JP2021049520A - Hydrogen permeation device - Google Patents

Hydrogen permeation device Download PDF

Info

Publication number
JP2021049520A
JP2021049520A JP2020156701A JP2020156701A JP2021049520A JP 2021049520 A JP2021049520 A JP 2021049520A JP 2020156701 A JP2020156701 A JP 2020156701A JP 2020156701 A JP2020156701 A JP 2020156701A JP 2021049520 A JP2021049520 A JP 2021049520A
Authority
JP
Japan
Prior art keywords
raw material
hydrogen
supply pipe
material gas
hydrogen permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020156701A
Other languages
Japanese (ja)
Other versions
JP7016116B2 (en
Inventor
和宣 森迫
Kazunobu Morisako
和宣 森迫
永井 正章
Masaaki Nagai
正章 永井
朋樹 横山
Tomoki Yokoyama
朋樹 横山
佳久 松本
Yoshihisa Matsumoto
佳久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Hydronext Inc
Sanwa Press Co Ltd
Original Assignee
Institute of National Colleges of Technologies Japan
Hydronext Inc
Sanwa Press Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Hydronext Inc, Sanwa Press Co Ltd filed Critical Institute of National Colleges of Technologies Japan
Publication of JP2021049520A publication Critical patent/JP2021049520A/en
Priority to JP2021202356A priority Critical patent/JP7105427B2/en
Application granted granted Critical
Publication of JP7016116B2 publication Critical patent/JP7016116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

To provide a hydrogen permeation device having a heightened hydrogen permeation performance.SOLUTION: A hydrogen permeation device having a hydrogen permeable metal film between a primary side which is a supply side of raw material gas, and a secondary side which is a taking-out side of permeated gas, has, on the primary side, a raw material supply pipe 13 for forming a raw material gas supply route, raw material gas discharge routes 16a, 16b for discharging the raw material gas not permeating the secondary side, and an aperture plate 14 to be combined with the tip side of the raw material supply pipe 13. A diameter of an exhaust nozzle 15 of the aperture plate 14 is formed smaller than an inner diameter of the raw material supply pipe 13.SELECTED DRAWING: Figure 1

Description

本発明は、水素透過装置に関し、特に水素透過金属膜により水素を透過させるのに適した技術に関する。 The present invention relates to a hydrogen permeation device, and more particularly to a technique suitable for permeating hydrogen through a hydrogen permeation metal membrane.

水素透過に関する技術として、特許文献1に記載の水素分離装置が知られている。
該水素分離装置は、特許文献1の段落0008に記載されているように、水素を透過する非パラジウム系金属又は非パラジウム系金属を主たる金属とする合金により形成された水素透過膜と、水素を含む原料気体を水素透過膜の一次側の表面に供給するための原料気体供給流路と、水素透過膜の二次側の表面へ透過した水素を回収するための水素回収流路と、原料気体供給流路から供給された原料気体を水素透過膜の一次側の表面に沿って分配するための所定の幅の流路を形成するために、水素透過膜の一次側の表面から所定の幅だけ離隔して配置された流路形成部とを備えたものである。
As a technique related to hydrogen permeation, the hydrogen separator described in Patent Document 1 is known.
As described in paragraph 0008 of Patent Document 1, the hydrogen separator comprises a hydrogen permeable film formed of a non-palladium-based metal that permeates hydrogen or an alloy containing a non-palladium-based metal as a main metal, and hydrogen. A raw material gas supply flow path for supplying the contained raw material gas to the surface on the primary side of the hydrogen permeable film, a hydrogen recovery flow path for recovering hydrogen permeated to the surface on the secondary side of the hydrogen permeable film, and a raw material gas. In order to form a channel having a predetermined width for distributing the raw material gas supplied from the supply channel along the surface on the primary side of the hydrogen permeable film, only a predetermined width from the surface on the primary side of the hydrogen permeable film. It is provided with a flow path forming portion arranged at a distance.

該特許文献1の段落0045には、流配フランジ60を設けることで、高い水素透過度が得られることが記載されている。 Paragraph 0045 of Patent Document 1 describes that high hydrogen permeability can be obtained by providing the flow distribution flange 60.

特開2019−5684号公報JP-A-2019-5684

本発明の課題は、流配フランジとは全く別の手段によって高い水素透過度が得られる手段を提供することである。 An object of the present invention is to provide a means for obtaining high hydrogen permeability by a means completely different from the flow distribution flange.

本発明の課題を解決するための手段は、下記のとおりである。 The means for solving the problem of the present invention is as follows.

第1に、
原料気体の供給側である1次側と、透過気体の取出側である2次側との間に、水素透過金属膜を有する水素透過装置であって、
1次側には、
原料気体供給路を形成する原料供給管と、
2次側に透過しない原料気体を排出する原料気体排出路と、
前記原料供給管の先端側と組み合う開孔板を有し、
該開孔板の噴出孔の大きさが、原料供給管より小さいことを特徴とする、水素透過装置。
ここで、噴出孔の大きさとは、噴出孔が円の場合には直径のことをいう。
従って、噴出孔が円の場合には、噴出孔の直径が、原料供給管の内径より小さい場合が該当する。
また、噴出孔の形状としては、円の他に、三角形、四角形、五角形等の多角形や星型多角形等の各種形状が採用することができる。
ここで、多角形や星型多角形の場合に、「噴出孔の大きさが、原料供給管より小さい」とは、多角形や星型多角形の形状自体が、原料供給管の内径を形成する円内に収まることをいう。
First,
A hydrogen permeation device having a hydrogen permeation metal film between the primary side, which is the supply side of the raw material gas, and the secondary side, which is the extraction side of the permeated gas.
On the primary side
The raw material supply pipe that forms the raw material gas supply path,
A raw material gas discharge path that discharges a raw material gas that does not permeate to the secondary side,
It has a perforated plate that engages with the tip side of the raw material supply pipe.
A hydrogen permeation device characterized in that the size of the ejection hole of the perforated plate is smaller than that of the raw material supply pipe.
Here, the size of the ejection hole means the diameter when the ejection hole is a circle.
Therefore, when the ejection hole is circular, the diameter of the ejection hole is smaller than the inner diameter of the raw material supply pipe.
Further, as the shape of the ejection hole, in addition to the circle, various shapes such as a polygon such as a triangle, a quadrangle, and a pentagon, and a star-shaped polygon can be adopted.
Here, in the case of a polygon or a star-shaped polygon, "the size of the ejection hole is smaller than that of the raw material supply pipe" means that the shape of the polygon or the star-shaped polygon itself forms the inner diameter of the raw material supply pipe. It means that it fits within the circle.

第2に、
原料気体の供給側である1次側と、透過気体の取出側である2次側との間に、水素透過金属膜を有する水素透過装置であって、
1次側には、
原料気体供給路を形成する原料供給管と、
2次側に透過しない原料気体を排出する原料気体排出路と、
前記原料供給管の先端側と組み合う開孔板を有し、
該開孔板の噴出孔の直径が、原料供給管の内径より小さいことを特徴とする、水素透過装置。
Second,
A hydrogen permeation device having a hydrogen permeation metal film between the primary side, which is the supply side of the raw material gas, and the secondary side, which is the extraction side of the permeated gas.
On the primary side
The raw material supply pipe that forms the raw material gas supply path,
A raw material gas discharge path that discharges a raw material gas that does not permeate to the secondary side,
It has a perforated plate that engages with the tip side of the raw material supply pipe.
A hydrogen permeation device characterized in that the diameter of the ejection hole of the perforated plate is smaller than the inner diameter of the raw material supply pipe.

第3に、
前記開孔板の噴出孔が、1次側から2次側に向けて、テーパ形状を有することを特徴とする、前記第1または第2に記載の水素透過装置。
ここで、テーパ形状を有するとは、1次側から2次側に向けて、噴出孔の形状が徐々に小さくなるようにテーパを形成する他に、1次側から2次側に向けて、噴出孔の形状が徐々に大きくなるようにテーパを形成する場合も含まれる。
前記テーパを形成する場合の噴出孔の形状は、加工性を考慮すると、円の場合が望ましいが、三角形、四角形、五角形等の多角形や星型多角形等の各種形状の場合であっても、採用することができる。
Third,
The hydrogen permeation device according to the first or second aspect, wherein the ejection holes of the opening plate have a tapered shape from the primary side to the secondary side.
Here, having a tapered shape means forming a taper so that the shape of the ejection hole gradually decreases from the primary side to the secondary side, and also from the primary side to the secondary side. A case where a taper is formed so that the shape of the ejection hole gradually increases is also included.
The shape of the ejection hole when forming the taper is preferably a circle in consideration of workability, but even in the case of various shapes such as a polygon such as a triangle, a quadrangle, and a pentagon, and a star-shaped polygon. , Can be adopted.

第4に、
前記開孔板の噴出孔の直径が、原料供給管の内径の2分の1以下、望ましくは3分の1以下、より望ましくは4分の1程度であることを特徴とする、前記第2または第3に記載の水素透過装置。
ここで、4分の1程度とは、4分の1の値に加えて、実質的に4分の1の場合と同等の作用効果を有する範囲を含むことを意味している。
Fourth,
The second type is characterized in that the diameter of the ejection hole of the opening plate is one-half or less, preferably one-third or less, more preferably about one-fourth of the inner diameter of the raw material supply pipe. Or the hydrogen permeation device according to the third.
Here, about one-fourth means that, in addition to the one-fourth value, a range having substantially the same action and effect as in the case of one-fourth is included.

水素透過金属膜としては、水素を透過する性質を有する、V、Nb、Taなどの5族元素の純金属や、合金により形成される5類金属であれば良いが、純バナジウムが望ましい。
また、水素透過金属膜の両表面には、触媒としてパラジウムまたはパラジウム系合金をスパッタリングすることが望ましい。
The hydrogen-permeable metal film may be a pure metal of a Group 5 element such as V, Nb, or Ta, which has a property of transmitting hydrogen, or a group 5 metal formed of an alloy, but pure vanadium is preferable.
Further, it is desirable to sputter palladium or a palladium-based alloy as a catalyst on both surfaces of the hydrogen permeable metal film.

本発明によれば、水素透過性能を高めることができる。 According to the present invention, hydrogen permeation performance can be enhanced.

本発明の実施例1に係る要部の縦断面図である。It is a vertical sectional view of the main part which concerns on Example 1 of this invention. 本発明の実施例1に係る全体の縦断面図である。It is a vertical sectional view of the whole which concerns on Example 1 of this invention. 本発明の実施例1に係る1次側の斜視図である。It is a perspective view of the primary side which concerns on Example 1 of this invention. 本発明の実施例1に係る全体の縦断面の斜視図である。It is a perspective view of the whole vertical cross section which concerns on Example 1 of this invention. 比較例に係る要部の縦断面図である。It is a vertical cross-sectional view of the main part which concerns on a comparative example. 比較例に係る全体の縦断面の斜視図である。It is a perspective view of the whole vertical cross section which concerns on a comparative example. 試験例の結果を流量で示すグラフである。It is a graph which shows the result of the test example by the flow rate. 試験例の結果を透過係数で示すグラフである。It is a graph which shows the result of a test example by a transmission coefficient. 本発明の実施例2に係る噴出孔の部分の縦断面図である。It is a vertical cross-sectional view of the part of the ejection hole which concerns on Example 2 of this invention. 本発明の実施例3に係る噴出孔の平面図である。It is a top view of the ejection hole which concerns on Example 3 of this invention.

以下、本発明を実施するための形態を、図面を参照しつつ具体的に説明する。
ここで、添付図面において同一の部材には同一符号を付しており、また重複した説明は省略されている。
なお、ここでの説明は本発明が実施される一形態であることから、本発明は該当形態に限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be specifically described with reference to the drawings.
Here, in the attached drawings, the same members are designated by the same reference numerals, and duplicate description is omitted.
Since the description here is one embodiment of the present invention, the present invention is not limited to the relevant embodiment.

[実施例1] [Example 1]

本発明に係る水素透過装置の一例は、図1に要部を示すとおり、水素含有ガス等の原料気体の供給側である1次側円筒体10と、透過気体である水素の取出側である2次側円筒体20との間に、純バナジウムによる水素透過金属膜30を有するものである。
該水素透過金属膜30の両面には、触媒としてパラジウム銀(Pd−25%Ag)がスパッタリングされている。
An example of the hydrogen permeation apparatus according to the present invention is a primary side cylinder 10 which is a supply side of a raw material gas such as a hydrogen-containing gas and a extraction side of hydrogen which is a permeation gas, as shown in FIG. It has a hydrogen permeable metal film 30 made of pure vanadium between it and the secondary cylinder 20.
Palladium silver (Pd-25% Ag) is sputtered on both sides of the hydrogen permeable metal film 30 as a catalyst.

1次側円筒体10の先端側には、1次側フランジ11が一体となって形成されている。
2次側円筒体20の先端側には、2次側フランジ21が一体となって形成されている。
A primary side flange 11 is integrally formed on the tip end side of the primary side cylindrical body 10.
A secondary side flange 21 is integrally formed on the tip end side of the secondary side cylindrical body 20.

1次側フランジ11及び2次側フランジ21の内周面側には、凹部が各々形成されている。
1次側の凹部には、銅による1次側ガスケット12が位置している。
2次側の凹部には、銅による2次側ガスケット22が位置している。
なお、ガスケットの素材としては、銅に限定されず、ステンレス等の他の素材で形成することもできる。
Recesses are formed on the inner peripheral surface side of the primary side flange 11 and the secondary side flange 21, respectively.
A copper primary gasket 12 is located in the primary recess.
A copper secondary gasket 22 is located in the secondary recess.
The material of the gasket is not limited to copper, and may be formed of other materials such as stainless steel.

1次側ガスケット12と2次側ガスケット22との間には、水素透過金属膜30が位置している。
該水素透過金属膜30の直径は、1次側ガスケット12及び2次側ガスケット22の外径より、わずかに大きく、ガスケットで挟み込まれて密閉性が保たれた状態で、水素透過金属膜30の外周縁部が1次側ガスケット12及び2次側ガスケット22の外周端から僅かにはみ出すように形成されている。
1次側ガスケット12及び2次側ガスケット22による挟み込みは、図示は省略するが、1次側フランジ11及び2次側フランジ21に形成された4個の貫通穴に、ボルトを通してナットで締め付けることで行われている。
A hydrogen permeable metal film 30 is located between the primary side gasket 12 and the secondary side gasket 22.
The diameter of the hydrogen permeable metal film 30 is slightly larger than the outer diameters of the primary side gasket 12 and the secondary side gasket 22, and the hydrogen permeable metal film 30 is sandwiched between the gaskets to maintain the airtightness. The outer peripheral edge portion is formed so as to slightly protrude from the outer peripheral ends of the primary side gasket 12 and the secondary side gasket 22.
The sandwiching between the primary side gasket 12 and the secondary side gasket 22 is not shown, but by passing bolts through the four through holes formed in the primary side flange 11 and the secondary side flange 21 and tightening them with nuts. It is done.

前記1次側円筒体10の内部には、図1及び図2に示すとおり、原料気体供給路を形成する原料供給管13が配置されている。
該原料供給路13の先端側には、図3に示すとおり、中心部に円状の噴出孔15を有する略円形状の開孔板14が組み合わせられている。
As shown in FIGS. 1 and 2, a raw material supply pipe 13 forming a raw material gas supply path is arranged inside the primary side cylindrical body 10.
As shown in FIG. 3, a substantially circular opening plate 14 having a circular ejection hole 15 at the center is combined with the tip side of the raw material supply path 13.

前記噴出孔15の直径は、図1及び図2に示すとおり、原料供給管13の内径の4分の1のサイズで形成されている。
本実施例1では、原料供給管13の内径が4.4mmであり、噴出孔15の孔径が1.1mmとなるように形成されている。
また、1次側円筒体10及び2次側円筒体20の内径は、30mmである。
As shown in FIGS. 1 and 2, the diameter of the ejection hole 15 is formed to be one-fourth the size of the inner diameter of the raw material supply pipe 13.
In the first embodiment, the raw material supply pipe 13 has an inner diameter of 4.4 mm, and the ejection hole 15 has a hole diameter of 1.1 mm.
The inner diameters of the primary side cylindrical body 10 and the secondary side cylindrical body 20 are 30 mm.

図3に示すように、前記開孔板14の外周は、1次側円筒体10の内径より小さく切欠状により原料気体排出路16aを形成する部分と、1次側フランジ11の凹部に収まる部分である接続縁部14aとを有している。
該接続縁部14aの一部は、図示は省略するが、1次側フランジ11に形成された凹部に溶接されている。
該原料気体排出路16aは、図1及び図2に示すように、1次側円筒体10と原料供給管13との間に形成された原料気体排出路16bに通じている。
該原料気体排出路16bは、図2に示すように、1次側円筒体10の後端側に接続された原料気体排出管17による原料気体排出路16cに通じている。
As shown in FIG. 3, the outer periphery of the perforated plate 14 is smaller than the inner diameter of the primary side cylindrical body 10 and has a notched shape forming a raw material gas discharge path 16a and a portion that fits in the recess of the primary side flange 11. It has a connecting edge portion 14a which is.
Although not shown, a part of the connection edge portion 14a is welded to a recess formed in the primary side flange 11.
As shown in FIGS. 1 and 2, the raw material gas discharge path 16a leads to a raw material gas discharge path 16b formed between the primary side cylinder 10 and the raw material supply pipe 13.
As shown in FIG. 2, the raw material gas discharge passage 16b leads to the raw material gas discharge passage 16c by the raw material gas discharge pipe 17 connected to the rear end side of the primary side cylinder 10.

図1に示すように、2次側フランジ21の凹部には、2次側ガスケット22と共に、円形状のメタルフィルター23と円形状の孔有支持板24が、水素透過金属膜30側から順に配置されている。
該孔有支持板24には、水素透過金属膜30を透過した水素が通過するための複数の透過気体通過孔25が形成されている。
As shown in FIG. 1, in the recess of the secondary side flange 21, a circular metal filter 23 and a circular perforated support plate 24 are arranged in order from the hydrogen permeable metal film 30 side together with the secondary side gasket 22. Has been done.
The perforated support plate 24 is formed with a plurality of permeated gas passage holes 25 for passing hydrogen that has permeated through the hydrogen permeation metal film 30.

図1及び図2に示すように、2次側円筒体20の内部には、前記透過気体通過孔25を通過した水素が流れ込む透過気体取出路26bが形成されている。
図2に示すように、該2次側円筒体20の後端側には、内径4.4mmの透過気体取出管27が接続されている。
As shown in FIGS. 1 and 2, a permeated gas take-out path 26b into which hydrogen that has passed through the permeated gas passing hole 25 flows is formed inside the secondary side cylindrical body 20.
As shown in FIG. 2, a permeated gas take-out pipe 27 having an inner diameter of 4.4 mm is connected to the rear end side of the secondary side cylindrical body 20.

該透過気体取出管27の内部には、透過気体取出路26cが形成されている。
該当化気体取出路26cは、透過気体取出路26bに通じている。
A permeated gas take-out passage 26c is formed inside the permeated gas take-out pipe 27.
The corresponding gas take-out path 26c leads to the permeated gas take-out path 26b.

次に、前記の水素透過装置の作用について説明する。 Next, the operation of the hydrogen permeation device will be described.

図1から図4に示すとおり、水素を含有する気体は、原料供給管13から調整された圧力で供給される。
供給された気体は、図1に示すとおり、原料供給管13先端部分で、開孔板14によって流路が制限されているので、そのまま流れることなく、原料供給管13の内径より小さい直径の噴出孔15から水素透過金属膜30側に噴出する際に、流速が早められることになる。
As shown in FIGS. 1 to 4, the hydrogen-containing gas is supplied from the raw material supply pipe 13 at an adjusted pressure.
As shown in FIG. 1, the supplied gas does not flow as it is because the flow path is restricted by the perforated plate 14 at the tip of the raw material supply pipe 13, and the gas has a diameter smaller than the inner diameter of the raw material supply pipe 13. When ejecting from the hole 15 toward the hydrogen permeable metal film 30, the flow velocity is increased.

早い流速で噴出した気体は、水素透過金属膜30の中心部付近に当たってから、水素透過金属膜30の外縁側に流れ出す。
この際、一部の水素分子が乖離して水素原子となって水素透過金属膜30に入り込み、圧力差により2次側に進み、最後には水素透過金属膜30を透過する。
The gas ejected at a high flow velocity hits the vicinity of the central portion of the hydrogen permeable metal film 30, and then flows out to the outer edge side of the hydrogen permeable metal film 30.
At this time, some hydrogen molecules are separated to form hydrogen atoms and enter the hydrogen permeable metal film 30, proceed to the secondary side due to the pressure difference, and finally permeate the hydrogen permeable metal film 30.

図2及び図4に示すとおり、1次側において、水素透過金属膜30に入り込まない気体は、開孔板14の外周縁に形成された原料気体排出路16aを通り、更に、原料気体排出路16b、原料気体排出路16cを通って、排出される。 As shown in FIGS. 2 and 4, the gas that does not enter the hydrogen permeable metal film 30 on the primary side passes through the raw material gas discharge path 16a formed on the outer peripheral edge of the perforated plate 14, and further, the raw material gas discharge path. 16b, it is discharged through the raw material gas discharge path 16c.

2次側において、水素透過金属膜30を透過した理論純度100パーセントの水素は、図1に示すとおり、メタルフィルター23及び孔有支持板24の透過気体通過孔25を通る。
透過気体通過孔25を通った超高純度の水素は、図2及び図4に示すとおり、透過気体取出路26b,26cを通り、容器(図示は省略)に分離回収される。
On the secondary side, hydrogen having a theoretical purity of 100% that has permeated the hydrogen permeation metal film 30 passes through the permeation gas passage holes 25 of the metal filter 23 and the perforated support plate 24, as shown in FIG.
As shown in FIGS. 2 and 4, the ultra-high purity hydrogen that has passed through the permeated gas passage hole 25 passes through the permeated gas extraction paths 26b and 26c and is separated and recovered in a container (not shown).

[比較例] [Comparison example]

図5、図6に示すとおり、原料供給管13の内径と等しく孔径が4.4mmの供給管径噴出孔18を設けた水素透過装置を準備した。
該比較例の水素透過装置は、供給管径噴出孔18の孔径以外は、前記実施例の水素透過装置と同様の構成なので、説明は省略する。
As shown in FIGS. 5 and 6, a hydrogen permeation device provided with a supply pipe diameter ejection hole 18 having a hole diameter of 4.4 mm, which is equal to the inner diameter of the raw material supply pipe 13, was prepared.
Since the hydrogen permeation device of the comparative example has the same configuration as the hydrogen permeation device of the above embodiment except for the hole diameter of the supply pipe diameter ejection hole 18, the description thereof will be omitted.

[比較試験] [Comparative test]

前記実施例の水素透過装置と、前記比較例の水素透過装置について、同一の条件で、水素透過試験を行った。
試験結果について、流量を図7に、透過係数を図8に示す。
The hydrogen permeation device of the above example and the hydrogen permeation device of the comparative example were subjected to a hydrogen permeation test under the same conditions.
Regarding the test results, the flow rate is shown in FIG. 7, and the transmission coefficient is shown in FIG.

結果を考察すると、比較例の4.4mm孔よりも、実施例の1.1mm孔の方が、良好なデータを示し、孔径を小さくすることが有効であることが確認された。 Examining the results, it was confirmed that the 1.1 mm hole of the example showed better data than the 4.4 mm hole of the comparative example, and it was confirmed that it was effective to reduce the hole diameter.

[実施例2] [Example 2]

図9に示すとおり、本実施例2における開孔板14の円状の噴出孔15は、実施例1の噴出孔15と異なり、原料供給管13が取り付けられている原料気体の供給側である1次側から、透過気体の取出側である2次側に向けて、テーパ形状を有するように形成されている。
すなわち、本実施例2の場合は、円状の噴出孔15の直径が、テーパ状に変化するように形成されている。
As shown in FIG. 9, the circular ejection hole 15 of the opening plate 14 in the second embodiment is different from the ejection hole 15 of the first embodiment, and is on the supply side of the raw material gas to which the raw material supply pipe 13 is attached. It is formed so as to have a tapered shape from the primary side toward the secondary side, which is the extraction side of the permeated gas.
That is, in the case of the second embodiment, the diameter of the circular ejection hole 15 is formed so as to change in a tapered shape.

図9中、(A)は、円状の噴出孔15について、1次側から2次側に向けて、径が徐々に小さくなるようにテーパを形成したもので、1次側の孔径を3.1mm、2次側の孔径を1.1mmに形成したものである。
図9中、(B)は、円状の噴出孔15について、1次側から2次側に向けて、径が徐々に大きくなるようにテーパを形成したもので、1次側の孔径を1.1mm、2次側の孔径を3.1mmに形成したものである。
In FIG. 9, (A) shows a circular ejection hole 15 having a taper formed so that the diameter gradually decreases from the primary side to the secondary side, and the hole diameter on the primary side is 3 .1 mm, the hole diameter on the secondary side is formed to 1.1 mm.
In FIG. 9, FIG. 9B shows a circular ejection hole 15 having a taper formed so that the diameter gradually increases from the primary side to the secondary side, and the hole diameter on the primary side is 1. The hole diameter on the secondary side is 3.1 mm and is formed to be 3.1 mm.

本実施例2による円状の噴出孔15によると、径がテーパ状に変化するように形成されているので、流速が早まるだけでなく、乱流や速度変化等により、噴出孔15通過後の気流の変化が多面的に引き起こされ、より効果的に水素透過金属膜30(図1参照)に噴出される。
[実施例3]
According to the circular ejection hole 15 according to the second embodiment, since the diameter is formed so as to change in a tapered shape, not only the flow velocity is increased, but also due to turbulence, speed change, etc., after passing through the ejection hole 15. Changes in the air flow are caused in many ways and are more effectively ejected onto the hydrogen permeable metal film 30 (see FIG. 1).
[Example 3]

図10に示すとおり、本実施例3における開孔板14の噴出孔15の形状は、実施例1における円状の噴出孔15(図3参照)と異なるものであるが、該開孔板14の噴出孔15の大きさが、原料供給管13(図1〜図3参照)の内径より小さいという特徴は、実施例1と共通するものである。 As shown in FIG. 10, the shape of the ejection hole 15 of the opening plate 14 in the third embodiment is different from the circular ejection hole 15 (see FIG. 3) in the first embodiment, but the opening plate 14 The feature that the size of the ejection hole 15 is smaller than the inner diameter of the raw material supply pipe 13 (see FIGS. 1 to 3) is common to the first embodiment.

図10中、(A)は、星型5角形の形状の噴出孔15の部分を拡大して示すもの、全体が直径1.1mmの円内に収まるように形成されている。
図10中、(B)は、6角形の形状の噴出孔15の部分を拡大して示すもの、全体が直径1.1mmの円内に収まるように形成されている。
In FIG. 10, (A) shows an enlarged portion of the ejection hole 15 having a star-shaped pentagon shape, and is formed so that the entire portion fits within a circle having a diameter of 1.1 mm.
In FIG. 10, (B) shows an enlarged portion of the hexagonal shape of the ejection hole 15, and is formed so that the entire portion fits within a circle having a diameter of 1.1 mm.

本実施例3による多角形や星型多角形による噴出孔15によると、形状自体が円形と異なる形状で形成されているので、流速が早まるだけでなく、乱流や部分的な速度変化等により、噴出孔15通過後の気流の変化がより多面的に引き起こされ、より一層効果的に水素透過金属膜30(図1参照)に噴出される。 According to the polygonal or star-shaped polygonal ejection hole 15 according to the third embodiment, since the shape itself is formed in a shape different from the circular shape, not only the flow velocity is increased, but also due to turbulence, partial speed change, and the like. , The change of the air flow after passing through the ejection hole 15 is caused more polygonally, and is ejected to the hydrogen permeable metal film 30 (see FIG. 1) even more effectively.

10 1次側円筒体
11 1次側フランジ
12 1次側ガスケット
13 原料供給管
14 開孔板
14a 接続縁部
15 噴出孔
16a,16b,16c 原料気体排出路
17 原料気体排出管
18 供給管径噴出孔
20 2次側円筒体
21 2次側フランジ
22 2次側ガスケット
23 メタルフィルター
24 孔有支持板
25 透過気体通過孔
26b,26c 透過気体取出路
27 透過気体取出管
30 水素透過金属膜
10 Primary side cylinder 11 Primary side flange 12 Primary side gasket 13 Raw material supply pipe 14 Opening plate 14a Connection edge 15 Injection hole 16a, 16b, 16c Raw material gas discharge path 17 Raw material gas discharge pipe 18 Supply pipe diameter ejection Hole 20 Secondary side cylinder 21 Secondary side flange 22 Secondary side gasket 23 Metal filter 24 Perforated support plate 25 Permeated gas passage holes 26b, 26c Permeated gas outlet 27 Permeable gas outlet pipe 30 Hydrogen permeable metal film

Claims (3)

原料気体の供給側である1次側と、透過気体の取出側である2次側との間に、水素透過金属膜を有する水素透過装置であって、
1次側には、
原料気体供給路を形成する原料供給管と、
2次側に透過しない原料気体を排出する原料気体排出路と、
前記原料供給管の先端側と組み合う開孔板を有し、
該開孔板の噴出孔の大きさが、原料供給管より小さいことを特徴とする、水素透過装置。
A hydrogen permeation device having a hydrogen permeation metal film between the primary side, which is the supply side of the raw material gas, and the secondary side, which is the extraction side of the permeated gas.
On the primary side
The raw material supply pipe that forms the raw material gas supply path,
A raw material gas discharge path that discharges a raw material gas that does not permeate to the secondary side,
It has a perforated plate that engages with the tip side of the raw material supply pipe.
A hydrogen permeation device characterized in that the size of the ejection hole of the perforated plate is smaller than that of the raw material supply pipe.
原料気体の供給側である1次側と、透過気体の取出側である2次側との間に、水素透過金属膜を有する水素透過装置であって、
1次側には、
原料気体供給路を形成する原料供給管と、
2次側に透過しない原料気体を排出する原料気体排出路と、
前記原料供給管の先端側と組み合う開孔板を有し、
該開孔板の噴出孔の直径が、原料供給管の内径より小さいことを特徴とする、水素透過装置。
A hydrogen permeation device having a hydrogen permeation metal film between the primary side, which is the supply side of the raw material gas, and the secondary side, which is the extraction side of the permeated gas.
On the primary side
The raw material supply pipe that forms the raw material gas supply path,
A raw material gas discharge path that discharges a raw material gas that does not permeate to the secondary side,
It has a perforated plate that engages with the tip side of the raw material supply pipe.
A hydrogen permeation device characterized in that the diameter of the ejection hole of the perforated plate is smaller than the inner diameter of the raw material supply pipe.
前記開孔板の噴出孔が、1次側から2次側に向けて、テーパ形状を有することを特徴とする、請求項1または2に記載の水素透過装置。 The hydrogen permeation device according to claim 1 or 2, wherein the ejection hole of the opening plate has a tapered shape from the primary side to the secondary side.
JP2020156701A 2019-09-19 2020-09-17 Hydrogen permeation device Active JP7016116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021202356A JP7105427B2 (en) 2019-09-19 2021-12-14 Hydrogen permeation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019170949 2019-09-19
JP2019170949 2019-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021202356A Division JP7105427B2 (en) 2019-09-19 2021-12-14 Hydrogen permeation device

Publications (2)

Publication Number Publication Date
JP2021049520A true JP2021049520A (en) 2021-04-01
JP7016116B2 JP7016116B2 (en) 2022-02-04

Family

ID=75155232

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020156701A Active JP7016116B2 (en) 2019-09-19 2020-09-17 Hydrogen permeation device
JP2021202356A Active JP7105427B2 (en) 2019-09-19 2021-12-14 Hydrogen permeation device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021202356A Active JP7105427B2 (en) 2019-09-19 2021-12-14 Hydrogen permeation device

Country Status (1)

Country Link
JP (2) JP7016116B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167381A (en) * 2002-11-20 2004-06-17 Mitsubishi Materials Corp Hydrogen separating permeable membrane having excellent hydrogen separating and permeating function and high temperature stability of amorphous phase
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP2010042397A (en) * 2008-07-14 2010-02-25 Ngk Insulators Ltd Hydrogen separator and method of operating hydrogen separator
JP2010201304A (en) * 2009-03-02 2010-09-16 Ngk Insulators Ltd Hydrogen separator and method of operating the same
JP2011189335A (en) * 2010-02-22 2011-09-29 Ngk Insulators Ltd Method for using fixing structure of gas separation object and fixing structure of gas separation object
JP2012246207A (en) * 2011-05-31 2012-12-13 Ngk Insulators Ltd Hydrogen separation method and hydrogen separation device
US20130243660A1 (en) * 2012-03-19 2013-09-19 Samsung Electronics Co., Ltd. Separation membrane, hydrogen separation membrane including the separation membrane, and device including the hydrogen separation membrane
JP2017189765A (en) * 2016-04-06 2017-10-19 株式会社堀場エステック Hydrogen purification device and hydrogen purification system using hydrogen purification device
JP2019005684A (en) * 2017-06-22 2019-01-17 国立大学法人名古屋大学 Hydrogen separation device and hydrogen separation system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157324A (en) * 1984-12-28 1986-07-17 Tadahiro Omi Apparatus for purifying high purity hydrogen
JPS62273030A (en) * 1986-05-20 1987-11-27 Ise Kagaku Kogyo Kk Preparation of hydrogen separating medium
US5205841A (en) * 1992-04-03 1993-04-27 Tpc Technologies, Inc. Apparatus and method for extracting hydrogen
JP3402515B2 (en) * 1994-05-23 2003-05-06 日本碍子株式会社 Hydrogen separator, hydrogen separator using the same, and method for producing hydrogen separator
US6183542B1 (en) * 1998-11-09 2001-02-06 Peter R. Bossard Method and apparatus for purifying hydrogen
JP3686762B2 (en) 1998-12-04 2005-08-24 株式会社フジキン Water generation reactor
US6767389B2 (en) * 1999-03-22 2004-07-27 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US7297183B2 (en) 2004-09-20 2007-11-20 Idatech, Llc Hydrogen purification devices, components, and fuel processing systems containing the same
JP5342750B2 (en) 2007-03-29 2013-11-13 日本特殊陶業株式会社 Hydrogen separator and fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167381A (en) * 2002-11-20 2004-06-17 Mitsubishi Materials Corp Hydrogen separating permeable membrane having excellent hydrogen separating and permeating function and high temperature stability of amorphous phase
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP2010042397A (en) * 2008-07-14 2010-02-25 Ngk Insulators Ltd Hydrogen separator and method of operating hydrogen separator
JP2010201304A (en) * 2009-03-02 2010-09-16 Ngk Insulators Ltd Hydrogen separator and method of operating the same
JP2011189335A (en) * 2010-02-22 2011-09-29 Ngk Insulators Ltd Method for using fixing structure of gas separation object and fixing structure of gas separation object
JP2012246207A (en) * 2011-05-31 2012-12-13 Ngk Insulators Ltd Hydrogen separation method and hydrogen separation device
US20130243660A1 (en) * 2012-03-19 2013-09-19 Samsung Electronics Co., Ltd. Separation membrane, hydrogen separation membrane including the separation membrane, and device including the hydrogen separation membrane
JP2017189765A (en) * 2016-04-06 2017-10-19 株式会社堀場エステック Hydrogen purification device and hydrogen purification system using hydrogen purification device
JP2019005684A (en) * 2017-06-22 2019-01-17 国立大学法人名古屋大学 Hydrogen separation device and hydrogen separation system

Also Published As

Publication number Publication date
JP7105427B2 (en) 2022-07-25
JP2022043155A (en) 2022-03-15
JP7016116B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
US8883007B2 (en) Fluid separation system with reduced fouling
US9409113B2 (en) Self-oscillating nozzle and pulse-jet cleaning system with the same
US3881897A (en) Apparatus for separating fluids
CA2606225A1 (en) Fluid discharge nozzle
US20110284451A1 (en) Spacer element for guiding flow media
JP4140584B2 (en) Air diffuser
US20150182897A1 (en) Filter Tube for High Temperature Gas-Solid Separation
US20130008848A1 (en) Filter comprising stackable filter wafers with filtering channels on opposing sides of the wafers
WO2021117875A1 (en) Hydrogen production method and hydrogen separation device
JP2020516444A (en) Stepped spacers for filter wound elements
KR20130098927A (en) Hot gas filtration system and process for regenerating said system
US9932125B2 (en) Air separation module with increased permeate area
US11338240B2 (en) Particulate matter collecting apparatus
JP2021049520A (en) Hydrogen permeation device
US10245539B2 (en) Virtual impactor filter assembly and method
US20190070562A1 (en) External-pressure type hollow fiber membrane module
JP2013525086A (en) Select gas filter
US20120279917A1 (en) Systems and methods for filtration
US20150008354A1 (en) Control Cone for Control Valves, in Particular Angle Control Valves, for Critical Operating States
JP2021109146A (en) Hydrogen separation membrane
WO2021230265A1 (en) Hydrogen gas separator
JP2009285569A (en) Inner screen for strainer
WO2010104095A1 (en) Water-purifying cartridge
TWI619544B (en) Pre-treatment device for cryogenic gas separation and pre-treatment method using same
JP2001129368A (en) Gas-liquid separation module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210720

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20210720

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210916

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114