JP2021051832A - Mixed type positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode for lithium ion secondary battery - Google Patents

Mixed type positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP2021051832A
JP2021051832A JP2019172106A JP2019172106A JP2021051832A JP 2021051832 A JP2021051832 A JP 2021051832A JP 2019172106 A JP2019172106 A JP 2019172106A JP 2019172106 A JP2019172106 A JP 2019172106A JP 2021051832 A JP2021051832 A JP 2021051832A
Authority
JP
Japan
Prior art keywords
lithium
particles
positive electrode
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019172106A
Other languages
Japanese (ja)
Other versions
JP7299119B2 (en
Inventor
愉子 平山
Satoko Hirayama
愉子 平山
弘樹 山下
Hiroki Yamashita
弘樹 山下
大神 剛章
Takeaki Ogami
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2019172106A priority Critical patent/JP7299119B2/en
Publication of JP2021051832A publication Critical patent/JP2021051832A/en
Application granted granted Critical
Publication of JP7299119B2 publication Critical patent/JP7299119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode active material for a lithium ion secondary battery for obtaining a lithium ion secondary battery which can effectively increase an electrode density while ensuring a superior discharge capacity and an excellent long-term cycle characteristic.SOLUTION: A mixed type positive electrode active material for a lithium ion secondary battery comprises: a positive electrode active material composite (C) for a lithium ion secondary battery, which is arranged by compositing, only on surfaces of lithium composite oxide secondary particles (A) formed by lithium composite oxide particles (a) represented by a particular formula, lithium-based polyanion particles (B) represented by a particular formula and including carbon (c) supported thereon, and lithium composite oxide particles (a); and lithium-based polyanion particles (B') represented by the particular formula, which are blended in a mass proportion of ((B'):(C))=91:9 to 50:50. In a mixed type positive electrode active material for a lithium ion secondary battery, a ratio (RC/RB') an average particle diameter (RC) the positive electrode active material composite (C) for a lithium ion secondary battery to an average particle diameter (RB') of the lithium-based polyanion particles (B') is 0.2 to 0.98.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池において、電極密度を有効に高めた正極を得ることによって、優れたサイクル特性及び放電容量を確保できるリチウムイオン二次電池用混合型正極活物質及びリチウムイオン二次電池用正極の製造方法に関する。 The present invention is a mixed positive electrode active material for a lithium ion secondary battery and a lithium ion secondary that can secure excellent cycle characteristics and discharge capacity by obtaining a positive electrode with an effectively increased electrode density in a lithium ion secondary battery. The present invention relates to a method for manufacturing a positive electrode for a battery.

リチウムニッケルマンガンコバルト複合酸化物やリチウムニッケルアルミニウムコバルト複合酸化物等のリチウム複合酸化物は、高出力及び高容量のリチウムイオン二次電池に広く使用されている。かかるリチウム複合酸化物は、リチウム原子層と遷移金属原子層とが、酸素原子層を介して交互に積み重なった層状構造を呈し、遷移金属の1原子あたりに1個のリチウム原子が含まれる、いわゆる層状岩塩型構造を有している。 Lithium composite oxides such as lithium nickel manganese cobalt composite oxide and lithium nickel aluminum cobalt composite oxide are widely used in high output and high capacity lithium ion secondary batteries. Such a lithium composite oxide exhibits a layered structure in which a lithium atomic layer and a transition metal atomic layer are alternately stacked via an oxygen atomic layer, and one lithium atom is contained in each atom of the transition metal, so-called. It has a layered rock salt type structure.

こうしたリチウム複合酸化物を正極に用いたリチウムイオン二次電池では、リチウムイオンがリチウム複合酸化物に脱離・挿入されることによって充電・放電が行われるが、通常、充放電サイクルを重ねるにつれて容量低下が生じ、特に長期間使用すると、電池の容量低下が著しくなるおそれがある。これは、充電時にリチウム複合酸化物の遷移金属成分が電解液へ溶出することにより、かかる結晶構造の崩壊が生じやすくなることが原因であると考えられている。また、リチウム複合酸化物の結晶構造の崩壊が生じると、リチウム複合酸化物の遷移金属成分が周囲の電解液へ溶出し、熱的安定性が低下して安全性が損なわれるおそれもある。
そこで、従来より、リチウムイオン二次電池において要求される種々の性能を付与すべく、様々な開発がなされている。
In a lithium ion secondary battery using such a lithium composite oxide as a positive electrode, charging / discharging is performed by desorbing / inserting lithium ions into the lithium composite oxide, but usually, the capacity increases as the charge / discharge cycle is repeated. There is a risk that the battery capacity will drop significantly, especially if it is used for a long period of time. It is considered that this is because the transition metal component of the lithium composite oxide elutes into the electrolytic solution during charging, so that the crystal structure is likely to collapse. Further, when the crystal structure of the lithium composite oxide is disintegrated, the transition metal component of the lithium composite oxide is eluted into the surrounding electrolytic solution, which may reduce the thermal stability and impair the safety.
Therefore, conventionally, various developments have been made in order to impart various performances required for lithium ion secondary batteries.

例えば、特許文献1には、リン酸マンガンリチウム等の電極活物質どうしが導電材を介して接合してなり、特定の接合強度を有する電極用複合粉末が開示されており、得られるリチウムイオン電池において、高電流密度で高エネルギー密度を示す、優れた充放電サイクル特性の付与を試みている。また特許文献2には、オリビン構造のリン酸リチウム化合物を炭素被覆した粒子でリチウムニッケル複合酸化物の粒子を被覆した複合体粒子と、オリビン構造のリン酸リチウム化合物を炭素被覆した粒子とを特定量で正極活物質層に含む正極が開示されており、得られるリチウムイオン電池において、熱的安定性の向上を図っている。 For example, Patent Document 1 discloses a composite powder for an electrode in which electrode active materials such as lithium manganese phosphate are bonded to each other via a conductive material and have a specific bonding strength, and the obtained lithium ion battery is obtained. In, we are trying to impart excellent charge / discharge cycle characteristics that show high current density and high energy density. Further, Patent Document 2 specifies composite particles in which particles of a lithium nickel composite oxide are coated with carbon-coated particles of a lithium phosphate compound having an olivine structure and particles in which a lithium phosphate compound having an olivine structure is carbon-coated. The positive electrode contained in the positive electrode active material layer in an amount is disclosed, and the thermal stability of the obtained lithium ion battery is improved.

特開2005−135723号公報Japanese Unexamined Patent Publication No. 2005-135723 特開2019−91638号公報Japanese Unexamined Patent Publication No. 2019-91638

しかしながら、上記特許文献1に記載の粉末を用いても、得られる二次電池において放電容量には改善の余地がある。また、上記特許文献2に記載の正極であっても、得られる二次電池を長期間使用した際において、優れたサイクル特性及び放電容量を確保するには、さらなる改善を要する状況である。 However, even if the powder described in Patent Document 1 is used, there is room for improvement in the discharge capacity of the obtained secondary battery. Further, even with the positive electrode described in Patent Document 2, further improvement is required in order to secure excellent cycle characteristics and discharge capacity when the obtained secondary battery is used for a long period of time.

したがって、本発明の課題は、電極密度を有効に高めた正極を得ることによって、優れたサイクル特性及び放電容量を確保できるリチウムイオン二次電池を得るための、リチウムイオン二次電池用正極活物質を提供することにある。 Therefore, the subject of the present invention is a positive electrode active material for a lithium ion secondary battery for obtaining a lithium ion secondary battery capable of ensuring excellent cycle characteristics and discharge capacity by obtaining a positive electrode having an effectively increased electrode density. Is to provide.

そこで本発明者は、上記課題を解決すべく鋭意検討を行った結果、特定のリチウム複合酸化物二次粒子の表面のみにおいて、特定のリチウム系ポリアニオン粒子が複合化してなるリチウムイオン二次電池用正極活物質複合体に対し、さらに特定の大きさを有するリチウム系ポリアニオン粒子を特定の質量比で配合してなるリチウムイオン二次電池用混合型正極活物質であれば、層状岩塩型構造を有するリチウム複合酸化物と電解液との反応を効果的に抑制して、高い放電容量を有しつつ、長期間にわたる使用を経ても出力の低下を良好に抑制し、かつ高い電極密度を有効に発現することのできるリチウムイオン二次電池が構築できることを見出した。 Therefore, as a result of diligent studies to solve the above problems, the present inventor has made a composite of specific lithium-based polyanion particles only on the surface of specific lithium composite oxide secondary particles for a lithium ion secondary battery. A mixed positive electrode active material for a lithium ion secondary battery, which is formed by blending lithium-based polyanionic particles having a specific size with a positive electrode active material composite in a specific mass ratio, has a layered rock salt type structure. It effectively suppresses the reaction between the lithium composite oxide and the electrolytic solution, has a high discharge capacity, satisfactorily suppresses a decrease in output even after long-term use, and effectively develops a high electrode density. We have found that it is possible to construct a lithium-ion secondary battery that can be used.

したがって、本発明は、下記式(I):
LiNiaCobMnc1 w2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
又は、下記式(II):
LiNidCoeAlf2 x2・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子(a)からなる、リチウム複合酸化物二次粒子(A)の表面のみにおいて、下記式(III)又は式(IV):
LigMnhFei3 yPO4・・・(III)
(式(III)中、M3はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h、i、及びyは、0<g≦1.2、0≦h≦1.2、0≦i≦1.2、0≦y≦0.3、及びh+i≠0を満たし、かつg+(Mnの価数)×h+(Feの価数)×i+(M3の価数)×y=3を満たす数を示す。)
LijFekMnl4 zSiO4・・・(IV)
(式(IV)中、M4はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd、Al、Zn、V又はGdを示す。j、k、l、及びzは、0<j≦2.4、0≦k≦1.2、0≦l≦1.2、0≦z≦1.2、及びk+l≠0を満たし、かつj+(Feの価数)×k+(Mnの価数)×l+(M4の価数)×z=4を満たす数を示す。)
で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B)と、リチウム複合酸化物粒子(a)とが複合化してなるリチウムイオン二次電池用正極活物質複合体(C)に対し、
さらに、上記式(III)又は式(IV)で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B')を質量比((B'):(C))=91:9〜50:50で配合してなり、かつ
リチウムイオン二次電池用正極活物質複合体(C)の平均粒径(RC)とリチウム系ポリアニオン粒子(B')の平均粒径(RB')との比(RC/RB')が0.2〜0.98である、リチウムイオン二次電池用混合型正極活物質を提供するものである。
Therefore, the present invention has the following formula (I):
LiNi a Co b Mn c M 1 w O 2 ... (I)
In formula (I), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, 0 ≦. A number satisfying w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3 is shown.)
Alternatively, the following formula (II):
LiNi d Co e Al f M 2 x O 2 ··· (II)
(In formula (II), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
Only on the surface of the lithium composite oxide secondary particles (A) composed of the lithium composite oxide particles (a) represented by the following formula (III) or formula (IV):
Li g Mn h Fe i M 3 y PO 4・ ・ ・ (III)
(In formula (III), M 3 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. G, h, i, and y are Satisfy 0 <g ≦ 1.2, 0 ≦ h ≦ 1.2, 0 ≦ i ≦ 1.2, 0 ≦ y ≦ 0.3, and h + i ≠ 0, and g + (valence of Mn) × h + ( Fe valence) x i + (M 3 valence) x y = 3 is shown.)
Li j Fe k Mn l M 4 z SiO 4 ··· (IV)
(In formula (IV), M 4 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, Al, Zn, V or Gd. l and z satisfy 0 <j ≦ 2.4, 0 ≦ k ≦ 1.2, 0 ≦ l ≦ 1.2, 0 ≦ z ≦ 1.2, and k + l ≠ 0, and j + (of Fe). Valuation) × k + (Mn valence) × l + (M 4 valence) × z = 4).
A positive electrode active material composite for a lithium ion secondary battery in which lithium-based polyanion particles (B) containing carbon (c) represented by and supported by carbon (c) and lithium composite oxide particles (a) are composited (a positive electrode active material composite for a lithium ion secondary battery). Against C)
Further, the mass ratio ((B') :( C)) = 91 of the lithium-based polyanion particles (B') represented by the above formula (III) or the formula (IV) and containing the carbon (c) supported. : 9 to 50: average particle diameter of it was blended with 50, and an average particle diameter of the lithium-ion secondary battery positive electrode active material composite (C) (R C) and lithium polyanion particles (B ') (R B' ) provides a mixed positive electrode active material for a lithium ion secondary battery having a ratio ( RC / R B') of 0.2 to 0.98.

また、本発明は、下記式(I):
LiNiaCobMnc1 w2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
又は、下記式(II):
LiNidCoeAlf2 x2・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子(a)からなる、リチウム複合酸化物二次粒子(A)の表面のみにおいて、下記式(III)又は式(IV):
LigMnhFei3 yPO4・・・(III)
(式(III)中、M3はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h、i、及びyは、0<g≦1.2、0≦h≦1.2、0≦i≦1.2、0≦y≦0.3、及びh+i≠0を満たし、かつg+(Mnの価数)×h+(Feの価数)×i+(M3の価数)×y=3を満たす数を示す。)
LijFekMnl4 zSiO4・・・(IV)
(式(IV)中、M4はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd、Al、Zn、V又はGdを示す。j、k、l、及びzは、0<j≦2.4、0≦k≦1.2、0≦l≦1.2、0≦z≦1.2、及びk+l≠0を満たし、かつj+(Feの価数)×k+(Mnの価数)×l+(M4の価数)×z=4を満たす数を示す。)
で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B)と、リチウム複合酸化物粒子(a)とが複合化してなるリチウムイオン二次電池用正極活物質複合体(C)に対し、
さらに、上記式(III)又は式(IV)で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B')を質量比((B'):(C))=91:9〜50:50で配合し、導電助剤及び結着剤を配合して、正極ペーストを調製する工程を備える、リチウムイオン二次電池用正極の製造方法であって、
リチウムイオン二次電池用正極活物質複合体(C)の平均粒径(RC)とリチウム系ポリアニオン粒子(B')の平均粒径(RB')との比(RC/RB')が0.2〜0.98である、リチウムイオン二次電池用正極の製造方法を提供するものである。
Further, the present invention has the following formula (I):
LiNi a Co b Mn c M 1 w O 2 ... (I)
In formula (I), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, 0 ≦. A number satisfying w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3 is shown.)
Alternatively, the following formula (II):
LiNi d Co e Al f M 2 x O 2 ··· (II)
(In formula (II), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
Only on the surface of the lithium composite oxide secondary particles (A) composed of the lithium composite oxide particles (a) represented by the following formula (III) or formula (IV):
Li g Mn h Fe i M 3 y PO 4・ ・ ・ (III)
(In formula (III), M 3 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. G, h, i, and y are Satisfy 0 <g ≦ 1.2, 0 ≦ h ≦ 1.2, 0 ≦ i ≦ 1.2, 0 ≦ y ≦ 0.3, and h + i ≠ 0, and g + (valence of Mn) × h + ( Fe valence) x i + (M 3 valence) x y = 3 is shown.)
Li j Fe k Mn l M 4 z SiO 4 ··· (IV)
(In formula (IV), M 4 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, Al, Zn, V or Gd. l and z satisfy 0 <j ≦ 2.4, 0 ≦ k ≦ 1.2, 0 ≦ l ≦ 1.2, 0 ≦ z ≦ 1.2, and k + l ≠ 0, and j + (of Fe). Valuation) × k + (Mn valence) × l + (M 4 valence) × z = 4).
A positive electrode active material composite for a lithium ion secondary battery in which lithium-based polyanion particles (B) containing carbon (c) represented by and supported by carbon (c) and lithium composite oxide particles (a) are composited (a positive electrode active material composite for a lithium ion secondary battery). Against C)
Further, the mass ratio ((B') :( C)) = 91 of the lithium-based polyanionic particles (B') represented by the above formula (III) or the formula (IV) and containing the carbon (c) supported. A method for producing a positive electrode for a lithium ion secondary battery, comprising a step of blending at a ratio of 9 to 50:50, blending a conductive auxiliary agent and a binder, and preparing a positive electrode paste.
The positive electrode active material composite for a lithium ion secondary battery average particle diameter of (C) (R C) and 'average particle diameter of the (R B lithium polyanion particles (B)') ratio of (R C / R B ' ) Is 0.2 to 0.98, the present invention provides a method for producing a positive electrode for a lithium ion secondary battery.

本発明のリチウムイオン二次電池用混合型正極活物質によれば、リチウム複合酸化物と電解液との反応を効果的に抑制して、高い放電容量を保持しつつ、優れた長期サイクル特性を効果的に発現することのできるリチウムイオン二次電池の実現が可能となる。 According to the mixed positive electrode active material for a lithium ion secondary battery of the present invention, the reaction between the lithium composite oxide and the electrolytic solution is effectively suppressed, and excellent long-term cycle characteristics are maintained while maintaining a high discharge capacity. It is possible to realize a lithium ion secondary battery that can be effectively expressed.

以下、本発明について詳細に説明する。
本発明のリチウムイオン二次電池用混合型正極活物質(D)は、下記式(I):
LiNiaCobMnc1 w2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
又は、下記式(II):
LiNidCoeAlf2 x2・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子(a)からなる、リチウム複合酸化物二次粒子(A)の表面のみにおいて、下記式(III)又は式(IV):
LigMnhFei3 yPO4・・・(III)
(式(III)中、M3はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h、i、及びyは、0<g≦1.2、0≦h≦1.2、0≦i≦1.2、0≦y≦0.3、及びh+i≠0を満たし、かつg+(Mnの価数)×h+(Feの価数)×i+(M3の価数)×y=3を満たす数を示す。)
LijFekMnl4 zSiO4・・・(IV)
(式(IV)中、M4はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd、Al、Zn、V又はGdを示す。j、k、l、及びzは、0<j≦2.4、0≦k≦1.2、0≦l≦1.2、0≦z≦1.2、及びk+l≠0を満たし、かつj+(Feの価数)×k+(Mnの価数)×l+(M4の価数)×z=4を満たす数を示す。)
で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B)と、リチウム複合酸化物粒子(a)とが複合化してなるリチウムイオン二次電池用正極活物質複合体(C)に対し、
さらに、上記式(III)又は式(IV)で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B')を質量比((B'):(C))=91:9〜50:50で配合してなるリチウムイオン二次電池用混合型正極活物質であって、
リチウムイオン二次電池用正極活物質複合体(C)の平均粒径(RC)とリチウム系ポリアニオン粒子(B')の平均粒径(RB')との比(RC/RB')が0.2〜0.98である。
Hereinafter, the present invention will be described in detail.
The mixed positive electrode active material (D) for a lithium ion secondary battery of the present invention has the following formula (I):
LiNi a Co b Mn c M 1 w O 2 ... (I)
In formula (I), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, 0 ≦. A number satisfying w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3 is shown.)
Alternatively, the following formula (II):
LiNi d Co e Al f M 2 x O 2 ··· (II)
(In formula (II), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
Only on the surface of the lithium composite oxide secondary particles (A) composed of the lithium composite oxide particles (a) represented by the following formula (III) or formula (IV):
Li g Mn h Fe i M 3 y PO 4・ ・ ・ (III)
(In formula (III), M 3 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. G, h, i, and y are Satisfy 0 <g ≦ 1.2, 0 ≦ h ≦ 1.2, 0 ≦ i ≦ 1.2, 0 ≦ y ≦ 0.3, and h + i ≠ 0, and g + (valence of Mn) × h + ( Fe valence) x i + (M 3 valence) x y = 3 is shown.)
Li j Fe k Mn l M 4 z SiO 4 ··· (IV)
(In formula (IV), M 4 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, Al, Zn, V or Gd. l and z satisfy 0 <j ≦ 2.4, 0 ≦ k ≦ 1.2, 0 ≦ l ≦ 1.2, 0 ≦ z ≦ 1.2, and k + l ≠ 0, and j + (of Fe). Valuation) × k + (Mn valence) × l + (M 4 valence) × z = 4).
A positive electrode active material composite for a lithium ion secondary battery in which lithium-based polyanion particles (B) containing carbon (c) represented by and supported by carbon (c) and lithium composite oxide particles (a) are composited (a positive electrode active material composite for a lithium ion secondary battery). Against C)
Further, the mass ratio ((B') :( C)) = 91 of the lithium-based polyanionic particles (B') represented by the above formula (III) or the formula (IV) and containing the carbon (c) supported. A mixed positive electrode active material for lithium ion secondary batteries, which is blended at a ratio of 9 to 50:50.
The positive electrode active material composite for a lithium ion secondary battery average particle diameter of (C) (R C) and 'average particle diameter of the (R B lithium polyanion particles (B)') ratio of (R C / R B ' ) Is 0.2 to 0.98.

すなわち、本発明は、上記特定のリチウム複合酸化物二次粒子(A)の表面のみにおいて、上記特定のリチウム系ポリアニオン粒子(B)とリチウム複合酸化物粒子(a)とが複合化してなるリチウムイオン二次電池用正極活物質複合体(C)に対し、上記特定のリチウム系ポリアニオン粒子(B')を質量比((B'):(C))=91:9〜50:50で配合してなるリチウムイオン二次電池用混合型正極活物質(D)であって、全体としてリチウム系ポリアニオン粒子を主として含み、かつリチウムイオン二次電池用正極活物質複合体(C)の平均粒径(RC)とリチウム系ポリアニオン粒子(B')の平均粒径(RB')とが、0.2〜0.98なる極限られた比を有するリチウムイオン二次電池用混合型正極活物質(D)である。 That is, in the present invention, lithium formed by combining the specific lithium-based polyanion particles (B) and the lithium composite oxide particles (a) only on the surface of the specific lithium composite oxide secondary particles (A). The specific lithium-based polyanion particles (B') are blended with the positive electrode active material composite (C) for an ion secondary battery at a mass ratio ((B') :( C)) = 91: 9 to 50:50. The mixed positive electrode active material (D) for a lithium ion secondary battery, which mainly contains lithium-based polyanionic particles as a whole, and has an average particle size of the positive electrode active material composite (C) for a lithium ion secondary battery. and 'average particle diameter of the (R B (R C) and lithium polyanion particles (B)'), but the positive electrode active material mixture-type lithium-ion secondary battery has an ultimate was ratios comprising from 0.2 to 0.98 (D).

なお、上記式(I)で表されるリチウムニッケル複合酸化物(いわゆるLi−Ni−Co−Mn酸化物であり、以後「NCM系複合酸化物」と称する。)粒子、及び上記式(II)で表されるリチウムニッケル複合酸化物(いわゆるLi−Ni−Co−Al酸化物であり、以後「NCA系複合酸化物」と称する。)粒子は、いずれも層状岩塩型構造を有する粒子である。 The lithium nickel composite oxide represented by the above formula (I) (so-called Li-Ni-Co-Mn oxide, hereinafter referred to as "NCM-based composite oxide") particles, and the above formula (II). The lithium nickel composite oxide represented by (the so-called Li-Ni-Co-Al oxide, hereinafter referred to as "NCA-based composite oxide") particles are all particles having a layered rock salt type structure.

上記式(I)中のM1は、Mg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。
また、上記式(I)中のa、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数である。
M 1 in the above formula (I) is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi. And one or more elements selected from Ge.
Further, a, b, c, w in the above formula (I) are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, 0 ≦ w ≦ 0.3, And it is a number satisfying 3a + 3b + 3c + ( valence of M 1 ) × w = 3.

上記式(I)で表されるNCM系複合酸化物において、Ni、Co及びMnは、電子伝導性に優れ、電池容量及び出力特性に寄与することが知られている。また、サイクル特性の観点からは、かかる遷移元素の一部が他の金属元素M1により置換されていることが好ましい。これら金属元素M1により置換されることにより、式(I)で表されるNCM系複合酸化物の結晶構造が安定化されるため、充放電を長期間繰り返しても結晶構造の崩壊が抑制でき、優れたサイクル特性が実現し得ると考えられる。
上記式(I)で表されるNCM系複合酸化物としては、具体的には、例えばLiNi0.33Co0.33 Mn0.342、LiNi0.8Co0.1Mn 0.12、LiNi0.6Co0.2Mn0.22、LiNi0.2Co0.4Mn0.42、LiNi0.33Co0.31Mn0.33Mg0.032、及びLiNi0.33Co0.31Mn0.33Zn0.032等が挙げられる。なかでも、放電容量を重視する場合には、LiNi0.8Co0.1Mn 0.12、LiNi0.6Co0.2Mn 0.22等のNi量の多い組成が好ましく、サイクル特性を重視する場合には、LiNi0.33Co0.33 Mn0.342、LiNi0.33Co0.31Mn0.33Mg0.032等のNi量の少ない組成が好ましい。
In the NCM-based composite oxide represented by the above formula (I), Ni, Co and Mn are known to have excellent electron conductivity and contribute to battery capacity and output characteristics. Further, from the viewpoint of cycle characteristics, it is preferable that a part of the transition element is replaced by another metal element M 1. By substituting with these metal elements M 1 , the crystal structure of the NCM-based composite oxide represented by the formula (I) is stabilized, so that the collapse of the crystal structure can be suppressed even if charging and discharging are repeated for a long period of time. , It is considered that excellent cycle characteristics can be realized.
Specific examples of the NCM-based composite oxide represented by the above formula (I) include LiNi 0.33 Co 0.33 Mn 0.34 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , and the like. Examples thereof include LiNi 0.2 Co 0.4 Mn 0.4 O 2 , LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 O 2 , and LiNi 0.33 Co 0.31 Mn 0.33 Zn 0.03 O 2. Among them, a composition having a large amount of Ni such as LiNi 0.8 Co 0.1 Mn 0.1 O 2 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 is preferable when the discharge capacity is important , and LiNi 0.33 when the cycle characteristics are important. A composition with a small amount of Ni, such as Co 0.33 Mn 0.34 O 2 , LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 O 2, is preferable.

さらに、互いに異なる2種以上の上記式(I)で表されるNCM系複合酸化物粒子は、コア部(内部)とシェル部(表層部)とを有するコア−シェル構造のリチウム複合酸化物二次粒子(A)(NCM系複合酸化物二次粒子(A))を形成してもよい。
このコア−シェル構造を形成してなるNCM系複合酸化物二次粒子(A)とすることによって、電解液に溶出しやすい上に安全性に悪影響を与える酸素を放出しやすい、或いは固体電解質において固体電解質と反応しやすいNi濃度の高いNCM系複合酸化物粒子をコア部に配置し、電解液に接するシェル部にはNi濃度の低いNCM系複合酸化物粒子を配置することができるので、長期間にわたりサイクル特性の低下の抑制と安全性の確保をより向上させることができる。このとき、コア部は1相であってもよいし、組成の異なる2相以上で構成していてもよい。コア部を2相以上で構成する態様として、同心円状に複数の相が層状となって積層された構造でもよいし、コア部の表面から中心部に向けて遷移的に組成が変化する構造でもよい。
さらに、シェル部は、コア部の外側に形成されてなるものであればよく、コア部同様に1相であってもよいし、組成の異なる2相以上で構成していてもよい。
Further, two or more kinds of NCM-based composite oxide particles represented by the above formula (I), which are different from each other, have a core-shell structure lithium composite oxide having a core portion (inside) and a shell portion (surface layer portion). Secondary particles (A) (NCM-based composite oxide secondary particles (A)) may be formed.
By forming the NCM-based composite oxide secondary particles (A) forming this core-shell structure, it is easy to elute into the electrolytic solution and release oxygen which adversely affects safety, or in a solid electrolyte. NCM-based composite oxide particles having a high Ni concentration that easily reacts with the solid electrolyte can be arranged in the core portion, and NCM-based composite oxide particles having a low Ni concentration can be arranged in the shell portion in contact with the electrolytic solution. It is possible to further improve the suppression of deterioration of cycle characteristics and the assurance of safety over a period of time. At this time, the core portion may have one phase or may be composed of two or more phases having different compositions. As an embodiment in which the core portion is composed of two or more phases, a structure in which a plurality of phases are concentrically stacked in layers may be used, or a structure in which the composition changes transitionally from the surface of the core portion to the central portion. Good.
Further, the shell portion may be formed on the outside of the core portion, and may be one phase like the core portion, or may be composed of two or more phases having different compositions.

このような組成が異なる2種以上のNCM系複合酸化物粒子によってコア−シェル構造を形成してなるNCM系複合酸化物二次粒子(A)として、具体的には(コア部)−(シェル部)が、例えば(LiNi0.8Co0.1Mn 0.12)−(LiNi0.2Co0.4Mn0.42)、(LiNi0.8Co0.1Mn 0.12)−(LiNi1/3Co1/3Mn1/32)、又は(LiNi0.8Co0.1Mn 0.12)−(LiNi0.33Co0.31Mn0.33Mg0.032)等からなる粒子が挙げられる。 As the NCM-based composite oxide secondary particles (A) formed by forming a core-shell structure with two or more types of NCM-based composite oxide particles having different compositions, specifically, (core portion)-(shell). Part), for example, (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 0.2 Co 0.4 Mn 0.4 O 2 ), (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 1/3 Co 1/3 Mn 1 / Particles composed of 3 O 2 ) or (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 O 2 ) and the like can be mentioned.

さらに、上記式(I)で表されるNCM系複合酸化物粒子は、金属酸化物、金属フッ化物又は金属リン酸塩で被覆されていてもよい。これら金属酸化物、金属フッ化物又は金属リン酸塩でNCM系複合酸化物粒子を被覆することによって、電解液へのNCM系複合酸化物粒子からの金属成分(Ni、Mn、Co又はM1)の溶出を抑制することができる。かかる被覆物としては、CeO2、SiO2、MgO、 Al23、ZrO2、TiO2、ZnO、RuO2、SnO2、CoO、Nb25、CuO、V25、MoO3、La23、 WO3、AlF3、NiF2、MgF2、Li3PO4、Li427、LiPO3、Li2PO3F、及びLiPO22から選択される1種又は2種以上、或いはこれらの複合化物を用いることができる。 Further, the NCM-based composite oxide particles represented by the above formula (I) may be coated with a metal oxide, a metal fluoride or a metal phosphate. By coating the NCM-based composite oxide particles with these metal oxides, metal fluorides or metal phosphates, the metal component (Ni, Mn, Co or M 1 ) from the NCM-based composite oxide particles into the electrolytic solution. Elution can be suppressed. Such coatings include CeO 2 , SiO 2 , MgO, Al 2 O 3 , ZrO 2 , TiO 2 , ZnO, RuO 2 , SnO 2 , CoO, Nb 2 O 5 , CuO, V 2 O 5 , MoO 3 , and so on. la 2 O 3, WO 3, AlF 3, NiF 2, MgF 2, Li 3 PO 4, Li 4 P 2 O 7, LiPO 3, Li 2 PO 3 F, and one selected from LiPO 2 F 2 or Two or more kinds or a composite product of these can be used.

上記式(I)で表されるNCM系複合酸化物の一次粒子(a)の平均粒径は、好ましくは500nm以下であり、より好ましくは300nm以下である。このように、NCM系複合酸化物の一次粒子(a)の平均粒径を少なくとも500nm以下にすることで、リチウムイオンの挿入及び脱離に伴う上記一次粒子の膨張収縮量を抑制することができ、粒子割れを有効に防止することができる。なお、上記一次粒子(a)の平均粒径の下限値は特に限定されないが、ハンドリングの観点から、50nm以上が好ましい。 The average particle size of the primary particles (a) of the NCM-based composite oxide represented by the above formula (I) is preferably 500 nm or less, more preferably 300 nm or less. By setting the average particle size of the primary particles (a) of the NCM-based composite oxide to at least 500 nm or less in this way, the amount of expansion and contraction of the primary particles due to the insertion and desorption of lithium ions can be suppressed. , Particle cracking can be effectively prevented. The lower limit of the average particle size of the primary particles (a) is not particularly limited, but is preferably 50 nm or more from the viewpoint of handling.

また、上記一次粒子が凝集して形成するNCM系複合酸化物二次粒子(A)の平均粒径(RA)は、好ましくは1μm〜15μmであり、より好ましくは4μm〜13μmである。かかる二次粒子の平均粒径(RA)が上記範囲内であると、長期サイクル特性に優れた電池をより確実に得ることができる。
ここで、本明細書における平均粒径とは、SEM又はTEMの電子顕微鏡を用いた観察における、数十個の粒子の粒径(長軸の長さ)の測定値の平均値を意味する。
The average particle size of NCM-based mixed oxide secondary particle in which the primary particles are formed by aggregation (A) (R A) is preferably 1Myuemu~15myuemu, more preferably 4Myuemu~13myuemu. When the average particle size ( RA ) of the secondary particles is within the above range, a battery having excellent long-term cycle characteristics can be obtained more reliably.
Here, the average particle size in the present specification means the average value of the measured values of the particle size (length of the major axis) of several tens of particles in the observation using an electron microscope of SEM or TEM.

なお、本明細書において、NCM系複合酸化物二次粒子(A)は、二次粒子を形成してなる一次粒子(a)のみを含み、リチウム系ポリアニオン粒子(B)や炭素(c)等その他の成分を含まない。 In the present specification, the NCM-based composite oxide secondary particles (A) include only the primary particles (a) formed of the secondary particles, such as lithium-based polyanionic particles (B) and carbon (c). Contains no other ingredients.

上記式(I)で表されるNCM系複合酸化物粒子が、NCM系複合酸化物二次粒子(A)においてコア−シェル構造を形成してなる場合、コア部を形成する一次粒子としての平均粒径は、好ましくは50nm〜500nmであり、より好ましくは50nm〜300nmである。そして、上記一次粒子が凝集して形成するコア部の平均粒径は、好ましくは1μm〜15μmであり、より好ましくは4μm〜13μmである。
また、かかるコア部の表面を被覆するシェル部を構成するNCM系複合酸化物粒子の一次粒子としての平均粒径は、好ましくは50nm〜500nmであり、より好ましくは50nm〜300nmであって、かかる一次粒子が凝集して形成するシェル部の層厚は、好ましくは0.1μm〜5μmであり、より好ましくは0.1μm〜2.5μmである。
When the NCM-based composite oxide particles represented by the above formula (I) form a core-shell structure in the NCM-based composite oxide secondary particles (A), the average as the primary particles forming the core portion. The particle size is preferably 50 nm to 500 nm, more preferably 50 nm to 300 nm. The average particle size of the core portion formed by the aggregation of the primary particles is preferably 1 μm to 15 μm, and more preferably 4 μm to 13 μm.
The average particle size of the NCM-based composite oxide particles constituting the shell portion covering the surface of the core portion as primary particles is preferably 50 nm to 500 nm, more preferably 50 nm to 300 nm. The layer thickness of the shell portion formed by agglomeration of the primary particles is preferably 0.1 μm to 5 μm, and more preferably 0.1 μm to 2.5 μm.

上記式(I)で表されるNCM系複合酸化物からなる二次粒子(A)の内部空隙率は、リチウムイオンの挿入に伴うNCM系複合酸化物の膨張を二次粒子の内部空隙内で許容させる観点から、NCM系複合酸化物の二次粒子の100体積%中、4体積%〜12体積%が好ましく、5体積%〜10体積%がより好ましい。 The internal void ratio of the secondary particles (A) composed of the NCM-based composite oxide represented by the above formula (I) is such that the expansion of the NCM-based composite oxide due to the insertion of lithium ions occurs in the internal voids of the secondary particles. From the viewpoint of allowing it, 4% by volume to 12% by volume is preferable, and 5% by volume to 10% by volume is more preferable, out of 100% by volume of the secondary particles of the NCM-based composite oxide.

次に、式(II)で示されるNCA系複合酸化物を説明する。
上記式(II)中のM2は、Mg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。
また、上記式(II)中のd、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数である。
Next, the NCA-based composite oxide represented by the formula (II) will be described.
M 2 in the above formula (II) is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi. And one or more elements selected from Ge.
Further, d, e, f, x in the above formula (II) are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ x ≦ 0.3, And it is a number satisfying 3d + 3e + 3f + ( valence of M 2 ) × x = 3.

上記式(II)で表されるNCA系複合酸化物は、式(I)で表されるNCM系複合酸化物よりも、さらに電池容量及び出力特性に優れている。加えて、Alの含有により、雰囲気中の湿分による変質も生じ難く、安全性にも優れている。
上記式(II)で表されるNCA系複合酸化物としては、具体的には、例えばLiNi0.33Co0.33Al0.342、LiNi0.8Co0.1Al0.12、LiNi0.8Co0.15Al0.052、LiNi0.8Co0.15Al0.03Mg0.032、LiNi0.8Co0.15Al0.03Zn0.032等が挙げられる。なかでもLiNi0.8Co0.15Al0.052、LiNi0.8Co0.15Al0.03Mg0.032が好ましい。
The NCA-based composite oxide represented by the above formula (II) is further superior in battery capacity and output characteristics to the NCM-based composite oxide represented by the formula (I). In addition, due to the inclusion of Al, deterioration due to moisture in the atmosphere is unlikely to occur, and it is also excellent in safety.
Specific examples of the NCA-based composite oxide represented by the above formula (II) include LiNi 0.33 Co 0.33 Al 0.34 O 2 , LiNi 0.8 Co 0.1 Al 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , and so on. Examples thereof include LiNi 0.8 Co 0.15 Al 0.03 Mg 0.03 O 2 , LiNi 0.8 Co 0.15 Al 0.03 Zn 0.03 O 2. Of these, LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi 0.8 Co 0.15 Al 0.03 Mg 0.03 O 2 are preferable.

さらに、上記式(II)で表されるNCA系複合酸化物粒子は、金属酸化物、金属フッ化物又は金属リン酸塩で被覆されていてもよい。これら金属酸化物、金属フッ化物又は金属リン酸塩でNCA系複合酸化物粒子を被覆することによって、電解液へのNCA系複合酸化物粒子からの金属成分(Ni、Al、Co又はM2)の溶出を抑制することができる。かかる被覆物としては、CeO2、SiO2、MgO、Al23、ZrO2、TiO2、ZnO、RuO2、SnO2、CoO、Nb25、CuO、V25、MoO3、La23、 WO3、AlF3、NiF2、MgF2、Li3PO4、Li427、LiPO3、Li2PO3F、及びLiPO22から選択される1種又は2種以上、或いはこれらの複合化物を用いることができる。 Further, the NCA-based composite oxide particles represented by the above formula (II) may be coated with a metal oxide, a metal fluoride or a metal phosphate. By coating the NCA-based composite oxide particles with these metal oxides, metal fluorides or metal phosphates, the metal component (Ni, Al, Co or M 2 ) from the NCA-based composite oxide particles into the electrolytic solution. Elution can be suppressed. Such coatings include CeO 2 , SiO 2 , MgO, Al 2 O 3 , ZrO 2 , TiO 2 , ZnO, RuO 2 , SnO 2 , CoO, Nb 2 O 5 , CuO, V 2 O 5 , MoO 3 , and so on. la 2 O 3, WO 3, AlF 3, NiF 2, MgF 2, Li 3 PO 4, Li 4 P 2 O 7, LiPO 3, Li 2 PO 3 F, and one selected from LiPO 2 F 2 or Two or more kinds or a composite product of these can be used.

上記式(II)で表されるNCA系複合酸化物の一次粒子の平均粒径、上記一次粒子が凝集して形成されるNCA系複合酸化物二次粒子(A)の平均粒径(RA)、及び二次粒子の内部空隙率は、上記のNCM系複合酸化物と同様である。
すなわち、上記式(II)で表されるNCA系複合酸化物の一次粒子(a)の平均粒径は、好ましくは500nm以下であり、より好ましくは300nm以下であり、上記一次粒子(a)からなるNCA系複合酸化物二次粒子(A)の平均粒径(RA)は、好ましくは1μm〜15μmであり、より好ましくは4μm〜13μmである。また、上記式(II)で表されるNCA系複合酸化物からなるNCA系複合酸化物二次粒子(A)の内部空隙率は、かかる二次粒子の体積100%中、4体積%〜12体積%が好ましく、5体積%〜10体積%がより好ましい。
The average particle size of the Formula average particle diameter of primary particles of NCA based composite oxide represented by (II), NCA based mixed oxide secondary particle in which the primary particles are formed by aggregation (A) (R A ) And the internal void ratio of the secondary particles are the same as those of the above NCM-based composite oxide.
That is, the average particle size of the primary particles (a) of the NCA-based composite oxide represented by the above formula (II) is preferably 500 nm or less, more preferably 300 nm or less, from the above primary particles (a). The average particle size (RA) of the NCA-based composite oxide secondary particles ( A ) is preferably 1 μm to 15 μm, and more preferably 4 μm to 13 μm. Further, the internal porosity of the NCA-based composite oxide secondary particles (A) composed of the NCA-based composite oxide represented by the above formula (II) is 4% by volume to 12 in 100% of the volume of the secondary particles. It is preferably by volume, more preferably 5% to 10% by volume.

本発明のリチウム複合酸化物二次粒子(A)は、上記式(I)で表されるNCM系複合酸化物と上記式(II)で表されるNCA系複合酸化物が混在していてもよい。その混在状態は、上記式(I)で表されるNCM系複合酸化物の一次粒子(a)と上記式(II)で表されるNCA系複合酸化物の一次粒子(a)が共存してなる二次粒子を形成してもよく、また上記式(I)で表されるNCM系複合酸化物(a)のみからなる二次粒子(A)と上記式(II)で表されるNCA系複合酸化物(a)のみからなる二次粒子(A)とが混在してもよく、さらには上記式(I)で表されるNCM系複合酸化物の一次粒子(a)と上記式(II)で表されるNCA系複合酸化物の一次粒子(a)が共存してなる二次粒子(A)、上記式(I)で表されるNCM系複合酸化物(a)のみからなる二次粒子(A)及び上記式(II)で表されるNCA系複合酸化物(a)のみからなる二次粒子(A)が混在するものであってもよい。さらに、上記式(I)で表されるNCM系複合酸化物粒子(a)のみからなる二次粒子(A)である場合、互いに組成が異なる2種以上のNCM系複合酸化物粒子(a)によって、コア−シェル構造を形成してなるものであってもよい。 The lithium composite oxide secondary particles (A) of the present invention may contain a mixture of the NCM-based composite oxide represented by the above formula (I) and the NCA-based composite oxide represented by the above formula (II). Good. In the mixed state, the primary particles (a) of the NCM-based composite oxide represented by the above formula (I) and the primary particles (a) of the NCA-based composite oxide represented by the above formula (II) coexist. Secondary particles (A) composed of only the NCM-based composite oxide (a) represented by the above formula (I) and the NCA system represented by the above formula (II) may be formed. Secondary particles (A) composed of only the composite oxide (a) may be mixed, and further, the primary particles (a) of the NCM-based composite oxide represented by the above formula (I) and the above formula (II). ), A secondary particle (A) in which the primary particles (a) of the NCA-based composite oxide coexist, and a secondary particle (A) consisting of only the NCM-based composite oxide (a) represented by the above formula (I). Secondary particles (A) composed of only particles (A) and NCA-based composite oxide (a) represented by the above formula (II) may be mixed. Further, in the case of the secondary particles (A) composed of only the NCM-based composite oxide particles (a) represented by the above formula (I), two or more types of NCM-based composite oxide particles (a) having different compositions from each other. It may be formed by forming a core-shell structure.

上記式(I)で表されるNCM系複合酸化物と上記式(II)で表されるNCA系複合酸化物が混在する場合の、NCM系複合酸化物とNCA系複合酸化物の割合(質量%)は、求める電池特性によって適宜調整すればよい。 The ratio (mass) of the NCM-based composite oxide and the NCA-based composite oxide when the NCM-based composite oxide represented by the above formula (I) and the NCA-based composite oxide represented by the above formula (II) are mixed. %) May be appropriately adjusted according to the desired battery characteristics.

上記式(I)で表されるNCM系複合酸化物及び/又は上記式(II)で表されるNCA系複合酸化物からなる二次粒子(A)の表面では、NCM系複合酸化物粒子とリチウム系ポリアニオン粒子(B)とが、またはNCA系複合酸化物粒子とリチウム系ポリアニオン粒子(B)とが、かかる二次粒子の表面を被覆するように複合化しているため、NCM系複合酸化物粒子またはNCA系複合酸化物粒子に含まれる金属元素の溶出を抑制することができる。 On the surface of the secondary particles (A) composed of the NCM-based composite oxide represented by the above formula (I) and / or the NCA-based composite oxide represented by the above formula (II), the NCM-based composite oxide particles and Since the lithium-based polyanion particles (B) or the NCA-based composite oxide particles and the lithium-based polyanion particles (B) are composited so as to cover the surface of the secondary particles, the NCM-based composite oxide is formed. Elution of metal elements contained in particles or NCA-based composite oxide particles can be suppressed.

次に、上記リチウム系ポリアニオン粒子(B)を説明する。
リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子(a)と複合化されてなる、リチウム系ポリアニオン粒子(B)は、担持してなる炭素(c)を含み、かつ下記式(III):
LigMnhFei3 yPO4・・・(III)
(式(III)中、M3はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h、i、及びyは、0<g≦1.2、0≦h≦1.2、0≦i≦1.2、0≦y≦0.3、及びh+i≠0を満たし、かつg+(Mnの価数)×h+(Feの価数)×i+(M3の価数)×y=3を満たす数を示す。)
又は、下記式(IV):
LijFekMnl4 zSiO4・・・(IV)
(式(IV)中、M4はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd、Al、Zn、V又はGdを示す。j、k、l、及びzは、0<j≦2.4、0≦k≦1.2、0≦l≦1.2、0≦z≦1.2、及びk+l≠0を満たし、かつj+(Feの価数)×k+(Mnの価数)×l+(M4の価数)×z=4を満たす数を示す。)
で表される、少なくともマンガン又は鉄のいずれかを含むリチウム化合物であって、良好なリチウムイオン伝導性をもたらし得る化合物である。
Next, the lithium-based polyanion particles (B) will be described.
The lithium-based polyanion particles (B), which are composited with the lithium composite oxide particles (a) only on the surface of the lithium composite oxide secondary particles (A), contain the supporting carbon (c). And the following formula (III):
Li g Mn h Fe i M 3 y PO 4・ ・ ・ (III)
(In formula (III), M 3 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. G, h, i, and y are Satisfy 0 <g ≦ 1.2, 0 ≦ h ≦ 1.2, 0 ≦ i ≦ 1.2, 0 ≦ y ≦ 0.3, and h + i ≠ 0, and g + (valence of Mn) × h + ( Fe valence) x i + (M 3 valence) x y = 3 is shown.)
Alternatively, the following formula (IV):
Li j Fe k Mn l M 4 z SiO 4 ··· (IV)
(In formula (IV), M 4 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, Al, Zn, V or Gd. l and z satisfy 0 <j ≦ 2.4, 0 ≦ k ≦ 1.2, 0 ≦ l ≦ 1.2, 0 ≦ z ≦ 1.2, and k + l ≠ 0, and j + (of Fe). Valuation) × k + (Mn valence) × l + (M 4 valence) × z = 4).
A lithium compound containing at least either manganese or iron, represented by, which can provide good lithium ion conductivity.

上記式(III)で表されるリチウム系ポリアニオン粒子(B)としては、リチウム複合酸化物二次粒子(A)と複合化して得られるリチウムイオン二次電池用正極活物質複合体(C)の平均放電電圧の観点から、0.5≦h≦1.2が好ましく、0.6≦h≦1.1がより好ましく、0.65≦h≦1.05がさらに好ましく、また0.1≦i≦0.6が好ましい。具体的には、例えばLiMnPO4、LiMn0.9Fe0.1PO4、LiMn0.8Fe0.2PO4、LiMn0.75Fe0.15Mg0.1PO4、LiMn0.75Fe0.19Zr0.03PO4、LiMn0.7Fe0.3PO4、LiMn0.6Fe0.4PO4、LiMn0.3Fe0.7PO4、LiMn0.5Fe0.5PO4、Li1.2Mn0.63Fe0.27PO4、Li0.6Mn0.84Fe0.36PO4等が挙げられ、なかでもLiMn0.3Fe0.7PO4、LiMn0.7Fe0.3PO4、LiMn0.8Fe0.2PO4、Li1.2Mn0.63Fe0.27PO4、又はLi0.6Mn0.84Fe0.36PO4が好ましい。 The lithium-based polyanionic particles (B) represented by the above formula (III) include the positive electrode active material composite (C) for a lithium ion secondary battery obtained by combining with the lithium composite oxide secondary particles (A). From the viewpoint of the average discharge voltage, 0.5 ≦ h ≦ 1.2 is preferable, 0.6 ≦ h ≦ 1.1 is more preferable, 0.65 ≦ h ≦ 1.05 is further preferable, and 0.1 ≦. i ≦ 0.6 is preferable. Specifically, for example, LiMn PO 4 , Limn 0.9 Fe 0.1 PO 4 , Limn 0.8 Fe 0.2 PO 4 , Limn 0.75 Fe 0.15 Mg 0.1 PO 4 , Limn 0.75 Fe 0.19 Zr 0.03 PO 4 , Limn 0.7 Fe 0.3 PO 4 , Limn 0.6 Fe 0.4 PO 4 , LiMn 0.3 Fe 0.7 PO 4 , LiMn 0.5 Fe 0.5 PO 4 , Li 1.2 Mn 0.63 Fe 0.27 PO 4 , Li 0.6 Mn 0.84 Fe 0.36 PO 4, etc. Among them, LiMn 0.3 Fe 0.7 PO 4 , LiMn 0.7 Fe 0.3 PO 4 , LiMn 0.8 Fe 0.2 PO 4 , Li 1.2 Mn 0.63 Fe 0.27 PO 4 , or Li 0.6 Mn 0.84 Fe 0.36 PO 4 are preferred.

また、上記式(IV)で表されるリチウム系ポリアニオン粒子(B)としては、リチウム複合酸化物二次粒子(A)と複合化して得られるリチウムイオン二次電池用正極活物質複合体(C)の平均放電電圧の観点から、0.5≦l≦1.2が好ましく、0.6≦l≦1.1がより好ましく、0.65≦l≦1.05がさらに好ましく、また0.1≦k≦0.6が好ましい。具体的には、例えばLi2Fe0.45Mn0.45Co0.1SiO4、Li2Fe0.36Mn0.54Al0.066SiO4、Li2Fe0.45Mn0.45Zn0.1SiO4、Li2Fe0.36Mn0.540.066SiO4、Li2Fe0.282Mn0.658Zr0.02SiO4、Li2.2Fe0.252Mn0.594Zr0.027SiO4、Li1.2Fe0.392Mn0.924Zr0.042SiO4等が挙げられ、なかでもLi2Fe0.282Mn0.658Zr0.02SiO4、Li2.2Fe0.252Mn0.594Zr0.027SiO4、又はLi2.2Fe0.392Mn0.924Zr0.042SiO4が好ましい。 Further, as the lithium-based polyanionic particles (B) represented by the above formula (IV), the positive electrode active material composite (C) for a lithium ion secondary battery obtained by combining with the lithium composite oxide secondary particles (A). ), 0.5 ≦ l ≦ 1.2 is preferable, 0.6 ≦ l ≦ 1.1 is more preferable, 0.65 ≦ l ≦ 1.05 is further preferable, and 0. 1 ≦ k ≦ 0.6 is preferable. Specifically, for example, Li 2 Fe 0.45 Mn 0.45 Co 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 Al 0.066 SiO 4 , Li 2 Fe 0.45 Mn 0.45 Zn 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 V 0.066 SiO 4 , Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 , Li 2.2 Fe 0.252 Mn 0.594 Zr 0.027 SiO 4 , Li 1.2 Fe 0.392 Mn 0.924 Zr 0.042 SiO 4, etc. Among them, Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 , Li 2.2 Fe 0.252 Mn 0.594 Zr 0.027 SiO 4 or Li 2.2 Fe 0.392 Mn 0.924 Zr 0.042 SiO 4 is preferable.

さらに、リチウム系ポリアニオン粒子(B)は、上記式(III)又は式(IV)で表されるリチウム系ポリアニオン粒子からなるコア部(内部)とシェル部(表層部)を有するコア−シェル構造を形成してなり、かつ担持してなる炭素(c)を含むものであってもよい。 Further, the lithium-based polyanion particles (B) have a core-shell structure having a core portion (inside) and a shell portion (surface layer portion) composed of lithium-based polyanion particles represented by the above formula (III) or formula (IV). It may contain carbon (c) formed and supported.

このリチウム系ポリアニオン粒子(B)のコア−シェル構造によって、リチウム系ポリアニオン粒子(B)から電解液に溶出しやすいMn含有量の多いリチウム系ポリアニオンをコア部に配置し、電解液に接するシェル部にはMn含有量の少ないリチウム系ポリアニオンを配置することによって、リチウム系ポリアニオン粒子に起因するサイクル特性の低下の抑制と安全性の確保をより向上させることができる。このとき、コア部は1相であってもよいし、組成の異なる2相以上で構成していてもよい。コア部を2相以上で構成する態様として、同心円状に複数の相が層状となって積層された構造でもよいし、コア部の表面から中心部に向けて遷移的に組成が変化する構造でもよい。
さらに、シェル部は、コア部の外側に形成されてなるものであればよく、コア部同様に1相であってもよいし、組成の異なる2相以上で構成していてもよい。
Due to the core-shell structure of the lithium-based polyanion particles (B), a lithium-based polyanion having a high Mn content that is easily eluted from the lithium-based polyanion particles (B) into the electrolytic solution is arranged in the core portion, and the shell portion in contact with the electrolytic solution. By arranging a lithium-based polyanion having a low Mn content in the particle, it is possible to further improve the suppression of deterioration of cycle characteristics and the assurance of safety due to the lithium-based polyanion particles. At this time, the core portion may have one phase or may be composed of two or more phases having different compositions. As an embodiment in which the core portion is composed of two or more phases, a structure in which a plurality of phases are concentrically stacked in layers may be used, or a structure in which the composition changes transitionally from the surface of the core portion to the central portion. Good.
Further, the shell portion may be formed on the outside of the core portion, and may be one phase like the core portion, or may be composed of two or more phases having different compositions.

このような組成が異なる2種以上のリチウム系ポリアニオン粒子によってコア−シェル構造を形成してなるリチウム系ポリアニオン粒子(B)として、具体的には(コア部)−(シェル部)が、例えば(LiMnPO4)−(LiFePO4)、(LiMn0.5Co0.5PO4)−(LiFePO4)、(Li2MnSiO4)−(LiFePO4)、又は(Li2MnSiO4)−(Li2FeSiO4)等からなる粒子が挙げられる。 As the lithium-based polyanion particles (B) formed by forming a core-shell structure with two or more kinds of lithium-based polyanion particles having different compositions, specifically, (core part)-(shell part) is, for example, ( LiMnPO 4 )-(LiFePO 4 ), (LiMn 0.5 Co 0.5 PO 4 )-(LiFePO 4 ), (Li 2 MnSiO 4 )-(LiFePO 4 ), or (Li 2 MnSiO 4 )-(Li 2 FeSiO 4 ), etc. Particles consisting of.

上記式(III)又は上記式(IV)で表されるリチウム系ポリアニオン粒子(B)の平均粒径(RB)(二次粒子)は、電極密度の向上、電極作製時のハンドリングおよび電極塗工の観点から、好ましくは5μm〜30μmであり、より好ましくは7μm〜20μmである。
上記式(III)又は上記式(IV)で表されるリチウム系ポリアニオン粒子(B)の平均一次粒径(二次粒子を構成する一次粒子の平均粒径)は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子(a)と密に複合化する観点から、好ましくは50nm〜500nmであり、より好ましくは50nm〜300nmである。
なお、コア−シェル構造を形成してなるリチウム系ポリアニオン粒子(B)の平均粒径(RB)は、好ましくは5μm〜30μmであり、より好ましくは7μm〜20μmである。
The formula (III) or an average particle diameter of the lithium-based polyanion particles represented by the formula (IV) (B) (R B) ( secondary particles), electrode density improvement of handling and electrode coating during electrode fabrication From the viewpoint of construction, it is preferably 5 μm to 30 μm, and more preferably 7 μm to 20 μm.
The average primary particle size (average particle size of the primary particles constituting the secondary particles) of the lithium-based polyanionic particles (B) represented by the above formula (III) or the above formula (IV) is the lithium composite oxide secondary particles. From the viewpoint of densely complexing with the lithium composite oxide particles (a) only on the surface of (A), it is preferably 50 nm to 500 nm, and more preferably 50 nm to 300 nm.
The core - the average particle size of the formed shell structure comprising lithium polyanion particles (B) (R B) is preferably 5 m to 30 m, more preferably 7Myuemu~20myuemu.

上記式(III)又は式(IV)で表されるリチウム系ポリアニオン粒子(B)の25℃での20MPa加圧時におけるリチウムイオン伝導度は、1×10-7S/cm以上であることが好ましく、1×10-6S/cm以上であることがより好ましい。リチウム系ポリアニオン粒子(B)のリチウムイオン伝導度の上限値は特に限定されない。 The lithium ion conductivity of the lithium-based polyanionic particles (B) represented by the above formula (III) or formula (IV) when pressurized at 20 MPa at 25 ° C. is 1 × 10 -7 S / cm or more. It is preferably 1 × 10 -6 S / cm or more, and more preferably 1 × 10 -6 S / cm or more. The upper limit of the lithium ion conductivity of the lithium-based polyanionic particles (B) is not particularly limited.

上記リチウム系ポリアニオン粒子(B)は、担持されてなる炭素(c)を含む。かかる炭素(c)は、リチウム系ポリアニオン粒子(B)の表面に担持されてなる。かかる炭素(c)の担持量は、リチウム系ポリアニオン粒子(B)が式(III)で表される場合には、担持されてなる炭素(c)を含むリチウム系ポリアニオン粒子(B)全量100質量%中に、好ましくは0.1質量%以上10質量%未満であって、より好ましくは0.1質量%〜7質量%であり、さらに好ましくは0.1質量%〜5質量%である。また、リチウム系ポリアニオン粒子(B)が式(IV)で表される場合には、担持されてなる炭素(c)を含むリチウム系ポリアニオン粒子(B)全量100質量%中に、好ましくは0.1質量%以上20質量%未満であって、より好ましくは0.5質量%〜15質量%であり、さらに好ましくは1質量%〜10質量%である。 The lithium-based polyanion particles (B) contain supported carbon (c). The carbon (c) is supported on the surface of the lithium-based polyanion particles (B). When the lithium-based polyanion particles (B) are represented by the formula (III), the supported amount of the carbon (c) is 100 mass by mass of the total amount of the supported carbon (c) -containing lithium-based polyanion particles (B). In%, it is preferably 0.1% by mass or more and less than 10% by mass, more preferably 0.1% by mass to 7% by mass, and further preferably 0.1% by mass to 5% by mass. When the lithium-based polyanion particles (B) are represented by the formula (IV), the total amount of the lithium-based polyanion particles (B) containing the supported carbon (c) is 100% by mass, preferably 0. It is 1% by mass or more and less than 20% by mass, more preferably 0.5% by mass to 15% by mass, and further preferably 1% by mass to 10% by mass.

なお、上記式(III)又は式(IV)で表されるリチウム系ポリアニオン粒子(B)に含まれる、担持されてなる炭素(c)としては、後述するセルロースナノファイバー及び/又はリグノセルロースナノファイバー(以下、これらを「CNF」と総称する場合もある。)由来の炭素(c1)、若しくは水溶性炭素材料由来の炭素(c2)、或いは炭素(c1)と炭素(c2)との併用が好ましい。なお、この場合、リチウム系ポリアニオン粒子(B)中における炭素(c)の担持量とは、CNF由来の炭素(c1)及び水溶性炭素材料由来の炭素(c2)の炭素の合計担持量であり、上記炭素源であるCNF又は水溶性炭素材料の炭素原子換算量に相当する。 The supported carbon (c) contained in the lithium-based polyanionic particles (B) represented by the above formula (III) or the formula (IV) includes cellulose nanofibers and / or lignocellulose nanofibers described later. (Hereinafter, these may be collectively referred to as "CNF".) It is preferable to use carbon (c1) derived from carbon (c1) or carbon (c2) derived from a water-soluble carbon material, or a combination of carbon (c1) and carbon (c2). .. In this case, the amount of carbon (c) supported in the lithium-based polyanion particles (B) is the total amount of carbon of carbon (c1) derived from CNF and carbon (c2) derived from the water-soluble carbon material. , Corresponds to the carbon atom equivalent amount of the CNF or the water-soluble carbon material which is the carbon source.

リチウム系ポリアニオン粒子(B)に含まれる、担持してなる炭素(c1)の炭素源(c'1)となる上記セルロースナノファイバーとは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維である。また、セルロースナノファイバーと同様に、炭素源(c'1)となる上記リグノセルロースナノファイバーは、リグニンを除去する精製を行わずに得られたセルロースナノファイバーであって、セルロースナノファイバーがリグニンで被覆されてなるものである。
これらセルロースナノファイバーとリグノセルロースナノファイバーは、共に優れた水への分散性を有している。
The cellulose nanofibers contained in the lithium-based polyanion particles (B) and which serve as the carbon source (c'1) of the supporting carbon (c1) are skeletal components that occupy about 50% of all plant cell walls. Therefore, it is a lightweight and high-strength fiber that can be obtained by defibrating the plant fibers constituting such a cell wall to a nano size. Further, like the cellulose nanofibers, the lignocellulose nanofibers serving as a carbon source (c'1) are cellulose nanofibers obtained without purification for removing lignin, and the cellulose nanofibers are lignin. It is covered.
Both of these cellulose nanofibers and lignocellulose nanofibers have excellent dispersibility in water.

CNF由来の炭素(c1)は、周期的構造を有する。かかるCNFの繊維径は、1nm〜100nmであり、水への良好な分散性も有している。また、CNFを構成するセルロース分子鎖では、炭素による周期的構造が形成されていることから、これが炭化されつつ上記ポリアニオン粒子とも相まって、上記リチウム系ポリアニオン粒子(B)の表面に堅固に担持されることとなり、これらポリアニオン粒子に電子伝導性を付与し、サイクル特性に優れる有用なリチウムイオン二次電池用正極活物質複合体を得ることができる。 CNF-derived carbon (c1) has a periodic structure. The fiber diameter of such CNF is 1 nm to 100 nm, and it also has good dispersibility in water. Further, since the cellulose molecular chain constituting CNF has a periodic structure made of carbon, it is firmly supported on the surface of the lithium-based polyanion particles (B) while being carbonized together with the polyanion particles. Therefore, it is possible to impart electron conductivity to these polyanion particles and obtain a useful positive electrode active material composite for a lithium ion secondary battery having excellent cycle characteristics.

リチウム系ポリアニオン粒子(B)に含まれる、担持してなる水溶性炭素材料由来の炭素(c2)の上記炭素源(c'2)としての水溶性炭素材料とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味し、炭化されることで炭素として上記リチウム系ポリアニオン粒子(B)の表面に存在することとなる。かかる水溶性炭素材料としては、例えば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上が挙げられる。より具体的には、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸が挙げられる。なかでも、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。 The water-soluble carbon material as the carbon source (c'2) of the carbon (c2) derived from the supported water-soluble carbon material contained in the lithium-based polyanion particles (B) is 100 g of water at 25 ° C. It means a carbon material that dissolves 0.4 g or more, preferably 1.0 g or more in terms of carbon atom equivalent of the water-soluble carbon material, and is present as carbon on the surface of the lithium-based polyanion particles (B) by being carbonized. It becomes. Examples of such a water-soluble carbon material include one or more selected from sugars, polyols, polyethers, and organic acids. More specifically, for example, monosaccharides such as glucose, fructose, galactose, mannose; disaccharides such as maltose, sucrose, cellobiose; polysaccharides such as starch and dextrin; ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, butane. Polyols and polyethers such as diol, propanediol, polyvinyl alcohol and glycerin; organic acids such as sucrose, tartrate and ascorbic acid can be mentioned. Among them, glucose, fructose, sucrose, and dextrin are preferable, and glucose is more preferable, from the viewpoint of enhancing the solubility and dispersibility in a solvent and effectively functioning as a carbon material.

なお、リチウム系ポリアニオン粒子(B)の表面に存在する炭素(c)の担持量(炭素(c)がCNF由来の炭素(c1)又は水溶性炭素材料由来の炭素(c2)である場合には、これらの炭素原子換算量)は、リチウム系ポリアニオン粒子(B)について炭素・硫黄分析装置を用いて測定した炭素量として、確認することができる。 The amount of carbon (c) supported on the surface of the lithium-based polyanion particles (B) (when the carbon (c) is carbon (c1) derived from CNF or carbon (c2) derived from a water-soluble carbon material). , These carbon atom equivalent amounts) can be confirmed as the amount of carbon measured by using a carbon / sulfur analyzer for the lithium-based polyanion particles (B).

また上記式(III)又は式(IV)で表されるリチウム系ポリアニオン粒子(B)は、リチウム複合酸化物粒子である一次粒子(a)と複合化していてもよく、リチウム複合酸化物粒子である一次粒子が凝集してなるリチウム複合酸化物二次粒子(A)の一部と直接複合化していてもよい。 Further, the lithium-based polyanion particles (B) represented by the above formula (III) or the formula (IV) may be composited with the primary particles (a) which are lithium composite oxide particles, and are lithium composite oxide particles. It may be directly composited with a part of the lithium composite oxide secondary particles (A) formed by aggregating certain primary particles.

さらに本発明では、上記のリチウム複合酸化物二次粒子(A)とリチウム系ポリアニオン粒子(B)の複合化処理において、炭素源として、CNF由来の炭素(c1)以外の水不溶性炭素粉末(c3)を同時に混合し、リチウム複合酸化物二次粒子(A)及びリチウム系ポリアニオン粒子(B)と複合化させてもよい。かかる水不溶性炭素粉末(c3)は、上記水溶性炭素材料由来の炭素(c2)とは別異の炭素材料であって、CNF由来の炭素(c1)以外の水不溶性(25℃の水100gに対する溶解量が、水不溶性炭素粉末(c3)の炭素原子換算量で0.4g未満)の導電性を有する炭素粉末である。この水不溶性炭素粉末(c3)の複合化によって、水不溶性炭素粉末(c3)が、リチウムイオン二次電池用正極活物質複合体におけるリチウム複合酸化物二次粒子(A)とリチウム系ポリアニオン粒子(B)の間隙に介在するか、又はリチウムイオン二次電池用正極活物質複合体表面の複数のリチウム系ポリアニオン粒子(B)を覆うように存在するかしながら、これらの複合化の程度をより強固にし、リチウム複合酸化物二次粒子(A)からリチウム系ポリアニオン粒子(B)が剥離することを有効に抑制することができる。 Further, in the present invention, in the compounding treatment of the above-mentioned lithium composite oxide secondary particles (A) and lithium-based polyanionic particles (B), a water-insoluble carbon powder (c3) other than CNF-derived carbon (c1) is used as a carbon source. ) May be mixed at the same time and combined with the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B). The water-insoluble carbon powder (c3) is a carbon material different from the carbon (c2) derived from the water-soluble carbon material, and is water-insoluble (relative to 100 g of water at 25 ° C.) other than the carbon (c1) derived from CNF. It is a carbon powder having conductivity with a dissolved amount of less than 0.4 g in terms of carbon atom equivalent of the water-insoluble carbon powder (c3). By combining the water-insoluble carbon powder (c3), the water-insoluble carbon powder (c3) becomes the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (A) in the positive electrode active material composite for the lithium ion secondary battery. The degree of these composites is increased while interposing in the gap of B) or existing so as to cover the plurality of lithium-based polyanion particles (B) on the surface of the positive electrode active material composite for the lithium ion secondary battery. By strengthening, it is possible to effectively suppress the separation of the lithium-based polyanion particles (B) from the lithium composite oxide secondary particles (A).

上記の水不溶性炭素粉末(c3)としては、グラファイト、非晶質カーボン(ケッチェンブラック、アセチレンブラック等)、ナノカーボン(グラフェン、フラーレン等)、導電性ポリマー粉末(ポリアニリン粉末、ポリアセチレン粉末、ポリチオフェン粉末、ポリピロール粉末等)等の1種または2種以上が挙げられる。なかでも、リチウム複合酸化物二次粒子(A)とリチウム系ポリアニオン粒子(B)の複合化の程度を補強させる観点から、グラファイト、アセチレンブラック、グラフェン、ポリアニリン粉末が好ましく、グラファイトがより好ましい。グラファイトとしては、人造グラファイト(鱗片状、塊状、土状、グラフェン)、天然グラファイトのいずれであってもよい。 Examples of the water-insoluble carbon powder (c3) include graphite, amorphous carbon (Ketjen black, acetylene black, etc.), nanocarbon (graphene, fullerene, etc.), conductive polymer powder (polyaniline powder, polyacetylene powder, polythiophene powder, etc.). , Polypyrrole powder, etc.), etc., or two or more of them. Among them, graphite, acetylene black, graphene, and polyaniline powder are preferable, and graphite is more preferable, from the viewpoint of reinforcing the degree of compounding of the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B). The graphite may be artificial graphite (scaly, lumpy, earthy, graphene) or natural graphite.

水不溶性炭素粉末(c3)の平均粒径は、製造工程でのハンドリングと強固な複合化の観点から、好ましくは0.5μm〜20μmであり、より好ましくは1.0μm〜15μmである。 The average particle size of the water-insoluble carbon powder (c3) is preferably 0.5 μm to 20 μm, more preferably 1.0 μm to 15 μm, from the viewpoint of handling in the manufacturing process and strong composite.

本発明のリチウムイオン二次電池用正極活物質複合体における、上記リチウム複合酸化物二次粒子(A)とリチウム系ポリアニオン粒子(B)の複合化の際に同時に混合して複合化される水不溶性炭素粉末(c3)の含有量は、リチウム複合酸化物二次粒子(A)とリチウム系ポリアニオン粒子(B)の合計量100質量部に対し、好ましくは0.5質量部〜25質量部であり、より好ましくは1質量部〜11質量部であり、さらに好ましくは1質量部〜10質量部である。 Water that is simultaneously mixed and composited when the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B) are composited in the positive electrode active material composite for a lithium ion secondary battery of the present invention. The content of the insoluble carbon powder (c3) is preferably 0.5 parts by mass to 25 parts by mass with respect to 100 parts by mass of the total amount of the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B). Yes, more preferably 1 part by mass to 11 parts by mass, and even more preferably 1 part by mass to 10 parts by mass.

さらに、上記リチウム複合酸化物二次粒子(A)、及び担持されてなる炭素(c)を含むリチウム系ポリアニオン粒子(B)の合計量と、リチウム系ポリアニオン粒子(B)に担持されてなる炭素(c1及び/又はc2)及び水不溶性炭素粉末(c3)の合計含有量(c)との質量比(((A)+(B)):(c))は、好ましくは99.5:0.5〜80:20であり、より好ましくは99:1〜90:10である。 Further, the total amount of the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B) containing the supported carbon (c) and the carbon supported on the lithium-based polyanion particles (B). The mass ratio (((A) + (B)) :( c)) of (c1 and / or c2) and the total content (c) of the water-insoluble carbon powder (c3) is preferably 99.5: 0. .5 to 80:20, more preferably 99: 1 to 90:10.

また、リチウム複合酸化物二次粒子(A)の表面に、担持されてなる炭素(c)を含むリチウム系ポリアニオン粒子(B)が複合してなるリチウムイオン二次電池用正極活物質複合体(C)における、リチウム複合酸化物二次粒子(A)の含有量と、炭素(c)を含むリチウム系ポリアニオン粒子(B)の含有量(炭素(c)の担持量を含む)との質量比((A):(B))は、好ましくは95:5〜55:45であり、より好ましくは90:10〜70:30である。 Further, a positive electrode active material composite for a lithium ion secondary battery in which lithium-based polyanionic particles (B) containing carbon (c) supported on the surface of the lithium composite oxide secondary particles (A) are composited. Mass ratio of the content of the lithium composite oxide secondary particles (A) in C) to the content of the lithium-based polyanionic particles (B) containing carbon (c) (including the amount of carbon (c) supported). ((A): (B)) is preferably 95: 5 to 55:45, more preferably 90: 10 to 70:30.

そして、上記リチウム複合酸化物二次粒子(A)の表面を、上記担持されてなる炭素(c)を含むリチウム系ポリアニオン粒子(B)が被覆してなる、リチウムイオン二次電池用正極活物質複合体(C)の平均粒径(RC)は、好ましくは1.2μm〜19μmであり、より好ましくは6μm〜15.4μmである。 Then, the surface of the lithium composite oxide secondary particles (A) is coated with the lithium-based polyanion particles (B) containing the supported carbon (c), which is a positive electrode active material for a lithium ion secondary battery. the average particle diameter of the complex (C) (R C) is preferably 1.2Myuemu~19myuemu, more preferably 6Myuemu~15.4Myuemu.

次に、上記リチウムイオン二次電池用正極活物質複合体(C)に対し、上記質量比((B'):(C))=91:9〜50:50で配合されてなるリチウム系ポリアニオン粒子(B')を説明する。 Next, a lithium-based polyanion formed by blending the positive electrode active material composite (C) for a lithium ion secondary battery with the mass ratio ((B') :( C)) = 91: 9 to 50:50. The particle (B') will be described.

リチウム系ポリアニオン粒子(B')は、上記式(III)又は式(IV)で表されるリチウム系ポリアニオン粒子(B)と同じ物性及び組成で表され、担持してなる炭素(c)を含む粒子である。すなわち、リチウム系ポリアニオン粒子(B)は、上記リチウムイオン二次電池用正極活物質複合体(C)を形成する粒子であり、かかる複合体(C)に内在する粒子である。一方、リチウム系ポリアニオン粒子(B')は、リチウムイオン二次電池用正極活物質複合体(C)及びリチウム複合酸化物二次粒子(A')とともに、リチウムイオン二次電池用混合型正極活物質を形成する粒子であり、複合体(C)に外在する粒子である。
したがって、リチウム系ポリアニオン粒子(B')は、平均粒径、リチウムイオン伝導度につき、リチウム系ポリアニオン粒子(B)と同じ範囲内の値を有していればよく、同様のコア−シェル構造を呈していてもよい。
The lithium-based polyanion particles (B') have the same physical properties and composition as the lithium-based polyanion particles (B) represented by the above formula (III) or formula (IV), and contain carbon (c) supported. It is a particle. That is, the lithium-based polyanion particles (B) are particles that form the positive electrode active material composite (C) for the lithium ion secondary battery, and are particles inherent in the composite (C). On the other hand, the lithium-based polyanion particles (B'), together with the positive electrode active material composite (C) for the lithium ion secondary battery and the lithium composite oxide secondary particles (A'), are the mixed positive electrode activity for the lithium ion secondary battery. It is a particle that forms a substance and is a particle that is extrinsic in the complex (C).
Therefore, the lithium-based polyanionic particles (B') need only have values within the same range as the lithium-based polyanionic particles (B) with respect to the average particle size and the lithium ion conductivity, and have the same core-shell structure. It may be presented.

ただし、本発明において、リチウムイオン二次電池用正極活物質複合体(C)の平均粒径(RC)とリチウム系ポリアニオン粒子(B')の平均粒径(RB')との比(RC/RB')は、電極密度を高めることによって、体積当たりの放電容量を有効に高め、かつ長期間にわたりサイクル特性の低下の抑制を有効に図る観点から、0.2〜0.98であって、好ましくは0.3〜0.95であり、より好ましくは0.4〜0.93である。 However, the ratio of the present invention, the 'average particle diameter of the (R B average particle size (R C) and lithium polyanion particles of the positive electrode active material composite for a lithium ion secondary battery (C) (B)') ( RC / R B' ) is 0.2 to 0.98 from the viewpoint of effectively increasing the discharge capacity per volume by increasing the electrode density and effectively suppressing the deterioration of cycle characteristics over a long period of time. It is preferably 0.3 to 0.95, and more preferably 0.4 to 0.93.

また、リチウム複合酸化物二次粒子(A)の平均粒径(RA)と、リチウム系ポリアニオン粒子(B')の平均粒径(RB')との比(RA/RB')は、電極密度を高める観点から、好ましくは0.03〜0.79であり、より好ましくは0.25〜0.77であり、さらに好ましくは0.35〜0.75である。 The average particle diameter of the lithium composite oxide secondary particle (A) and (R A), the ratio of the 'average particle diameter of the (R B lithium polyanion particles (B)') (R A / R B ') Is preferably 0.03 to 0.79, more preferably 0.25 to 0.77, and even more preferably 0.35 to 0.75, from the viewpoint of increasing the electrode density.

本発明のリチウムイオン二次電池用混合型正極活物質(D)において、配合されてなる上記リチウム系ポリアニオン粒子(B')の含有量と、上記リチウムイオン二次電池用正極活物質複合体(C)の含有量との質量比((B'):(C))は、91:9〜50:50であって、好ましくは89:11〜50:50であり、より好ましくは80:20〜50:50である。
かかる質量比((B'):(C))が上記範囲外であると、リチウム複合酸化物二次粒子(A')と電解液との反応の抑制が困難となり、充放電に伴う放電容量の低下が生じて、長期サイクル特性の向上に支障をきたすおそれがある。
In the mixed positive electrode active material (D) for a lithium ion secondary battery of the present invention, the content of the lithium-based polyanionic particles (B') compounded and the positive electrode active material composite for a lithium ion secondary battery ( The mass ratio ((B') :( C)) to the content of C) is 91: 9 to 50:50, preferably 89: 11 to 50:50, and more preferably 80:20. ~ 50:50.
If the mass ratio ((B'): (C)) is out of the above range, it becomes difficult to suppress the reaction between the lithium composite oxide secondary particles (A') and the electrolytic solution, and the discharge capacity associated with charging and discharging becomes difficult. May hinder the improvement of long-term cycle characteristics.

また、上記リチウムイオン二次電池用混合型正極活物質(D)において、上記リチウムイオン二次電池用正極活物質複合体(C)を構成するリチウム複合酸化物二次粒子(A)と、上記リチウムイオン二次電池用正極活物質複合体(C)を構成するリチウム系ポリアニオン粒子(B)、及びリチウム系ポリアニオン粒子(B')の合計含有量との質量比(((A):((B)+(B')))は、単位体積当たりの放電容量及び長期サイクル特性の観点から、好ましくは47.5:52.5〜5:95であり、より好ましくは47.5:52.5〜6:94であり、さらに好ましくは47.5:52.5〜10:90である。 Further, in the mixed positive electrode active material (D) for the lithium ion secondary battery, the lithium composite oxide secondary particles (A) constituting the positive electrode active material composite (C) for the lithium ion secondary battery and the above. Mass ratio to the total content of the lithium-based polyanion particles (B) and the lithium-based polyanion particles (B') constituting the positive electrode active material composite (C) for the lithium ion secondary battery (((A): (((A) :( B) + (B'))) is preferably 47.5: 52.5 to 5:95, more preferably 47.5: 52. From the viewpoint of discharge capacity per unit volume and long-term cycle characteristics. It is 5 to 6:94, more preferably 47.5: 52.5 to 10:90.

本発明のリチウムイオン二次電池用混合型正極活物質(D)を製造するには、上記リチウムイオン二次電池用正極活物質複合体(C)と、上記リチウム系ポリアニオン粒子(B')とが、質量比((B'):(C))=91:9〜50:50となるよう、各々の添加量を調整して混合すればよい。
具体的には、リチウム複合酸化物二次粒子(A)、及び炭素(c)が担持されてなるリチウム系ポリアニオン粒子(B)を、圧縮力及びせん断力を付加しながら混合して得られるリチウムイオン二次電池用正極活物質複合体(C)に、リチウム系ポリアニオン粒子(B')を混合する工程を備えればよい。
In order to produce the mixed positive electrode active material (D) for a lithium ion secondary battery of the present invention, the positive electrode active material composite (C) for a lithium ion secondary battery and the lithium-based polyanionic particles (B') are used. However, the respective addition amounts may be adjusted and mixed so that the mass ratio ((B'): (C)) = 91: 9 to 50:50.
Specifically, lithium obtained by mixing lithium composite oxide secondary particles (A) and lithium-based polyanion particles (B) in which carbon (c) is supported while applying compressive force and shearing force. A step of mixing lithium-based polyanion particles (B') with the positive electrode active material composite (C) for an ion secondary battery may be provided.

リチウム複合酸化物二次粒子(A)、及び炭素(c)が担持されてなるリチウム系ポリアニオン粒子(B)を、圧縮力及びせん断力を付加しながら混合する処理は、インペラを備える密閉容器で行うのが好ましい。この圧縮力及びせん断力を付加しながら混合する処理を行う際の処理時間及び/又はインペラの周速度は、容器に投入するリチウム複合酸化物二次粒子(A)、及び炭素(c)が担持されてなるリチウム系ポリアニオン粒子(B)の合計量に応じて適宜調整する必要がある。 The process of mixing the lithium composite oxide secondary particles (A) and the lithium-based polyanion particles (B) carrying the carbon (c) while applying compressive force and shearing force is performed in a closed container equipped with an impeller. It is preferable to do so. The processing time and / or the peripheral speed of the impeller when performing the mixing process while applying the compressive force and the shearing force are supported by the lithium composite oxide secondary particles (A) and carbon (c) to be charged into the container. It is necessary to appropriately adjust according to the total amount of the lithium-based polyanion particles (B) formed.

例えば、上記圧縮力及びせん断力を付加しながら混合する処理を、周速度15m/s〜45m/sで回転するインペラを備える密閉容器内で5分間〜90分間行う場合、容器に投入するリチウム複合酸化物二次粒子(A)、及び炭素(c)が担持されてなるリチウム系ポリアニオン粒子(B)の合計量は、有効容器(インペラを備える密閉容器のうち、混合対象物を収容可能な部位に相当する容器)1cm3当たり、好ましくは0.1g〜0.7gであり、より好ましくは0.15g〜0.4gである。 For example, when the process of mixing while applying the compressive force and the shearing force is performed for 5 to 90 minutes in a closed container equipped with an impeller rotating at a peripheral speed of 15 m / s to 45 m / s, the lithium composite charged into the container is used. The total amount of the secondary oxide particles (A) and the lithium-based polyanion particles (B) on which the carbon (c) is supported is the effective container (the portion of the closed container provided with the impeller that can accommodate the mixing object). It is preferably 0.1 g to 0.7 g, and more preferably 0.15 g to 0.4 g per 1 cm 3 ( container corresponding to).

かかるインペラの周速度は、得られるリチウムイオン二次電池用正極活物質複合体のタップ密度を高める観点から、好ましくは15m/s〜45m/sであり、より好ましくは15m/s〜35m/sである。また、混合時間は、好ましくは5分間〜90分間であり、より好ましくは10分間〜80分間である。
なお、インペラの周速度とは、回転式攪拌翼(インペラ)の最外端部の速度を意味し、下記式(2)により表すことができ、また圧縮力及びせん断力を付加しながら混合する処理を行う時間は、インペラの周速度が遅いほど長くなるように、インペラの周速度によっても変動し得る。
インペラの周速度(m/s)=
インペラの半径(m)×2×π×回転数(rpm)÷60・・・(2)
The peripheral speed of the impeller is preferably 15 m / s to 45 m / s, more preferably 15 m / s to 35 m / s, from the viewpoint of increasing the tap density of the obtained positive electrode active material composite for a lithium ion secondary battery. Is. The mixing time is preferably 5 minutes to 90 minutes, more preferably 10 minutes to 80 minutes.
The peripheral speed of the impeller means the speed of the outermost end of the rotary stirring blade (impeller), which can be expressed by the following formula (2), and is mixed while applying a compressive force and a shearing force. The processing time may vary depending on the peripheral speed of the impeller so that the slower the peripheral speed of the impeller, the longer the processing time.
Impeller peripheral speed (m / s) =
Impeller radius (m) x 2 x π x rotation speed (rpm) ÷ 60 ... (2)

このような圧縮力及びせん断力を付加しながら複合化処理を容易に行うことができる密閉容器を備える装置としては、高速せん断ミル、ブレード型混練機等が挙げられ、具体的には、例えば、粒子設計装置 COMPOSI、メカノハイブリット、高性能流動式混合機FMミキサー(日本コークス工業社製)微粒子複合化装置 メカノフュージョン、ノビルタ(ホソカワミクロン社製)、表面改質装置ミラーロ、ハイブリダイゼーションシステム(奈良機械製作所製)を好適に用いることができる。
上記混合の処理条件としては、処理温度が、好ましくは5℃〜80℃、より好ましくは10℃〜50℃である。処理雰囲気としては、特に限定されないが、不活性ガス雰囲気下、又は還元ガス雰囲気下が好ましい。
Examples of the device provided with the closed container capable of easily performing the compounding process while applying such compressive force and shearing force include a high-speed shear mill, a blade type kneader, and the like. Specific examples thereof include, for example. Particle design equipment COMPOSI, Mechanohybrid, High-performance flow mixer FM mixer (manufactured by Nippon Coke Industries Co., Ltd.) Fine particle compounding equipment Mechanofusion, Nobilta (manufactured by Hosokawa Micron), Surface modifier Miralo, Hybridization system (Nara Machinery Co., Ltd.) ) Can be preferably used.
As the treatment conditions for the above mixing, the treatment temperature is preferably 5 ° C. to 80 ° C., more preferably 10 ° C. to 50 ° C. The treatment atmosphere is not particularly limited, but is preferably under an inert gas atmosphere or a reducing gas atmosphere.

上記リチウム複合酸化物二次粒子(A)の表面上に、上記の炭素(c)が担持されてなるリチウム系ポリアニオン粒子(B)、さらに必要に応じて添加される水不溶性炭素粉末(c3)を緻密かつ均一に分散、複合化した程度は、X線光電子分光法(XPS)によって評価することができる。具体的には、得られたリチウムイオン二次電池用正極活物質複合体(C)に数keVの軟X線を照射すると、かかる軟X線の照射を受けた部位から、当該部位を構成する元素に固有のエネルギー値を持つ光電子が放出されるので、リチウム複合酸化物二次粒子(A)から放出されるNi2p3/2のピークを解析して得られる3価のNiに相当するピーク強度と、リチウム系ポリアニオン粒子(B)から放出されるP2p又はSi2P、及び炭素(c)から放出されるC1sのピーク強度の合計を比較することで、リチウムイオン二次電池用正極活物質複合体の表面となっている材料の面積比、すなわち、かかるリチウム系ポリアニオン粒子(B)さらには水不溶性炭素粉末(c3)が、リチウム複合酸化物二次粒子(A)を被覆している程度が分かる。ただし、リチウム系ポリアニオン粒子(B)に3価のNiを含む場合もあることから、リチウム複合酸化物二次粒子(A)のNi2p3/2のピーク強度から、リチウム複合酸化物二次粒子(A)のP2p又はSi2Pのピークに対して規格化したリチウム系ポリアニオン粒子(B)由来のNi2p3/2のピークを差し引いた差分XPSプロファイルにおけるリチウム複合酸化物二次粒子(A)由来のNi2p3/2のピーク強度を用いる。このピーク強度比(Ni2p3/2の3価のNiのピーク強度)/((P2pのピーク強度)+(C1sのピーク強度))、又は(Ni2p3/2の3価のNiのピーク強度)/((Si2pのピーク強度)+(C1sのピーク強度))は、好ましくは0.1以下、より好ましくは0.01以下である。かかるピーク強度比であれば、得られたリチウムイオン二次電池用正極活物質複合体(C)の表面は、リチウム複合酸化物二次粒子(A)表面において、リチウム複合酸化物粒子(a)と複合化されてなる炭素(c)が担持されてなるリチウム系ポリアニオン粒子(B)、及び水不溶性炭素粉末(c3)によって、密に覆われている。 Lithium-based polyanionic particles (B) in which the carbon (c) is supported on the surface of the lithium composite oxide secondary particles (A), and water-insoluble carbon powder (c3) added as needed. Can be evaluated by X-ray photoelectron spectroscopy (XPS) to the extent that the particles are densely and uniformly dispersed and composited. Specifically, when the obtained positive electrode active material composite (C) for a lithium ion secondary battery is irradiated with soft X-rays of several keV, the portion is formed from the portion irradiated with the soft X-rays. Since photoelectrons having an energy value peculiar to the element are emitted, the peak intensity corresponding to trivalent Ni obtained by analyzing the peak of Ni2p 3/2 emitted from the lithium composite oxide secondary particle (A) is emitted. By comparing the sum of the peak intensities of P2p or Si2P released from the lithium-based polyanion particles (B) and C1s released from the carbon (c), the positive electrode active material composite for the lithium ion secondary battery It can be seen that the area ratio of the material on the surface, that is, the degree to which the lithium-based polyanion particles (B) and the water-insoluble carbon powder (c3) cover the lithium composite oxide secondary particles (A). However, since the lithium-based polyanion particles (B) may contain trivalent Ni, the peak intensity of Ni2p 3/2 of the lithium composite oxide secondary particles (A) indicates that the lithium composite oxide secondary particles ( P2p or Si2P the normalized lithium polyanion particles with respect to the peak (B) derived from a lithium composite oxide secondary particle in the difference XPS profile by subtracting the peak of Ni2p 3/2 of a) (a) derived from Ni2p 3 Use a peak intensity of / 2. This peak intensity ratio (Ni2p 3/2 trivalent Ni peak intensity) / ((P2p peak intensity) + (C1s peak intensity)) or (Ni2p 3/2 trivalent Ni peak intensity) / ((Peak intensity of Si2p) + (Peak intensity of C1s)) is preferably 0.1 or less, more preferably 0.01 or less. With such a peak intensity ratio, the surface of the obtained positive electrode active material composite (C) for a lithium ion secondary battery is the surface of the lithium composite oxide secondary particles (A), and the lithium composite oxide particles (a) are on the surface. It is densely covered with lithium-based polyanion particles (B) and water-insoluble carbon powder (c3), which are composited with carbon (c).

次に、得られたリチウムイオン二次電池用正極活物質複合体(C)と、リチウム系ポリアニオン粒子(B')を、周知の粉体混合方法、例えば、ナウタミキサやヘンシェルミキサーを用いて混合することによって、リチウムイオン二次電池用混合型正極活物質(D)を得ればよい。 Next, the obtained positive electrode active material composite (C) for a lithium ion secondary battery and lithium-based polyanionic particles (B') are mixed using a well-known powder mixing method, for example, a Nautamixer or a Henshell mixer. As a result, the mixed positive electrode active material (D) for a lithium ion secondary battery may be obtained.

本発明のリチウムイオン二次電池用混合型正極活物質(D)とともに、周知の導電剤及び結着剤(バインダー)を周知の処方で用いることにより、リチウムイオン二次電池用正極を得ることができる。具体的には、例えば、上記リチウムイオン二次電池用混合型正極活物質(D)、カーボンブラック等の導電助剤、並びにポリフッ化ビニリデン又はスチレンブタジエンゴム(SBR)等の結着剤に、N−メチル−2−ピロリドン等の溶媒を加え、充分に混練し正極ペーストを調製し、かかるペーストをアルミニウム箔等の集電体上に塗布し、次いでローラープレス等による圧密した後、乾燥すればよい。 A positive electrode for a lithium ion secondary battery can be obtained by using a well-known conductive agent and a binder with a well-known formulation together with the mixed positive electrode active material (D) for a lithium ion secondary battery of the present invention. it can. Specifically, for example, the mixed positive electrode active material (D) for a lithium ion secondary battery, a conductive auxiliary agent such as carbon black, and a binder such as polyvinylidene fluoride or styrene butadiene rubber (SBR) can be added to N. -A solvent such as methyl-2-pyrrolidone may be added and kneaded sufficiently to prepare a positive electrode paste, the paste may be applied onto a current collector such as aluminum foil, then compacted with a roller press or the like, and then dried. ..

また、リチウムイオン二次電池用混合型正極活物質(D)を予め得ることなく、所定の材料を用いて上記正極ペーストを直接調製することもできる。具体的には、上記リチウムイオン二次電池用正極活物質複合体(C)に対し、上記質量比((B'):(C))=91:9〜50:50)を満たす量で、リチウム系ポリアニオン粒子(B')を配合しつつ、さらに導電助剤及び結着剤に溶媒等のその他の正極合材構成材料を添加、混合して調製する。すなわち、リチウムイオン二次電池用正極活物質複合体(C)、リチウム系ポリアニオン粒子(B')、導電助剤、結着剤及び溶媒等を一括混合、或いは適宜順次混合して調製することができる。 Further, the positive electrode paste can be directly prepared using a predetermined material without obtaining the mixed positive electrode active material (D) for a lithium ion secondary battery in advance. Specifically, the amount satisfies the mass ratio ((B') :( C)) = 91: 9 to 50:50 with respect to the positive electrode active material composite (C) for the lithium ion secondary battery. While blending lithium-based polyanionic particles (B'), other positive electrode mixture constituent materials such as a solvent are further added to and mixed with the conductive auxiliary agent and the binder to prepare the mixture. That is, the positive electrode active material composite (C) for a lithium ion secondary battery, lithium-based polyanionic particles (B'), a conductive auxiliary agent, a binder, a solvent, and the like can be mixed all at once or sequentially mixed as appropriate. it can.

得られる正極合材層の厚さは、リチウムイオン二次電池の長期サイクル特性を好適にする観点から、20μm〜500μmであることが好ましい。 The thickness of the obtained positive electrode mixture layer is preferably 20 μm to 500 μm from the viewpoint of optimizing the long-term cycle characteristics of the lithium ion secondary battery.

本発明のリチウムイオン二次電池用正極中に含まれる水分量は少ない方が好ましく、具体的には800ppm 以下であることが好ましい。かかる含有水分量を減少させるには、高温環境や減圧環境において上記電極ペーストを乾燥する方法や、得られたリチウムイオン二次電池用正極に含まれる水分を、電気化学的に分解する方法を用いればよい。 The amount of water contained in the positive electrode for a lithium ion secondary battery of the present invention is preferably small, specifically 800 ppm or less. In order to reduce the water content, a method of drying the electrode paste in a high temperature environment or a reduced pressure environment, or a method of electrochemically decomposing the water contained in the obtained positive electrode for a lithium ion secondary battery is used. Just do it.

本発明のリチウムイオン二次電池用正極を用いるリチウムイオン二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。 The lithium ion secondary battery using the positive electrode for the lithium ion secondary battery of the present invention is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential configurations.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト、シリコン系(Si、SiOx)、チタン酸リチウム又は非晶質炭素等の炭素材料等を用いることができる。そしてリチウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。さらに、二種以上の上記の負極材料を併用してもよく、たとえばグラファイトとシリコン系の組み合わせを用いることができる。 Here, as for the negative electrode, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material composition is not particularly limited, and a known material composition can be used. For example, a carbon material such as lithium metal, graphite, silicon-based (Si, SiO x ), lithium titanate, or amorphous carbon can be used. Then, it is preferable to use an electrode formed of an intercalate material capable of electrochemically occluding and releasing lithium ions, particularly a carbon material. Further, two or more kinds of the above-mentioned negative electrode materials may be used in combination, and for example, a combination of graphite and silicon can be used.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液に用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。 The electrolytic solution is a solution in which a supporting salt is dissolved in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent usually used for an electrolytic solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, etc. , Oxolan compounds and the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of supporting salt is not particularly limited, but is an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , derivatives of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3). ) 2 and an organic salt selected from LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and derivatives of the organic salt. It is preferable that it is at least one of.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。 The separator electrically insulates the positive electrode and the negative electrode and serves to hold the electrolytic solution. For example, a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene, polypropylene) may be used.

上記の構成を有するリチウムイオン二次電池の形状としては、特に制限を受けるものではなく、コイン型、円筒型,角型等種々の形状や、ラミネート外装体に封入した不定形状であってもよい。 The shape of the lithium ion secondary battery having the above configuration is not particularly limited, and may be various shapes such as a coin type, a cylindrical type, and a square type, or an indefinite shape enclosed in a laminated outer body. ..

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

全ての実施例及び比較例で得られた正極ペーストを用いて各々正極を製造した後、得られた正極を使用した二次電池について、放電容量とサイクル特性を評価した。正極の製造方法、並びに放電容量、及びサイクル特性の評価方法を、以下に示す。 After producing positive electrodes using the positive electrode pastes obtained in all Examples and Comparative Examples, the discharge capacity and cycle characteristics of the secondary battery using the obtained positive electrodes were evaluated. The method for manufacturing the positive electrode, the discharge capacity, and the method for evaluating the cycle characteristics are shown below.

≪正極の製造≫
得られた正極ペーストを厚さ20μmのアルミニウム箔からなる集電体に塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。次いで、上記の正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR−2032)を得た。
≪Manufacturing of positive electrode≫
The obtained positive electrode paste was applied to a current collector made of an aluminum foil having a thickness of 20 μm, and vacuum dried at 80 ° C. for 12 hours. Then, it was punched into a disk shape having a diameter of 14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode. Next, a coin-type secondary battery was constructed using the above-mentioned positive electrode. For the negative electrode, a lithium foil punched to φ15 mm was used. As the electrolytic solution, one in which LiPF6 was dissolved at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was used. As the separator, a known material such as a polymer porous film such as polypropylene was used. These battery parts were incorporated and housed by a conventional method in an atmosphere having a dew point of −50 ° C. or lower to obtain a coin-type secondary battery (CR-2032).

≪電極密度の測定≫
上記の方法で作製した正極について、質量と厚みを測定して電極密度(g/cm3)を算出した。結果を表1に示す。
≪Measurement of electrode density≫
The mass and thickness of the positive electrode produced by the above method were measured to calculate the electrode density (g / cm 3). The results are shown in Table 1.

≪放電容量の測定≫
放電容量測定装置(HJ−1001SD8、北斗電工社製)にて気温30℃環境での、電流密度34mA/g、電圧4.25Vの定電流充電と、電流34mA/g、終止電圧3.0Vの定電流放電とし、電流密度34mA/g(0.2CA)における放電容量を求めた。結果を表1に示す。
≪Measurement of discharge capacity≫
With a discharge capacity measuring device (HJ-1001SD8, manufactured by Hokuto Denko Co., Ltd.), a constant current charge with a current density of 34 mA / g and a voltage of 4.25 V and a current of 34 mA / g and a final voltage of 3.0 V in an environment of 30 ° C. A constant current discharge was used, and the discharge capacity at a current density of 34 mA / g (0.2 CA) was determined. The results are shown in Table 1.

≪サイクル特性の評価≫
放電容量測定装置(同上)を用い、電流密度85mA/g、電圧4.25Vの定電流充電と、電流密度85mA/g、終止電圧3.0Vの定電流放電とし、電流密度85mA/g(0.5CA)における放電容量を求めた。さらに、同じ充放電条件の2000サイクル繰り返し試験を行い、下記式(1)により容量保持率(%)を求めた。なお、充放電試験は全て30℃で行った。結果を表1に示す。
容量保持率(%)=(2000サイクル後の放電容量)/
(1サイクル後の放電容量)×100 ・・・(1)
≪Evaluation of cycle characteristics≫
Using a discharge capacity measuring device (same as above), constant current charging with a current density of 85 mA / g and a voltage of 4.25 V and constant current discharge with a current density of 85 mA / g and a final voltage of 3.0 V were used, and a current density of 85 mA / g (0). The discharge capacity at .5CA) was determined. Further, a 2000 cycle repeated test under the same charge / discharge conditions was carried out, and the capacity retention rate (%) was determined by the following formula (1). All charge / discharge tests were performed at 30 ° C. The results are shown in Table 1.
Capacity retention rate (%) = (discharge capacity after 2000 cycles) /
(Discharge capacity after one cycle) x 100 ... (1)

[製造例1:NCM系複合酸化物の二次粒子(NCM−A1)の製造]
Ni:Co:Mnのモル比が6:2:2となるように、硫酸ニッケル六水和物473g、硫酸コバルト七水和物169g、硫酸マンガン五水和物145g、及び水3Lを混合した後、かかる混合液に25%アンモニア水を、滴下速度300mL/分で滴下して、pHが11の金属複合水酸化物を含むスラリーa1を得た。
次いで、スラリーa1をろ過、乾燥して、金属複合水酸化物の混合物b1を得た後、かかる混合物b1に炭酸リチウム37gをボールミルで混合して粉末混合物c1を得た。得られた粉末混合物c1を、空気雰囲気下で800℃×4時間仮焼成して解砕した後、本焼成として空気雰囲気下で800℃×11時間焼成し、NCM系複合酸化物の二次粒子A1(LiNi0.6Co0.2Mn0.22、平均一次粒径:250nm、平均粒径:11.8μm)を得た。
以後、上記NCM系複合酸化物の二次粒子A1をNCM−A1と称する。
[Production Example 1: Production of secondary particles (NCM-A1) of NCM-based composite oxide]
After mixing 473 g of nickel sulfate hexahydrate, 169 g of cobalt sulfate heptahydrate, 145 g of manganese sulfate pentahydrate, and 3 L of water so that the molar ratio of Ni: Co: Mn is 6: 2: 2. 25% aqueous ammonia was added dropwise to the mixed solution at a dropping rate of 300 mL / min to obtain slurry a1 containing a metal composite hydroxide having a pH of 11.
Next, the slurry a1 was filtered and dried to obtain a mixture b1 of a metal composite hydroxide, and then 37 g of lithium carbonate was mixed with the mixture b1 with a ball mill to obtain a powder mixture c1. The obtained powder mixture c1 was calcined by calcination at 800 ° C. for 4 hours in an air atmosphere, and then calcined at 800 ° C. for 11 hours in an air atmosphere as the main firing, and the secondary particles of the NCM-based composite oxide were fired. A1 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 , average primary particle size: 250 nm, average particle size: 11.8 μm) was obtained.
Hereinafter, the secondary particles A1 of the NCM-based composite oxide will be referred to as NCM-A1.

[製造例2:NCM系複合酸化物の二次粒子(NCM−A2)の製造]
製造例1の粉末混合物C1を、空気雰囲気下で800℃×4時間仮焼成して解砕した後、本焼成として空気雰囲気下で800℃×4時間焼成して、NCM系複合酸化物の二次粒子A2(LiNi0.6Co0.2Mn0.22、平均一次粒径:250nm、平均粒径:4.8μm)を得た。
以後、上記NCM系複合酸化物の二次粒子A2をNCM−A2と称する。
[Production Example 2: Production of secondary particles (NCM-A2) of NCM-based composite oxide]
The powder mixture C1 of Production Example 1 is calcined by calcination at 800 ° C. for 4 hours in an air atmosphere, and then fired at 800 ° C. for 4 hours in an air atmosphere as the main firing to obtain two NCM-based composite oxides. Secondary particles A2 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 , average primary particle size: 250 nm, average particle size: 4.8 μm) were obtained.
Hereinafter, the secondary particles A2 of the NCM-based composite oxide will be referred to as NCM-A2.

[製造例3:NCA系複合酸化物の二次粒子(NCA−A3)の製造]
Li:Ni:Co:Alのモル比が1:0.8:0.15:0.05となるように、炭酸リチウム370g、炭酸ニッケル950g、炭酸コバルト150g、炭酸アルミニウム58g、及び水3Lを混合した後、ボールミルで混合して粉末混合物a3を得た。得られた粉末混合物a3を、空気雰囲気下で800℃×5時間仮焼成して解砕した後、本焼成として空気雰囲気下で800℃×24時間焼成し、NCA系複合酸化物の二次粒子A3(LiNi0.8Co0.15Al0.052、平均一次粒径:300nm、平均粒径:10.0μm)を得た。
以後、上記NCA系複合酸化物の二次粒子A3をNCA−A3と称する。
[Production Example 3: Production of secondary particles (NCA-A3) of NCA-based composite oxide]
Lithium carbonate 370 g, nickel carbonate 950 g, cobalt carbonate 150 g, aluminum carbonate 58 g, and 3 L of water are mixed so that the molar ratio of Li: Ni: Co: Al is 1: 0.8: 0.15: 0.05. After that, the mixture was mixed with a ball mill to obtain a powder mixture a3. The obtained powder mixture a3 was calcined by calcination at 800 ° C. for 5 hours in an air atmosphere, and then calcined at 800 ° C. for 24 hours in an air atmosphere as the main firing, and the secondary particles of the NCA-based composite oxide were fired. A3 (LiNi 0.8 Co 0.15 Al 0.05 O 2 , average primary particle size: 300 nm, average particle size: 10.0 μm) was obtained.
Hereinafter, the secondary particles A3 of the NCA-based composite oxide will be referred to as NCA-A3.

[製造例4:リチウム系ポリアニオン粒子(LMP−B1)の製造]
LiOH・H2O 1272g、及び水4Lを混合してスラリーx1を得た。次いで、得られたスラリーx1を、25℃の温度に保持しながら3分間撹拌しつつ85%のリン酸水溶液1153gを35mL/分で滴下し、続いてセルロースナノファイバー(Wma−10002、スギノマシン社製、繊維径4〜20nm)5892gを添加して、速度400rpmで12時間撹拌して、Li3PO4を含むスラリーy1を得た。得られたスラリーy1に窒素パージして、スラリーy1の溶存酸素濃度を0.5mg/Lとした後、スラリーy1全量に対し、MnSO4・5H2O 1688g、FeSO4・7H2O 834gを添加してスラリーz1を得た。添加したMnSO4とFeSO4のモル比(マンガン化合物:鉄化合物)は、70:30であった。
次いで、得られたスラリーz1をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は0.8MPaであった。水熱反応後、生成した結晶をろ過し、次いで結晶1質量部に対し12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体Cz1を得た。得られた複合体Cz1を1000g分取し、これに水1Lを添加して、スラリーEz1を得た。得られたスラリーEz1を超音波攪拌機(T25、IKA社製)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(MDL−050M、藤崎電機株式会社製)を用いてスプレードライ(ノズルエアー流量35L/min、給気温度180℃)に付して造粒体Fz1を得た。得られた造粒体Fz1を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されたリン酸マンガン鉄リチウムの二次粒子B1(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均一次粒径:100nm、平均粒径:15.8μm)を得た。
以後、上記リン酸マンガン鉄リチウムの二次粒子B1をLMP−B1と称する。
[Production Example 4: Production of Lithium-based Polyanion Particles (LMP-B1)]
1272 g of LiOH · H 2 O and 4 L of water were mixed to obtain 1 slurry. Next, 1153 g of an 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the obtained slurry x1 for 3 minutes while maintaining the temperature at 25 ° C., followed by cellulose nanofibers (Wma-1002, Sugino Machine Limited). 5892 g (with a fiber diameter of 4 to 20 nm) was added and stirred at a speed of 400 rpm for 12 hours to obtain a slurry y1 containing Li 3 PO 4. And the resulting nitrogen purge slurry y1, added after the dissolved oxygen concentration of the slurry y1 was 0.5 mg / L, with respect to the slurry y1 total amount, MnSO 4 · 5H 2 O 1688g , the FeSO 4 · 7H 2 O 834g To obtain slurry z1. The molar ratio of MnSO 4 to FeSO 4 added (manganese compound: iron compound) was 70:30.
Next, the obtained slurry z1 was put into an autoclave, and a hydrothermal reaction was carried out at 170 ° C. for 1 hour. The pressure in the autoclave was 0.8 MPa. After the hydrothermal reaction, the produced crystals were filtered and then washed with 12 parts by mass of water per 1 part by mass of the crystals. The washed crystals were freeze-dried at −50 ° C. for 12 hours to obtain complex Cz1. 1000 g of the obtained complex Cz1 was taken, and 1 L of water was added thereto to obtain a slurry Ez1. The obtained slurry Ez1 is dispersed with an ultrasonic stirrer (T25, manufactured by IKA) for 1 minute to uniformly color the whole, and then a spray dry device (MDL-050M, manufactured by Fujisaki Electric Co., Ltd.) is used. The granulated body Fz1 was obtained by spray-drying (nozzle air flow rate 35 L / min, air supply temperature 180 ° C.). The obtained granulated material Fz1 was calcined at 700 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration 3%) to carry 2.0% by mass of carbon derived from cellulose nanofibers. Secondary particles B1 (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0% by mass, average primary particle size: 100 nm, average particle size: 15.8 μm) were obtained.
Hereinafter, the secondary particles B1 of lithium manganese iron phosphate will be referred to as LMP-B1.

[製造例5:リチウム系ポリアニオン粒子(LMP−B2)の製造]
添加するMnSO4・5H2Oを723g、FeSO4・7H2Oを1946gにして、MnSO4とFeSO4のモル比(マンガン化合物:鉄化合物)を30:70とした以外、製造例4と同様にして、リン酸マンガン鉄リチウムの二次粒子B2(LiMn0.3Fe0.7PO4、炭素の量=2.0質量%、平均一次粒径:100nm、平均粒径:15.5μm)を得た。
以後、上記リン酸マンガン鉄リチウムの二次粒子B2をLMP−B2と称する。
[Production Example 5: Production of Lithium-based Polyanion Particles (LMP-B2)]
And the MnSO 4 · 5H 2 O is added 723 g, the FeSO 4 · 7H 2 O to 1946G, the molar ratio of MnSO 4 and FeSO 4: except that (manganese compound iron compound) was 30:70, the same manner as in Production Example 4 Then, secondary particles B2 (LiMn 0.3 Fe 0.7 PO 4 , carbon amount = 2.0% by mass, average primary particle size: 100 nm, average particle size: 15.5 μm) of lithium manganese iron phosphate were obtained.
Hereinafter, the secondary particles B2 of lithium manganese iron phosphate will be referred to as LMP-B2.

[製造例6:リチウム系ポリアニオン粒子(LMP−B3)の製造]
複合体Cz1を600g分取し、スプレードライの条件を、ノズルエアー流量80L/min、給気温度120℃とした以外、製造例4と同様にして、リン酸マンガン鉄リチウムの二次粒子B3(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均一次粒径:100nm、平均粒径:4.8μm)を得た。
以後、上記リン酸マンガン鉄リチウムの二次粒子B3をLMP−B3と称する。
[Production Example 6: Production of Lithium-based Polyanion Particles (LMP-B3)]
600 g of the composite Cz1 was taken, and the spray-drying conditions were the same as in Production Example 4 except that the nozzle air flow rate was 80 L / min and the supply air temperature was 120 ° C. LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0% by mass, average primary particle size: 100 nm, average particle size: 4.8 μm) was obtained.
Hereinafter, the secondary particles B3 of lithium manganese iron phosphate will be referred to as LMP-B3.

[製造例7:(NCM−A1 55%+LMP−B1 45%)複合体C1]
NCM−A1275g、LMP−B1 225gをメカノフュージョン(ホソカワミクロン社製、AMS−Lab)を用いて20m/s(2600rpm)で10分間の複合化処理を行い、NCMとLMFPからなる複合体C1(平均粒径:14.7μm)を得た。
[Production Example 7: (NCM-A1 55% + LMP-B1 45%) Complex C1]
NCM-A1275g and LMP-B1 225g were compounded at 20 m / s (2600 rpm) for 10 minutes using Mechanofusion (AMS-Lab manufactured by Hosokawa Micron), and complex C1 (average grain size) composed of NCM and LMFP was performed. Diameter: 14.7 μm) was obtained.

[製造例8:(NCM−A1 70%+LMP−B1 30%)複合体C2]
NCM−A1を350g、LMP−B1を150gに変更した以外、製造例7と同様にして、NCMとLMFPからなる複合体C2(平均粒径:14.2μm)を得た。
[Production Example 8: (NCM-A1 70% + LMP-B1 30%) Complex C2]
A complex C2 (average particle size: 14.2 μm) composed of NCM and LMFP was obtained in the same manner as in Production Example 7 except that NCM-A1 was changed to 350 g and LMP-B1 was changed to 150 g.

[製造例9:(NCM−A1 80%+LMP−B1 20%)複合体C3]
NCM−A1を400g、LMP−B1を100gに変更した以外、製造例7と同様にして、NCMとLMFPからなる複合体C3(平均粒径:13.9μm)を得た。
[Production Example 9: (NCM-A1 80% + LMP-B1 20%) Complex C3]
A complex C3 (average particle size: 13.9 μm) composed of NCM and LMFP was obtained in the same manner as in Production Example 7 except that NCM-A1 was changed to 400 g and LMP-B1 was changed to 100 g.

[製造例10:(NCM−A1 90%+LMP−B1 10%)複合体C4]
NCM−A1を450g、LMP−B1を50gに変更した以外、製造例7と同様にして、NCMとLMFPからなる複合体C4(平均粒径:13.3μm)を得た。
[Production Example 10: (NCM-A1 90% + LMP-B1 10%) Complex C4]
A complex C4 (average particle size: 13.3 μm) composed of NCM and LMFP was obtained in the same manner as in Production Example 7 except that NCM-A1 was changed to 450 g and LMP-B1 was changed to 50 g.

[製造例11:(NCM−A1 80%+LMP−B2 20%)複合体C5]
LMP−B1をLMP−B2に変更した以外、製造例9と同様にして、NCMとLMFPからなる複合体C5(平均粒径:13.7μm)を得た。
[Production Example 11: (NCM-A1 80% + LMP-B2 20%) Complex C5]
A complex C5 (average particle size: 13.7 μm) composed of NCM and LMFP was obtained in the same manner as in Production Example 9 except that LMP-B1 was changed to LMP-B2.

[製造例12:(NCM−A2 55%+LMP−B2 45%)複合体C6]
NCM−A1をNCM−A2に変更した以外、製造例7と同様にして、NCMとLMFPからなる複合体C6(平均粒径:7.7μm)を得た。
[Production Example 12: (NCM-A2 55% + LMP-B2 45%) Complex C6]
A complex C6 (average particle size: 7.7 μm) composed of NCM and LMFP was obtained in the same manner as in Production Example 7 except that NCM-A1 was changed to NCM-A2.

[製造例13:(NCM−A2 80%+LMP−B2 20%)複合体C7]
NCM−A1をNCM−A2に変更した以外、製造例9と同様にして、NCMとLMFPからなる複合体C7(平均粒径:6.7μm)を得た。
[Production Example 13: (NCM-A2 80% + LMP-B2 20%) Complex C7]
A complex C7 (average particle size: 6.7 μm) composed of NCM and LMFP was obtained in the same manner as in Production Example 9 except that NCM-A1 was changed to NCM-A2.

[製造例14:(NCA−A3 55%+LMP−B1 45%)複合体C8]
NCM−A1をNCA−A3に変更した以外、製造例7と同様にして、NCAとLMFPからなる複合体C8(平均粒径:12.9μm)を得た。
[Production Example 14: (NCA-A3 55% + LMP-B1 45%) Complex C8]
A complex C8 (average particle size: 12.9 μm) composed of NCA and LMFP was obtained in the same manner as in Production Example 7 except that NCM-A1 was changed to NCA-A3.

[製造例15:(NCA−A3 80%+LMP−B1 20%)複合体C9]
NCM−A1をNCA−A3に変更した以外、製造例9と同様にして、NCAとLMFPからなる複合体C9を得た。(平均粒径:11.9μm)
[Production Example 15: (NCA-A3 80% + LMP-B1 20%) Complex C9]
A complex C9 composed of NCA and LMFP was obtained in the same manner as in Production Example 9 except that NCM-A1 was changed to NCA-A3. (Average particle size: 11.9 μm)

[実施例1:正極活物質D1、正極ペーストA]
LMP−B1 80g、複合体C1 10gをナウタミキサNX−1(ホソカワミクロン社製)で1min混合し、正極活物質D1を得た。アセチレンブラック100mg、5%ポリフッ化ビニリデン2000mgを50mLスクリュー管瓶に入れ、あわとり錬太郎(登録商標、(株)シンキー製)で2000rpm、10min混錬した。混錬したペーストに、正極活物質D1 1800mgを加え、2000rpm、10min混錬した。活物質を混錬したペーストに、1−メチル−2−ピロリドン適量を加え、2000rpm、5min混錬し、正極ペーストAを得た。
[Example 1: Positive electrode active material D1, positive electrode paste A]
80 g of LMP-B1 and 10 g of the complex C1 were mixed with Nautamixer NX-1 (manufactured by Hosokawa Micron Co., Ltd.) for 1 min to obtain a positive electrode active material D1. 100 mg of acetylene black and 2000 mg of 5% polyvinylidene fluoride were placed in a 50 mL screw tube bottle and kneaded with Awatori Rentaro (registered trademark, manufactured by Shinky Co., Ltd.) at 2000 rpm for 10 minutes. To the kneaded paste, 1800 mg of the positive electrode active material D1 was added, and the mixture was kneaded at 2000 rpm for 10 minutes. An appropriate amount of 1-methyl-2-pyrrolidone was added to the paste obtained by kneading the active material, and the paste was kneaded at 2000 rpm for 5 minutes to obtain a positive electrode paste A.

[実施例2:正極ペーストB]
アセチレンブラック100mg、5%ポリフッ化ビニリデン2000mgを50mLスクリュー管瓶に入れ、あわとり錬太郎(登録商標、(株)シンキー製)で2000rpm、10min混錬した。混錬したペーストに、LMP−B1 1600mg、複合体C1 200mg、を加え、2000rpm、10min混錬した。活物質を混錬したペーストに、1−メチル−2−ピロリドン適量を加え、2000rpm、5min混錬し、正極ペーストBを得た。
[Example 2: Positive electrode paste B]
100 mg of acetylene black and 2000 mg of 5% polyvinylidene fluoride were placed in a 50 mL screw tube bottle and kneaded with Awatori Rentaro (registered trademark, manufactured by Shinky Co., Ltd.) at 2000 rpm for 10 minutes. To the kneaded paste, 1600 mg of LMP-B1 and 200 mg of complex C1 were added, and the mixture was kneaded at 2000 rpm for 10 min. An appropriate amount of 1-methyl-2-pyrrolidone was added to the paste obtained by kneading the active material, and the paste was kneaded at 2000 rpm for 5 minutes to obtain a positive electrode paste B.

[比較例1:正極ペーストC]
LMP−B1を1690mg、複合体C1をNCM−A1 110mgにした以外、実施例2と同様にして正極ペーストCを得た。
[Comparative Example 1: Positive Electrode Paste C]
A positive electrode paste C was obtained in the same manner as in Example 2 except that LMP-B1 was 1690 mg and complex C1 was NCM-A1 110 mg.

[比較例2:正極ペーストD]
LMP−B1をLMP−B3に、複合体C1を複合体C6にした以外、実施例2と同様にして正極ペーストDを得た。
[Comparative Example 2: Positive Electrode Paste D]
A positive electrode paste D was obtained in the same manner as in Example 2 except that LMP-B1 was changed to LMP-B3 and the complex C1 was changed to the complex C6.

実施例1〜2、比較例1〜2で得られた電極ペーストを用いて上記方法により正極を製造し、各測定及び評価を行った。
上記所定の物性を表1に示すとともに、結果を表2に示す。
Using the electrode pastes obtained in Examples 1 and 2 and Comparative Examples 1 and 2, positive electrodes were produced by the above method, and each measurement and evaluation was performed.
Table 1 shows the above-mentioned predetermined physical properties, and Table 2 shows the results.

Figure 2021051832
Figure 2021051832

Figure 2021051832
表1〜2の結果より、実施例1〜2は、複合体(C)を含まない比較例1、及び平均粒径比(RC/RB')が上記範囲外である比較例2に比して、電極密度が高く、単位体積当たりの放電容量が大きくなるとともに、電極の不均一性が抑制され、サイクル特性が向上することがわかる。
Figure 2021051832
From the results of Tables 1 and 2, Examples 1 and 2 correspond to Comparative Example 1 containing no complex (C) and Comparative Example 2 in which the average particle size ratio ( RC / R B' ) is out of the above range. In comparison, it can be seen that the electrode density is high, the discharge capacity per unit volume is large, the non-uniformity of the electrodes is suppressed, and the cycle characteristics are improved.

[実施例3:正極活物質D3、正極ペーストE]
LMP−B1を67.5g、複合体C1を複合体C3 22.5gにした以外、実施例1と同様にして正極活物質E、正極ペーストEを得た。
[Example 3: Positive electrode active material D3, positive electrode paste E]
A positive electrode active material E and a positive electrode paste E were obtained in the same manner as in Example 1 except that LMP-B1 was 67.5 g and the complex C1 was 22.5 g of the complex C3.

[実施例4:正極活物質D4、正極ペーストF]
LMP−B1を67.5g、複合体C1を複合体C5 22.5gにした以外、実施例1と同様にして正極活物質F、正極ペーストFを得た。
[Example 4: Positive electrode active material D4, positive electrode paste F]
A positive electrode active material F and a positive electrode paste F were obtained in the same manner as in Example 1 except that LMP-B1 was 67.5 g and the complex C1 was 22.5 g of the complex C5.

[実施例5:正極ペーストG]
LMP−B1を1350mg、複合体C1を複合体C3 450mgにした以外、実施例2と同様にして正極ペーストGを得た。
[Example 5: Positive electrode paste G]
A positive electrode paste G was obtained in the same manner as in Example 2 except that LMP-B1 was adjusted to 1350 mg and complex C1 was adjusted to complex C3 450 mg.

[実施例6:正極ペーストH]
LMP−B1を1350mg、複合体C1を複合体C5 450mgにした以外、実施例2と同様にして正極ペーストHを得た。
[Example 6: Positive electrode paste H]
A positive electrode paste H was obtained in the same manner as in Example 2 except that LMP-B1 was adjusted to 1350 mg and complex C1 was adjusted to complex C5 450 mg.

[実施例7:正極ペーストI]
LMP−B1を1350mg、複合体C1を複合体C7 450mgにした以外、実施例2と同様にして正極ペーストIを得た。
[Example 7: Positive electrode paste I]
A positive electrode paste I was obtained in the same manner as in Example 2 except that LMP-B1 was adjusted to 1350 mg and complex C1 was adjusted to complex C7 450 mg.

[実施例8:正極活物質D8、正極ペーストJ]
LMP−B1を60g、複合体C1を複合体C2 30gにした以外、実施例1と同様にして正極活物質J、正極ペーストJを得た。
[Example 8: Positive electrode active material D8, positive electrode paste J]
A positive electrode active material J and a positive electrode paste J were obtained in the same manner as in Example 1 except that LMP-B1 was 60 g and the complex C1 was 30 g of the complex C2.

[実施例9:正極ペーストK]
LMP−B1を1200mg、複合体C1を複合体C2 600mgにした以外、実施例2と同様にして正極ペーストKを得た。
[Example 9: Positive electrode paste K]
A positive electrode paste K was obtained in the same manner as in Example 2 except that LMP-B1 was adjusted to 1200 mg and complex C1 was adjusted to complex C2 600 mg.

[実施例10:正極活物質D10、正極ペーストL]
LMP−B1を45g、複合体C1を複合体C4 45gにした以外、実施例1と同様にして正極活物質L、正極ペーストLを得た。
[Example 10: Positive electrode active material D10, positive electrode paste L]
A positive electrode active material L and a positive electrode paste L were obtained in the same manner as in Example 1 except that LMP-B1 was 45 g and the complex C1 was 45 g of the complex C4.

[実施例11:正極ペーストM]
LMP−B1を900mg、複合体C1を複合体C4 900mgにした以外、実施例2と同様にして正極ペーストMを得た。
[Example 11: Positive electrode paste M]
A positive electrode paste M was obtained in the same manner as in Example 2 except that LMP-B1 was 900 mg and the complex C1 was 900 mg of the complex C4.

[実施例12:正極活物質D12、正極ペーストN]
LMP−B1を45g、複合体C1を45gにした以外、実施例1と同様にして正極活物質N、正極ペーストNを得た。
[Example 12: Positive electrode active material D12, positive electrode paste N]
A positive electrode active material N and a positive electrode paste N were obtained in the same manner as in Example 1 except that LMP-B1 was 45 g and the complex C1 was 45 g.

[実施例13:正極ペーストO]
LMP−B1を900mg、複合体C1を900mgにした以外、実施例2と同様にして正極ペーストOを得た。
[Example 13: Positive electrode paste O]
A positive electrode paste O was obtained in the same manner as in Example 2 except that LMP-B1 was 900 mg and complex C1 was 900 mg.

[比較例3:正極ペーストP]
LMP−B1を1704mg、複合体C1を96mgにした以外、実施例2と同様にして正極ペーストPを得た。
[Comparative Example 3: Positive Electrode Paste P]
A positive electrode paste P was obtained in the same manner as in Example 2 except that LMP-B1 was 1704 mg and the complex C1 was 96 mg.

[比較例4:正極ペーストQ]
LMP−B1を225mg、複合体C1を複合体C3 1575mgにした以外、実施例2と同様にして正極ペーストQを得た。
[Comparative Example 4: Positive Electrode Paste Q]
A positive electrode paste Q was obtained in the same manner as in Example 2 except that LMP-B1 was 225 mg and complex C1 was complex C3 1575 mg.

実施例3〜13、比較例3〜4で得られた正極ペーストを用いて上記方法により正極を製造し、各測定及び評価を行った。
上記所定の物性を表3に示すとともに、結果を表4に示す。
Using the positive electrode pastes obtained in Examples 3 to 13 and Comparative Examples 3 to 4, positive electrodes were produced by the above method, and each measurement and evaluation was performed.
Table 3 shows the above-mentioned predetermined physical properties, and Table 4 shows the results.

Figure 2021051832
Figure 2021051832

Figure 2021051832
表3〜4の結果より、実施例3〜13は、質量比((B'):(C))が上記範囲外である比較例3〜4に比して、電極密度が向上し、単位体積当たりの放電容量ならびにサイクル特性に優れた電池特性を示すことがわかる。
Figure 2021051832
From the results of Tables 3 to 4, in Examples 3 to 13, the electrode density was improved and the unit was improved as compared with Comparative Examples 3 to 4 in which the mass ratio ((B'): (C)) was out of the above range. It can be seen that the battery exhibits excellent discharge capacity per volume and cycle characteristics.

[実施例14:正極ペーストR]
複合体C1を複合体C8にした以外、実施例2と同様にして正極ペーストRを得た。
[Example 14: Positive electrode paste R]
A positive electrode paste R was obtained in the same manner as in Example 2 except that the complex C1 was changed to the complex C8.

[比較例5:正極ペーストS]
複合体C1をNCA−C3にした以外、比較例1と同様にして正極ペーストSを得た。
[Comparative Example 5: Positive Electrode Paste S]
A positive electrode paste S was obtained in the same manner as in Comparative Example 1 except that the complex C1 was changed to NCA-C3.

[実施例15:正極ペーストT]
複合体C1を複合体C9にした以外、実施例5と同様にして正極ペーストTを得た。
[Example 15: Positive electrode paste T]
A positive electrode paste T was obtained in the same manner as in Example 5 except that the complex C1 was changed to the complex C9.

[比較例6:正極ペーストU]
複合体C1を複合体C8にした以外、比較例3と同様にして正極ペーストUを得た。
[Comparative Example 6: Positive Electrode Paste U]
A positive electrode paste U was obtained in the same manner as in Comparative Example 3 except that the complex C1 was changed to the complex C8.

[比較例7:正極ペーストV]
複合体C1を複合体C9にした以外、比較例4と同様にして正極ペーストVを得た。
[Comparative Example 7: Positive Electrode Paste V]
A positive electrode paste V was obtained in the same manner as in Comparative Example 4 except that the complex C1 was changed to the complex C9.

実施例14〜15、比較例5〜7で得られた正極ペーストを用いて上記方法により正極を製造し、各測定及び評価を行った。
上記所定の物性を表5に示すとともに、結果を表6に示す。
Using the positive electrode pastes obtained in Examples 14 to 15 and Comparative Examples 5 to 7, a positive electrode was produced by the above method, and each measurement and evaluation was performed.
The above-mentioned predetermined physical properties are shown in Table 5, and the results are shown in Table 6.

Figure 2021051832
Figure 2021051832

Figure 2021051832
表5〜6の結果より、実施例14及び実施例15は、複合体(C)を含まない比較例5、並びに各々同一の複合体(C)を含みつつも質量比が((B'):(C))が上記範囲外である比較例6及び比較例7に比して、電極密度が向上し、単位体積当たりの放電容量及びサイクル特性に優れた電池特性を示すことがわかる。
Figure 2021051832
From the results of Tables 5 to 6, Examples 14 and 15 have a mass ratio ((B')) of Comparative Example 5 which does not contain the complex (C) and the same complex (C), respectively. : (C)) is out of the above range, as compared with Comparative Example 6 and Comparative Example 7, it can be seen that the electrode density is improved and the battery characteristics are excellent in the discharge capacity per unit volume and the cycle characteristics.

Claims (7)

下記式(I):
LiNiaCobMnc1 w2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
又は、下記式(II):
LiNidCoeAlf2 x2・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子(a)からなる、リチウム複合酸化物二次粒子(A)の表面のみにおいて、下記式(III)又は式(IV):
LigMnhFei3 yPO4・・・(III)
(式(III)中、M3はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h、i、及びyは、0<g≦1.2、0≦h≦1.2、0≦i≦1.2、0≦y≦0.3、及びh+i≠0を満たし、かつg+(Mnの価数)×h+(Feの価数)×i+(M3の価数)×y=3を満たす数を示す。)
LijFekMnl4 zSiO4・・・(IV)
(式(IV)中、M4はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd、Al、Zn、V又はGdを示す。j、k、l、及びzは、0<j≦2.4、0≦k≦1.2、0≦l≦1.2、0≦z≦1.2、及びk+l≠0を満たし、かつj+(Feの価数)×k+(Mnの価数)×l+(M4の価数)×z=4を満たす数を示す。)
で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B)と、リチウム複合酸化物粒子(a)とが複合化してなるリチウムイオン二次電池用正極活物質複合体(C)に対し、
さらに、上記式(III)又は式(IV)で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B')を質量比((B'):(C))=91:9〜50:50で配合してなり、かつ
リチウムイオン二次電池用正極活物質複合体(C)の平均粒径(RC)とリチウム系ポリアニオン粒子(B')の平均粒径(RB')との比(RC/RB')が0.2〜0.98である、リチウムイオン二次電池用混合型正極活物質。
The following formula (I):
LiNi a Co b Mn c M 1 w O 2 ... (I)
In formula (I), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, 0 ≦. A number satisfying w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3 is shown.)
Alternatively, the following formula (II):
LiNi d Co e Al f M 2 x O 2 ··· (II)
(In formula (II), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
Only on the surface of the lithium composite oxide secondary particles (A) composed of the lithium composite oxide particles (a) represented by the following formula (III) or formula (IV):
Li g Mn h Fe i M 3 y PO 4・ ・ ・ (III)
(In formula (III), M 3 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. G, h, i, and y are Satisfy 0 <g ≦ 1.2, 0 ≦ h ≦ 1.2, 0 ≦ i ≦ 1.2, 0 ≦ y ≦ 0.3, and h + i ≠ 0, and g + (valence of Mn) × h + ( Fe valence) x i + (M 3 valence) x y = 3 is shown.)
Li j Fe k Mn l M 4 z SiO 4 ··· (IV)
(In formula (IV), M 4 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, Al, Zn, V or Gd. l and z satisfy 0 <j ≦ 2.4, 0 ≦ k ≦ 1.2, 0 ≦ l ≦ 1.2, 0 ≦ z ≦ 1.2, and k + l ≠ 0, and j + (of Fe). Valuation) × k + (Mn valence) × l + (M 4 valence) × z = 4).
A positive electrode active material composite for a lithium ion secondary battery in which lithium-based polyanion particles (B) containing carbon (c) represented by and supported by carbon (c) and lithium composite oxide particles (a) are composited (a positive electrode active material composite for a lithium ion secondary battery). Against C)
Further, the mass ratio ((B') :( C)) = 91 of the lithium-based polyanionic particles (B') represented by the above formula (III) or the formula (IV) and containing the carbon (c) supported. : 9 to 50: average particle diameter of it was blended with 50, and an average particle diameter of the lithium-ion secondary battery positive electrode active material composite (C) (R C) and lithium polyanion particles (B ') (R A mixed positive electrode active material for a lithium ion secondary battery having a ratio ( RC / R B') to B') of 0.2 to 0.98.
リチウム系ポリアニオン粒子(B)の平均粒径が、5μm〜25μmである、請求項1に記載のリチウムイオン二次電池用混合型正極活物質。 The mixed positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the lithium-based polyanionic particles (B) have an average particle size of 5 μm to 25 μm. リチウム複合酸化物二次粒子(A)の含有量と、リチウム系ポリアニオン粒子(B)及びリチウム系ポリアニオン粒子(B')の合計量との質量比((A):((B)+(B')))が、47.5:52.5〜5:95である、請求項1又は2に記載のリチウムイオン二次電池用混合型正極活物質。 Mass ratio of the content of the lithium composite oxide secondary particles (A) to the total amount of the lithium-based polyanion particles (B) and the lithium-based polyanion particles (B') ((A): ((B) + (B) '))) Is the mixed positive electrode active material for a lithium ion secondary battery according to claim 1 or 2, wherein 47.5: 52.5 to 5:95. リチウムイオン二次電池用正極活物質複合体(C)において、炭素(c)の担持量が、リチウム系ポリアニオン粒子(B)100質量%中に0.1質量%以上20質量%未満である、請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用混合型正極活物質。 In the positive electrode active material composite (C) for a lithium ion secondary battery, the amount of carbon (c) carried is 0.1% by mass or more and less than 20% by mass in 100% by mass of the lithium-based polyanionic particles (B). The mixed positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 3. リチウム系ポリアニオン粒子(B)及びリチウム系ポリアニオン粒子(B')に担持してなる炭素(c)が、セルロースナノファイバー及び/又はリグノセルロースナノファイバー由来の炭素(c1)又は水溶性炭素材料由来の炭素(c2)である、請求項1〜4のいずれか1項に記載のリチウムイオン二次電池用混合型正極活物質。 The carbon (c) supported on the lithium-based polyanion particles (B) and the lithium-based polyanion particles (B') is derived from cellulose nanofibers and / or lignocellulose nanofiber-derived carbon (c1) or a water-soluble carbon material. The mixed positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 4, which is carbon (c2). リチウムイオン二次電池用正極活物質複合体(C)において、
炭素(c)の担持量が、リチウム系ポリアニオン粒子(B)100質量%中に0.1質量%以上20質量%未満であり、かつリチウム複合酸化物二次粒子(A)の含有量とリチウム系ポリアニオン粒子(B)の含有量との質量比((A):(B))が、95:5〜55:45である、請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用混合型正極活物質。
In the positive electrode active material composite (C) for a lithium ion secondary battery,
The amount of carbon (c) carried is 0.1% by mass or more and less than 20% by mass in 100% by mass of the lithium-based polyanionic particles (B), and the content of the lithium composite oxide secondary particles (A) and lithium. The lithium ion II according to any one of claims 1 to 5, wherein the mass ratio ((A): (B)) to the content of the system polyanion particles (B) is 95: 5 to 55:45. Mixed positive electrode active material for next battery.
下記式(I):
LiNiaCobMnc1 w2・・・(I)
(式(I)中、M1はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
又は、下記式(II):
LiNidCoeAlf2 x2・・・(II)
(式(II)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子(a)からなる、リチウム複合酸化物二次粒子(A)の表面のみにおいて、下記式(III)又は式(IV):
LigMnhFei3 yPO4・・・(III)
(式(III)中、M3はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h、i、及びyは、0<g≦1.2、0≦h≦1.2、0≦i≦1.2、0≦y≦0.3、及びh+i≠0を満たし、かつg+(Mnの価数)×h+(Feの価数)×i+(M3の価数)×y=3を満たす数を示す。)
LijFekMnl4 zSiO4・・・(IV)
(式(IV)中、M4はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd、Al、Zn、V又はGdを示す。j、k、l、及びzは、0<j≦2.4、0≦k≦1.2、0≦l≦1.2、0≦z≦1.2、及びk+l≠0を満たし、かつj+(Feの価数)×k+(Mnの価数)×l+(M4の価数)×z=4を満たす数を示す。)
で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B)と、リチウム複合酸化物粒子(a)とが複合化してなるリチウムイオン二次電池用正極活物質複合体(C)に対し、
さらに、上記式(III)又は式(IV)で表され、かつ担持してなる炭素(c)を含むリチウム系ポリアニオン粒子(B')を質量比((B'):(C))=91:9〜50:50で配合し、導電助剤及び結着剤を配合して、正極ペーストを調製する工程を備える、リチウムイオン二次電池用正極の製造方法であって、
リチウムイオン二次電池用正極活物質複合体(C)の平均粒径(RC)とリチウム系ポリアニオン粒子(B')の平均粒径(RB')との比(RC/RB')が0.2〜0.98である、リチウムイオン二次電池用正極の製造方法。
The following formula (I):
LiNi a Co b Mn c M 1 w O 2 ... (I)
In formula (I), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, 0 ≦. A number satisfying w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3 is shown.)
Alternatively, the following formula (II):
LiNi d Co e Al f M 2 x O 2 ··· (II)
(In formula (II), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
Only on the surface of the lithium composite oxide secondary particles (A) composed of the lithium composite oxide particles (a) represented by the following formula (III) or formula (IV):
Li g Mn h Fe i M 3 y PO 4・ ・ ・ (III)
(In formula (III), M 3 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. G, h, i, and y are Satisfy 0 <g ≦ 1.2, 0 ≦ h ≦ 1.2, 0 ≦ i ≦ 1.2, 0 ≦ y ≦ 0.3, and h + i ≠ 0, and g + (valence of Mn) × h + ( Fe valence) x i + (M 3 valence) x y = 3 is shown.)
Li j Fe k Mn l M 4 z SiO 4 ··· (IV)
(In formula (IV), M 4 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, Al, Zn, V or Gd. l and z satisfy 0 <j ≦ 2.4, 0 ≦ k ≦ 1.2, 0 ≦ l ≦ 1.2, 0 ≦ z ≦ 1.2, and k + l ≠ 0, and j + (of Fe). Valuation) × k + (Mn valence) × l + (M 4 valence) × z = 4).
A positive electrode active material composite for a lithium ion secondary battery in which lithium-based polyanion particles (B) containing carbon (c) represented by and supported by carbon (c) and lithium composite oxide particles (a) are composited (a positive electrode active material composite for a lithium ion secondary battery). Against C)
Further, the mass ratio ((B') :( C)) = 91 of the lithium-based polyanion particles (B') represented by the above formula (III) or the formula (IV) and containing the carbon (c) supported. A method for producing a positive electrode for a lithium ion secondary battery, comprising a step of blending at a ratio of 9 to 50:50, blending a conductive auxiliary agent and a binder, and preparing a positive electrode paste.
The positive electrode active material composite for a lithium ion secondary battery average particle diameter of (C) (R C) and 'average particle diameter of the (R B lithium polyanion particles (B)') ratio of (R C / R B ' ) Is 0.2 to 0.98, a method for manufacturing a positive electrode for a lithium ion secondary battery.
JP2019172106A 2019-09-20 2019-09-20 Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery Active JP7299119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019172106A JP7299119B2 (en) 2019-09-20 2019-09-20 Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019172106A JP7299119B2 (en) 2019-09-20 2019-09-20 Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2021051832A true JP2021051832A (en) 2021-04-01
JP7299119B2 JP7299119B2 (en) 2023-06-27

Family

ID=75158092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019172106A Active JP7299119B2 (en) 2019-09-20 2019-09-20 Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7299119B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321506A (en) * 2022-07-28 2022-11-11 安徽格派新能源有限公司 Preparation method of high-compaction modified lithium manganese iron phosphate cathode material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317534A (en) * 2006-05-26 2007-12-06 Sony Corp Non-aqueous electrolyte secondary battery
JP2011159421A (en) * 2010-01-29 2011-08-18 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2012190786A (en) * 2011-03-09 2012-10-04 Samsung Sdi Co Ltd Positive electrode active material, and positive electrode and lithium battery adopting the same
JP2016134198A (en) * 2015-01-15 2016-07-25 株式会社デンソー Electrode and nonaqueous electrolyte secondary battery
JP6410384B1 (en) * 2017-05-29 2018-10-24 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
JP2019050104A (en) * 2017-09-08 2019-03-28 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP2019091638A (en) * 2017-11-15 2019-06-13 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317534A (en) * 2006-05-26 2007-12-06 Sony Corp Non-aqueous electrolyte secondary battery
JP2011159421A (en) * 2010-01-29 2011-08-18 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2012190786A (en) * 2011-03-09 2012-10-04 Samsung Sdi Co Ltd Positive electrode active material, and positive electrode and lithium battery adopting the same
JP2016134198A (en) * 2015-01-15 2016-07-25 株式会社デンソー Electrode and nonaqueous electrolyte secondary battery
JP6410384B1 (en) * 2017-05-29 2018-10-24 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
JP2019050104A (en) * 2017-09-08 2019-03-28 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP2019091638A (en) * 2017-11-15 2019-06-13 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321506A (en) * 2022-07-28 2022-11-11 安徽格派新能源有限公司 Preparation method of high-compaction modified lithium manganese iron phosphate cathode material

Also Published As

Publication number Publication date
JP7299119B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
KR102102094B1 (en) A positive electrode active material composite for a lithium ion secondary battery and a secondary battery using the same, and a method for manufacturing a positive electrode active material composite for a lithium ion secondary battery
JP6431236B1 (en) Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
US20130337326A1 (en) Positive active material, method of preparing the same, and lithium battery including the positive active material
CA2894545C (en) Lmfp cathode materials with improved electrochemical performance
JP2014515171A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP6410384B1 (en) Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
JP6357193B2 (en) Polyanionic positive electrode active material and method for producing the same
JP6527200B2 (en) Positive electrode active material for lithium ion secondary battery or positive electrode active material for sodium ion secondary battery, and manufacturing method thereof
JP7144239B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for producing the same
JP7409922B2 (en) Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same
CN113825725B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP7366662B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP7299119B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
EP3846260A1 (en) Positive electrode active material and battery provided with same
JP7409923B2 (en) Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same
JP7165608B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for producing the same
JP7389598B2 (en) Mixed positive electrode active material for lithium ion secondary batteries and method for producing positive electrode for lithium ion secondary batteries
JP2021136206A (en) Manufacturing method of positive electrode active material composite for lithium ion secondary battery
JP7320418B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
JP7366663B2 (en) Positive electrode active material composite for all-solid-state secondary battery and method for manufacturing the same
JP2024025928A (en) Positive electrode active material mixture for lithium ion secondary battery and manufacturing method thereof
JP2022094473A (en) Positive electrode active material for lithium-ion secondary battery
JP2024025929A (en) Positive electrode active material mixture for lithium ion secondary battery and manufacturing method thereof
JP2023041287A (en) Cathode active material for lithium-ion secondary battery
JP2022094472A (en) Positive electrode active material for lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230615

R150 Certificate of patent or registration of utility model

Ref document number: 7299119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150