JP2021047558A - Patrol inspection system - Google Patents

Patrol inspection system Download PDF

Info

Publication number
JP2021047558A
JP2021047558A JP2019168915A JP2019168915A JP2021047558A JP 2021047558 A JP2021047558 A JP 2021047558A JP 2019168915 A JP2019168915 A JP 2019168915A JP 2019168915 A JP2019168915 A JP 2019168915A JP 2021047558 A JP2021047558 A JP 2021047558A
Authority
JP
Japan
Prior art keywords
patrol
floating
patrol inspection
guide pole
protection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019168915A
Other languages
Japanese (ja)
Other versions
JP7283322B2 (en
Inventor
伸行 藤原
Nobuyuki Fujiwara
伸行 藤原
貴雅 堀
Takamasa Hori
貴雅 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2019168915A priority Critical patent/JP7283322B2/en
Publication of JP2021047558A publication Critical patent/JP2021047558A/en
Application granted granted Critical
Publication of JP7283322B2 publication Critical patent/JP7283322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

To improve safety and the degree of freedom for imaging points when picking up an image of a large-scale facility such as a transformer, a breaker or the like of a substation from a height to inspect it.SOLUTION: A system 31 for patrol inspection of an inspection object comprises a patrol inspection robot 3 freely moving to a monitoring point for the inspection object and a floating imaging device 4 freely floatable to be mounted on the patrol inspection robot 3 and picking up an image of the inspection object. A telescopic guide pole 6 is stood on an upper surface of the patrol inspection robot 3, and a guide hole through which the guide pole 6 is to be inserted is formed in the floating imaging device 4. An impact protection device 30 which absorbs impact at the time of collision against the floating imaging device 4 is installed on the patrol inspection robot 3. This impact protection device 30 comprises a pair of upper and lower support plates 34 and 36 and a coil spring 35 interposed between both of the plates 34 and 36.SELECTED DRAWING: Figure 14

Description

本発明は、例えば変電所設備などの点検対象について巡視点検を行うシステムであって、特に浮遊型撮影装置を搭載した巡視点検システムに関する。 The present invention relates to a system for performing a patrol inspection of an inspection target such as a substation facility, and particularly to a patrol inspection system equipped with a floating type photographing device.

移動ロボットを用いて各種設備を点検する方法としては、特許文献1,2が公知となっている。特許文献1の方法では、カメラを搭載したロボットを遠隔から操作することで作業者が出入りし難い天井裏や床下を撮影して点検を行う。 Patent Documents 1 and 2 are known as methods for inspecting various equipment using a mobile robot. In the method of Patent Document 1, by remotely controlling a robot equipped with a camera, an inspection is performed by photographing the attic and the underfloor where it is difficult for an operator to enter and exit.

特許文献2では、製造業の生産設備の検査業務を行う自動式検査装置に画像処理用のCCDカメラなどを設置し、GPSやSLAMなどの技術を用いて誘導して検査を行っている。 In Patent Document 2, a CCD camera or the like for image processing is installed in an automatic inspection device that inspects production equipment in the manufacturing industry, and guidance is performed using technologies such as GPS and SLAM.

また、高所から設備の外観を撮影する方法にドローンを応用して空撮する方法として特許文献3が公知となっている。特許文献3は、ドローンを運用する際の安全性を高める方法に関し、二本の柱で設置したガイドラインと呼ばれるワーヤーにドローンを物理的に吊り下げることでドローンの異常発生時の落下防止を図っている。 Further, Patent Document 3 is known as a method of aerial photography by applying a drone to a method of photographing the appearance of equipment from a high place. Patent Document 3 relates to a method for improving safety when operating a drone, and aims to prevent the drone from falling when an abnormality occurs by physically suspending the drone on a wire called a guideline installed with two pillars. There is.

特開2018−39075号公報JP-A-2018-39075 特許第6011562号公報Japanese Patent No. 6011562 特許第6143311号公報Japanese Patent No. 6143311 特開昭63−284376号公報Japanese Unexamined Patent Publication No. 63-284376 特開昭64−49764号公報JP-A-64-49764 特開昭64−90604号公報Japanese Unexamined Patent Publication No. 64-90604 特許第6436468号公報Japanese Patent No. 6436468 特開2019−93749号公報JP-A-2019-93749 特許第6446491号公報Japanese Patent No. 6446491 特許第6168248号公報Japanese Patent No. 6168248 特許第6385604号公報Japanese Patent No. 6385604

特許文献1,2の方法は、天井裏や床下の撮影には向いているものの、変電所の変圧器や遮断器のような大型設備を高所から撮影して点検する用途に向かないおそれがある。 Although the methods of Patent Documents 1 and 2 are suitable for taking pictures under the ceiling or under the floor, they may not be suitable for taking pictures of large equipment such as transformers and circuit breakers in substations from high places for inspection. is there.

また、特許文献3の方法は、変電所の変圧器や遮断器などのような大型設備を上空から撮影可能なものの、1台のドローンではガイドラインを張設した区画内しか撮影できず、撮影地点の自由度に欠けるおそれがある。 Further, although the method of Patent Document 3 can photograph large equipment such as a transformer and a circuit breaker of a substation from the sky, one drone can only photograph the inside of a section where guidelines are set, and the photographing point. There is a risk of lacking the degree of freedom.

本発明は、このような従来の問題を解決するためになされ、例えば変電所の変圧器や遮断器などの大型設備を高所から撮影し点検する際の安全性および撮影地点の自由度を向上させることを解決課題としている。 The present invention has been made to solve such a conventional problem, and improves the safety and the degree of freedom of the imaging point when photographing and inspecting a large facility such as a transformer or a circuit breaker of a substation from a high place. The solution is to let them do it.

(1)本発明は、点検対象の巡視点検を行うシステムであって、
前記点検対象の監視地点に移動自在な巡視装置と、
前記巡視装置に浮上自在に搭載され、かつ前記対象設備を撮影する浮遊型撮影装置と、を備え、
前記巡視装置の上面に立設された伸縮自在な誘導ポールと、
前記誘導ポールの挿通用に前記浮遊型撮影装置に形成された誘導孔と、
前記巡視装置に設置された衝撃保護装置と、を備え、
前記浮遊型撮影装置の浮上・降下は、前記誘導ポールにガイドされる一方、
前記衝撃保護装置は、前記巡視装置の上面において前記誘導ポールの下端部の周囲に設置され、
前記浮遊型撮影装置との衝突時の衝撃を緩和することを特徴としている。
(1) The present invention is a system for performing a patrol inspection of an inspection target.
A patrol device that can move to the monitoring point to be inspected,
It is provided with a floating type photographing device that is freely mounted on the patrol device and photographs the target equipment.
A telescopic guide pole erected on the upper surface of the patrol device,
A guide hole formed in the floating imaging device for inserting the guide pole, and
The shock protection device installed in the patrol device is provided.
While the ascent / descent of the floating imaging device is guided by the guidance pole,
The impact protection device is installed around the lower end of the guide pole on the upper surface of the patrol device.
It is characterized by alleviating the impact at the time of collision with the floating type photographing device.

(2)本発明の一態様において、
前記衝撃保護装置は、前記誘導ポールの下端部が挿通される上下一対の支え板および弾性体を備え、前記両支え板間に前記弾性体が介装されている。
(2) In one aspect of the present invention
The impact protection device includes a pair of upper and lower support plates and an elastic body through which the lower end portion of the guide pole is inserted, and the elastic body is interposed between the both support plates.

(3)本発明の他の態様において、
前記衝撃保護装置は、前記巡視装置の上面に前記弾性体を囲繞するように配置されたエアバックを備える。
(3) In another aspect of the present invention.
The impact protection device includes an airbag arranged on the upper surface of the patrol device so as to surround the elastic body.

(4)本発明のさらに他の態様において、
前記衝撃保護装置は、前記巡視装置の上面に前記弾性体を囲繞するように配置された緩衝材を備える。
(4) In still another aspect of the present invention.
The impact protection device includes a cushioning material arranged on the upper surface of the patrol device so as to surround the elastic body.

(5)本発明のさらに他の態様において、
前記衝撃保護装置は、前記両支え板および前記弾性体が廃止されている一方、前記巡視装置の上面に前記誘導ポールの下端部を囲繞する柔軟フレーム群を備える。
(5) In still another aspect of the present invention.
The impact protection device includes a flexible frame group that surrounds the lower end portion of the guide pole on the upper surface of the patrol device while the both support plates and the elastic body are abolished.

(6)本発明のさらに他の態様において、
前記衝撃保護装置は、前記両支え板および前記弾性体が廃止され、前記巡視装置の上面に前記誘導ポールの下端部を囲繞するエアバックを備える。
(6) In still another aspect of the present invention.
The impact protection device is provided with an airbag that surrounds the lower end portion of the guide pole on the upper surface of the patrol device, in which both support plates and the elastic body are abolished.

(7)本発明のさらに他の態様において、
前記衝撃保護装置は、前記両支え板および前記弾性体が廃止され、前記巡視装置の上面に前記誘導ポールの下端部を囲繞する緩衝材を備える。
(7) In still another aspect of the present invention.
The impact protection device is provided with a cushioning material that surrounds the lower end portion of the guide pole on the upper surface of the patrol device, in which both support plates and the elastic body are abolished.

本発明によれば、変電所の変圧器や遮断器などの大型設備を高所から撮影し点検する際の安全性および撮影地点の自由度を向上させることができる。 According to the present invention, it is possible to improve the safety and the degree of freedom of the imaging point when photographing and inspecting a large facility such as a transformer or a circuit breaker of a substation from a high place.

実施例1に係る巡視点検システムの撮影状況を示す模式図。The schematic diagram which shows the photographing state of the patrol inspection system which concerns on Example 1. FIG. 同 浮遊型撮影装置の浮上前の状態を示す巡視点検システムの側面図。A side view of a patrol inspection system showing the state of the floating type photographing device before ascending. (a)は誘導孔に設置した近接距離センサの配置例を示す縦断面図(b)は同横断面図。(A) is a vertical sectional view (b) showing an arrangement example of a proximity sensor installed in the guide hole is the same horizontal sectional view. (a)は浮遊型撮影装置のX−Z座標系を示す縦断面図、(b)は同X−Y座標系を示す横断面図。(A) is a vertical cross-sectional view showing the XX coordinate system of the floating type photographing apparatus, and (b) is a cross-sectional view showing the XY coordinate system. 浮遊型撮影装置の正常姿勢のX−Z座標系(X−Z平面)を示す縦断面図。The vertical sectional view which shows the XZ coordinate system (XZ plane) of the normal posture of a floating type photographing apparatus. 同 異常姿勢のX−Z座標系(X−Z平面)を示す縦断面図。The vertical sectional view which shows the XZ coordinate system (XZ plane) of the same abnormal posture. 同 異常姿勢のY−Z座標系(Y−Z平面)を示す縦断面図。The vertical sectional view which shows the YZ coordinate system (YZ plane) of the same abnormal posture. 同 浮遊型撮影装置の構成図。The block diagram of the floating type photographing apparatus. 同 浮遊姿勢推定部の構成図。The block diagram of the floating attitude estimation part. 同 姿勢制御の概略図。Schematic diagram of the same attitude control. 実施例2に係る浮遊型撮影装置の高さ計測状況の概略図。The schematic diagram of the height measurement situation of the floating type photographing apparatus which concerns on Example 2. FIG. 同 高さ制御の概略図。Schematic diagram of the same height control. 同 浮遊型撮影装置の構成図。The block diagram of the floating type photographing apparatus. 実施例3に係る巡視点検システムの側面図。The side view of the patrol inspection system which concerns on Example 3. FIG. (a)は実施例4に係る巡視点検システムにおける衝突保護装置の側面図、(b)は同正面図。(A) is a side view of the collision protection device in the patrol inspection system according to the fourth embodiment, and (b) is a front view of the same. (a)は実施例5に係る巡視点検システムにおける衝突保護装置の側面図、(b)は同正面図。(A) is a side view of the collision protection device in the patrol inspection system according to the fifth embodiment, and (b) is a front view of the same. 実施例6に係る巡視点検システムにおける衝突保護装置の側面図。FIG. 5 is a side view of the collision protection device in the patrol inspection system according to the sixth embodiment. (a)は実施例7に係る巡視点検システムにおける衝突保護装置の側面図、(b)は同正面図。(A) is a side view of the collision protection device in the patrol inspection system according to the seventh embodiment, and (b) is a front view of the same. (a)は実施例8に係る衝突保護装置の側面図、(b)は同正面図。(A) is a side view of the collision protection device according to the eighth embodiment, and (b) is a front view of the same.

以下、本発明の実施形態に係る巡視点検システムの一例を実施例1〜8に基づき説明する。 Hereinafter, an example of the patrol inspection system according to the embodiment of the present invention will be described based on Examples 1 to 8.

≪実施例1≫
図1〜図10に基づき実施例1の前記巡視点検システムを説明する。ここでは変電所の点検対象となる設備を高所から安全に撮影可能な変電所の前記巡視点検システム1が提供されている。
<< Example 1 >>
The patrol inspection system of the first embodiment will be described with reference to FIGS. 1 to 10. Here, the patrol inspection system 1 of a substation capable of safely photographing the equipment to be inspected of the substation from a high place is provided.

(1)システムの全体構成
従来の保守点作業では、作業者の目線で変電所設備のメータ類や外観が確認されていた。その際、例えば変圧器や遮断器のような大型設備の上方部は、通常の点検時に作業者が下から見上げて確認できる範囲のみが観察されていたが、より上方から見降ろした状態で鉄塔や電線の碍子などのヒビや汚損状態などを点検したい要望があった。
(1) Overall system configuration In the conventional maintenance point work, the meters and appearance of the substation equipment were confirmed from the operator's point of view. At that time, for the upper part of large equipment such as transformers and circuit breakers, only the range that the operator could look up and check from below was observed during normal inspection, but the tower was looked down from above. There was a request to inspect cracks and stains on the insulators of electric wires and wires.

そこで、前記巡視点検システム1は、図1および図2に示すように、前記要望に応えるため、変電所設備の点検対象2まで移動自在な巡視点検ロボット3と、巡視点検ロボット3上に浮上自在に搭載された浮遊型撮影装置(いわゆるドローン「drone」)4とを備える。 Therefore, as shown in FIGS. 1 and 2, the patrol inspection system 1 has a patrol inspection robot 3 that can move to the inspection target 2 of the substation equipment and a patrol inspection robot 3 that can freely float on the patrol inspection robot 3 in order to meet the above demands. It is equipped with a floating imaging device (so-called drone "drone") 4 mounted on the camera.

図1および図2中の巡視点検ロボット3は、電動駆動される車両タイプに構成され、本体装置3aと4つの車輪3bとを備えている。なお、巡視点検ロボット3は、図1および図2の構成に限定されるものではなく、例えば戦車のようなクローラ型の移動台車などでもよい。 The patrol inspection robot 3 in FIGS. 1 and 2 is configured to be an electrically driven vehicle type, and includes a main body device 3a and four wheels 3b. The patrol inspection robot 3 is not limited to the configurations shown in FIGS. 1 and 2, and may be, for example, a crawler-type mobile trolley such as a tank.

このような巡視点検ロボット3によれば、点検対象2の観測地点まで巡視点検ロボット3を移動させた後、監視地点に停止した巡視点検ロボット3から浮遊型撮影装置4を切離して浮上させることができる。これにより浮遊型撮影装置4に搭載されたカメラなどの撮影機材5を用いて変電所設備の点検対象2を高所から撮影可能となる。 According to such a patrol inspection robot 3, after moving the patrol inspection robot 3 to the observation point of the inspection target 2, the floating type photographing device 4 can be separated and levitated from the patrol inspection robot 3 stopped at the monitoring point. it can. As a result, it becomes possible to photograph the inspection target 2 of the substation equipment from a high place by using the photographing equipment 5 such as the camera mounted on the floating type photographing device 4.

ただし、単に浮上させただけでは浮遊型撮影装置4の故障などによって落下した場合に変電所設備を破損したり、配線を切断するなどの重大な事故を発生させるおそれがある。そこで、前記巡視点検システム1は、浮遊型撮影装置4の浮上動作の安全性を確保するため、巡視点検ロボット3の本体装置3a上に伸縮自在な軽量のポール(以下、誘導ポールとする。)6を立設する。 However, simply floating the device may cause a serious accident such as damage to the substation equipment or disconnection of the wiring when the device is dropped due to a failure of the floating image pickup device 4. Therefore, in order to ensure the safety of the floating operation of the floating type photographing device 4, the patrol inspection system 1 is a lightweight pole that can be expanded and contracted on the main body device 3a of the patrol inspection robot 3 (hereinafter, referred to as a guide pole). 6 is erected.

これにより浮遊型撮影装置4の矢印Pに示す浮上動作・降下動作が誘導ポール6に案内誘導(ガイド)されることとなる。ここでは浮遊型撮影装置4を上下方向に貫通する孔部(以下、誘導孔)7を形成し、導孔7内に誘導ポール6を挿通することで浮遊型撮影装置4の水平方向の可動範囲を限定することもできる。 As a result, the ascending / descending motion indicated by the arrow P of the floating imaging device 4 is guided by the guide pole 6. Here, a hole (hereinafter referred to as an guide hole) 7 that penetrates the floating type photographing device 4 in the vertical direction is formed, and a guide pole 6 is inserted into the guide hole 7, whereby the movable range of the floating type photographing device 4 in the horizontal direction is formed. Can also be limited.

通常、変電所設備の高さは、「5m」程度なため、変電所設備の上面を撮影して観察するためには「7m」程度の高所に浮遊型撮影装置4を浮上させる必要があり、誘導ポール6の高さは「8m」程度と想定される。 Normally, the height of the substation equipment is about "5 m", so in order to photograph and observe the upper surface of the substation equipment, it is necessary to levitate the floating imaging device 4 at a height of about "7 m". , The height of the guide pole 6 is assumed to be about "8 m".

また、誘導ポール6の材質には、巡視点検ロボット3を誘導するための軽量さが要求され、この点でグラスファイバなどの軽量材料が選定されることが好ましい。さらに誘導ポール6を伸縮させる方法としては、特許文献4〜6などに様々な方法が提案され、かかる従来方法を用いて誘導ポール6を伸縮させることができる。 Further, the material of the guide pole 6 is required to be lightweight for guiding the patrol inspection robot 3, and in this respect, a lightweight material such as glass fiber is preferably selected. Further, as a method for expanding and contracting the guide pole 6, various methods have been proposed in Patent Documents 4 to 6, and the guide pole 6 can be expanded and contracted by using such a conventional method.

なお、浮遊型撮影装置4を浮上させていない状態では、図2に示すように、誘導ポール6を短く縮め、浮遊型撮影装置4を巡視点検ロボット3の本体装置3a上に着地させて図示省略のフックなどで固定する。 In the state where the floating type photographing device 4 is not levitated, as shown in FIG. 2, the guide pole 6 is shortened, and the floating type photographing device 4 is landed on the main body device 3a of the patrol inspection robot 3 and is not shown. Fix it with a hook etc.

(2)浮上動作の制御
図3〜図5に基づき浮遊型撮影装置4の浮上制御を説明する。すなわち、浮遊型撮影装置4が浮上動作している際、誘導孔7の内周面7aに誘導ポール6の外周面6aが接触しないように浮遊型撮影装置4の浮上動作を制御する。
(2) Control of levitation operation The levitation control of the floating type photographing apparatus 4 will be described with reference to FIGS. 3 to 5. That is, when the floating type photographing device 4 is floating, the floating operation of the floating type photographing device 4 is controlled so that the outer peripheral surface 6a of the guide pole 6 does not come into contact with the inner peripheral surface 7a of the guide hole 7.

浮遊型撮影装置4は、図3(a)に示すように、誘導孔7の内周面7aの上下部分に近接距離センサ9が設置されている。この各近接距離センサ9は、図3(b)に示すように、誘導孔7の周方向の90度の位置にそれぞれ等間隔に設置され、誘導ポール6の誘導孔7への挿入部分が近接距離センサ9群に囲繞されている。 As shown in FIG. 3A, the floating type imaging device 4 has proximity sensors 9 installed on the upper and lower portions of the inner peripheral surface 7a of the guide hole 7. As shown in FIG. 3B, the proximity distance sensors 9 are installed at 90-degree positions in the circumferential direction of the guide hole 7 at equal intervals, and the insertion portion of the guide pole 6 into the guide hole 7 is close to each other. It is surrounded by 9 groups of distance sensors.

ここでは(A)各近接距離センサ9の計測データ(近接距離センサ9から誘導ポール6の外周面6aまでの距離データ)に基づき浮遊型撮影装置4の現在の姿勢(水平方向の位置と傾き)を推定し、(B)前記計測データが事前設定の範囲内に治まるように浮遊型撮影装置4の姿勢を制御する。 Here, (A) the current posture (horizontal position and inclination) of the floating imaging device 4 based on the measurement data of each proximity sensor 9 (distance data from the proximity sensor 9 to the outer peripheral surface 6a of the guide pole 6). (B) The posture of the floating imaging device 4 is controlled so that the measurement data falls within the preset range.

図4〜図7に基づき各近接距離センサ9の計測データに基づき浮遊型撮影装置4の現在の姿勢を推定する手順を説明する。まず、図4(a)(b)に示すように、浮遊型撮影装置4の座標系(以下、浮遊型撮影装置座標系と呼ぶものとする。)を設定する。この浮遊型撮影装置座標系は、工場出荷の時点であらかじめ設定されているものとする。 A procedure for estimating the current posture of the floating imaging device 4 based on the measurement data of each proximity sensor 9 will be described with reference to FIGS. 4 to 7. First, as shown in FIGS. 4A and 4B, the coordinate system of the floating photographing apparatus 4 (hereinafter, referred to as the floating imaging apparatus coordinate system) is set. It is assumed that the coordinate system of this floating type photographing device is preset at the time of shipment from the factory.

具体的には各近接距離センサ9間の中央を原点oに設定し、原点oから上下方向(誘導孔7の軸方向)をZ軸に設定し、原点oから誘導孔7の内周面7aに向かう方向(誘導孔7の径方向)をX軸・Y軸に設定する。このX軸とY軸とは、図4(b)に示すように、原点oからそれぞれ90度の角度に設定されている。 Specifically, the center between the proximity distance sensors 9 is set as the origin o, the vertical direction from the origin o (the axial direction of the guide hole 7) is set as the Z axis, and the inner peripheral surface 7a of the guide hole 7 is set from the origin o. The direction toward (the radial direction of the guide hole 7) is set to the X-axis and the Y-axis. As shown in FIG. 4B, the X-axis and the Y-axis are set at angles of 90 degrees from the origin o, respectively.

図5および図6中のx1〜x4は「X−Z」平面に配置された4個の近接距離センサ9を示し、図7中のy1〜y4は「Y−Z」平面に配置された4個の近接距離センサ9を示している。ここでは「X−Z」平面と「Y−Z」平面のそれぞれの姿勢について、姿勢推定計算を行って、水平方向位置と傾きのずれ量を算出する。 X1 to x4 in FIGS. 5 and 6 indicate four proximity sensors 9 arranged in the "XZ" plane, and y1 to y4 in FIG. 7 indicate 4 arranged in the "YZ" plane. The proximity distance sensors 9 are shown. Here, the posture estimation calculation is performed for each posture of the "XZ" plane and the "YZ" plane, and the deviation amount of the horizontal position and the inclination is calculated.

図5に基づき前記位置ずれが無い場合の浮遊型撮影装置4の姿勢を説明する。ここでは誘導孔7の中央に誘導ポール6が配置され、巡視点検ロボット3と平行な姿勢(位置関係)に保たれ、各近接距離センサ9(x1〜x4)によって計測した距離データ「dx1」,「dx2」,「dx3」,「dx4」はそれぞれ略均等の距離を保ち、傾きも生じない。なお、図5中の「L1」は近接距離センサ9間の水平方向の間隔を示し、「L2」は近接距離センサ9間の上下方向(垂直方向)の間隔を示している。 The posture of the floating type photographing apparatus 4 when there is no misalignment will be described with reference to FIG. Here, the guidance pole 6 is arranged in the center of the guidance hole 7, is maintained in a posture (positional relationship) parallel to the patrol inspection robot 3, and the distance data “d x1 ” measured by each proximity distance sensor 9 (x1 to x4). , "D x2 ", "d x3 ", and "d x4 " keep approximately equal distances and do not tilt. In FIG. 5, "L 1 " indicates the horizontal distance between the proximity sensors 9, and "L 2 " indicates the vertical (vertical) distance between the proximity sensors 9.

図6は、浮遊型撮影装置4の「X−Y」平面の姿勢に水平方向のずれと傾きとが発生した状態を示している。図6中の「Δx」は水平方向のずれ量を示し、「θx」は傾きのずれ量を示している。ここでは各近接距離センサ9により計測した距離データ「dx1」,「dx2」,「dx3」,「dx4」は均等ではなく、距離データ「dx1」,「dx2」,「dx3」,「dx4」の組み合わせに基づき式(1)の姿勢推定計算を行って前記各ずれ量を算出する。 FIG. 6 shows a state in which a horizontal deviation and an inclination occur in the posture of the “XY” plane of the floating type photographing apparatus 4. In FIG. 6, “Δx” indicates the amount of deviation in the horizontal direction, and “θ x ” indicates the amount of inclination deviation. Here, the distance data "d x1 ", "d x2 ", "d x3 ", and "d x4 " measured by each proximity distance sensor 9 are not equal, and the distance data "d x1 ", "d x2 ", "d" Based on the combination of "x3 " and "d x4 ", the posture estimation calculation of Eq. (1) is performed to calculate each of the above deviation amounts.

Figure 2021047558
Figure 2021047558

図7は、浮遊型撮影装置4の「Y−Z」平面の姿勢に平方向のずれと傾きが発生した状態を示している。図7中の「Δy」は水平方向のずれ量を示し、「θy」は傾きのずれ量を示している。ここでは各近接距離センサ9により計測した距離データ「dy1」,「dy2」,「dy3」,「dy4」は、「X−Y」平面と同じく均等ではなく、距離データ「dy1」,「dy2」,「dy3」,「dy4」の組み合わせに基づき式(2)の姿勢推定計算を行って前記各ずれ量を算出する。 FIG. 7 shows a state in which the posture of the “YZ” plane of the floating type photographing apparatus 4 is displaced and tilted in the flat direction. In FIG. 7, “Δy” indicates the amount of deviation in the horizontal direction, and “θ y ” indicates the amount of deviation of the inclination. Here, the distance data " dy1 ", " dy2 ", " dy3 ", and " dy4 " measured by each proximity sensor 9 are not equal as in the "XY" plane, and the distance data "dy1". , "D y2 ", " dy3 ", and " dy4 ", the posture estimation calculation of the equation (2) is performed to calculate each of the deviation amounts.

Figure 2021047558
Figure 2021047558

(3)浮遊型撮影装置の構成例
図8および図9に基づき浮遊型撮影装置4の構成例(制御ブロック)を説明する。ここでは浮遊型撮影装置4の制御ブロックは、主にコンピュータにより構成され、図8に示すように、各近接距離センサ9の検出データに基づき現在の姿勢を推定する浮遊姿勢推定部10と、浮遊姿勢推定部10の推定結果に基づき姿勢制御を実行する浮遊制御部11と、浮遊制御部11の出力信号(回転数の指令値)に応じてプロペラ4aの駆動モータを回転させるプロペラ駆動モータドライバ13とを備える。
(3) Configuration Example of Floating Imaging Device A configuration example (control block) of the floating imaging device 4 will be described with reference to FIGS. 8 and 9. Here, the control block of the floating imaging device 4 is mainly composed of a computer, and as shown in FIG. 8, a floating attitude estimation unit 10 that estimates the current attitude based on the detection data of each proximity sensor 9 and a floating attitude estimation unit 10 and floating. The floating control unit 11 that executes attitude control based on the estimation result of the attitude estimation unit 10, and the propeller drive motor driver 13 that rotates the drive motor of the propeller 4a according to the output signal (command value of the rotation speed) of the floating control unit 11. And.

浮遊姿勢推定部10は、図9に示すように、浮遊型撮影装置4への入力情報を保存するメモリ装置14と、メモリ装置(RAM)14の保存情報に基づき「X−Z」平面および「Y−Z」平面の浮遊型撮影装置の姿勢を推定する両姿勢推定部15,16と、両姿勢推定部15,16の推定結果を浮遊制御部11に出力する姿勢推定結果出力部17とを備える。 As shown in FIG. 9, the floating posture estimation unit 10 has a memory device 14 that stores input information to the floating photographing device 4, and an “XZ” plane and “XZ” plane and “XZ” plane based on the stored information of the memory device (RAM) 14. The posture estimation units 15 and 16 that estimate the posture of the floating type imaging device on the "YZ" plane, and the posture estimation result output unit 17 that outputs the estimation results of the both posture estimation units 15 and 16 to the floating control unit 11. Be prepared.

このメモリ装置14には、あらかじめ姿勢推定に必要となる情報、即ち誘導ポール6の外径データ・誘導孔7の内径データ・間隔「L1」のデータ・間隔「L2」のデータなどの各種パラメータが入力されて保存されている。また、メモリ装置14には、近接距離センサ9の計測データ(距離データ「dx1」,「dx2」,「dx3」,「dx4」,「dy1」,「dy2」,「dy3」,「dy4」)が逐次入力され、現在の前記計測データを一時保存する。 The memory device 14 has various types of information required for posture estimation in advance, such as outer diameter data of the guide pole 6, inner diameter data of the guide hole 7, data of the interval "L 1 ", and data of the interval "L 2". Parameters have been entered and saved. Further, in the memory device 14, the measurement data of the proximity distance sensor 9 (distance data "d x1 ", "d x2 ", "d x3 ", "d x4 ", " dy1 ", " dy2 ", "d""y3" and " dy4 ") are sequentially input, and the current measurement data is temporarily saved.

「X−Z」平面姿勢推定部15は、前記各種パラメータと前記距離データ「dx1」,「dx2」,「dx3」,「dx4」とを入力とし、式(1)の姿勢推定計算を行って「X−Z」平面の「位置ずれ量Δx」および「傾きずれ量θx」を算出し、算出結果をメモリ装置14に一時保存する。 The "XZ" plane posture estimation unit 15 inputs the various parameters and the distance data "d x1 ", "d x2 ", "d x3 ", and "d x4 ", and estimates the posture of the equation (1). The calculation is performed to calculate the "positional deviation amount Δx" and the "tilt deviation amount θx" on the "XZ" plane, and the calculation results are temporarily stored in the memory device 14.

「Y−Z」平面姿勢推定部16は、前記各種パラメータと前記距離データ「dy1」,「dy2」,「dy3」,「dy4」とを入力とし、式(2)の恣意性推定計算を行って「Y−Z」平面の「位置ずれ量Δy」および「傾きずれ量θy」を算出し、算出結果をメモリ装置14に一時保存する。 The "YZ" plane posture estimation unit 16 inputs the various parameters and the distance data " dy1 ", " dy2 ", " dy3 ", and " dy4 ", and the arbitrariness of the equation (2). The estimation calculation is performed to calculate the "positional deviation amount Δy" and the "tilt deviation amount θy" on the "YZ" plane, and the calculation results are temporarily stored in the memory device 14.

姿勢推定結果出力部17は、メモリ装置14に一時保存された「位置ずれ量Δx,Δy」および「傾きずれ量θx,θy」の情報を読み出し、読み出した情報を浮遊制御部11に出力する。 The attitude estimation result output unit 17 reads out the information of the “positional deviation amount Δx, Δy” and the “tilt deviation amount θx, θy” temporarily stored in the memory device 14, and outputs the read information to the floating control unit 11.

浮遊制御部11は、姿勢推定結果出力部17の出力した「位置ずれ量Δx,Δy」および「傾きずれ量θx,θy」の情報が入力され、浮遊型撮影装置4の水平方向位置と傾きとを自動制御する。制御の手法としては、前記駆動モータの回転数の指令値を、距離データ「dx1〜dx4,dy1〜dy4」のそれぞれが事前設定の範囲内に治まる値に制御する。 The floating control unit 11 is input with the information of the "positional deviation amount Δx, Δy" and the "tilt deviation amount θx, θy" output by the posture estimation result output unit 17, and the horizontal position and inclination of the floating type photographing device 4. Is automatically controlled. The control method, the rotation speed command value of the drive motor, each distance data "d x1 ~d x4, d y1 ~d y4 " is controlled to a value falling within the range of preset.

したがって、距離データ「dx1〜dx4,dy1〜dy4」が略均等に調整され、式(1)(2)中の「θx」・「θy」・「Δx」・「Δy」が「0」に近似する。その結果、図10(a)に示す浮遊型撮影装置4の姿勢に水平方向位置および傾きの制御が施され、図10(b)に示す浮遊型撮影装置4の姿勢に修正される。このとき浮遊型撮影装置4の高度や撮影機材5の向きなどは、遠隔操作端末25(図12参照)の操作により指定することができる。 Therefore, the distance data "d x1 to d x4 , d y1 to d y4 " are adjusted substantially evenly, and "θx", "θy", "Δx", and "Δy" in the equations (1) and (2) are "Δx". Approximate to "0". As a result, the posture of the floating type photographing device 4 shown in FIG. 10A is controlled by the horizontal position and the inclination, and the posture is corrected to the posture of the floating type photographing device 4 shown in FIG. 10B. At this time, the altitude of the floating type photographing device 4 and the orientation of the photographing equipment 5 can be specified by operating the remote control terminal 25 (see FIG. 12).

このような前記巡視点検システム1によれば、巡視点検ロボット3に搭載された浮遊型撮影装置4の水平方向の可動範囲が誘導ポール6に限定される。したがって、浮遊型撮影装置4が故障により落下した場合などに変電所設備を破線・配線切断などの事故を発生させるおそれがなく、変電所設備を高所から安全に撮影することが可能となる。 According to the patrol inspection system 1 as described above, the horizontal movable range of the floating type photographing device 4 mounted on the patrol inspection robot 3 is limited to the guidance pole 6. Therefore, when the floating type photographing device 4 is dropped due to a failure, there is no possibility of causing an accident such as a broken line or wiring disconnection in the substation equipment, and the substation equipment can be safely photographed from a high place.

また、浮遊型撮影装置4の姿勢が自動的に制御されるため、点検対象2を撮影が容易であり、撮影ミスを低減することもできる。さらに巡視点検ロボット3により点検地点を自由に移動して選択することが可能なため、変電所内に巡視点検システム1を現場に1セット用意すればよく、この点でコストの低減に貢献できる。 Further, since the posture of the floating type photographing device 4 is automatically controlled, it is easy to photograph the inspection target 2, and it is possible to reduce photography errors. Further, since the inspection point can be freely moved and selected by the patrol inspection robot 3, one set of the patrol inspection system 1 may be prepared at the site in the substation, which can contribute to cost reduction.

なお、浮遊高度推定部27,浮遊姿勢推定部10は、浮遊型撮影装置4ではなく巡視点検ロボット3に設けて図示省略の制御コンピュータで処理を実行させてもよい。この場合には巡視点検ロボット3と浮遊型撮影装置4との間を有線/無線の通信でデータ送受信を実行する。 The floating altitude estimation unit 27 and the floating posture estimation unit 10 may be provided on the patrol inspection robot 3 instead of the floating imaging device 4, and the processing may be executed by a control computer (not shown). In this case, data transmission / reception is executed by wire / wireless communication between the patrol inspection robot 3 and the floating type photographing device 4.

≪実施例2≫
図11中の21は、実施例2の前記巡視点検システムを示している。前記巡視点検システム21では、実施例1の前記巡視点検システム1に浮遊型撮影装置4の高度(高さ)を制御する機能が追加されている。
<< Example 2 >>
21 in FIG. 11 shows the patrol inspection system of the second embodiment. In the patrol inspection system 21, a function of controlling the altitude (height) of the floating type photographing device 4 is added to the patrol inspection system 1 of the first embodiment.

前記巡視点検システム21は、巡視点検ロボット3の平面(上面)3bに距離センサ(レーザ距離計)22が設置されている一方、浮遊型撮影装置4の底面(下面)4bにリフレクタ(反射板)24が設置されている。この距離センサ22から照射したレーザ光をリフレクタ24で反射させ、レーザ光の往復に要した時間差に基づき両者3b,4b間の距離D1を計測する。 In the patrol inspection system 21, a distance sensor (laser range finder) 22 is installed on the flat surface (upper surface) 3b of the patrol inspection robot 3, while a reflector (reflector) is provided on the bottom surface (lower surface) 4b of the floating imaging device 4. 24 are installed. The laser beam emitted from the distance sensor 22 is reflected by the reflector 24, and the distance D1 between the two 3b and 4b is measured based on the time difference required for the reciprocation of the laser beam.

計測された距離D1は、図12に示すように、巡視点検ロボット3上から浮遊型撮影装置までの高さL4とする。この高さL4に巡視点検ロボット3の高さL5を加えて巡視点検ロボット3の地上からの高度L3とする。この高度L3は、巡視点検ロボット3内のメモリ装置(図示省略)に一時的に保存され、浮遊型撮影装置4に無線通信により送信されてメモリ装置14に一時的に保存される。ここで保存された高度L3の値は、巡視点検ロボット3や浮遊型撮影装置4を操作する遠隔操作端末(リモコン)25から閲覧することができる。 As shown in FIG. 12, the measured distance D1 is the height L4 from the patrol inspection robot 3 to the floating imaging device. The height L5 of the patrol inspection robot 3 is added to this height L4 to obtain the altitude L3 of the patrol inspection robot 3 from the ground. The altitude L3 is temporarily stored in a memory device (not shown) in the patrol inspection robot 3, transmitted to the floating photographing device 4 by wireless communication, and temporarily stored in the memory device 14. The value of the altitude L3 stored here can be viewed from the remote control terminal (remote controller) 25 that operates the patrol inspection robot 3 and the floating photographing device 4.

この遠隔操作端末25は、浮遊型撮影装置4の高度L3を設定することができる。すなわち、遠隔操作端末25の高さ設定操作部26を操作することで浮遊型撮影装置4の目標高度が設定され、設定された目標高度が浮遊型撮影装置4にデータ送信される。 The remote control terminal 25 can set the altitude L3 of the floating photographing device 4. That is, the target altitude of the floating type photographing device 4 is set by operating the height setting operation unit 26 of the remote control terminal 25, and the set target altitude is transmitted as data to the floating type photographing device 4.

ここでは前記目標高度のデータを浮遊型撮影装置4が受信すれば、図13に示す浮遊高度推定部27によりメモリ装置14の現在高度L3と前記目標高度との差が計算される。この計算結果は、現在高度Lと前記目標高度との高度ずれ量と推定されて浮遊制御部11に出力される。 Here, when the floating altitude photographing device 4 receives the data of the target altitude, the floating altitude estimation unit 27 shown in FIG. 13 calculates the difference between the current altitude L3 of the memory device 14 and the target altitude. This calculation result is estimated to be the amount of altitude deviation between the current altitude L and the target altitude, and is output to the floating control unit 11.

浮遊制御部11は前記高度ずれ量が入力され、前記駆動モータの回転数の指令値を前記高度ずれ量が事前設定の範囲内に治まる値に制御する。これにより浮遊型撮影装置4の高度L3が修正され、高度L3を前記目標高度に近似させることができる。なお、前記目標高度の設定は、設定操作部26の操作により解除することができる。 The floating control unit 11 is input with the altitude deviation amount, and controls the command value of the rotation speed of the drive motor to a value at which the altitude deviation amount falls within the preset range. As a result, the altitude L3 of the floating imaging device 4 is modified, and the altitude L3 can be approximated to the target altitude. The target altitude setting can be canceled by operating the setting operation unit 26.

このような実施例2の前記巡視点検システム21によれば、実施例1の効果に加えて、点検対象2となる変電所設備の監視地点にて毎回の点検時に同じ高さから変電所設備の撮影を行うことも可能となる。 According to the patrol inspection system 21 of the second embodiment, in addition to the effect of the first embodiment, the substation equipment is installed from the same height at each inspection at the monitoring point of the substation equipment to be inspected. It is also possible to take pictures.

なお、距離センサ22を浮遊型撮影装置4の下面4bに取り付ける一方、リフレクタ24を巡視点検ロボット3の平面(上面)3cに取り付けてもよい。この場合も距離センサ22のレーザ光をリフレクタ24で反射させて距離D1を計測することができる。さらにリフレクタ24を用いることなく、距離センサ22だけでも浮遊型撮影装置4の下面に反射されたレーザ光により距離D1を計測することが可能である。 The distance sensor 22 may be attached to the lower surface 4b of the floating imaging device 4, while the reflector 24 may be attached to the flat surface (upper surface) 3c of the patrol inspection robot 3. In this case as well, the distance D1 can be measured by reflecting the laser beam of the distance sensor 22 by the reflector 24. Further, the distance D1 can be measured by the laser beam reflected on the lower surface of the floating type photographing apparatus 4 only by the distance sensor 22 without using the reflector 24.

≪実施例3〜実施例8≫
実施例3〜8の巡視点検システム31,41,51,61,71,81は、巡視点検ロボット3に浮遊型撮影装置4の落下時の衝撃を緩和する構成が追加されている。
<< Example 3 to Example 8 >>
In the patrol inspection systems 31, 41, 51, 61, 71, 81 of the third to eighth embodiments, a configuration is added to the patrol inspection robot 3 to reduce the impact when the floating type photographing device 4 is dropped.

すなわち、実施例1,2の巡視点検システム1,21は、浮遊型撮影装置4が落下した際に巡視点検ロボット3との衝突を抑制する機能を搭載していない。そのため、浮遊型撮影装置4が落下した際に巡視点検ロボット3との衝突により装置が破損するおそれがある。 That is, the patrol inspection systems 1 and 21 of the first and second embodiments do not have a function of suppressing a collision with the patrol inspection robot 3 when the floating type photographing device 4 falls. Therefore, when the floating type photographing device 4 is dropped, the device may be damaged due to a collision with the patrol inspection robot 3.

この点について高所から設備外観を撮影するドローンの落下保護の方法として、特許文献7のワイヤで吊り下げて落下を防止する手法、特許文献8のドローンをネットで覆う手法、特許文献9のパラシュートを表出する手法、特許文献10の風船で浮かばせる手法、特許文献11のエアバックを広げておく手法などが提案されている。 Regarding this point, as a method of protecting the drone from falling from a high place, a method of suspending the drone with a wire of Patent Document 7 to prevent the fall, a method of covering the drone of Patent Document 8 with a net, and a parachute of Patent Document 9. A method of expressing the above, a method of floating with a balloon of Patent Document 10, a method of expanding the air bag of Patent Document 11, and the like have been proposed.

しかしながら、特許文献7のワイヤで吊り下げる手法では浮遊型撮影装置4が落下した際、ワイヤを通して誘導ポール6上部に大きな力が加わるため、巡視点検ロボット3が転倒するおそれがある。また、特許文献8〜11の手法では、浮遊型撮影装置4側に衝突抑制機能を追加するため、浮上することで電力を消耗する浮遊型撮影装置4の構造が複雑化するおそれがある。 However, in the method of suspending with the wire of Patent Document 7, when the floating type photographing apparatus 4 falls, a large force is applied to the upper part of the guide pole 6 through the wire, so that the patrol inspection robot 3 may fall. Further, in the methods of Patent Documents 8 to 11, since the collision suppression function is added to the floating type photographing device 4, the structure of the floating type photographing device 4 which consumes electric power by ascending may be complicated.

そこで、実施例3〜8の巡視点検システム31,41,51,61,71,81は、浮上することで電力を消耗し易い浮遊型撮影装置4側に機能を追加することなく、浮遊型撮影装置4の落下時に巡視点検ロボット3との衝突による破損の防止を図っている。 Therefore, the patrol inspection systems 31, 41, 51, 61, 71, 81 of Examples 3 to 8 perform floating photography without adding a function to the floating imaging device 4 side, which tends to consume power by floating. The device 4 is designed to prevent damage due to a collision with the patrol inspection robot 3 when the device 4 is dropped.

(1)実施例3
図14に基づき実施例3の巡視点検システム31を説明する。実施例3では、巡視点検ロボット3の装置本体3aに衝突保護装置30が設けられている。
(1) Example 3
The patrol inspection system 31 of the third embodiment will be described with reference to FIG. In the third embodiment, the collision protection device 30 is provided on the device main body 3a of the patrol inspection robot 3.

衝突保護装置30は、誘導ポール6の下端部6bの周囲に設置され、上下一対の支え板34,36と、両支え板34,36間に介装されたコイルばね35とを備えている。 The collision protection device 30 is installed around the lower end portion 6b of the guide pole 6, and includes a pair of upper and lower support plates 34, 36 and a coil spring 35 interposed between both support plates 34, 36.

ここでは一方の支え板34が装置本体3aの平面に載置(固着してもよい。)されている一方、他方の支え板36がコイルばね35に付勢されている。また、支え板34,36の中心位置に図示省略の貫通孔がそれぞれ形成され、前記各貫通孔およびコイルばね35内に誘導ポール6の下端部6bが挿通されている。 Here, one support plate 34 is placed (or fixed) on a flat surface of the apparatus main body 3a, while the other support plate 36 is urged by the coil spring 35. Further, through holes (not shown) are formed at the center positions of the support plates 34 and 36, and the lower end portion 6b of the guide pole 6 is inserted into each of the through holes and the coil spring 35.

このような実施例3の巡視点検システム31によれば、浮遊型撮影装置4は誘導ポール6に沿って垂直に落下するため、支え板36に衝突する。このときコイルばね35が軸方向に弾性変形して衝突時の衝撃を吸収するため、浮遊型撮影装置4の落下時の衝撃が緩和され、巡視点検ロボット3の破損が防止される。 According to the patrol inspection system 31 of the third embodiment, the floating type photographing device 4 falls vertically along the guide pole 6 and therefore collides with the support plate 36. At this time, since the coil spring 35 elastically deforms in the axial direction to absorb the impact at the time of collision, the impact at the time of dropping the floating type photographing device 4 is alleviated, and the patrol inspection robot 3 is prevented from being damaged.

また、衝突保護装置30は、浮遊型撮影装置4ではなく、巡視点検ロボット3側に設けられているため、浮遊型撮影装置4に機能を追加することなく、落下時の衝突による破損を防止することが可能である。なお、浮遊型撮影装置4は、誘導ポール6に沿って垂直に落下して支え板36に衝突することから、巡視点検ロボット3がバランスを崩すことが少なく、この点で転倒の危険も減少する。 Further, since the collision protection device 30 is provided not on the floating type photographing device 4 but on the patrol inspection robot 3 side, damage due to a collision at the time of dropping is prevented without adding a function to the floating type photographing device 4. It is possible. Since the floating type photographing device 4 falls vertically along the guide pole 6 and collides with the support plate 36, the patrol inspection robot 3 is less likely to lose its balance, and in this respect, the risk of falling is reduced. ..

(2)実施例4
図15(a)(b)に基づき実施例4の巡視点検システム41を説明する。ここでは衝突保護装置30にエアバック37が追加されている。このエアバック37は装置本体3aの平面3cに固着されているとともに、支え板34およびコイルばね35を二重に囲繞している。
(2) Example 4
The patrol inspection system 41 of the fourth embodiment will be described with reference to FIGS. 15 (a) and 15 (b). Here, an airbag 37 is added to the collision protection device 30. The airbag 37 is fixed to the flat surface 3c of the apparatus main body 3a, and double surrounds the support plate 34 and the coil spring 35.

したがって、実施例4の巡視点検システム41によれば、浮遊型撮影装置4の落下時にコイルばね35で吸収できなかった衝撃をエアバック37により吸収することができる。これにより浮遊型撮影装置4の落下時の衝撃吸収性が向上し、落下時の衝撃が実施例1よりも緩和される。 Therefore, according to the patrol inspection system 41 of the fourth embodiment, the impact that could not be absorbed by the coil spring 35 when the floating type photographing device 4 is dropped can be absorbed by the airbag 37. As a result, the shock absorption when the floating type photographing apparatus 4 is dropped is improved, and the shock when the floating type photographing device 4 is dropped is alleviated as compared with the first embodiment.

(3)実施例5
図16(a)(b)に基づき実施例5の巡視点検システム51を説明する。ここでは衝突保護装置30に緩衝材38が追加されている。この緩衝材38には、例えば硬質スポンジや衝撃吸収シートなどが用いられ、支え板34よりも肉厚が大きいタイプを用いる。ここでは緩衝材38が装置本体3aの平面3cに固着されているとともに、支え板34およびコイルばね35を二重に囲繞している。
(3) Example 5
The patrol inspection system 51 of the fifth embodiment will be described with reference to FIGS. 16A and 16B. Here, a cushioning material 38 is added to the collision protection device 30. For the cushioning material 38, for example, a hard sponge, a shock absorbing sheet, or the like is used, and a type having a wall thickness larger than that of the support plate 34 is used. Here, the cushioning material 38 is fixed to the flat surface 3c of the apparatus main body 3a, and the support plate 34 and the coil spring 35 are doubly surrounded.

したがって、実施例5の巡視点検システム41によれば、浮遊型撮影装置4の落下時にコイルばね35で吸収できなかった衝撃を緩衝材38で吸収することができる。これにより浮遊型撮影装置4の落下時の衝撃吸収性が向上し、落下時の衝撃が実施例1よりも緩和される。 Therefore, according to the patrol inspection system 41 of the fifth embodiment, the cushioning material 38 can absorb the impact that could not be absorbed by the coil spring 35 when the floating type photographing device 4 is dropped. As a result, the shock absorption when the floating type photographing apparatus 4 is dropped is improved, and the shock when the floating type photographing device 4 is dropped is alleviated as compared with the first embodiment.

このとき緩衝材38の衝撃吸収力はエアバック37よりも低いものの、エアバック37の空気圧の減少を配慮する必要が無く、この点でシステムの保守が容易な利点を有している。 At this time, although the shock absorbing power of the cushioning material 38 is lower than that of the airbag 37, it is not necessary to consider a decrease in the air pressure of the airbag 37, which has an advantage that the maintenance of the system is easy.

(4)実施例6
図17に基づき実施例6の巡視点検システム61を説明する。実施例6の衝突保護装置30は、支え板34,36およびコイルばね35が廃止され、柔軟フレーム39群により構成されている。
(4) Example 6
The patrol inspection system 61 of the sixth embodiment will be described with reference to FIG. In the collision protection device 30 of the sixth embodiment, the support plates 34 and 36 and the coil spring 35 are abolished, and the collision protection device 30 is composed of a flexible frame 39 group.

この各柔軟フレーム39は、例えば樹脂材やゴム材などにより半円状に形成されている。ここでは各柔軟フレーム39の両端部39aは装置本体3aの平面3cに固定され、それぞれの柔軟フレーム39が半円状に立設され、柔軟フレーム39群により誘導ポール6の下端部6bが囲繞されている。 Each of the flexible frames 39 is formed in a semicircular shape by, for example, a resin material or a rubber material. Here, both end portions 39a of each flexible frame 39 are fixed to the flat surface 3c of the apparatus main body 3a, each flexible frame 39 is erected in a semicircular shape, and the lower end portion 6b of the guide pole 6 is surrounded by the flexible frame 39 group. ing.

したがって、実施例6の巡視点検システム31によれば、浮遊型撮影装置4は誘導ポール6に沿って垂直に落下するため、柔軟フレーム39群に衝突する。このとき柔軟フレーム群が弾性変形して衝突時の衝撃を吸収するため、浮遊型撮影装置4の落下時の衝撃が緩和され、実施例3と同様な効果が得られる。なお、柔軟フレーム39群は、コイルばね35よりも衝撃吸収力が小さいものの、構造が単純で保守性が良く、さらに安価に設置できコスト性に優れる。 Therefore, according to the patrol inspection system 31 of the sixth embodiment, the floating type photographing device 4 falls vertically along the guide pole 6 and therefore collides with the flexible frame 39 group. At this time, since the flexible frame group is elastically deformed to absorb the impact at the time of collision, the impact at the time of dropping of the floating type photographing apparatus 4 is alleviated, and the same effect as that of the third embodiment can be obtained. Although the flexible frame 39 group has a smaller shock absorbing force than the coil spring 35, it has a simple structure, good maintainability, can be installed at low cost, and is excellent in cost.

(5)実施例7
図18(a)(b)に基づき実施例7の巡視点検システム71を説明する。この実施例7の衝突保護装置30は、実施例6と同じく支え板34,36およびコイルばね35が廃止され、エアバック37のみで構成されている。ここではエアバック37は、装置本体3aの平面3cに固着され、誘導ポール6の下端部6bを二重に囲繞している。
(5) Example 7
The patrol inspection system 71 of the seventh embodiment will be described with reference to FIGS. 18A and 18B. The collision protection device 30 of the seventh embodiment is composed of only the airbag 37 without the support plates 34 and 36 and the coil spring 35 as in the sixth embodiment. Here, the airbag 37 is fixed to the flat surface 3c of the apparatus main body 3a and doublely surrounds the lower end portion 6b of the guide pole 6.

したがって、実施例7の巡視点検システム71によれば、浮遊型撮影装置4は誘導ポール6に沿って垂直に落下するため、エアバック37に衝突する。このとき衝突時の衝撃がエアバック37により吸収されるため、浮遊型撮影装置4の落下時の衝撃が緩和され、実施例3と同様な効果が得られる。 Therefore, according to the patrol inspection system 71 of the seventh embodiment, the floating type photographing device 4 falls vertically along the guide pole 6 and therefore collides with the airbag 37. At this time, since the impact at the time of collision is absorbed by the airbag 37, the impact at the time of dropping of the floating type photographing apparatus 4 is alleviated, and the same effect as that of the third embodiment can be obtained.

(6)実施例8
図19(a)(b)に基づき実施例8の巡視点検システム81を説明する。この実施例7の衝突保護装置30は、実施例6,7と同じく支え板34,36およびコイルばね35が廃止され、緩衝材38のみで構成されている。ここでは緩衝材38は、平面3cに固着され、誘導ポール6の下端部6bを二重に囲繞している。
(6) Example 8
The patrol inspection system 81 of the eighth embodiment will be described with reference to FIGS. 19 (a) and 19 (b). In the collision protection device 30 of the seventh embodiment, the support plates 34 and 36 and the coil spring 35 are abolished as in the sixth and seventh embodiments, and the collision protection device 30 is composed of only the cushioning material 38. Here, the cushioning material 38 is fixed to the flat surface 3c and doublely surrounds the lower end portion 6b of the guide pole 6.

したがって、実施例8の巡視点検システム81によれば、浮遊型撮影装置4は誘導ポール6に沿って垂直に落下するため、緩衝材38に衝突する。このとき衝突時の衝撃が緩衝材により吸収されるため、浮遊型撮影装置4の落下時の衝撃が緩和され、実施例3と同様な効果が得られる。 Therefore, according to the patrol inspection system 81 of the eighth embodiment, the floating type photographing apparatus 4 falls vertically along the guide pole 6 and therefore collides with the cushioning material 38. At this time, since the impact at the time of collision is absorbed by the cushioning material, the impact at the time of dropping of the floating type photographing apparatus 4 is alleviated, and the same effect as that of the third embodiment can be obtained.

なお、本発明は、上記実施形態に限定されるものではなく、各請求項に記載された範囲内で変形して実施することができる。例えば実施例3〜7の巡視点検システム31,41,51,61,71,81の巡視点検ロボット3・浮遊型撮影装置4は、距離センサ22およびリフレクタ24が設けられていなくともよいものとする。 The present invention is not limited to the above embodiment, and can be modified and implemented within the range described in each claim. For example, the patrol inspection robot 3 / floating type photographing device 4 of the patrol inspection systems 31, 41, 51, 61, 71, 81 of Examples 3 to 7 does not have to be provided with the distance sensor 22 and the reflector 24. ..

1,21,31,41,51,61,71,81…巡視点検システム
2…点検対象
3…巡視点検ロボット(巡視装置)
3a…本体装置
3b…車輪
3c…上面
4…浮遊型撮影装置
4a…プロペラ
4b…下面
5…撮影機材
6…誘導ポール
6a…外周面
6b…下端部
7…誘導孔
7a…内周面
9…近接距離センサ
10…浮遊姿勢推定部
11…浮遊制御部
13…プロペラ駆動モータドライバ
14…メモリ装置(RAM)
15…X−Z平面姿勢推定部
16…Y−Z平面姿勢推定部
17…姿勢推定結果出力部
22…距離センサ
24…リフレクタ(反射板)
25…遠隔操作端末
26…高さ設定操作部
27…浮遊高度推定部
30…衝突保護装置
34,36…支え板
35…コイルばね(弾性体)
37…エアバック
38…緩衝材
39…柔軟フレーム
39a…端部
1,21,31,41,51,61,71,81 ... Patrol inspection system 2 ... Inspection target 3 ... Patrol inspection robot (patrol device)
3a ... Main unit 3b ... Wheels 3c ... Top surface 4 ... Floating imaging device 4a ... Propeller 4b ... Bottom surface 5 ... Imaging equipment 6 ... Guide pole 6a ... Outer surface 6b ... Lower end 7 ... Guide hole 7a ... Inner peripheral surface 9 ... Proximity Distance sensor 10 ... Floating posture estimation unit 11 ... Floating control unit 13 ... Propeller drive motor driver 14 ... Memory device (RAM)
15 ... XZ plane attitude estimation unit 16 ... YZ plane attitude estimation unit 17 ... attitude estimation result output unit 22 ... distance sensor 24 ... reflector (reflector)
25 ... Remote control terminal 26 ... Height setting operation unit 27 ... Floating altitude estimation unit 30 ... Collision protection device 34, 36 ... Support plate 35 ... Coil spring (elastic body)
37 ... Airbag 38 ... Cushioning material 39 ... Flexible frame 39a ... End

Claims (7)

点検対象の巡視点検を行うシステムであって、
前記点検対象の監視地点に移動自在な巡視装置と、
前記巡視装置に浮上自在に搭載され、かつ前記対象設備を撮影する浮遊型撮影装置と、を備え、
前記巡視装置の上面に立設された伸縮自在な誘導ポールと、
前記誘導ポールの挿通用に前記浮遊型撮影装置に形成された誘導孔と、
前記巡視装置に設置された衝撃保護装置と、を備え、
前記浮遊型撮影装置の浮上・降下は、前記誘導ポールにガイドされる一方、
前記衝撃保護装置は、前記巡視装置の上面において前記誘導ポールの下端部の周囲に設置され、
前記浮遊型撮影装置との衝突時の衝撃を緩和することを特徴とする巡視監視システム。
It is a system that performs a patrol inspection of the inspection target,
A patrol device that can move to the monitoring point to be inspected,
It is provided with a floating type photographing device that is freely mounted on the patrol device and photographs the target equipment.
A telescopic guide pole erected on the upper surface of the patrol device,
A guide hole formed in the floating imaging device for inserting the guide pole, and
The shock protection device installed in the patrol device is provided.
While the ascent / descent of the floating imaging device is guided by the guidance pole,
The impact protection device is installed around the lower end of the guide pole on the upper surface of the patrol device.
A patrol monitoring system characterized by alleviating an impact at the time of a collision with the floating imaging device.
前記衝撃保護装置は、前記誘導ポールの下端部が挿通される上下一対の支え板および弾性体を備え、
前記両支え板間に前記弾性体が介装されていることを特徴とする請求項1記載の巡視監視システム。
The impact protection device includes a pair of upper and lower support plates and an elastic body through which the lower end portion of the guide pole is inserted.
The patrol monitoring system according to claim 1, wherein the elastic body is interposed between both support plates.
前記衝撃保護装置は、前記巡視装置の上面に前記弾性体を囲繞するように配置されたエアバックを備える
ことを特徴とする請求項2記載の巡視監視システム。
The patrol monitoring system according to claim 2, wherein the impact protection device includes an airbag arranged on the upper surface of the patrol device so as to surround the elastic body.
前記衝撃保護装置は、前記巡視装置の上面に前記弾性体を囲繞するように配置された緩衝材を備える
ことを特徴とする請求項2記載の巡視監視システム。
The patrol monitoring system according to claim 2, wherein the impact protection device includes a cushioning material arranged on the upper surface of the patrol device so as to surround the elastic body.
前記衝撃保護装置は、前記巡視装置の上面に前記誘導ポールの下端部を囲繞する柔軟フレーム群を備える
ことを特徴とする請求項1記載の巡視監視システム。
The patrol monitoring system according to claim 1, wherein the impact protection device includes a group of flexible frames surrounding the lower end of the guide pole on the upper surface of the patrol device.
前記衝撃保護装置は、前記巡視装置の上面に前記誘導ポールの下端部を囲繞するエアバックを備える
ことを特徴とする請求項1記載の巡視監視システム。
The patrol monitoring system according to claim 1, wherein the impact protection device includes an airbag that surrounds a lower end portion of the guidance pole on the upper surface of the patrol device.
前記衝撃保護装置は、前記巡視装置の上面に前記誘導ポールの下端部を囲繞する緩衝材を備える
ことを特徴とする請求項1記載の巡視監視システム。
The patrol monitoring system according to claim 1, wherein the impact protection device includes a cushioning material that surrounds a lower end portion of the guide pole on the upper surface of the patrol device.
JP2019168915A 2019-09-18 2019-09-18 patrol inspection system Active JP7283322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019168915A JP7283322B2 (en) 2019-09-18 2019-09-18 patrol inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019168915A JP7283322B2 (en) 2019-09-18 2019-09-18 patrol inspection system

Publications (2)

Publication Number Publication Date
JP2021047558A true JP2021047558A (en) 2021-03-25
JP7283322B2 JP7283322B2 (en) 2023-05-30

Family

ID=74878447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019168915A Active JP7283322B2 (en) 2019-09-18 2019-09-18 patrol inspection system

Country Status (1)

Country Link
JP (1) JP7283322B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671954A (en) * 2021-08-03 2021-11-19 国网浙江省电力有限公司嘉兴供电公司 Inspection method of intelligent robot of transformer substation
CN114156760A (en) * 2021-11-30 2022-03-08 广东电网有限责任公司 Monitoring and inspecting system for transformer substation
CN114918894A (en) * 2022-05-07 2022-08-19 中科智感科技(湖南)有限公司 Railway machine room inspection robot positioning system based on 5G communication and inspection robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170140910A (en) * 2016-06-14 2017-12-22 김지연 Drone Landing Field Apparatus
JP2018094980A (en) * 2016-12-09 2018-06-21 株式会社プロドローン Landing base
JP6505927B1 (en) * 2018-07-24 2019-04-24 ミスギ工業株式会社 Inspection method using unmanned small-sized flying object and unmanned small-sized flying object used therefor
US20190248509A1 (en) * 2014-05-10 2019-08-15 Wing Aviation Llc Home Station for Unmanned Aerial Vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190248509A1 (en) * 2014-05-10 2019-08-15 Wing Aviation Llc Home Station for Unmanned Aerial Vehicle
KR20170140910A (en) * 2016-06-14 2017-12-22 김지연 Drone Landing Field Apparatus
JP2018094980A (en) * 2016-12-09 2018-06-21 株式会社プロドローン Landing base
JP6505927B1 (en) * 2018-07-24 2019-04-24 ミスギ工業株式会社 Inspection method using unmanned small-sized flying object and unmanned small-sized flying object used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671954A (en) * 2021-08-03 2021-11-19 国网浙江省电力有限公司嘉兴供电公司 Inspection method of intelligent robot of transformer substation
CN114156760A (en) * 2021-11-30 2022-03-08 广东电网有限责任公司 Monitoring and inspecting system for transformer substation
CN114918894A (en) * 2022-05-07 2022-08-19 中科智感科技(湖南)有限公司 Railway machine room inspection robot positioning system based on 5G communication and inspection robot

Also Published As

Publication number Publication date
JP7283322B2 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
JP2021047558A (en) Patrol inspection system
US20210273422A1 (en) Drone with tool positioning system
JP6486024B2 (en) Indoor monitoring system and method for structure
CN108996343B (en) Elevator inspection system and elevator
JP7299553B2 (en) unmanned aerial vehicle
US20120091258A1 (en) System, floating unit and method for elevating payloads
KR20160022065A (en) System for Inspecting Inside of Bridge
JP2014227166A (en) Flying body type visual inspection device
KR102074637B1 (en) Flight Apparatus for Checking Structure
KR101954902B1 (en) Stability inspection system of power transmission tower using drone
US9716813B2 (en) Aerial survey plane having cover for protecting lens of infrared camera for aerial survey
JP6505927B1 (en) Inspection method using unmanned small-sized flying object and unmanned small-sized flying object used therefor
JP7207164B2 (en) patrol inspection system
KR101521827B1 (en) Apparatus for working in cargo tank using hovering robot
KR101811926B1 (en) Driving support system for tower crane using unmanned aerial vehicle and image providing method for tower crane using the same
JP2019089361A (en) Method of controlling unmanned air vehicle
KR102243163B1 (en) Precise measurement device of sprayed coating thickness for drone
JP2020015488A (en) Inspection method using unmanned small flight vehicle, and unmanned small flight vehicle used for the same
KR102302568B1 (en) Apparatus and method for setting up flight path of unmanned aerial vehicle for monitoring transmission structure
RU2645772C1 (en) Device for diagnostics of overhead power lines
KR20170085797A (en) Equipment protective device for uav and uav having the same
KR20170025794A (en) Air data measuring apparatus for multi-copter, multi-copter equipped therewith, and multi-copter controlling method using the same
KR102463548B1 (en) System for recognizing objects using wired drone
JP2022094983A (en) Tower crane hung load swinging stop device, positioning device, swinging stop method, and positioning method
WO2020100945A1 (en) Moving body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7283322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150