157において、UE100は、セル再選択動作により選択されたセルとのランダムアクセスプロシージャを行い、RRCアイドルモードからRRCコネクティッドモードに遷移する。ステップS158において、UE100は、RRCコネクティッドモードにおいてユニキャスト通信を行う。ここで、UE100は、ステップS152で受信していたMBMSサービスをユニキャスト通信により受信してもよい。
(第2実施形態)
第2実施形態について、第1実施形態との相違点を主として説明する。
上述したように、UE100は、SC−PTM設定情報中のSC−MTCH−SchedulingInfoに基づいて、SC−MTCHを介して、自身が興味のあるTMGIに対応するMBMSサービス(MBMSデータ)を受信する。物理レイヤにおいて、eNB200は、G−RNTIを用いてPDCCHを送信した後、PDSCHを介してMBMSデータを送信する。SC−MTCH−SchedulingInfoは、SC−MTCHのためのDRX設定(例えば、onDurationTimerSCPTM、drx−InactivityTimerSCPTM、schedulingPeriodStartOffsetSCPTM)を含む。一方で、強化カバレッジ機能は、同一信号を繰り返し送信する繰り返し送信(Repetition)を含む。eNB200は、MPDCCH又はNPDCCH(制御情報)を繰り返し送信し、且つ、PDSCH(データ)を繰り返し送信する。よって、eNB200は、繰り返し送信を考慮したDRXサイクルをUE100に設定することが望ましい。
第2実施形態に係るeNB200は、SC−PTM伝送を用いてMBMSサービスを提供する。eNB200の制御部230は、当該MBMSサービス用のDRX動作に用いるDRXサイクルをUE100に設定する。eNB200の送信部210は、MBMSサー
ビスに属するデータに対応する制御情報を繰り返し送信する第1の繰り返し送信と、データを繰り返し送信する第2の繰り返し送信と、を行う。eNB200の制御部230は、第1の繰り返し送信に要する第1の期間と、第2の繰り返し送信に要する第2の期間と、第1の繰り返し送信と第2の繰り返し送信との間の切り替えに要する第3の期間と、の合計以上の時間をDRXサイクルとして設定する。
図17は、第2実施形態に係る動作例を示す図である。図17に示すように、eNB200は、所定のMBMSサービス(ここでは、TMGI#1のMBMSサービス)に属するデータをSC−MTCHを用いてUE100に送信する。eNB200は、第1の期間T1において、MPDCCH又はNPDCCH(適宜「(M/N)PDCCH」と表記する)をn回繰り返し送信する。具体的には、eNB200は、連続するnサブフレームを用いて同一信号(制御情報)を繰り返し送信する。そして、eNB200は、第2の期間T2において、PDSCHをm回繰り返し送信する。具体的には、eNB200は、連続するmサブフレームを用いて同一信号(データ)を繰り返し送信する。第1の期間T1と第2の期間T2との間には、切り替え用の第3の期間T3として1サブフレームが設けられる。第3の期間T3は、UE100が制御情報の復号に用いる復号期間であってもよい。第3の期間T3は、UE100が周波数の切り替えに用いるRF調整期間であってもよい。第2の期間T2の後にも1サブフレーム分の第3の期間T3が設けられてもよい。但し、第2の期間T2の後の1サブフレームは第3の期間T3に含まれなくてもよい。
このような前提下において、eNB200は、第1の期間T1と第2の期間T2と第3の期間T3(1又は2サブフレーム)との合計以上の時間をDRXサイクルとしてUE100に設定する。このような設定を行うことにより、繰り返し送信に合わせてUE100をウェイクアップさせることができるため、低遅延伝送を行うことができる。また、UE100が(M/N)PDCCH又はPDSCH受信中に、不必要なActive Time(M/NPDCCHモニタ)の発生を防止することができる。また、例えばPDSCH受信中にActive Timeとなって(M/N)PDCCHをモニタしなければならなくなるといった事態を避けることができる。なお、UE100は、第1の期間T1と第2の期間T2と第3の期間T3(1又は2サブフレーム)との合計未満のDRXサイクルが設定された場合には、設定エラーとみなしてもよい。
(第2実施形態の変更例)
第2実施形態の変更例について、第2実施形態との相違点を主として説明する。本変更例では、第1の期間T1と第2の期間T2と第3の期間T3(1又は2サブフレーム)との合計未満のDRXサイクルが設定されるケースを主として想定する。
第2実施形態の変更例に係るUE100は、SC−PTM伝送を用いて提供されるMBMSサービスを受信する。UE100の制御部130は、MBMSサービス用のDRXサイクルを用いて、当該MBMSサービスに属するデータに対応する制御情報を伝送する(M/N)PDCCHを間欠的にモニタするDRX動作を行う。UE100の受信部110は、制御情報を繰り返し受信する第1の繰り返し受信と、データを繰り返し受信する第2の繰り返し受信と、を行う。DRXサイクルは、(M/N)PDCCHをモニタすべきモニタ期間と(M/N)PDCCHのモニタが不要な非モニタ期間と、を含む。モニタ期間は、Active Timeに相当する。UE100の制御部130は、第2の繰り返し受信を行っている間(すなわち、PDSCH受信中)は、モニタ期間であっても(M/N)PDCCHをモニタしないように制御する。言い換えると、UE100は、現在受信中のTMGIについて、PDSCHを受信中の場合は、(M/N)PDCCHのモニタが免除される。
図18は、第2実施形態の変更例に係る動作例を示す図である。図18に示すように、
eNB200は、所定のMBMSサービス(ここでは、TMGI#1のMBMSサービス)に属するデータをSC−MTCHを用いてUE100に送信する。具体的には、eNB200は、(M/N)PDCCHをn回繰り返し送信し、PDSCHをm回繰り返し送信する。ここで、UE100には、第2実施形態で説明したようなDRXサイクルに比べて短いDRXサイクルが設定されている。このため、UE100がPDSCH受信中にモニタ期間が発生している。このような場合、所定のMBMSサービスに対応するPDSCHを受信中のUE100は、当該所定のMBMSサービスに対応する(M/N)PDCCHのモニタが免除される。よって、UE100は、モニタ期間中にPDSCH受信を行うことができる。なお、UE100は、(M/N)PDCCH受信中にモニタ期間が発生した場合には、(M/N)PDCCH受信を行なってもよい。
ここでは、同一MBMSサービス(同一TMGI)の(M/N)PDCCH及びPDSCHについて説明したが、UE100は、複数のMBMSサービス(例えば、TMGI#1及びTMGI#2)を受信し得る。UE100は、所定のMBMSサービス(TMGI#1)に対応するPDSCH受信中に、別のMBMSサービス(TMGI#2)に対応するモニタ期間が発生した場合には、PDSCH受信及び(M/N)PDCCH受信のうち一方を選択してもよい。例えば、UE100は、ユーザ(アプリケーション)がより優先するMBMSサービス(TMGI)を選択してもよい。PDSCH受信を選択した場合、UE100は、PDSCH受信を行う。一方で、(M/N)PDCCH受信を選択した場合、UE100は、PDSCH受信から(M/N)PDCCH受信に切り替える。
(第3実施形態)
第3実施形態について、第1及び第2実施形態との相違点を主として説明する。第3実施形態は、MBMSサービスの提供停止をeNB200がUE100に通知する停止通知に関する実施形態である。このような停止通知は、「RAN level stop indication」と称されてもよい。具体的には、eNB200は、MBMSサービスに属するデータをSC−MTCHによりUE100に送信する際に、当該MBMSサービスの提供を停止することをUE100に通知する。停止通知は、(M/N)PDCCHで送信する制御情報(DCI)に含まれてもよい。停止通知は、PDSCHで送信するMAC制御エレメント(MAC CE)に含まれてもよい。以下においては、停止通知をMAC CEで送信するケースを主として想定するが、停止通知を制御情報(DCI)で送信してもよい。停止通知は、RRCメッセージに含まれてもよい。
UE100が停止通知の受信に失敗した場合、UE100は、提供が停止されたMBMSサービスの受信を無駄に試みることになり、不要な消費電力が生じ得る。第3実施形態は、このような問題を解決しようとする実施形態である。
第3実施形態に係るeNB200は、SC−PTM伝送を用いてMBMSサービスを提供する。eNB200の送信部210は、MBMSサービスに属するデータをSC−MTCHを用いてUE100に送信する。eNB200の制御部230は、MBMSサービスの提供を停止すると判断する。eNB200の送信部210は、MBMSサービスの提供停止に関する停止通知をUE100に複数回送信する。停止通知をUE100に複数回送信することにより、停止通知を1回のみ送信する場合に比べて、より確実にUE100が停止通知を受信することができる。
eNB200の送信部210は、MBMSサービスの提供を停止する前に、MBMSサービス(MBMSデータ)の提供が停止されることを示す停止通知を少なくとも1回送信する。停止通知は、MBMSサービスの提供を停止するまでの時間を示す時間情報を含んでもよい。時間情報は、データ送信終了までの時間をSC−MTCHの残り送信回数で表現した情報であってもよい。SC−MTCHの残り送信回数とは、物理レイヤにおける繰
り返し送信を考慮しない送信回数であってもよい。SC−MTCHの残り送信回数とは、繰り返し送信を考慮した送信回数であってもよい。時間情報は、データ送信終了までの時間をサブフレーム数で表現した情報であってもよい。MBMSサービスの提供を停止する前に停止通知を複数回送信する場合、MBMSサービスの提供停止時間が近づくにつれて、残り時間が減少していくことになる。図19は、停止通知をMAC CEで送信するケースを示す図である。時間情報は、MAC CEに含められる。図19に示すように、MAC CEは、1オクテットの停止通知を含む。停止通知は、MBMSサービスの提供を停止するまでの時間を示す時間情報を含む。
eNB200の送信部210は、MBMSサービスの提供を停止した後、MBMSサービスの提供が停止されたことを示す停止通知をUE100にさらに送信してもよい。当該停止通知は、MBMSサービスの提供停止前の停止通知と区別可能に構成されていてもよい。当該停止通知は、MBMSデータを伴わずに単独で送信されてもよい。例えば、所定のMBMSサービスに対応する停止通知を含むMAC CEが、当該所定のMBMSサービスに対応するモニタ期間において送信される。
eNB200の送信部210は、SC−MTCHに対応する物理チャネルの繰り返し送信を行うことにより、停止通知を繰り返し送信してもよい。物理チャネルとは、(M/N)PDCCH又はPDSCHであってもよい。停止通知の送信に用いる物理チャネルの繰り返し送信回数は、停止通知の送信に用いない物理チャネルの繰り返し送信回数よりも多くてもよい。或いは、停止通知の送信に用いる物理チャネルのみが繰り返し送信され、停止通知の送信に用いない物理チャネルに繰り返し送信が適用されなくてもよい。
図20は、第3実施形態に係る動作例を示す図である。ここでは、3つの動作例(動作例1乃至3)を説明する。図20に示すPDCCHは、(M/N)PDCCHを意味する。図20に示すSC−MTCHは、SC−MTCHに対応するPDSCHを意味する。図20に示すSC−MCCH stop timingは、MBMSサービスの提供が停止されるタイミングを意味する。eNB200は、(M/N)PDCCH及びPDSCHのそれぞれの繰り返し送信を行う。1回のSC−MTCH送信は、物理レイヤにおいて、(M/N)PDCCHの繰り返し送信と、当該(M/N)PDCCH繰り返し送信に後続するPDSCHの繰り返し送信とからなる。
図20(a)に示すように、動作例1(Option 1)において、停止通知(Stop ind)の送信に用いるPDSCHの繰り返し送信回数は、停止通知の送信に用いないPDSCHの繰り返し送信回数よりも多い。例えば、停止通知の送信に用いないPDSCHの繰り返し送信回数は3回である。停止通知の送信に用いるPDSCHの繰り返し送信回数は5回である。図20(a)においては、停止通知(Stop ind)の送信に用いる(M/N)PDCCHの繰り返し送信回数も増加させる一例を示している。また、最終のSC−MTCH送信の際に停止通知を送信する一例を示している。動作例1(Option 1)において、eNB200は、繰り返し送信回数も増加させるSC−MTCHの時間位置をSC−MCCHによりUE100に通知してもよい。
図20(b)に示すように、動作例2(Option 2)において、eNB200は、MBMSサービスの提供を停止する前に、停止通知を複数回送信する。各停止通知は、データ送信終了までの時間をSC−MTCHの残り送信回数で表現した時間情報を含む。
図20(c)に示すように、動作例3(Option 3)において、eNB200は、MBMSサービスの提供を停止した後、MBMSサービスの提供が停止されたことを示す停止通知を送信する。図20(c)において、当該停止通知がMBMSデータを伴わずに単独で送信される一例を示している。
(その他の実施形態)
上述した実施形態において、SC−PTM伝送を用いたMBMSのシナリオを主として想定したが、MBSFN伝送を用いたMBMSのシナリオを想定してもよい。一例として、上述した実施形態において、SC−PTM伝送をMBSFN伝送と読み替え、SC−MCCHをMCCHと読み替え、SC−MTCHをMTCHと読み替えてもよい。
上述した各実施形態を別個独立に実施する場合に限らず、2以上の実施形態を組み合わせて実施してもよい。例えば、一の実施形態に係る一部の処理を他の実施形態に追加してもよい。或いは、一の実施形態に係る一部の処理を他の実施形態の一部の構成と置換してもよい。
上述した実施形態において、MBMSサービスとしてファームウェア配信を想定していた。しかしながら、グループメッセージ配信、グループチャットメッセージ配信、ウィルス定義ファイルの配信、天気予報のような定期更新ファイルの配信、ニュース速報のような不定期ファイル配信、映像コンテンツ等の夜間ファイル配信(オフピーク配信)、音声/映像ストリーミング配信、電話/ビデオ電話(グループ通信)、ライブ映像配信、ラジオ音声配信等のMBMSサービスを想定してもよい。
UE100及びeNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD−ROMやDVD−ROM等の記録媒体であってもよい。UE100及びeNB200が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップセットが提供されてもよい。
上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本開示はLTEシステムに限定されない。LTEシステム以外の移動通信システムに本開示を適用してもよい。
[付記]
(1.はじめに)
本付記では、現在議論されている問題について検討する。
(2.検討)
(2.1.RANレベル停止インジケーション)
論点1は、「NB−IoTとFeMTCにおけるSC−PTMサービスのRANレベルの停止を示す方法について企業に求める」というものである。要約によれば、RANレベルの停止を示すインジケーションはRAN SC−MCCHスケジューリングのDCI及びMAC CEにより運ばれる。
DCIに関しては、概念的には、RAN2が承諾した、進行中サービスについての2ビット通知、すなわち、「次のMPでSC−MTCHの設定が変更されるかどうか」と「次のMPで新しいサービスが開始されるかどうか」に整合している。DCIにおける1ビットインジケーションは、オーバーヘッドの観点からは有益であり得るが、インジケーションが必要でない場合であっても、すなわち、定義されたビットがすべてのPDCCH及びすべての繰り返しにある場合に、送信される必要がある。ただし、このオプションの欠点
はRAN1への潜在的な影響である。
MAC CEに関しては、それはMBSFNのための同様のMAC CE、すなわち(拡張)MCHスケジューリング情報(MSI)が既に存在するので、単純な解決策と見なされる。このオプションの利点は、スケーラビリティの観点からの柔軟性であり、例えば、不要な場合のSC−MTCHにおけるMAC CEのスケジューリングがなく、(将来の)拡張の能力などである。しかし、シグナリングオーバヘッド、すなわち、バイトアラインされたMAC SDU及び対応するMACサブヘッダが懸念になり得る。
考察1:RANレベル停止インジケーションにはDCI又はMAC CEの1ビットの2つの選択肢がある。
停止インジケーションをどのように提供すべきかを決定する前に、RANレベル停止インジケーションが1回のみ又は複数回提供されるかどうかを検討することが重要である。1ビットオプションは、最後のSC−MTCH送信で提供される可能性が高い「ワンショット」インジケーションを意味するように思われる(拡張カバレッジのためのPDCCH/PDSCH繰り返しを除く)。しかしながら、例えば時間的に悪い無線状態及び/又はフィードバックの欠如のために、UEが停止インジケーションを有する最後のものを含むSC−MTCH送信のいずれかを受信することが保証されないと仮定されるべきである。そのようなワンショットインジケーションが仮定されている場合、UEは、SC−MTCH送信が既に終了しているにも関わらず、次のSC−MCCH変更境界(すなわち、SC−MCCHから対応する設定を削除する)までSC−MTCHを監視し続けることがあり得る。SC−MCCHの修正期間が延長され、そのようなUE(すなわち、FeMTC/eNB−IoT)にとって電力消費が重要であることを考慮すると、深刻な問題となり得る。このような望ましくない状態を回避するために、eNBは、RANレベル停止インジケーションの繰り返し送信を提供することができる。
考察2:RANレベル停止インジケーションを受信できないUEは、SC−MTCH送信が既に停止していても、SC−MTCH監視を継続する必要がある。
提案1:RAN2は、RANレベル停止インジケーションの繰り返し送信が必要かどうかを議論するべきである。
提案1が受け入れ可能である場合、以下の3つのオプションがRANレベル停止インジケーションの繰り返しのために考慮されることができる(図20参照)。
オプション1:PDCCH/PDSCHの繰り返し数(拡張カバレッジ用)は、RANレベル停止インジケーションのあるSC−MTCHの場合のみ増加する。
このオプションは、拡張カバレッジの既存の繰り返しメカニズムを再利用する。すなわち、eNBは、RANレベル停止インジケーションを含む場合にのみ、SC−MTCHのPDCCH/PDSCH反復回数を増加させる。このオプションの利点は、標準化の影響がないことが予想されることである。例えば、より大きな値の繰り返しの最大回数は、さらなる仕様変更なしに事前に設定することができる。欠点は、ペイロードと並べ替えの不要な繰り返しである。
オプション2:RANレベル停止インジケーションは、停止するまで複数のSC−MTCHに繰り返し提供される。
このオプションは、(n−2)、(n−1)及び(n)のような複数のSC−MTCH
機会においてRANレベル停止インジケーションが与えられていることを前提としており、「n」は停止インジケーションを伴う最後のSC−MTCH送信である。利点は、比較的長期間の繰り返しによって、より良い時間領域ダイバーシティ利得が期待されることである。欠点は、UEが実際にSC−MTCHがいつ停止するかを知る必要があることであり、何らかの「カウントダウン」メカニズムが必要であり、これはMSIの既存の「MTCHを停止」に類似している可能性があり、もう1つの目的、すなわちサービス継続性のためのUEの内部準備である。
オプション3:SC−MTCH停止後、RANレベル停止インジケーションを繰り返し提供する。
このオプションは、ペイロード送信が終了した後であっても、すなわち、次のSC−MCCH変更期間までの残りのSC−MTCHスケジューリング期間においても、RANレベル停止インジケーションが提供されると仮定する。利点は、オプション2と同様の優れたダイバーシティ利得であり、「カウントダウン」メカニズムは必要ない。欠点は、RANレベル停止インジケーションに必要なM/NPDCCHの繰返しにより増加し得るシグナリングオーバヘッドである。
上記の考察に基づいて、オプション2は、RANレベル・ストップ・インジケーション受信の信頼性を改善する最も効果的な方法を提供するように思われるが、複数のオプションで使用されるオプションが許可されるNW実装次第である可能性がある。この意味で、考察1で議論されたMAC CE(図19参照)は、上記のすべてのオプションを潜在的にカバーする可能性があり、停止インジケーションの繰り返しが提供されない場合でも、わずかに好ましい。
提案2:RAN2は、MAC CEをRANレベル停止インジケーションに使用することに同意すべきである。
提案3:RAN2は、RANレベル停止インジケーションの繰り返しを可能にするために、RANレベル停止インジケーションに「カウントダウン」メカニズムが必要かどうかを議論するべきである。
(2.2.ランキングベースのセル再選択)
(2.2.1.オフセット)
「FeMTCについては、SC−PTMセルが存在し、UEがMBMSサービスを受信しているか興味を持っている場合には、ランキングベースのセル再選択におけるSC−PTMセルへのオフセットが使用され」、「NB−IoTは、SC−PTMセルが存在し、UEがMBMSサービスを受信しているか又は興味を持っている場合、ランキングに基づくセル再選択におけるSC−PTMセルへのオフセットが使用される」。さらに、論点4においてオフセットがどのように提供されるべきかが議論された。しかし、オフセットの値域については議論されていない。
議論によれば、「オプション1は同様の方法であり、例えば、RSRPが非常に高い他の非SC−PTMセルとは無関係に、RSRPが低いSC−PTMセルをUEが再選択することを避けるための小さなオフセットなど、セル再選択基準を設定するためにネットワークにある程度の柔軟性を許す」とコメントされた。しかし、「小さなオフセット」がどのように機能するかはまだ不明である。
例えば、UEが(図13に示すように)SC−PTMレイヤの拡張カバレッジに位置し、非SC−PTMレイヤのセルにも近接している場合、UEは非SC−PTM上でセルを
再選択する可能性が高いオフセットが設定されていないときは、たとえそれが設定されていても、セル再選択手順の意図した結果、すなわち5dB、10dB又は20dBに対してどのくらいのオフセットが働くのかという疑問がある。選択された値にかかわらず、全てのシナリオの下で、UEが位置する確率とセルがどのように設定されるかという問題のために、すべてのUEが非SC−PTM層上のセルを再選択するのを防ぐことは不可能である。その結果、非SC−PTM層上のセルの再選択を諦めるUEは、興味のあるMBMSサービス、すなわちユニキャストを獲得するために、RRC接続を確立する必要があり、これはUEの電力消費の観点からは望ましくなく、NW大量のMTCデバイス、例えばIoTに起因する輻輳を増加させ得る。図13は、単純化のためにインター周波数の場合を示しているが、状況がさらに深刻になるイントラ周波数の場合にも適用可能である。
したがって、ランキングベースのセル再選択は、オフセットの値域を明確にする必要がある。
考察3:どの程度のオフセットを定義する必要があるのかは明確でない。
リリース13では、UEは、SC−PTM送信の受信が優先順位が高いと考えられるので、eNBによって設定されたランキング基準をバイパスするために、可能な限りSC−PTMセルに優先順位を付けるべきである。しかし、NB−IoT UEは、優先処理手順を有していない。
議論されているように、解の1つはオフセット値の1つとして(マイナス)無限大値の設定を可能にすると考えられる。この設定では、たとえNB−IoT−UEであっても、適切なセルが存在する限り、すべてのUEがSC−PTMレイヤ上のセルを再選択できることが保証される。したがって、オペレータは、UEがランキング手順の制約内でSC−PTMに優先順位を付けることを可能にすることができる。したがって、少なくとも(マイナス)無限大の値は、オフセットの設定オプションとして導入する価値がある。
提案4:RAN2は、ランキングベースのセル再選択のオフセットに対して、(マイナス)無限大の設定オプションを持つことに同意すべきである。
(2.2.2.RRC接続要求前のセル再選択)
リリース13では、ランキングベースのセル再選択は、イントラ周波数の場合でも導入された。通常のカバレッジを提供するセルを再選択するUEは、RRCコネクティッドへの移行後にリソース消費を最小限にするので(例えばリンクアダプテーション)、ユニキャストにとって非常に有用である。これは静的シナリオとして機能する。
リリース14では、オフセットを用いてSC−PTMのために拡張され、UEがSC−PTMを可能な限り提供するセルを再選択することを改善/保証する。
UEがユニキャストには適さないSC−PTMをセルから現在受信している、例えばUEであることが、このセルの拡張カバレッジにあるという「ダイナミック」シナリオと考えることができる。MT/MO呼が発生すると、SC−PTMはアイドルでのみサポートされるので、UEはSC−PTMの受信を停止してRRC接続要求を開始する。
UEがもはやSC−PTMに興味がなくなった場合、すなわちSC−PTMの受信を停止する場合に、UEがユニキャストのために最良のランキングされたセルを既に再選択していることが予想される。しかしながら、UEがSC−PTMが進行中である間及びUEが拡張カバレッジ内にある間にUEがユニキャストサービスを開始することを決定した場合、UEがどのように振る舞うべきかを考慮する必要がある。オフセットが依然として適
用される場合、これは、最適なセルよりも小さいセルでUEがユニキャストサービスを開始することになるという問題を引き起こす可能性がある。したがって、好ましくは、UEは、RRC接続要求の直前にオフセットなしでセル再選択を実行すべきである。しかしながら、UEがもはやSC−PTMを受信することに興味がなくなった後の「動的」シナリオでは、セル再選択は、例えば測定の点で、いくらか遅いプロセスであるため、UEは最も適切なセルを素早く得ることを期待できない。拡張カバレッジにおけるMBMSがリリース14で最初に議論されることを考慮すると、RAN2は、RRC接続要求を開始する直前に、再選択のための意図されたUEの挙動を仕様化するか否かを議論するべきである。いくつかのUE実装は、それがオフセットを除去するだけであると仮定して、そのような高速再評価を実行することができることに留意されたい。
提案5:RAN2は、SC−PTMの受信を停止した直後であって、RRC接続要求の直前にセル再選択のためのUE動作を定義するかどうかについて議論すべきである。
(2.3.MBMS興味インジケーション)
リリース14では、SC−PTM受信はアイドルでのみサポートされる。これは、SC−PTMを介して興味のあるMBMSサービスを受信するために、コネクティッドのUEがアイドルに解放される必要があることを意味する。しかしながら、eNBは、UEがユニキャストでSC−PTMを優先順位付けする必要があるかどうかを知らない。UEは、特にeNB−IoTにおいて、典型的に非常に短時間コネクティッドにとどまっていると仮定することができるが、例えば追加のUEバッテリ消費及び/又はNW輻輳を招くことがある。
FeMTC/eNB−IoTのための最適なRRC状態制御を確実にするために、既存のMBMS興味インジケーションを再使用することができた。すなわち、従来のリリースにおけるモビリティ制御のためのmbms−Priorityを用いる。例えば、eNBは、SC−PTMとユニキャストとの間のUEの優先順位付けを受信すると、RRC接続を解放することを決定してもしなくてもよい。したがって、MBMS興味インジケーションは、FeMTC/eNB−IoTにおいてサポートされるべきである。
提案6:RAN2は、FeMTC及びeNB−IoTにおいてMBMS興味インジケーションがサポートされることに同意すべきである。
提案6が賛成する場合は、SIB15−NB及びSIB20−NBを既存の手続仕様に取り込むための拡張を用いて達成することができる。
(2.4.M/NPDCCH設定)
現在、MPDCCH設定は、専用シグナリング、すなわちEPDCCH−Configの一部として設定され、NPDCCH設定もまた、すなわちNPDCCH−ConfigDedicated−NBである。しかしながら、SC−PTMは、RRCアイドルにおいてのみUEによって受信され得るので、これは機能しない。したがって、これらの設定は、SC−PTM受信のためにブロードキャストされるべきである。
TS36.331の現行のCRで提案されているように、M/NPDCCH設定は、SC−MCCHの場合はSIB20、SC−MTCHの場合はSC−MCCHでブロードキャストすべきである。
提案7:RAN2は、SC−MCCH及びSC−MTCHの受信のために、SIB20及びSC−MCCHにMPDCCH/NPDCCH設定を導入することに同意すべきである。
(相互参照)
本願は米国仮出願第62/454185号(2017年2月3日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。

Claims (3)

  1. マルチキャスト・ブロードキャストサービスを受信するユーザ装置であって、
    前記サービングセルからブロードキャストされるシステム情報ブロックを受信する受信部と、
    前記ユーザ装置がRRCアイドルモードにある間において、前記ユーザ装置のサービングセルとして用いるセルを選択するセル再選択動作を行う制御部とを備え、
    前記セル再選択動作において、前記制御部は、複数のセルの中から、無線品質とオフセットとにより定められるランキングが最も高いセルを前記サービングセルとして選択し、
    前記セル再選択動作において、前記制御部は、前記システム情報ブロックに基づいて、前記マルチキャスト・ブロードキャストサービスを提供するセルに適用する前記オフセットとして無限大のオフセットを使用するか否かを判断する
    ユーザ装置。
  2. マルチキャスト・ブロードキャストサービスを受信するユーザ装置に備えられるプロセッサであって、
    前記サービングセルからブロードキャストされるシステム情報ブロックを受信する処理と、
    前記ユーザ装置がRRCアイドルモードにある間において、前記ユーザ装置のサービングセルとして用いるセルを選択するセル再選択動作を行う処理と、
    前記セル再選択動作において、複数のセルの中から、無線品質とオフセットとにより定められるランキングが最も高いセルを前記サービングセルとして選択する処理と、
    前記セル再選択動作において、前記システム情報ブロックに基づいて、前記マルチキャスト・ブロードキャストサービスを提供するセルに適用する前記オフセットとして無限大のオフセットを使用するか否かを判断する処理と、を実行するプロセッサ。
  3. マルチキャスト・ブロードキャストサービスを受信するユーザ装置において用いる方法であって、
    前記サービングセルからブロードキャストされるシステム情報ブロックを受信するステップと、
    前記ユーザ装置がRRCアイドルモードにある間において、前記ユーザ装置のサービングセルとして用いるセルを選択するセル再選択動作を行うステップと、
    前記セル再選択動作において、複数のセルの中から、無線品質とオフセットとにより定められるランキングが最も高いセルを前記サービングセルとして選択するステップと、
    前記セル再選択動作において、前記システム情報ブロックに基づいて、前記マルチキャスト・ブロードキャストサービスを提供するセルに適用する前記オフセットとして無限大のオフセットを使用するか否かを判断するステップと、を有する方法。
JP2020208845A 2017-02-03 2020-12-16 無線端末、プロセッサ、及び方法 Active JP7058714B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762454185P 2017-02-03 2017-02-03
US62/454,185 2017-02-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019224538A Division JP6812530B2 (ja) 2017-02-03 2019-12-12 無線端末、プロセッサ、及び方法

Publications (2)

Publication Number Publication Date
JP2021052422A true JP2021052422A (ja) 2021-04-01
JP7058714B2 JP7058714B2 (ja) 2022-04-22

Family

ID=63039836

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018566127A Active JP6633779B2 (ja) 2017-02-03 2018-02-02 無線端末、プロセッサ、及び方法
JP2019224538A Active JP6812530B2 (ja) 2017-02-03 2019-12-12 無線端末、プロセッサ、及び方法
JP2020208845A Active JP7058714B2 (ja) 2017-02-03 2020-12-16 無線端末、プロセッサ、及び方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018566127A Active JP6633779B2 (ja) 2017-02-03 2018-02-02 無線端末、プロセッサ、及び方法
JP2019224538A Active JP6812530B2 (ja) 2017-02-03 2019-12-12 無線端末、プロセッサ、及び方法

Country Status (3)

Country Link
US (2) US11012906B2 (ja)
JP (3) JP6633779B2 (ja)
WO (1) WO2018143413A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781346B (zh) * 2016-08-11 2020-12-18 华为技术有限公司 基于组播的无线通信方法、终端设备和基站
CN108811155B (zh) * 2017-05-05 2019-11-26 华为技术有限公司 随机接入方法、网络设备和终端设备
US11178536B2 (en) * 2019-02-15 2021-11-16 Samsung Electronics Co., Ltd. Method and system for notifying resource capability of user equipment
US11743814B2 (en) 2019-08-09 2023-08-29 Qualcomm Incorporated Cell selection based on class of user equipments
US20230300938A1 (en) * 2020-08-06 2023-09-21 Samsung Electronics Co., Ltd. Methods and systems for managing mbs service continuity for a ue
US11736906B2 (en) * 2020-08-06 2023-08-22 Samsung Electronics Co., Ltd. Method and system for MBS switching and continuity in 5G wireless network
US20220286818A1 (en) * 2021-03-04 2022-09-08 FG Innovation Company Limited Method and user equipment for management of mbs data reception
US11507041B1 (en) * 2022-05-03 2022-11-22 The Florida International University Board Of Trustees Systems and methods for boosting resiliency of a power distribution network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502573A (ja) * 2013-12-06 2017-01-19 クアルコム,インコーポレイテッド 拡張アップリンクにおける送信電力制御のための利得係数の決定

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2534277C (en) * 2003-08-22 2012-10-02 Samsung Electronics Co., Ltd. Cell reselection method for receiving packet data in a mobile communication system supporting mbms
GB2416269A (en) * 2004-04-16 2006-01-18 Nokia Corp Cell selection and re-selection
US7747213B2 (en) * 2004-09-22 2010-06-29 Samsung Electronics Co., Ltd. Method of reducing configuration information in the signaling of radio bearer information for a plurality of multicast/broadcast services
US8175069B2 (en) * 2007-04-27 2012-05-08 Interdigital Technology Corporation Method and apparatus of resource management for multimedia broadcast multicast services
CN101400017B (zh) * 2007-09-29 2012-09-19 北京三星通信技术研究有限公司 支持进化的广播组播业务数据连续接收的方法
WO2013111887A1 (ja) * 2012-01-27 2013-08-01 京セラ株式会社 通信制御方法、基地局、及びユーザ端末
US8750181B2 (en) * 2012-05-14 2014-06-10 Blackberry Limited Maintaining MBMS continuity
US20140200001A1 (en) * 2013-01-15 2014-07-17 Research In Motion Limited Method and apparatus for mobility enhancement
WO2015069064A1 (ko) * 2013-11-07 2015-05-14 엘지전자 주식회사 단말의 셀 재선택 방법 및 이를 이용하는 단말
US10327111B2 (en) * 2014-10-30 2019-06-18 Lg Electronics Inc. MBMS operation method performed by terminal in wireless communication system and terminal using same
EP3716658B1 (en) 2015-04-10 2021-10-06 Kyocera Corporation Base station and user terminal in mobile communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502573A (ja) * 2013-12-06 2017-01-19 クアルコム,インコーポレイテッド 拡張アップリンクにおける送信電力制御のための利得係数の決定

Also Published As

Publication number Publication date
JP2020058057A (ja) 2020-04-09
JP6812530B2 (ja) 2021-01-13
US11012906B2 (en) 2021-05-18
JPWO2018143413A1 (ja) 2019-12-12
US20190380078A1 (en) 2019-12-12
US20210235347A1 (en) 2021-07-29
JP7058714B2 (ja) 2022-04-22
WO2018143413A1 (ja) 2018-08-09
US11601856B2 (en) 2023-03-07
JP6633779B2 (ja) 2020-01-22

Similar Documents

Publication Publication Date Title
JP7058714B2 (ja) 無線端末、プロセッサ、及び方法
US10939251B2 (en) User equipment and base station
JP6347005B1 (ja) ユーザ端末、通信方法及びプロセッサ
US10972877B2 (en) Radio terminal and base station
JP6741969B2 (ja) 移動通信システム
WO2021077434A1 (zh) 一种通信方法及装置
US20120182921A1 (en) Wireless communication system, base station apparatus, mobile station apparatus, and communication method
JP6732206B2 (ja) 無線端末及び基地局
WO2023074530A1 (ja) 通信方法
US11310631B2 (en) Radio terminal and base station
WO2018143246A1 (ja) 無線端末及び基地局

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220412

R150 Certificate of patent or registration of utility model

Ref document number: 7058714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150