JP2021049491A - Methane purification catalyst having sulfur poisoning resistance - Google Patents

Methane purification catalyst having sulfur poisoning resistance Download PDF

Info

Publication number
JP2021049491A
JP2021049491A JP2019173438A JP2019173438A JP2021049491A JP 2021049491 A JP2021049491 A JP 2021049491A JP 2019173438 A JP2019173438 A JP 2019173438A JP 2019173438 A JP2019173438 A JP 2019173438A JP 2021049491 A JP2021049491 A JP 2021049491A
Authority
JP
Japan
Prior art keywords
atom
methane
pdo
shows
methane purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019173438A
Other languages
Japanese (ja)
Other versions
JP7352233B2 (en
Inventor
中西 寛
Hiroshi Nakanishi
寛 中西
秀明 笠井
Hideaki Kasai
秀明 笠井
ラクダオ アレヴァロ ライアン
Lacdao Arevalo Ryan
ラクダオ アレヴァロ ライアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2019173438A priority Critical patent/JP7352233B2/en
Publication of JP2021049491A publication Critical patent/JP2021049491A/en
Application granted granted Critical
Publication of JP7352233B2 publication Critical patent/JP7352233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

To provide a methane purification catalyst having sulfur poisoning resistance that can suppress sulfur poisoning without impairing methane purification activity and is suitable for exhaust purification.SOLUTION: The present invention relates to a methane purification catalyst having sulfur poisoning resistance, characterized by that: in PdO, an atom (3f) coordinated with three oxygen atoms and an atom (4f) coordinated with four oxygen atoms are present as outermost-surface atoms of a PdO(101) face; and the atoms (3f) coordinated with three oxygen atoms are at least partially replaced with atoms M excluding Pd.SELECTED DRAWING: Figure 11

Description

本発明は、耐硫黄被毒性を有するメタン浄化触媒に関し、詳しくは、メタン浄化活性を損なうことなく、硫黄被毒を抑制することができる排ガス浄化用途に好適な耐硫黄被毒性を有するメタン浄化触媒に関するものである。 The present invention relates to a methane purification catalyst having sulfur toxicity resistance, and more specifically, a methane purification catalyst having sulfur toxicity resistance suitable for exhaust gas purification applications capable of suppressing sulfur poisoning without impairing methane purification activity. It is about.

天然ガスを燃料とする熱機関において、運転時で完全燃焼しなかった場合や、運転停止時には、排ガス中にメタンが残留する。メタンは温室効果ガス(二酸化炭素の25倍)であるため大気排出前に浄化する必要がある。ここで、メタンの浄化とは、メタンを酸化して炭化水素を除去することをいう(以下、同様)。 In a heat engine that uses natural gas as fuel, methane remains in the exhaust gas when it is not completely burned during operation or when the operation is stopped. Since methane is a greenhouse gas (25 times that of carbon dioxide), it needs to be purified before it is discharged into the atmosphere. Here, purification of methane means oxidation of methane to remove hydrocarbons (hereinafter, the same applies).

排ガス中のメタンの浄化は、メタンより無害かつ地球温暖化係数の低い二酸化炭素と水へ変換する次の酸化反応が望ましい。 For purification of methane in exhaust gas, the next oxidation reaction that converts carbon dioxide and water, which are harmless and have a lower global warming potential than methane, is desirable.

CH4 + 2O2 → CO2 + 2H2O
現在、メタン浄化のメタン浄化触媒として酸化パラジウムが主に用いられている(特許文献1〜6等)。しかし、脱硫された天然ガスにも微量の硫黄が含まれ、または、人為的に加える付臭剤にも硫黄が含まれ、メタン浄化触媒としての酸化パラジウムの触媒寿命を著しく損なう硫黄被毒を起こすという問題があった。
CH 4 + 2O 2 → CO 2 + 2H 2 O
Currently, palladium oxide is mainly used as a methane purification catalyst for methane purification (Patent Documents 1 to 6 and the like). However, desulfurized natural gas also contains a small amount of sulfur, or artificially added odorants also contain sulfur, causing sulfur poisoning that significantly impairs the catalytic life of palladium oxide as a methane purification catalyst. There was a problem.

そこで、本発明者らは、酸化パラジウムのメタン浄化における耐硫黄被毒を低減するため、硫黄被毒およびメタン活性の電子・原子レベルの機構の検討を行い、その結果を非特許文献1において報告した。 Therefore, in order to reduce the sulfur poisoning resistance of palladium oxide in methane purification, the present inventors have investigated the mechanism of sulfur poisoning and methane activity at the electron / atomic level, and reported the results in Non-Patent Document 1. did.

上記非特許文献1では、メタン浄化における耐硫黄被毒触媒のモデル表面として、酸化パラジウムの安定に出現しうるPdO(101)面に着目した。図1はPdO(101)面の格子構造を示し、左側の図が側面図、右側の図が上面図である。薄い大きな灰色球はPd原子、濃い小さな灰色球は酸素原子を表す。最表面には、3つの酸素原子が配位したPd原子(以後Pd(3f)と表記)と4つの酸素原子が配位したPd原子(以後Pd(4f)と表記)が存在することが特徴である。図1の側面図と上面図にそれぞれの酸素配位面を四角で表した。前者は表面に垂直、後者は表面平行面よりわずかに傾斜している。 In Non-Patent Document 1, the PdO (101) surface, which can stably appear in palladium oxide, was focused on as a model surface of a sulfur poisoning catalyst in methane purification. FIG. 1 shows a lattice structure of a PdO (101) plane, the left side view is a side view, and the right side view is a top view. A large light gray sphere represents a Pd atom and a small dark gray sphere represents an oxygen atom. The outermost surface is characterized by the presence of a Pd atom coordinated by three oxygen atoms (hereinafter referred to as Pd (3f)) and a Pd atom coordinated by four oxygen atoms (hereinafter referred to as Pd (4f)). Is. The side view and the top view of FIG. 1 show each oxygen coordination surface as a square. The former is perpendicular to the surface and the latter is slightly inclined from the surface parallel surface.

各原子の局所状態密度を図2に示す。濃い実線がPdO(101)表面原子Pd(3f)の局所状態密度であり、薄い実線がPdO(101)表面原子Pd(4f)の局所状態密度である。比較のため金属のPd(211)表面原子の状態密度も示した。特徴的な電子状態としてフェルミレベル(EF)より高エネルギー側に現れた非占有状態ピークがあげられる。解析の結果、それらはPd(3f)では、表面垂直方向に延びたdzz軌道に、Pd(4f)では、隣接する酸素原子との間のdyz軌道による反結合軌道に帰属することが分かった。 The local density of states of each atom is shown in FIG. The dark solid line is the local density of states of the PdO (101) surface atom Pd (3f), and the light solid line is the local density of states of the PdO (101) surface atom Pd (4f). The density of states of the Pd (211) surface atoms of the metal is also shown for comparison. Unoccupied peak appearing on the higher energy side than the Fermi level (E F) can be mentioned as a characteristic electronic state. As a result of the analysis, it was found that in Pd (3f), they belong to the d zz orbital extending in the vertical direction of the surface, and in Pd (4f), they belong to the antibonding orbital due to the d yz orbital between the adjacent oxygen atoms. It was.

図3の(a)にメタンの最安定吸着状態を求めた結果を示す。上側が上面図、下側が側面図である。また、図3の(b)にメタン分子が表面に安定に吸着するために必要な電子遷移(供与(donation))に関与する電子軌道を示し、図3の(c)にメタン活性に寄与する電子遷移(逆供与(back donation)に関与する電子軌道を示す。ここで、メタン活性とは、メタンから水素が取れやすくなった状態になることをいう(以下、同様)。メタン分子は、一つのPd(3f)上に吸着し、表面側のC-H結合距離が1.118Åに延び、活性化されていることが分かった。なお、表面とは反対側のC-H結合距離は1.095Åと気相中の1.097Åからほとんど変化していなかった。吸着時の電子状態を解析したところ。メタン分子のσ結合分子軌道からPd(3f)の非占有dzzへ電子供与がなされ、分子−表面間共有結合が生じ分子吸着状態を安定化させ、Pd(3f)の占有dyz軌道からメタンの表面側のC-H反結合σ*軌道に電子供与がなされ、C-H結合を弱めるメタン活性が起こっていることが分かった。 FIG. 3A shows the results of determining the most stable adsorption state of methane. The upper side is a top view and the lower side is a side view. Further, FIG. 3 (b) shows electron orbitals involved in electronic transitions (donations) required for stable adsorption of methane molecules on the surface, and FIG. 3 (c) contributes to methane activity. It shows an electron orbital involved in electronic transition (back donation). Here, methane activity means that hydrogen can be easily taken from methane (hereinafter, the same applies). A methane molecule is one. It was found that it was adsorbed on one Pd (3f) and the CH binding distance on the surface side extended to 1.118 Å and was activated. The CH binding distance on the opposite side to the surface was 1.095 Å in the gas phase. There was almost no change from 1.097 Å of methane. When the electronic state at the time of adsorption was analyzed , electrons were donated from the σ-bonded molecular orbital of the methane molecule to the unoccupied d zz of Pd (3f), and the molecular-surface covalent bond was formed. It is found that electrons are donated from the occupied d yz orbital of Pd (3f) to the CH antibonding σ * orbital on the surface side of methane, and methane activity that weakens the CH bond occurs. It was.

図4に、活性化された表面側のC-H結合を切る反応(1)と、反対側の非活性化C-Hを切る反応(2)の反応経路と活性化障壁を調べた結果を示す。図中、TS1が吸着メタン分子のC-Hの内、Pd(3f)側の活性化されたC-Hを切る反応(1)の活性化障壁であり、TS2が非活性化C-Hを切る反応(2)の活性化障壁である。Pd(3f)側の活性化されたC-Hを切る反応(1)の活性化障壁は0.66eVと低く、容易におこる反応であることがわかった。これがPdOのメタン浄化触媒の最も重要な素反応過程である。 FIG. 4 shows the results of investigating the reaction pathways and activation barriers of the reaction (1) that cuts the activated surface-side C-H bond and the reaction (2) that cuts the deactivated C-H on the opposite side. In the figure, TS1 is the activation barrier of the reaction (1) that cuts the activated CH on the Pd (3f) side among the CHs of the adsorbed methane molecule, and TS2 is the activation barrier of the reaction (2) that cuts the inactivated CH. It is an activation barrier. The activation barrier of the reaction (1) that cuts the activated C-H on the Pd (3f) side was as low as 0.66 eV, and it was found that the reaction easily occurs. This is the most important elementary reaction process of PdO's methane purification catalyst.

次に、硫黄が酸化され二酸化硫黄SO2として触媒表面に接近し吸着酸化する反応を調べた結果を図5に示す。図5には、Eley-Rideal機構、Langmuir Hinshelwod機構、Mars-van Krevelen機構の3種類の機構の反応経路を調べた結果を示した。酸素分子解離吸着の遷移状態TS-ERを経る反応経路(下図では点線)がEley-Rideal機構のもの、遷移状態TS-LHを経る反応経路(下図では実線)がLangmuir Hinshelwod機構のもの、酸素分子の解離を伴わずPdO表面の酸素を奪う反応経路(下図では破線)がMars-van Krevelen機構のものである。図5の上図は、各機構の反応経路における原子位置の変遷を示し、図5の下図は自由エネルギーの変化を示した。各機構の反応経路で自由エネルギーの高い方が400℃の場合、低い方が絶対零度の場合である。 Next, FIG. 5 shows the results of investigating the reaction in which sulfur is oxidized and approaches the surface of the catalyst as sulfur dioxide SO 2 to be adsorbed and oxidized. FIG. 5 shows the results of investigating the reaction pathways of three types of mechanisms: the Eley-Rideal mechanism, the Langmuir Hinshelwod mechanism, and the Mars-van Krevelen mechanism. The reaction pathway through the transition state TS-ER of oxygen molecule dissociation adsorption (dotted line in the figure below) is of the Eley-Rideal mechanism, the reaction pathway through the transition state TS-LH (solid line in the figure below) is of the Langmuir Hinshelwod mechanism, oxygen molecule The reaction pathway (broken line in the figure below) that deprives the surface of PdO of oxygen without dissociation is that of the Mars-van Krevelen mechanism. The upper figure of FIG. 5 shows the transition of the atomic position in the reaction path of each mechanism, and the lower figure of FIG. 5 shows the change of the free energy. In the reaction path of each mechanism, the higher free energy is 400 ° C, and the lower free energy is absolute zero.

比較の結果、触媒表面に飛来したSO2は、表面の酸素を反応に用いるMars-van Krevelen機構で容易に酸化しSO4になることが見いだされた。そのとき、飛来したSO2が表面に吸着するには、隣接する2個のPd(3f)と、それに隣接する1個のPd(4f)の計3個の表面Pd原子が必要なことが分かった。 As a result of comparison, it was found that SO 2 that came to the surface of the catalyst was easily oxidized to SO 4 by the Mars-van Krevelen mechanism that uses oxygen on the surface for the reaction. At that time, it was found that in order for the flying SO 2 to be adsorbed on the surface, a total of three surface Pd atoms, two adjacent Pd (3f) and one adjacent Pd (4f), were required. It was.

O2、CH4、SO2から二種を選んだ混合ガス下における熱力学的に安定な表面を調査した結果を図6に示す。縦軸と横軸はそれぞれのガス種の化学ポテンシャルΔμで、温度が400℃の場合の分圧換算を併記した。それぞれの領域は、表示した化学式の分子が吸着した場合が安定な化学ポテンシャルの領域を表す。*は、分子が吸着しない清浄表面が安定であることを示す。☆(白抜き☆記号は)は、典型的な排ガス実験条件のガス分圧(PCH_4 = 10-3 atm、PO_2 = 0.20 atm、PSO_2 = 5x10-6 atm)環境を示す。メタンと酸素の共存下(図6の上図)、およびメタンと二酸化硫黄の共存下(図6の中図)では、清浄表面が熱力学的に安定でメタン活性が維持されることが見いだされた。 Figure 6 shows the results of investigating a thermodynamically stable surface under a mixed gas in which two types were selected from O 2 , CH 4 , and SO 2. The vertical axis and the horizontal axis are the chemical potential Δμ of each gas type, and the partial pressure conversion when the temperature is 400 ° C. is also shown. Each region represents a region of chemical potential that is stable when the molecule of the indicated chemical formula is adsorbed. * Indicates that the clean surface on which molecules are not adsorbed is stable. ☆ (white ☆ symbol) indicates the gas partial pressure (P CH_4 = 10 -3 atm, P O_2 = 0.20 atm, P SO_2 = 5x10 -6 atm) environment under typical exhaust gas experimental conditions. It was found that the clean surface is thermodynamically stable and the methane activity is maintained in the coexistence of methane and oxygen (upper figure of FIG. 6) and in the coexistence of methane and sulfur dioxide (middle figure of FIG. 6). It was.

しかし、二酸化硫黄と酸素が共存すると、図6の下図に示すように、SO4で表面が覆われた状態が熱力学的に安定となり、メタン活性しいてはメタン浄化触媒の作用が失われることがわかった。なおこの硫黄被毒の表面状態生成には、SO2およびSO4の吸着が必要でそれには隣接する2個のPd(3f)と1個のPd(4f)が必要なことが図5上図よりわかる。メタン浄化の触媒作用と硫黄被毒作用に必要な表面Pd原子が異なることを利用して、何らかの方法でメタン浄化活性を維持しつつ硫黄被毒を抑制する触媒を開発することが望まれていた。 However, when sulfur dioxide and oxygen coexist, as shown in the lower figure of FIG. 6, the state where the surface is covered with SO 4 becomes thermodynamically stable, and the methane activity and the action of the methane purification catalyst are lost. I understood. It should be noted that the adsorption of SO 2 and SO 4 is required to generate the surface state of this sulfur poisoning, which requires two adjacent Pd (3f) and one Pd (4f). I understand more. It has been desired to develop a catalyst that suppresses sulfur poisoning while maintaining methane purification activity in some way by utilizing the difference between the catalytic action of methane purification and the surface Pd atom required for sulfur poisoning action. ..

特開平09−38498号公報Japanese Unexamined Patent Publication No. 09-38498 特開平09−229890号公報Japanese Unexamined Patent Publication No. 09-229890 特開平10−73556号公報Japanese Unexamined Patent Publication No. 10-73556 特開2000−254505号公報Japanese Unexamined Patent Publication No. 2000-254505 特開2007−105633号公報JP-A-2007-105633

"Sulfation of a PdO(101) methane oxidation catalyst: mechanism revealed by first principles calculations", Ryan L. Arevalo, Susan M. Aspera, Hiroshi Nakanishi, Catal. Sci. Technol., 2019, 9, 232-240, 10 December 2018"Sulfation of a PdO (101) methane oxidation catalyst: mechanism revealed by first principles calculations", Ryan L. Arevalo, Susan M. Aspera, Hiroshi Nakanishi, Catal. Sci. Technol., 2019, 9, 232-240, 10 December 2018

本発明は、以上のような従来技術の実状に鑑みてなされたもので、メタン浄化活性を損なうことなく、硫黄被毒を抑制することができる排ガス浄化用途に好適な耐硫黄被毒性を有するメタン浄化触媒を提供することを課題とする。 The present invention has been made in view of the above-mentioned actual conditions of the prior art, and methane having sulfur toxicity resistance suitable for exhaust gas purification applications capable of suppressing sulfur poisoning without impairing methane purification activity. An object of the present invention is to provide a purification catalyst.

本発明によれば、上記課題を解決するため、下記の発明が提供される。 According to the present invention, the following invention is provided in order to solve the above problems.

〔1〕PdO(101)面の最表面原子に、酸素原子が3配位した原子(3f)と4配位した原子(4f)が存在するPdOにおいて、前記酸素原子が3配位した原子(3f)の少なくとも一部がPd以外の原子Mと置換されていることを特徴とする耐硫黄被毒性を有するメタン浄化触媒。 [1] In PdO in which an atom (3f) having three coordinations of oxygen atoms and an atom (4f) having four coordinations are present on the outermost surface atom of the PdO (101) plane, the atom having three coordinations of oxygen atoms (1) A methane purification catalyst having sulfur toxicity resistance, characterized in that at least a part of 3f) is replaced with an atom M other than Pd.

〔2〕上記第〔1〕の発明において、M原子が、最表面の金属原子数に対して1/4以上1/2未満の量で、最表面に配置されていることを特徴とする耐硫黄被毒性を有するメタン浄化触媒。
〔3〕上記第〔1〕または〔2〕の発明において、M原子がAuもしくはAgであることを特徴とするメタン浄化触媒。
[2] The resistance according to the first aspect of the invention, wherein M atoms are arranged on the outermost surface in an amount of 1/4 or more and less than 1/2 of the number of metal atoms on the outermost surface. A methane purification catalyst with sulfur toxicity.
[3] The methane purification catalyst according to the invention of the first [1] or [2] above, wherein the M atom is Au or Ag.

本発明によれば、上記構成を採用することで、メタン浄化活性を損なうことなく、硫黄被毒を抑制することができる排ガス浄化用途に好適な耐硫黄被毒性を有するメタン浄化触媒を提供することが可能となる。 According to the present invention, by adopting the above configuration, it is possible to provide a methane purification catalyst having sulfur toxicity resistance suitable for exhaust gas purification applications capable of suppressing sulfur poisoning without impairing methane purification activity. Is possible.

PdO(101)面の格子構造を示し、左側の図が側面図、右側の図が上面図である。薄い大きな灰色球はPd原子、濃い小さな灰色球は酸素原子を表す。最表面Pd原子には、酸素原子が3配位した原子(3f)と4配位した原子(4f)が存在し、それぞれの酸素配位面を四角で示した。The lattice structure of the PdO (101) plane is shown, the left side view is a side view, and the right side view is a top view. A large light gray sphere represents a Pd atom and a small dark gray sphere represents an oxygen atom. On the outermost surface Pd atom, there are an atom (3f) in which the oxygen atom is coordinated three and an atom (4f) in which the oxygen atom is coordinated, and the oxygen coordination plane of each is shown by a square. 各原子の局所状態密度を示す。濃い実線がPdO(101)表面原子Pd(3f)の局所密度であり、薄い実線がPdO(101)表面原子Pd(4f)の局所状態密度である。比較のため金属のPd(211)表面原子の局所状態密度も示した。The local density of states of each atom is shown. The dark solid line is the local density of the PdO (101) surface atom Pd (3f), and the light solid line is the local density of states of the PdO (101) surface atom Pd (4f). For comparison, the local density of states of the Pd (211) surface atoms of the metal is also shown. (a)はPdO(101)表面におけるメタンの最安定吸着状態(上図が上面図、下図が側面図)を求めた結果を示し、(b)はメタン分子の表面吸着に寄与する電子遷移(供与(donation))に関与する電子軌道を示し、(c)はメタン活性に寄与する電子遷移(逆供与(back donation))に関与する電子軌道を示す。(a) shows the result of obtaining the most stable adsorption state of methane on the surface of PdO (101) (upper figure is top view, lower figure is side view), and (b) is an electronic transition that contributes to surface adsorption of methane molecules (b). The electron orbitals involved in donation are shown, and (c) shows the electron orbitals involved in electronic transitions (back donation) that contribute to methane activity. 活性化された表面側のC-Hを切る反応(1)およびその活性化障壁と、反対側の非活性化C-Hを切る反応(2)の反応経路およびの活性化障壁を調べた結果を示す図である。The figure showing the result of examining the reaction pathway and the activation barrier of the reaction (1) that cuts the activated surface side CH and its activation barrier and the reaction (2) that cuts the deactivated CH on the opposite side. is there. Pd(101)表面において硫黄が酸化され二酸化硫黄SO2として触媒表面に吸着し酸化する反応を調べた結果を示す図である。酸素分子解離吸着の遷移状態TS-ERを経る反応経路(下図では点線)がEley-Rideal機構のもの、遷移状態TS-LHを経る反応経路(下図では実線)がLangmuir Hinshelwod機構のもの、酸素分子の解離を伴わずPdO表面の酸素を奪う反応経路(下図では破線)がMars-van Krevelen機構のものである。図5の上図は、各機構の反応経路における原子位置の変遷を示し、図5の下図は自由エネルギーの変化を示す。It is a figure which shows the result of having investigated the reaction that sulfur is oxidized on the surface of Pd (101) and is adsorbed and oxidized on the surface of a catalyst as sulfur dioxide SO 2. The reaction pathway through the transition state TS-ER of oxygen molecule dissociation adsorption (dotted line in the figure below) is of the Eley-Rideal mechanism, the reaction pathway through the transition state TS-LH (solid line in the figure below) is of the Langmuir Hinshelwod mechanism, oxygen molecule The reaction pathway (broken line in the figure below) that deprives the surface of PdO of oxygen without dissociation is that of the Mars-van Krevelen mechanism. The upper figure of FIG. 5 shows the transition of the atomic position in the reaction path of each mechanism, and the lower figure of FIG. 5 shows the change of the free energy. Pd(101)表面の安定な吸着状態を示す図で、O2、CH4、SO2から二種を選んだ混合ガス環境下に置かれた場合の熱力学的に安定な表面吸着状態をそれぞれガスの化学ポテンシャル上にマッピングした。CH4*、O2*、SO2*、SO4*を記した領域は、それぞれCH4、O2、SO2、SO4が吸着した状態が安定なことを表す。また化学記号を含まない単独の*は、清浄表面が安定な領域であることを表す。白抜き星(☆)は、典型的なメタン浄化実験条件のガス分圧環境を示す。In the figure showing the stable adsorption state of the surface of Pd (101), the thermodynamically stable surface adsorption state when placed in a mixed gas environment in which two types are selected from O 2 , CH 4 , and SO 2 are shown. Mapped on the chemical potential of the gas. The regions marked with CH 4 *, O 2 *, SO 2 *, and SO 4 * indicate that the state in which CH 4 , O 2 , SO 2 , and SO 4 are adsorbed is stable, respectively. A single * that does not contain a chemical symbol indicates that the clean surface is a stable region. White stars (☆) indicate the gas partial pressure environment under typical methane purification experimental conditions. 表面原子を他の元素の原子Mで置き換えた場合の置換モデルとその安定性を示す図である。左図は上から下へ置換を行っていないPdO(101)の最表面の状態、すべてのPd(4f)をMに置換した最表面の状態、すべてのPd(3f)をMに置換した最表面の状態を示す。右図はエネルギー安定性を示す。右図グラフ中のそれぞれの置換原子Mにおいて3f●と4f◆の内、下側にある方が、安定な置換状態である。たとえば、AuではPd(4f)よりPd(3f)をAuで置換した方が安定である。It is a figure which shows the substitution model and the stability when the surface atom is replaced by the atom M of another element. The figure on the left shows the state of the outermost surface of PdO (101) that has not been replaced from top to bottom, the state of the outermost surface in which all Pd (4f) have been replaced with M, and the state in which all Pd (3f) have been replaced with M. Indicates the surface condition. The figure on the right shows energy stability. Of the 3f ● and 4f ◆ at each substitution atom M in the graph on the right, the one on the lower side is the stable substitution state. For example, in Au, it is more stable to replace Pd (3f) with Au than Pd (4f). 表面原子Pd(4f)原子すべてをMで置換した場合のCH4とSO2の吸着エネルギーを比較して示す図である。It is a figure which compares and shows the adsorption energy of CH 4 and SO 2 when all surface atoms Pd (4f) atoms are replaced with M. 表面原子を1つ置きに他の元素の原子Mで置き換えた場合の置換モデルとその安定性を示す図である。左上図は、一つ置きのPd(4f)をMに置換した最表面の状態、左下図は、1つ置きのPd(3f)をMに置換した最表面の状態を示す。右図はエネルギー安定性を示す。右図グラフ中のそれぞれの置換原子Mにおいて3f●と4f◆の内、下側にある方が、安定な置換状態である。たとえば、AuではPd(4f)よりPd(3f)をAuで置換した方が安定である。It is a figure which shows the substitution model and the stability when every other surface atom is replaced by the atom M of another element. The upper left figure shows the state of the outermost surface in which every other Pd (4f) is replaced with M, and the lower left figure shows the state of the outermost surface in which every other Pd (3f) is replaced with M. The figure on the right shows energy stability. Of the 3f ● and 4f ◆ at each substitution atom M in the graph on the right, the one on the lower side is the stable substitution state. For example, in Au, it is more stable to replace Pd (3f) with Au than Pd (4f). 一つ置きの表面原子Pd(3f)を原子Mに置換した場合のCH4とSO2の吸着エネルギーを比較して示す図である。It is a figure which compares and shows the adsorption energy of CH 4 and SO 2 when every other surface atom Pd (3f) is replaced with atom M. PdO(101)表面と、同表面でPd(3f)を一つ置きに金原子に置換した場合のCH4およびSO2の吸着状態を示す図である。上図は、(101)表面の側面図、下図は、(101)表面の上面図である。It is a figure which shows the adsorption state of CH 4 and SO 2 when Pd (3f) is replaced with a gold atom every other PdO (101) surface and Pd (3f) on the same surface. The upper figure is a side view of the (101) surface, and the lower figure is a top view of the (101) surface. 図6の酸素O2とSO2が同時に存在する場合の図に、表面のPd(3f)を一つ置きにAuに置換した場合の各表面安定状態の領域の境界(破線)を書き加えたものである。典型的なメタン浄化実験条件(☆)では、清浄表面(*)が安定な表面状態に変わったことが分かる。In the figure when oxygen O 2 and SO 2 are present at the same time in FIG. 6, the boundary (broken line) of each surface stable state region when every other surface Pd (3f) is replaced with Au is added. It is a thing. It can be seen that under typical methane purification experimental conditions (☆), the clean surface (*) has changed to a stable surface state. PdO(101)表面(実線●)と、同表面でPd(3f)を一つ置きに金原子に置換した表面(破線◆)に吸着したCHにおいて活性化された表面側のC-Hを切る反応の活性化障壁を調べた結果を示す図である。後者の場合メタンの安定吸着安定サイトは残されたPd(3f)であり、前者に劣らないメタン活性を示した。すなわちメタン浄化触媒作用をもつ。A reaction that cuts the CH on the surface side activated by CH 4 adsorbed on the surface of PdO (101) (solid line ●) and the surface (broken line ◆) in which every other Pd (3f) is replaced with a gold atom on the same surface. It is a figure which shows the result of having investigated the activation barrier of. In the latter case, the stable adsorption and stable site of methane was the remaining Pd (3f), which showed methane activity comparable to that of the former. That is, it has a methane purification catalytic action. メタン浄化触媒反応の実験結果である。ZrO2上に担持したPt(□), Ir(△), Ru(◇)の金属ナノ粒子及びAu:Pd=1:4の合金ナノ粒子(●)と1:15の合金ナノ粒子(〇)を酸化させたもののメタン浄化率の温度依存性を示す。実験排ガス成分はCH4=0.1%, O2=10%, SO2=5ppm, H2O=3%、他 Heである。This is the experimental result of the methane purification catalytic reaction. Metal nanoparticles of Pt (□), Ir (△), Ru (◇) supported on ZrO 2 and alloy nanoparticles of Au: Pd = 1: 4 (●) and alloy nanoparticles of 1:15 (〇) Shows the temperature dependence of the methane purification rate of the oxidized material. The experimental exhaust gas components are CH 4 = 0.1%, O 2 = 10%, SO 2 = 5ppm, H 2 O = 3%, and others He.

以下、本発明を実施の形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments.

本発明のメタン浄化触媒は、メタン、SO2等の硫黄化合物およびストイキオメトリー以上の酸素を含む被処理ガスを処理対象とする。ここで、硫黄化合物は10ppm程度まで含まれていてもよい。また、ストイキオメトリー以上の酸素とは、被処理ガス中の炭化水素、一酸化炭素などの還元性成分を完全酸化するのに必要な量以上のことをいう。被処理ガスの処理温度は300〜500℃程度である。 The methane purification catalyst of the present invention targets a gas to be treated containing sulfur compounds such as methane and SO 2 and oxygen containing stoichiometry or higher. Here, the sulfur compound may be contained up to about 10 ppm. Oxygen of stoichiometry or higher means an amount of oxygen required for complete oxidation of reducing components such as hydrocarbons and carbon monoxide in the gas to be treated. The processing temperature of the gas to be processed is about 300 to 500 ° C.

本発明のメタン浄化触媒は、Al2O3、ZrO2、SiO2、CeO2、Y2O3、LaO3等の酸化物担体の1種以上にPdOのPd(3f)の一部をAuで置き換えたAu3f-PdOを担持して構成される。PdOの担持量は、担体に対して重量割合で1〜3%程度が好ましい。PdOの担持量が上記範囲であると、適切なメタン浄化活性を得ることができる。 The methane purification catalyst of the present invention is a part of Pd (3f) of PdO in one or more of oxide carriers such as Al 2 O 3 , ZrO 2 , SiO 2 , CeO 2 , Y 2 O 3 , and La 2 O 3. Is supported by Au 3f -PdO in which is replaced with Au. The amount of PdO supported is preferably about 1 to 3% by weight with respect to the carrier. When the amount of PdO supported is within the above range, appropriate methane purification activity can be obtained.

メタン浄化活性を維持しつつ硫黄被毒を抑制する触媒を創案するために、本発明者らが前記の非特許文献1で報告した研究を通して得た知見は次の2つである。 In order to create a catalyst that suppresses sulfur poisoning while maintaining methane purification activity, the following two findings were obtained through the research reported by the present inventors in Non-Patent Document 1 described above.

条件1.メタン浄化活性には、PdO(101)最表面のPd(3f)原子が必要である。 Condition 1. Methane purification activity requires the Pd (3f) atom on the outermost surface of PdO (101).

条件2.硫黄被毒には、隣接する2個のPd(3f)と、それに隣接する1個のPd(4f)が必要である。 Condition 2. Sulfur poisoning requires two adjacent Pd (3f) and one adjacent Pd (4f).

メタンを浄化するメタン浄化活性を維持しつつ硫黄被毒を抑制するには、条件1を満たしつつ、条件2を崩し、かつ安定な表面を形成する必要がある。本発明者らは、これらの知見に基づいて鋭意検討を行い、次の2つの方策について考察した。 Purifying Methane In order to suppress sulfur poisoning while maintaining the methane purification activity, it is necessary to satisfy condition 1, break condition 2, and form a stable surface. Based on these findings, the present inventors have conducted diligent studies and considered the following two measures.

方策1:PdO(101)最表面のPd(4f)原子を他の元素の原子に置換し、SO2に対して不活性にする。 Measure 1: Replace the Pd (4f) atom on the outermost surface of PdO (101) with an atom of another element to make it inactive with respect to SO 2.

図7に、置換モデルとその安定性を示す。図7の左上の図に置換を行っていないPdO(101)の最表面の状態を示す。図7の左の真ん中の図はPd(4f)を他の元素Mで置き換えた最表面の状態を示す。図7の左下の図はPd(3f)を他の元素Mで置き換えた最表面の状態を示す。置き換える元素として、M = Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Ag, W, Re, Os, Ir, Pt, Auについて調べた。図7の右図にエネルギー安定性を示す。縦軸のΔEの絶対値は安定性とは無関係である。図中、○が3f、◇が4fのデータである。3fと4fのエネルギーの大小関係で、ΔEが小さい方が安定である。たとえば、金(Au)の場合、Pd(4f)よりPd(3f)と置換した方が安定である。Pd(4f)と確実に置換できるのはM = Cr, Mn, W, Ir, Ptである。 FIG. 7 shows the substitution model and its stability. The upper left figure of FIG. 7 shows the state of the outermost surface of PdO (101) that has not been replaced. The middle figure on the left of FIG. 7 shows the state of the outermost surface in which Pd (4f) is replaced with another element M. The lower left figure of FIG. 7 shows the state of the outermost surface in which Pd (3f) is replaced with another element M. As replacement elements, M = Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Ag, W, Re, Os, Ir, Pt, Au were investigated. The right figure of FIG. 7 shows the energy stability. The absolute value of ΔE on the vertical axis is independent of stability. In the figure, ○ is the data of 3f and ◇ is the data of 4f. Due to the magnitude relationship between the energies of 3f and 4f, the smaller ΔE is, the more stable it is. For example, in the case of gold (Au), it is more stable to replace it with Pd (3f) rather than Pd (4f). M = Cr, Mn, W, Ir, Pt can be reliably replaced with Pd (4f).

浄化活性と被毒作用を比較するため、Pd(4f)を他の原子Mで置換した場合のCH4とSO2の吸着エネルギーを図8に示す。CH4の吸着エネルギーの絶対値が大きくなり、SO2の吸着エネルギーの絶対値が小さくなるのが候補となる(図中の薄灰色の領域)。銅(Cu)とニッケル(Ni)が、その範囲に入っているが、これらは、Pd(3f)を置換した方が安定なため不適である。この方法では、調査範囲で好適な元素Mはなかった。 In order to compare the purifying activity and the toxic effect, the adsorption energies of CH 4 and SO 2 when Pd (4f) is replaced with another atom M are shown in FIG. Candidates are that the absolute value of the adsorption energy of CH 4 increases and the absolute value of the adsorption energy of SO 2 decreases (the light gray area in the figure). Copper (Cu) and nickel (Ni) are in that range, but these are unsuitable because they are more stable when replaced with Pd (3f). With this method, there was no suitable element M in the study range.

方策2:Pd(3f)原子を部分的に他の元素の原子Mに置換し、隣接するPd(3f)をなくす、若しくは隣接するPd(3f)を減らし、SO2に対する活性を抑制する。 Measure 2: Partially replace the Pd (3f) atom with the atom M of another element to eliminate the adjacent Pd (3f) or reduce the adjacent Pd (3f) and suppress the activity against SO 2.

図9に、置換モデル(左図)とそのエネルギー安定性を示す。図9の左上の図はPd(3f)の一部を他の原子Mで置換した最表面の状態を示し、左下の図はPd(4f)の一部を他の原子Mで置換した最表面の状態を示す。置き換える原子Mとして、M = Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Ag, W, Re, Os, Ir, Pt, Auについて調べた。図9の右図にエネルギー安定性を示す。図7と同様、縦軸のΔEの絶対値は安定性とは無関係である。図中、○が3f、◇が4fのデータである。3fと4fのエネルギーの大小関係で、ΔEが小さい方が安定である。この場合、M = Ni, Cu, Ag, Auの場合がPd(4f)よりPd(3f)と置換した方が安定である。Pd(3f)と置換した場合のCH4とSO2の吸着エネルギーを図10に示す。最も好適な関係にあるのは金(M=Au)の場合であることが分かった。金には劣るがM=Agも若干の効果が期待できる。 FIG. 9 shows a substitution model (left figure) and its energy stability. The upper left figure of FIG. 9 shows the state of the outermost surface in which a part of Pd (3f) is replaced with another atom M, and the lower left figure shows the outermost surface in which a part of Pd (4f) is replaced with another atom M. Indicates the state of. As the atom M to be replaced, M = Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Ag, W, Re, Os, Ir, Pt, Au were investigated. The right figure of FIG. 9 shows the energy stability. As in FIG. 7, the absolute value of ΔE on the vertical axis is independent of stability. In the figure, ○ is the data of 3f and ◇ is the data of 4f. Due to the magnitude relationship between the energies of 3f and 4f, the smaller ΔE is, the more stable it is. In this case, when M = Ni, Cu, Ag, Au, it is more stable to replace Pd (3f) than Pd (4f). The adsorption energies of CH 4 and SO 2 when replaced with Pd (3f) are shown in FIG. It was found that the most favorable relationship is in the case of gold (M = Au). Although inferior to gold, M = Ag can also be expected to have some effect.

図11にもとのPdO(101)表面と、同表面でPd(3f)を一つ置きに金原子に置換した場合のCH4およびSO2の吸着状態を示す。図11において、右図で大きい薄い灰色の球がPd、右図の右側上下の図でSO2が吸着している大きい灰色の球がAu、Pdと結合している小さい濃い灰色の球がPdOのO、右図の右側上下のSO2の中央の小さい薄い灰色の球がSO2のS、右図の右側上下のSO2の小さい濃い灰色の球がSO2のO、右図の左側上下のPd(3f)に吸着しているCH4の中央の小さい濃い灰色の球がC、右図の左側上下のPd(3f)に吸着しているCH4の小さい薄い灰色の球がHである。CH4は、どちらの表面でも同じ形態で吸着しているのに対して、SO2の場合は、OおよびSがPdのトップに向かう形で吸着していた形態が、2つのOが向かうべき隣接するPd(3f)が失われ、Sが金へ、片方のOのみがPdへ吸着する形態に代わっていることが分かる。これが、SO2の吸着エネルギーが下がった原因である。 FIG. 11 shows the adsorption state of CH 4 and SO 2 when the original PdO (101) surface and every other Pd (3f) are replaced with gold atoms on the same surface. In FIG. 11, the large light gray sphere in the right figure is Pd, the large gray sphere in which SO 2 is adsorbed in the upper and lower figures on the right in the right figure is Au, and the small dark gray sphere in which Pd is bound is PdO. of O, the center of small light gray sphere right upper and lower SO 2 in the right figure is SO 2 S, O small dark gray balls of the right and below the SO 2 is SO 2 in the right figure, the left upper and lower right figure The small dark gray sphere in the center of CH 4 adsorbed on Pd (3f) is C, and the small light gray sphere of CH 4 adsorbed on Pd (3f) on the left and right of the right figure is H. .. CH 4 is adsorbed in the same form on both surfaces, whereas in SO 2 , the form in which O and S are adsorbed toward the top of Pd should be directed by the two O's. It can be seen that the adjacent Pd (3f) is lost, and S is adsorbed to gold and only one O is adsorbed to Pd. This is the reason why the adsorption energy of SO 2 has decreased.

O2とSO2が同時に存在する場合の安定な表面吸着状態を調査した結果を図12に示す。白抜き星(☆)シンボルは、典型的なメタン浄化実験条件のガス分圧環境を示す:T=400℃:Po_2=0.20 atm, Pso_2=5x10-6atm。Pd(3f)を一つ置きにAuに置換することにより、酸化しにくくなり、O2、SO2、SO4の吸着安定領域が縮小され、典型的な実験分圧では清浄表面が安定であることが分かった。すなわち、Pd(3f)の一部をAuに置換することにより、SO2が酸化したSO4で覆われてしまうことが抑止され、かつ、メタン浄化活性なPd(3f)が残されており、メタンの浄化反応は抑制されない。なお、この場合、Pd(3f)の数は半分になっているが、もともとCH4が吸着し、反応が進んでいる隣のPd(3f)は、吸着メタン同士の相互作用のため浄化活性は失っている。すなわちオリジナルのPdO表面に比べ浄化活性が落ちるものではない。 FIG. 12 shows the results of investigating the stable surface adsorption state when O 2 and SO 2 are present at the same time. The white star (☆) symbol indicates the gas partial pressure environment under typical methane purification experimental conditions: T = 400 ° C: Po_ 2 = 0.20 atm, Pso_ 2 = 5x10 -6 atm. By substituting Au every other Pd (3f), it becomes difficult to oxidize , the adsorption stable region of O 2 , SO 2 , and SO 4 is reduced, and the clean surface is stable at a typical experimental partial pressure. It turned out. That is, by substituting a part of Pd (3f) with Au, it is suppressed that SO 2 is covered with oxidized SO 4 , and Pd (3f) having methane purification activity remains. The purification reaction of methane is not suppressed. In this case, the number of Pd (3f) is halved, but the adjacent Pd (3f), which is originally adsorbed by CH 4 and the reaction is proceeding, has a purification activity due to the interaction between the adsorbed methane. I'm losing. That is, the purification activity is not lower than that of the original PdO surface.

残されたPd(3f)における浄化活性を評価した結果を図13に示す。分子状吸着状態(CH4*)からの活性化障壁は0.68eV で、0.02eV高くなっているが、その差は極めて低く、常温で反応が進む状態であることは変わりなく、むしろCH4分子状吸着の吸着エネルギーの絶対値の増加分だけ、反応活性が上がっている。 The result of evaluating the purification activity in the remaining Pd (3f) is shown in FIG. The activation barrier from the molecular adsorption state (CH 4 *) is 0.68 eV, which is 0.02 eV higher, but the difference is extremely low, and the reaction continues at room temperature, rather the CH 4 molecule. The reaction activity is increased by the increase in the absolute value of the adsorption energy of the state adsorption.

この系では金は表面偏析する特性をもつため、適量のAuをPdに混ぜて液相還元法等で金属ナノ粒子を作成すれば、ナノ粒子の表面にAuが析出してくる。それを酸化してPdOを作成すると、Auは、Pd(4f)よりは、Pd(3f)と置換する方が安定であるから、自動的にPd(3f)の位置にAuが配置される。最も好適なAu原子の数は表面原子の1/4の量であるが、それ以上でも隣り合わないPd(3f)が残れば硫黄被毒でメタン浄化活性が失活するものではない。そのためAu原子数は表面原子数の1/4以上1/2未満の量が望ましい。 In this system, gold has the property of surface segregation, so if an appropriate amount of Au is mixed with Pd to produce metal nanoparticles by the liquid phase reduction method or the like, Au will precipitate on the surface of the nanoparticles. When it is oxidized to create PdO, Au is more stable to replace with Pd (3f) than with Pd (4f), so Au is automatically placed at the position of Pd (3f). The most suitable number of Au atoms is 1/4 the amount of surface atoms, but if Pd (3f) that is not adjacent to each other remains even more than that, sulfur poisoning does not deactivate the methane purification activity. Therefore, the number of Au atoms is preferably 1/4 or more and less than 1/2 of the surface atomic number.

例えば、直径3.7nmの金属ナノ粒子の場合、全原子数に対して、6.3%〜12.6%のAu原子を混ぜれば良い。原子数比でAu:Pd = 1:15〜1:7、重量比で1:8〜1:4に相当する。 For example, in the case of metal nanoparticles having a diameter of 3.7 nm, 6.3% to 12.6% of Au atoms may be mixed with respect to the total number of atoms. It corresponds to Au: Pd = 1:15 to 1: 7 in atomic number ratio and 1: 8 to 1: 4 in weight ratio.

また、メタン浄化触媒は、一般のPdO担持触媒と同様な温度、時間条件で焼成処理を行い使用することができる。 Further, the methane purification catalyst can be used after being calcined under the same temperature and time conditions as a general PdO-supported catalyst.

液相還元法で、AuとPtを原子数比で1:4および1:15で混合しナノ合金を作成しZrO2上に担持した触媒を用いてモデル排ガス(CH4=0.1%, O2=10%, SO2=5ppm, H2O=3%、他He)でメタン浄化活性を実験で検証した。図14に得られたメタン浄化率の温度依存性を示す。比較のためPt、Ir、Ruを同様にZrO2上に担持した触媒の結果を記した。Pt、Ruより、低温からIrと同等の高メタン浄化率を示し、メタン浄化触媒作用がSO2、O2存在下でもあることが示された。 In the liquid phase reduction method, 1 Au and Pt in an atomic ratio: Model exhaust gas (CH 4 = 0.1% was used to create the mixing nano alloys 4 and 1:15 catalyst supported on ZrO 2, O 2 The methane purification activity was verified experimentally at = 10%, SO 2 = 5ppm, H 2 O = 3%, and others He). FIG. 14 shows the temperature dependence of the obtained methane purification rate. For comparison, the results of a catalyst in which Pt, Ir, and Ru were similarly supported on ZrO 2 are shown. From Pt and Ru, it was shown that the methane purification rate was as high as Ir from low temperature, and that the methane purification catalytic action was also in the presence of SO 2 and O 2.

Claims (3)

PdO(101)面の最表面原子に、酸素原子が3配位した原子(3f)と4配位した原子(4f)が存在するPdOにおいて、前記酸素原子が3配位した原子(3f)の少なくとも一部がPd原子以外の原子Mと置換されていることを特徴とする耐硫黄被毒性を有するメタン浄化触媒。 In PdO in which an atom (3f) having three coordinations of oxygen atoms and an atom (4f) having four coordinations are present on the outermost surface atom of the PdO (101) plane, the atom (3f) having three coordinations of oxygen atoms A sulfur-resistant methane purification catalyst characterized in that at least a part is substituted with an atom M other than a Pd atom. M原子が最表面に、最表面の金属原子数に対して1/4以上1/2未満の量で、最表面に配置されていることを特徴とする請求項1に記載の耐硫黄被毒性を有するメタン浄化触媒。 The sulfur toxicity resistance according to claim 1, wherein M atoms are arranged on the outermost surface in an amount of 1/4 or more and less than 1/2 of the number of metal atoms on the outermost surface. Methane purification catalyst with. M原子がAuもしくはAgであることを特徴とする請求項1または2に記載の耐硫黄被毒性を有するメタン浄化触媒。 The sulfur-resistant methane purification catalyst according to claim 1 or 2, wherein the M atom is Au or Ag.
JP2019173438A 2019-09-24 2019-09-24 Methane purification catalyst with resistance to sulfur poisoning Active JP7352233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019173438A JP7352233B2 (en) 2019-09-24 2019-09-24 Methane purification catalyst with resistance to sulfur poisoning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019173438A JP7352233B2 (en) 2019-09-24 2019-09-24 Methane purification catalyst with resistance to sulfur poisoning

Publications (2)

Publication Number Publication Date
JP2021049491A true JP2021049491A (en) 2021-04-01
JP7352233B2 JP7352233B2 (en) 2023-09-28

Family

ID=75157202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019173438A Active JP7352233B2 (en) 2019-09-24 2019-09-24 Methane purification catalyst with resistance to sulfur poisoning

Country Status (1)

Country Link
JP (1) JP7352233B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296866A (en) * 1993-04-16 1994-10-25 Central Res Inst Of Electric Power Ind Catalyst for combustion of methane-based fuel
JP2000210536A (en) * 1999-01-26 2000-08-02 Osaka Gas Co Ltd Method and apparatus for cleaning combustion exhaust gas
JP2000254501A (en) * 1999-03-10 2000-09-19 Osaka Gas Co Ltd Production of catalyst for removing hydrocarbon in exhaust gas containing methane
JP2011050926A (en) * 2009-09-04 2011-03-17 Osaka Univ Catalyst composition and three-way catalyst body
JP2011056379A (en) * 2009-09-09 2011-03-24 Toyota Motor Corp Exhaust gas purifying catalyst and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296866A (en) * 1993-04-16 1994-10-25 Central Res Inst Of Electric Power Ind Catalyst for combustion of methane-based fuel
JP2000210536A (en) * 1999-01-26 2000-08-02 Osaka Gas Co Ltd Method and apparatus for cleaning combustion exhaust gas
JP2000254501A (en) * 1999-03-10 2000-09-19 Osaka Gas Co Ltd Production of catalyst for removing hydrocarbon in exhaust gas containing methane
JP2011050926A (en) * 2009-09-04 2011-03-17 Osaka Univ Catalyst composition and three-way catalyst body
JP2011056379A (en) * 2009-09-09 2011-03-24 Toyota Motor Corp Exhaust gas purifying catalyst and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AREVALO ET AL.: "Sulfation of a PdO(101) methane oxidation catalyst: mechanism revealed by first principles calculati", CATAL. SCI. TECHNOL., vol. 9, no. 1, JPN6023015586, 10 December 2018 (2018-12-10), pages 232 - 240, ISSN: 0005044482 *

Also Published As

Publication number Publication date
JP7352233B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
Dey et al. Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review
Grisel et al. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts
Gluhoi et al. Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides
Konsolakis et al. Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides
Bitters et al. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane
Huang et al. Optimization of Ni-based catalysts for dry reforming of methane via alloy design: a review
Solsona et al. Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion
US10792647B2 (en) Base metal catalysts for the oxidation of carbon monoxide and volatile organic compounds
Luengnaruemitchai et al. A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream
Solunke et al. Integrating desulfurization with CO2-capture in chemical-looping combustion
Ivanova et al. Support effects in the gold‐catalyzed preferential oxidation of CO
KR101078521B1 (en) Method of desulfurizing a hydrocarbon by partial oxidation
US20040151647A1 (en) Ce/Cu/Mn-catalysts
Papavasiliou et al. A novel post‐synthesis modification of CuO‐CeO2 catalysts: effect on their activity for selective CO oxidation
Reina et al. Catalytic screening of Au/CeO2-MOx/Al2O3 catalysts (M= La, Ni, Cu, Fe, Cr, Y) in the CO-PrOx reaction
Chen et al. Au/Co3O4–TiO2 catalysts for preferential oxidation of CO in H2 stream
González-Castaño et al. Deep insight into Zr/Fe combination for successful Pt/CeO 2/Al 2 O 3 WGS catalyst doping
Rubin et al. Synthesis, characterization and activity of CuZnGaOx catalysts for the water–gas shift (WGS) reaction for H2 production and CO removal after reforming
Mozer et al. The effect of copper on the selective carbon monoxide oxidation over alumina supported gold catalysts
JP2010530473A (en) Method, system and apparatus for deep desulfurization of fuel gas
Elmhamdi et al. Catalysts of ceria supported on copper-chromium oxide: Ceria promotion of the CO-PROX activity
Naknam et al. Preferential catalytic oxidation of carbon monoxide in presence of hydrogen over bimetallic AuPt supported on zeolite catalysts
Arena et al. Physico-chemical properties and reactivity of Au/CeO2 catalysts in total and selective oxidation of CO
JP2021049491A (en) Methane purification catalyst having sulfur poisoning resistance
JP2018001080A (en) Co oxidation catalyst and method for producing the same, supported catalyst and exhaust gas treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230905

R150 Certificate of patent or registration of utility model

Ref document number: 7352233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150