JP2021048288A - Wafer processing method - Google Patents

Wafer processing method Download PDF

Info

Publication number
JP2021048288A
JP2021048288A JP2019170351A JP2019170351A JP2021048288A JP 2021048288 A JP2021048288 A JP 2021048288A JP 2019170351 A JP2019170351 A JP 2019170351A JP 2019170351 A JP2019170351 A JP 2019170351A JP 2021048288 A JP2021048288 A JP 2021048288A
Authority
JP
Japan
Prior art keywords
wafer
thermocompression bonding
sheet
bonding sheet
wettability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019170351A
Other languages
Japanese (ja)
Inventor
巻子 大前
Makiko Omae
巻子 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2019170351A priority Critical patent/JP2021048288A/en
Publication of JP2021048288A publication Critical patent/JP2021048288A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Dicing (AREA)

Abstract

To provide a wafer manufacturing method that can prevent device chips from scattering when a wafer is divided into individual device chips and can prevent deterioration in quality of the device chips.SOLUTION: A wafer processing method includes at least a divisional groove forming step of forming divisional grooves 18 having a depth corresponding to a finished thickness of device chips 42 on planned division lines 4, a wettability enhancing step of radiating ultraviolet rays onto a front surface 2a of the wafer 2 on which the divisional grooves 18 have been formed, thereby enhancing the wettability of the front surface 2a of the wafer 2, a thermocompression bonding step of placing and heating a thermocompression bonding sheet 22 on the front surface 2a of the wettability-enhanced wafer 2, and pressing the thermocompression bonding sheet 22 to crimp the thermocompression bonding sheet 22 onto the front surface 2a of the wafer 2, and a grinding step of holding a thermocompression bonding sheet 22 side by a chuck table 28 of a grinding device 26, and grinding a back surface 2b of the wafer 2 to expose the divisional grooves 18 to the back surface 2b of the wafer 2, thereby dividing the wafer into individual device chips 42.SELECTED DRAWING: Figure 3

Description

本発明は、複数のデバイスが分割予定ラインによって区画され表面に形成されたウエーハを個々のデバイスチップに分割するウエーハの加工方法に関する。 The present invention relates to a method for processing a wafer in which a plurality of devices are partitioned by a scheduled division line and a wafer formed on the surface is divided into individual device chips.

IC、LSI等の複数のデバイスが分割予定ラインによって区画され表面に形成されたウエーハは、ダイシング装置によって個々のデバイスチップに分割され、分割された各デバイスチップは携帯電話、パソコン等の電気機器に利用される。 A wafer in which a plurality of devices such as ICs and LSIs are divided by a scheduled division line and formed on the surface is divided into individual device chips by a dicing device, and each divided device chip is used for an electric device such as a mobile phone or a personal computer. It will be used.

また、デバイスチップの厚みに相当する深さの分割溝を分割予定ラインに形成し、その後ウエーハの表面に保護テープを配設してウエーハの裏面を研削し、ウエーハの裏面に分割溝を表出させて個々のデバイスチップに分割する所謂先ダイシングと称される技術が提案されている(たとえば特許文献1参照)。 Further, a dividing groove having a depth corresponding to the thickness of the device chip is formed on the planned division line, and then a protective tape is arranged on the surface of the wafer to grind the back surface of the wafer to expose the dividing groove on the back surface of the wafer. A technique called so-called pre-dicing, in which the wafer is divided into individual device chips, has been proposed (see, for example, Patent Document 1).

特開平11−405250号公報Japanese Unexamined Patent Publication No. 11-405250

しかし、先ダイシングによってデバイスチップの厚みをより薄くすることは可能であるが、デバイスチップの大きさが1mm角以下(たとえば30μm角、厚み20μm)のウエーハが個々のデバイスチップに分割されると、デバイスチップとデバイスチップとの間でウネリが生じデバイスチップに欠けが生じて品質が低下するという問題がある。 However, although it is possible to reduce the thickness of the device chip by pre-dicing, when a wafer having a device chip size of 1 mm square or less (for example, 30 μm square, thickness 20 μm) is divided into individual device chips, There is a problem that swelling occurs between the device chips and the device chips are chipped, resulting in deterioration of quality.

また、上記した問題を解決する方法として、紫外線硬化型の粘着層を有する保護テープをウエーハの表面に貼着し、その後保護テープ側から紫外線を僅かに照射して粘着層を硬化させることで、保護テープの粘着層上でのデバイスチップとデバイスチップとの間のウネリを低減できるものの、粘着力の低下によって保護テープの粘着層からデバイスチップが剥離して飛散するという問題がある。 Further, as a method for solving the above-mentioned problems, a protective tape having an ultraviolet curable adhesive layer is attached to the surface of the wafer, and then a slight amount of ultraviolet rays is irradiated from the protective tape side to cure the adhesive layer. Although the swell between the device chip and the device chip on the adhesive layer of the protective tape can be reduced, there is a problem that the device chip is peeled off from the adhesive layer of the protective tape and scattered due to the decrease in adhesive strength.

上記事実に鑑みてなされた本発明の課題は、ウエーハを個々のデバイスチップに分割する際にデバイスチップが飛散するのを防止することができ、かつデバイスチップの品質の低下を防止することができるウエーハの加工方法を提供することである。 The problem of the present invention made in view of the above facts is that it is possible to prevent the device chips from scattering when the wafer is divided into individual device chips, and it is possible to prevent the quality of the device chips from deteriorating. To provide a processing method for wafers.

本発明は上記課題を解決するために以下のウエーハの加工方法を提供する。すなわち、複数のデバイスが分割予定ラインによって区画され表面に形成されたウエーハを個々のデバイスチップに分割するウエーハの加工方法であって、デバイスチップの仕上がり厚さに相当する深さの分割溝を分割予定ラインに形成する分割溝形成工程と、該分割溝が形成されたウエーハの表面に紫外線を照射してウエーハの表面の濡れ性を向上させる濡れ性向上工程と、濡れ性が向上したウエーハの表面に熱圧着シートを配設して加熱すると共に押圧して熱圧着シートをウエーハの表面に圧着する熱圧着工程と、熱圧着シート側を研削装置のチャックテーブルで保持してウエーハの裏面を研削し該分割溝をウエーハの裏面に表出させて個々のデバイスチップに分割する研削工程と、から少なくとも構成されるウエーハの加工方法を本発明は提供する。 The present invention provides the following wafer processing method in order to solve the above problems. That is, it is a method of processing a wafer in which a plurality of devices are partitioned by a scheduled division line and the wafer formed on the surface is divided into individual device chips, and a dividing groove having a depth corresponding to the finished thickness of the device chip is divided. A step of forming a split groove formed on a planned line, a step of improving the wettability of the surface of the wafer by irradiating the surface of the wafer on which the split groove is formed with ultraviolet rays, and a step of improving the wettability of the surface of the wafer, and the surface of the wafer having improved wettability. A thermocompression bonding sheet is placed on the wafer, heated and pressed to press the thermocompression bonding sheet onto the surface of the wafer, and the surface of the wafer is held by the chuck table of the grinding device to grind the back surface of the wafer. The present invention provides a method for processing a wafer, which comprises at least a grinding step in which the dividing groove is exposed on the back surface of the wafer and divided into individual device chips.

該熱圧着シートはポリオレフィン系シートまたはポリエステル系シートであるのが好適である。該熱圧着シートは、該ポリオレフィン系シートのうち、ポリエチレンシート、ポリプロピレンシートまたはポリスチレンシートのいずれかであるのが好都合である。該熱圧着工程における該熱圧着シートの加熱温度は、該熱圧着シートが該ポリエチレンシートの場合には120℃〜140℃であり、該熱圧着シートが該ポリプロピレンシートの場合には160℃〜180℃であり、該熱圧着シートが該ポリスチレンシートの場合には220℃〜240℃であるのが好ましい。該熱圧着シートは、該ポリエステル系シートのうち、ポリエチレンテレフタレートシートまたはポリエチレンナフタレートシートのいずれかであるのが好適である。該熱圧着工程における該熱圧着シートの加熱温度は、該熱圧着シートが該ポリエチレンテレフタレートシートの場合には250℃〜270℃であり、該熱圧着シートが該ポリエチレンナフタレートシートの場合には160℃〜180℃であるのが好都合である。 The thermocompression bonding sheet is preferably a polyolefin-based sheet or a polyester-based sheet. It is convenient that the thermocompression bonding sheet is either a polyethylene sheet, a polypropylene sheet or a polystyrene sheet among the polyolefin-based sheets. The heating temperature of the thermocompression bonding sheet in the thermocompression bonding step is 120 ° C. to 140 ° C. when the thermocompression bonding sheet is a polyethylene sheet, and 160 ° C. to 180 ° C. when the thermocompression bonding sheet is a polypropylene sheet. The temperature is preferably 220 ° C. to 240 ° C. when the thermocompression bonding sheet is the polystyrene sheet. The thermocompression bonding sheet is preferably either a polyethylene terephthalate sheet or a polyethylene naphthalate sheet among the polyester-based sheets. The heating temperature of the thermocompression bonding sheet in the thermocompression bonding step is 250 ° C. to 270 ° C. when the thermocompression bonding sheet is the polyethylene terephthalate sheet, and 160 when the thermocompression bonding sheet is the polyethylene naphthalate sheet. It is convenient that the temperature is between ° C. and 180 ° C.

本発明のウエーハの加工方法は、デバイスチップの仕上がり厚さに相当する深さの分割溝を分割予定ラインに形成する分割溝形成工程と、該分割溝が形成されたウエーハの表面に紫外線を照射してウエーハの表面の濡れ性を向上させる濡れ性向上工程と、濡れ性が向上したウエーハの表面に熱圧着シートを配設して加熱すると共に押圧して熱圧着シートをウエーハの表面に圧着する熱圧着工程と、熱圧着シート側を研削装置のチャックテーブルで保持してウエーハの裏面を研削し該分割溝をウエーハの裏面に表出させて個々のデバイスチップに分割する研削工程と、から少なくとも構成されていることから、研削工程においてウエーハを個々のデバイスチップに分割する際に、熱圧着シートからデバイスチップが飛散するのを防止することができると共に、熱圧着シート上においてデバイスチップとデバイスチップとの間のウネリを抑制することができ、デバイスチップに欠けが生じることがなくデバイスチップの品質の低下を防止することができる。 The wafer processing method of the present invention includes a split groove forming step of forming a split groove having a depth corresponding to the finished thickness of the device chip on the planned split line, and irradiating the surface of the wafer on which the split groove is formed with ultraviolet rays. A thermocompression bonding sheet is placed on the surface of the wafer with improved wettability, and the surface of the wafer is heated and pressed to press the thermocompression bonding sheet against the surface of the wafer. At least from the thermocompression bonding process, the thermocompression bonding sheet side is held by the chuck table of the grinding device, the back surface of the wafer is ground, and the dividing groove is exposed on the back surface of the wafer and divided into individual device chips. Since it is configured, it is possible to prevent the device chip from scattering from the thermocompression bonding sheet when the wafer is divided into individual device chips in the grinding process, and the device chip and the device chip are placed on the thermocompression bonding sheet. It is possible to suppress swelling between the device chips and the device chips without chipping, and it is possible to prevent deterioration of the quality of the device chips.

ウエーハの斜視図。Perspective view of the wafer. (a)分割溝形成工程を実施している状態を示す斜視図、(b)分割溝が形成されたウエーハの斜視図。(A) A perspective view showing a state in which the dividing groove forming step is performed, and (b) a perspective view of a wafer in which the dividing groove is formed. 濡れ性向上工程を実施している状態を示す斜視図。The perspective view which shows the state which carries out the wettability improvement process. (a)ウエーハの表面に熱圧着シートを配設している状態を示す斜視図、(b)熱圧着シートを加熱している状態を示す斜視図。(A) A perspective view showing a state in which a thermocompression bonding sheet is arranged on the surface of a wafer, and (b) a perspective view showing a state in which the thermocompression bonding sheet is heated. (a)研削工程を実施している状態を示す斜視図、(b)個々のデバイスチップに分割されたウエーハの斜視図。(A) A perspective view showing a state in which the grinding process is performed, and (b) a perspective view of a wafer divided into individual device chips. ウエーハ移し替え工程を実施した状態を示す斜視図。The perspective view which shows the state which carried out the wafer transfer process.

以下、本発明のウエーハの加工方法の好適実施形態について図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the wafer processing method of the present invention will be described with reference to the drawings.

図1には、本発明のウエーハの加工方法によって加工が施される円板状のウエーハ2が示されている。図示の実施形態のウエーハ2はシリコン(Si)から形成されている。ウエーハ2の表面2aは格子状の分割予定ライン4によって複数の矩形領域に区画されており、複数の矩形領域のそれぞれにはIC、LSI等のデバイス6が形成されている。 FIG. 1 shows a disc-shaped wafer 2 processed by the wafer processing method of the present invention. The wafer 2 of the illustrated embodiment is formed of silicon (Si). The surface 2a of the wafer 2 is divided into a plurality of rectangular regions by a grid-like division schedule line 4, and devices 6 such as ICs and LSIs are formed in each of the plurality of rectangular regions.

図示の実施形態のウエーハの加工方法では、まず、デバイスチップの仕上がり厚さに相当する深さの分割溝を分割予定ライン4に形成する分割溝形成工程を実施する。分割溝形成工程は、たとえば図2に一部を示すダイシング装置8を用いて実施することができる。 In the wafer processing method of the illustrated embodiment, first, a dividing groove forming step of forming a dividing groove having a depth corresponding to the finished thickness of the device chip on the planned division line 4 is performed. The dividing groove forming step can be carried out, for example, by using the dicing device 8 shown in part in FIG.

ダイシング装置8は、ウエーハ2を吸引保持するチャックテーブル10と、チャックテーブル10に吸引保持されたウエーハ2を切削する切削手段12とを備える。チャックテーブル10は、上下方向に延びる軸線を中心として回転自在に構成されていると共に、図2に矢印Xで示すX軸方向に移動自在に構成されている。切削手段12は、X軸方向に直交するY軸方向(図2に矢印Yで示す方向)を軸心として回転自在に構成されたスピンドル14と、スピンドル14の先端に固定された環状の切削ブレード16とを含む。なお、X軸方向およびY軸方向が規定する平面は実質上水平である。 The dicing device 8 includes a chuck table 10 that sucks and holds the wafer 2 and a cutting means 12 that cuts the wafer 2 that is sucked and held by the chuck table 10. The chuck table 10 is configured to be rotatable around an axis extending in the vertical direction, and is configured to be movable in the X-axis direction indicated by the arrow X in FIG. The cutting means 12 includes a spindle 14 rotatably configured around the Y-axis direction (direction indicated by the arrow Y in FIG. 2) orthogonal to the X-axis direction, and an annular cutting blade fixed to the tip of the spindle 14. 16 and are included. The plane defined by the X-axis direction and the Y-axis direction is substantially horizontal.

分割溝形成工程では、まず、ウエーハ2の表面2aを上に向けて、チャックテーブル10の上面でウエーハ2を吸引保持する。次いで、ダイシング装置8の撮像手段(図示していない。)で上方からウエーハ2を撮像し、撮像手段で撮像したウエーハ2の画像に基づいて、分割予定ライン4をX軸方向に整合させると共に、X軸方向に整合させた分割予定ライン4を切削ブレード16の下方に位置づける。 In the dividing groove forming step, first, the wafer 2 is sucked and held on the upper surface of the chuck table 10 with the surface 2a of the wafer 2 facing upward. Next, the wafer 2 is imaged from above by the imaging means (not shown) of the dicing apparatus 8, and the scheduled division line 4 is aligned in the X-axis direction based on the image of the wafer 2 captured by the imaging means. The planned division line 4 aligned in the X-axis direction is positioned below the cutting blade 16.

次いで、図2に矢印Aで示す方向に高速回転させた切削ブレード16の刃先をデバイスチップの仕上がり厚さに相当する深さまで、ウエーハ2の表面2a側から分割予定ライン4に切り込ませると共に、切削手段12に対してチャックテーブル10を相対的にX軸方向に加工送りする分割溝形成加工を施す。これによって、分割予定ライン4に沿ってデバイスチップの厚みに相当する深さの分割溝18をウエーハ2に形成することができる。 Next, the cutting edge of the cutting blade 16 rotated at high speed in the direction indicated by the arrow A in FIG. 2 is cut into the planned division line 4 from the surface 2a side of the wafer 2 to a depth corresponding to the finished thickness of the device chip. A split groove forming process is performed in which the chuck table 10 is processed and fed relative to the cutting means 12 in the X-axis direction. As a result, the dividing groove 18 having a depth corresponding to the thickness of the device chip can be formed in the wafer 2 along the scheduled division line 4.

次いで、分割予定ライン4のY軸方向の間隔の分だけ、チャックテーブル10に対して切削ブレード16を相対的にY軸方向に割り出し送りしながら分割溝形成加工を繰り返し、X軸方向に整合させた分割予定ライン4のすべてに沿って分割溝18を形成する。また、チャックテーブル10を90度回転させた上で、割り出し送りしながら分割溝形成加工を繰り返し、図2(b)に示すとおり、先に分割溝18を形成した分割予定ライン4と直交する分割予定ライン4のすべてに沿って分割溝18を形成する。このようにして、デバイスチップの仕上がり厚さに相当する深さの分割溝18を格子状の分割予定ライン4に形成する。 Next, the division groove forming process is repeated while indexing and feeding the cutting blade 16 relative to the chuck table 10 in the Y-axis direction by the distance in the Y-axis direction of the planned division line 4, and aligning the cutting blade 16 in the X-axis direction. A dividing groove 18 is formed along all of the planned division lines 4. Further, after rotating the chuck table 10 by 90 degrees, the division groove forming process is repeated while indexing and feeding, and as shown in FIG. 2B, the division orthogonal to the planned division line 4 in which the division groove 18 is formed earlier is formed. Dividing grooves 18 are formed along all of the planned lines 4. In this way, the dividing groove 18 having a depth corresponding to the finished thickness of the device chip is formed in the grid-like division scheduled line 4.

分割溝形成工程を実施した後、分割溝18が形成されたウエーハ2の表面2aに紫外線を照射してウエーハ2の表面2aの濡れ性を向上させる濡れ性向上工程を実施する。 After carrying out the dividing groove forming step, the wettability improving step of irradiating the surface 2a of the wafer 2 on which the dividing groove 18 is formed with ultraviolet rays to improve the wettability of the surface 2a of the wafer 2 is carried out.

濡れ性向上工程では、図3に示すとおり、まず、ウエーハ2の表面2aを上側に向け、裏面2bを下側に向けた状態で、紫外線照射装置20の下方にウエーハ2を位置づける。次いで、紫外線照射装置20からウエーハ2の表面2aに紫外線を照射(たとえば、出力100Wで1〜2分程度照射)する。これによって、ウエーハ2の表面2aに存在する有機物等を除去し、表面2aの濡れ性を向上させることができる。 In the wettability improving step, as shown in FIG. 3, first, the wafer 2 is positioned below the ultraviolet irradiation device 20 with the front surface 2a of the wafer 2 facing upward and the back surface 2b facing downward. Next, the surface 2a of the wafer 2 is irradiated with ultraviolet rays from the ultraviolet irradiation device 20 (for example, irradiation with an output of 100 W for about 1 to 2 minutes). As a result, organic substances and the like existing on the surface 2a of the wafer 2 can be removed, and the wettability of the surface 2a can be improved.

濡れ性向上工程を実施した後、濡れ性が向上したウエーハ2の表面2aに熱圧着シートを配設して加熱すると共に押圧して熱圧着シートをウエーハ2の表面2aに圧着する熱圧着工程を実施する。 After carrying out the wettability improving step, a thermocompression bonding step is performed in which a thermocompression bonding sheet is arranged on the surface 2a of the wafer 2 having improved wettability, heated and pressed to press the thermocompression bonding sheet onto the surface 2a of the wafer 2. carry out.

熱圧着工程では、まず、図4(a)に示すとおり、ウエーハ2と同一の直径を有する円形状の熱圧着シート22をウエーハ2の表面2aに配設する。熱圧着シート22は、適宜の温度に加熱されると粘着力を発揮すると共に軟化するシートであり、熱圧着シート22の厚みは20〜100μm程度でよい。 In the thermocompression bonding step, first, as shown in FIG. 4A, a circular thermocompression bonding sheet 22 having the same diameter as the wafer 2 is arranged on the surface 2a of the wafer 2. The thermocompression bonding sheet 22 is a sheet that exhibits adhesive strength and softens when heated to an appropriate temperature, and the thickness of the thermocompression bonding sheet 22 may be about 20 to 100 μm.

熱圧着シート22としては、ポリオレフィン系シートまたはポリエステル系シートを用いることができる。熱圧着シート22として用いることができるポリオレフィン系シートは、たとえば、ポリエチレン(PE)シート、ポリプロピレン(PP)シート、ポリスチレン(PS)シートを挙げることができる。また、熱圧着シート22として用いることができるポリエステル系シートは、たとえば、ポリエチレンテレフタレートシート(PET)、ポリエチレンナフタレート(PEN)シートを挙げることができる。なお、熱圧着シート22には粘着層(糊層)は形成されていない。 As the thermocompression bonding sheet 22, a polyolefin-based sheet or a polyester-based sheet can be used. Examples of the polyolefin-based sheet that can be used as the thermocompression bonding sheet 22 include a polyethylene (PE) sheet, a polypropylene (PP) sheet, and a polystyrene (PS) sheet. Further, examples of the polyester-based sheet that can be used as the thermocompression bonding sheet 22 include a polyethylene terephthalate sheet (PET) and a polyethylene naphthalate (PEN) sheet. The thermocompression bonding sheet 22 does not have an adhesive layer (glue layer).

ウエーハ2の表面2aに熱圧着シート22を配設した後、図4(b)に示すとおり、熱圧着シート22が粘着力を発揮すると共に軟化する温度に調整した加熱ローラ24で熱圧着シート22を下方に押圧しながら加熱ローラ24を転がすことにより、熱圧着シート22を加熱して軟化させると共に熱圧着シート22に粘着力を発揮させる。これによって軟化した熱圧着シート22がウエーハ2の表面2aに密着すると共に、熱圧着シート22の粘着力によって熱圧着シート22がウエーハ2の表面2aに圧着する。 After arranging the thermocompression bonding sheet 22 on the surface 2a of the wafer 2, as shown in FIG. 4B, the thermocompression bonding sheet 22 is subjected to a heating roller 24 adjusted to a temperature at which the thermocompression bonding sheet 22 exhibits adhesive strength and softens. By rolling the heating roller 24 while pressing downward, the thermocompression bonding sheet 22 is heated and softened, and the thermocompression bonding sheet 22 exerts an adhesive force. The thermocompression bonding sheet 22 softened by this is brought into close contact with the surface 2a of the wafer 2, and the thermocompression bonding sheet 22 is pressure-bonded to the surface 2a of the wafer 2 by the adhesive force of the thermocompression bonding sheet 22.

図4(b)に示す加熱ローラ24には、電気ヒータおよび温度センサ(いずれも図示していない。)が内蔵されており、適宜の制御装置によって加熱ローラ24の外周面の温度が調整される。加熱ローラ24の外周面にはフッ素樹脂がコーティングされており、熱圧着シート22が粘着力を発揮しても熱圧着シート22が加熱ローラ24に貼り付くことがないようになっている。 The heating roller 24 shown in FIG. 4B includes an electric heater and a temperature sensor (neither of which is shown), and the temperature of the outer peripheral surface of the heating roller 24 is adjusted by an appropriate control device. .. The outer peripheral surface of the heating roller 24 is coated with fluororesin so that the thermocompression bonding sheet 22 does not stick to the heating roller 24 even if the thermocompression bonding sheet 22 exerts its adhesive strength.

熱圧着工程における熱圧着シート22(ポリオレフィン系シート)の加熱温度は、熱圧着シート22がポリエチレンシートの場合には120℃〜140℃であり、熱圧着シート22がポリプロピレンシートの場合には160℃〜180℃であり、熱圧着シート22がポリスチレンシートの場合には220℃〜240℃であるのが好ましい。 The heating temperature of the thermocompression bonding sheet 22 (polyolefin sheet) in the thermocompression bonding step is 120 ° C. to 140 ° C. when the thermocompression bonding sheet 22 is a polyethylene sheet, and 160 ° C. when the thermocompression bonding sheet 22 is a polypropylene sheet. The temperature is about 180 ° C., and when the thermocompression bonding sheet 22 is a polystyrene sheet, the temperature is preferably 220 ° C. to 240 ° C.

熱圧着工程における熱圧着シート22(ポリエステル系シート)の加熱温度は、熱圧着シート22がポリエチレンテレフタレートシートの場合には250℃〜270℃であり、熱圧着シート22がポリエチレンナフタレートシートの場合には160℃〜180℃であるのが好適である。 The heating temperature of the thermocompression bonding sheet 22 (polyester-based sheet) in the thermocompression bonding step is 250 ° C. to 270 ° C. when the thermocompression bonding sheet 22 is a polyethylene terephthalate sheet, and when the thermocompression bonding sheet 22 is a polyethylene naphthalate sheet. Is preferably 160 ° C to 180 ° C.

熱圧着工程では、ウエーハ2の表面2aの濡れ性が向上した状態で、ウエーハ2の表面2aに熱圧着シート22を圧着するので、ウエーハ2の表面2aと熱圧着シート22との間の接合力は、ウエーハ2の表面2aの濡れ性が向上していない状態でウエーハ2の表面2aに熱圧着シート22を圧着した場合の接合力よりも強い。 In the thermocompression bonding step, the thermocompression bonding sheet 22 is bonded to the surface 2a of the wafer 2 in a state where the wettability of the surface 2a of the wafer 2 is improved, so that the bonding force between the surface 2a of the wafer 2 and the thermocompression bonding sheet 22 is applied. Is stronger than the bonding force when the thermocompression bonding sheet 22 is pressure-bonded to the surface 2a of the wafer 2 in a state where the wettability of the surface 2a of the wafer 2 is not improved.

熱圧着工程を実施した後、熱圧着シート22側を研削装置のチャックテーブルで保持してウエーハ2の裏面2bを研削し分割溝18をウエーハ2の裏面2bに表出させて個々のデバイスチップに分割する研削工程を実施する。研削工程は、たとえば図5に一部を示す研削装置26を用いて実施することができる。 After performing the thermocompression bonding step, the thermocompression bonding sheet 22 side is held by the chuck table of the grinding device, the back surface 2b of the wafer 2 is ground, and the dividing groove 18 is exposed on the back surface 2b of the wafer 2 to form individual device chips. Carry out a grinding process to divide. The grinding step can be carried out, for example, by using the grinding device 26 shown in part in FIG.

研削装置26は、ウエーハ2を吸引保持するチャックテーブル28と、チャックテーブル28に吸引保持されたウエーハ2を研削する研削手段30とを備える。上面においてウエーハ2を吸引保持するチャックテーブル28は、上下方向に延びる軸線を中心として回転自在に構成されている。研削手段30は、上下方向を軸心として回転自在に構成されたスピンドル32と、スピンドル32の下端に固定された円板状のホイールマウント34とを含む。ホイールマウント34の下面にはボルト36によって環状の研削ホイール38が固定されている。研削ホイール38の下面の外周縁部には、周方向に間隔をおいて環状に配置された複数の研削砥石40が固定されている。 The grinding device 26 includes a chuck table 28 that sucks and holds the wafer 2 and a grinding means 30 that grinds the wafer 2 that is sucked and held by the chuck table 28. The chuck table 28 that sucks and holds the wafer 2 on the upper surface is rotatably configured around an axis extending in the vertical direction. The grinding means 30 includes a spindle 32 rotatably configured about the vertical direction as an axis, and a disc-shaped wheel mount 34 fixed to the lower end of the spindle 32. An annular grinding wheel 38 is fixed to the lower surface of the wheel mount 34 by bolts 36. A plurality of grinding wheels 40 arranged in an annular shape at intervals in the circumferential direction are fixed to the outer peripheral edge of the lower surface of the grinding wheel 38.

図5を参照して説明を続けると、研削工程では、まず、ウエーハ2の裏面2bを上に向けて、チャックテーブル28の上面で保護部材22側からウエーハ2を吸引保持する。次いで、上方からみて反時計回りに所定の回転速度(たとえば300rpm)でチャックテーブル28を回転させる。また、上方からみて反時計回りに所定の回転速度(たとえば6000rpm)でスピンドル32を回転させる。 Continuing the description with reference to FIG. 5, in the grinding process, first, the back surface 2b of the wafer 2 is turned upward, and the wafer 2 is sucked and held from the protective member 22 side on the upper surface of the chuck table 28. Next, the chuck table 28 is rotated at a predetermined rotation speed (for example, 300 rpm) counterclockwise when viewed from above. Further, the spindle 32 is rotated at a predetermined rotation speed (for example, 6000 rpm) counterclockwise when viewed from above.

次いで、研削装置26の昇降手段(図示していない。)でスピンドル32を下降させ、ウエーハ2の裏面2bに研削砥石40を接触させる。そして、所定の研削送り速度(たとえば1.0μm/s)でスピンドル32を下降させる。これによって、図5(b)に示すとおり、ウエーハ2の裏面2bを研削し分割溝18をウエーハ2の裏面2bに表出させてウエーハ2を個々のデバイスチップ42に分割することができる。 Next, the spindle 32 is lowered by an elevating means (not shown) of the grinding device 26, and the grinding wheel 40 is brought into contact with the back surface 2b of the wafer 2. Then, the spindle 32 is lowered at a predetermined grinding feed rate (for example, 1.0 μm / s). As a result, as shown in FIG. 5B, the back surface 2b of the wafer 2 can be ground to expose the dividing groove 18 on the back surface 2b of the wafer 2, and the wafer 2 can be divided into individual device chips 42.

研削工程を実施した後、図6に示すとおり、環状フレーム44の開口部44aに配置された粘着テープ46に、ウエーハ2の形態を保持した状態で複数のデバイスチップ42を移し替えるウエーハ移し替え工程を実施する。ウエーハ移し替え工程では、まず、ウエーハ2の表面2a側(デバイス6側)を上に向けて、複数のデバイスチップ42を粘着テープ46に貼り付ける。次いで、熱圧着シート22をデバイスチップ42から除去する。 After performing the grinding step, as shown in FIG. 6, a wafer transfer step of transferring a plurality of device chips 42 to the adhesive tape 46 arranged in the opening 44a of the annular frame 44 while maintaining the form of the wafer 2. To carry out. In the wafer transfer step, first, the plurality of device chips 42 are attached to the adhesive tape 46 with the surface 2a side (device 6 side) of the wafer 2 facing upward. Next, the thermocompression bonding sheet 22 is removed from the device chip 42.

以上のとおりであり、図示の実施形態のウエーハの加工方法においては、濡れ性が向上したウエーハ2の表面2aに熱圧着シート22を熱圧着しており、ウエーハ2の表面2aの濡れ性が向上していない状態でウエーハ2の表面2aに熱圧着シート22を圧着した場合よりも、ウエーハ2の表面2aと熱圧着シート22とが強く接合するため、研削工程においてウエーハ2を個々のデバイスチップ42に分割する際に、熱圧着シート22からデバイスチップ42が飛散するのを防止することができる。また、熱圧着シート22には粘着層が存在しないため、熱圧着シート22上におけるデバイスチップ42とデバイスチップ42との間のウネリを抑制することができ、デバイスチップ42に欠けが生じることがなくデバイスチップ42の品質の低下を防止することができる。 As described above, in the wafer processing method of the illustrated embodiment, the thermocompression bonding sheet 22 is thermocompression bonded to the surface 2a of the wafer 2 having improved wettability, and the wettability of the surface 2a of the wafer 2 is improved. Since the surface 2a of the wafer 2 and the thermocompression bonding sheet 22 are more strongly bonded than when the thermocompression bonding sheet 22 is pressure-bonded to the surface 2a of the wafer 2 in the non-exposed state, the wafer 2 is attached to the individual device chips 42 in the grinding process. It is possible to prevent the device chip 42 from scattering from the thermocompression bonding sheet 22 when the wafer is divided into two. Further, since the thermocompression bonding sheet 22 does not have an adhesive layer, it is possible to suppress swelling between the device chip 42 and the device chip 42 on the thermocompression bonding sheet 22, and the device chip 42 is not chipped. It is possible to prevent deterioration of the quality of the device chip 42.

2:ウエーハ
2a:ウエーハの表面
2b:ウエーハの裏面
4:分割予定ライン
6:デバイス
18:分割溝
22:熱圧着シート
26:研削装置
28:チャックテーブル
42:デバイスチップ
2: Wafer 2a: Wafer front surface 2b: Wafer back surface 4: Scheduled division line 6: Device 18: Division groove 22: Thermocompression bonding sheet 26: Grinding device 28: Chuck table 42: Device chip

Claims (6)

複数のデバイスが分割予定ラインによって区画され表面に形成されたウエーハを個々のデバイスチップに分割するウエーハの加工方法であって、
デバイスチップの仕上がり厚さに相当する深さの分割溝を分割予定ラインに形成する分割溝形成工程と、
該分割溝が形成されたウエーハの表面に紫外線を照射してウエーハの表面の濡れ性を向上させる濡れ性向上工程と、
濡れ性が向上したウエーハの表面に熱圧着シートを配設して加熱すると共に押圧して熱圧着シートをウエーハの表面に圧着する熱圧着工程と、
熱圧着シート側を研削装置のチャックテーブルで保持してウエーハの裏面を研削し該分割溝をウエーハの裏面に表出させて個々のデバイスチップに分割する研削工程と、
から少なくとも構成されるウエーハの加工方法。
It is a processing method of a wafer in which a plurality of devices are partitioned by a scheduled division line and the wafer formed on the surface is divided into individual device chips.
A dividing groove forming step of forming a dividing groove having a depth corresponding to the finished thickness of the device chip on the planned division line, and
A wettability improving step of irradiating the surface of the wafer on which the dividing groove is formed with ultraviolet rays to improve the wettability of the surface of the wafer.
A thermocompression bonding process in which a thermocompression bonding sheet is placed on the surface of the wafer with improved wettability, heated and pressed to press the thermocompression bonding sheet onto the surface of the wafer.
A grinding process in which the thermocompression bonding sheet side is held by a chuck table of a grinding device, the back surface of the wafer is ground, and the dividing groove is exposed on the back surface of the wafer to be divided into individual device chips.
Wafer processing method consisting of at least.
該熱圧着シートはポリオレフィン系シートまたはポリエステル系シートである請求項1記載のウエーハの加工方法。 The method for processing a wafer according to claim 1, wherein the thermocompression bonding sheet is a polyolefin-based sheet or a polyester-based sheet. 該熱圧着シートは、該ポリオレフィン系シートのうち、ポリエチレンシート、ポリプロピレンシートまたはポリスチレンシートのいずれかである請求項2記載のウエーハの加工方法。 The method for processing a wafer according to claim 2, wherein the thermocompression bonding sheet is any one of a polyethylene sheet, a polypropylene sheet, and a polystyrene sheet among the polyolefin-based sheets. 該熱圧着工程における該熱圧着シートの加熱温度は、該熱圧着シートが該ポリエチレンシートの場合には120℃〜140℃であり、該熱圧着シートが該ポリプロピレンシートの場合には160℃〜180℃であり、該熱圧着シートが該ポリスチレンシートの場合には220℃〜240℃である請求項3記載のウエーハの加工方法。 The heating temperature of the thermocompression bonding sheet in the thermocompression bonding step is 120 ° C. to 140 ° C. when the thermocompression bonding sheet is a polyethylene sheet, and 160 ° C. to 180 ° C. when the thermocompression bonding sheet is a polypropylene sheet. The method for processing a wafer according to claim 3, wherein the temperature is 220 ° C to 240 ° C when the thermocompression bonding sheet is a polystyrene sheet. 該熱圧着シートは、該ポリエステル系シートのうち、ポリエチレンテレフタレートシートまたはポリエチレンナフタレートシートのいずれかである請求項2記載のウエーハの加工方法。 The method for processing a wafer according to claim 2, wherein the thermocompression bonding sheet is either a polyethylene terephthalate sheet or a polyethylene naphthalate sheet among the polyester-based sheets. 該熱圧着工程における該熱圧着シートの加熱温度は、該熱圧着シートが該ポリエチレンテレフタレートシートの場合には250℃〜270℃であり、該熱圧着シートが該ポリエチレンナフタレートシートの場合には160℃〜180℃である請求項5記載のウエーハの加工方法。 The heating temperature of the thermocompression bonding sheet in the thermocompression bonding step is 250 ° C. to 270 ° C. when the thermocompression bonding sheet is the polyethylene terephthalate sheet, and 160 when the thermocompression bonding sheet is the polyethylene naphthalate sheet. The method for processing a wafer according to claim 5, wherein the temperature is between ° C. and 180 ° C.
JP2019170351A 2019-09-19 2019-09-19 Wafer processing method Pending JP2021048288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019170351A JP2021048288A (en) 2019-09-19 2019-09-19 Wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170351A JP2021048288A (en) 2019-09-19 2019-09-19 Wafer processing method

Publications (1)

Publication Number Publication Date
JP2021048288A true JP2021048288A (en) 2021-03-25

Family

ID=74878732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170351A Pending JP2021048288A (en) 2019-09-19 2019-09-19 Wafer processing method

Country Status (1)

Country Link
JP (1) JP2021048288A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150235A (en) * 2003-11-12 2005-06-09 Three M Innovative Properties Co Semiconductor surface protection sheet and method therefor
JP2007165636A (en) * 2005-12-14 2007-06-28 Nippon Zeon Co Ltd Method for manufacturing semiconductor element
JP2016004829A (en) * 2014-06-13 2016-01-12 株式会社ディスコ Wafer processing method
JP2018041823A (en) * 2016-09-07 2018-03-15 株式会社ディスコ Tape pasting method
JP2019121646A (en) * 2017-12-28 2019-07-22 株式会社ディスコ Method of processing wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150235A (en) * 2003-11-12 2005-06-09 Three M Innovative Properties Co Semiconductor surface protection sheet and method therefor
JP2007165636A (en) * 2005-12-14 2007-06-28 Nippon Zeon Co Ltd Method for manufacturing semiconductor element
JP2016004829A (en) * 2014-06-13 2016-01-12 株式会社ディスコ Wafer processing method
JP2018041823A (en) * 2016-09-07 2018-03-15 株式会社ディスコ Tape pasting method
JP2019121646A (en) * 2017-12-28 2019-07-22 株式会社ディスコ Method of processing wafer

Similar Documents

Publication Publication Date Title
JP7154809B2 (en) Wafer processing method
US9852949B2 (en) Wafer processing method
CN108022876B (en) Method for processing wafer
JP2017079291A (en) Wafer processing method
TWI793331B (en) Chamfer processing method
JP2017092125A (en) Processing method for wafer
JP2018074083A (en) Processing method of wafer
KR20190120701A (en) Processing method of a wafer
KR20170085949A (en) Wafer processing method
JP2021048288A (en) Wafer processing method
JP2018067647A (en) Wafer processing method
JP6783620B2 (en) Wafer processing method
US20150093882A1 (en) Wafer processing method
JP7343339B2 (en) Wafer processing method
JP6740081B2 (en) Wafer processing method
JP7355568B2 (en) Wafer processing method
TW201906060A (en) Stripping device
JP2005260154A (en) Method of manufacturing chip
KR20170122662A (en) Processing method of a wafer
JP2021048287A (en) Wafer processing method
JP6633447B2 (en) Wafer processing method
JP2020098827A (en) Wafer processing method
JP7404007B2 (en) Wafer processing method
JP2018133370A (en) Wafer processing method
KR20240002696A (en) Method of forming mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231010