JP2021047105A - Passive type radar device, and passive type radar signal processing method - Google Patents

Passive type radar device, and passive type radar signal processing method Download PDF

Info

Publication number
JP2021047105A
JP2021047105A JP2019170321A JP2019170321A JP2021047105A JP 2021047105 A JP2021047105 A JP 2021047105A JP 2019170321 A JP2019170321 A JP 2019170321A JP 2019170321 A JP2019170321 A JP 2019170321A JP 2021047105 A JP2021047105 A JP 2021047105A
Authority
JP
Japan
Prior art keywords
target
vector
gate
information
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019170321A
Other languages
Japanese (ja)
Inventor
慶一 東海林
Keiichi Shoji
慶一 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019170321A priority Critical patent/JP2021047105A/en
Publication of JP2021047105A publication Critical patent/JP2021047105A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

To identify a target position even in an environment where a direct wave cannot be obtained from a transmitting station.SOLUTION: A passive type radar device according to an embodiment, in an environment where a direct wave of a radar wave transmitted from a transmitting station whose transmission sources are known cannot be obtained, receives an indirect wave reflected on a target, opens a gate, and extracts a target detection signal from an indirect wave reception signal. A control unit sets a target moving speed and a temporary value of distance to set the gate in accordance with a scan rate based on known information on the transmission sources of the transmitting station. The passive type radar device establishes a target track from a target detection signal extracted at the scan rate, repeatedly performs derivation of vector information on the target track within a distance range of a radar coverage area and derivation for vector information on a target movement model based on the known information, derives a differential value between results of derivation of each vector information, derives a position vector in which the differential value becomes the minimum value, and inputs an initial position based on the position vector with the minimum differential value to the target track to estimate a target position.SELECTED DRAWING: Figure 4

Description

この発明の実施形態は、パッシブ型レーダ装置、パッシブ型レーダ信号処理方法に関する。 An embodiment of the present invention relates to a passive radar device and a passive radar signal processing method.

他レーダを送信局とした電波により目標を検出するパッシブ型レーダ装置では、目標の検出信号に対して、測角処理により方位角度と仰角角度を導出し、送信局から直接波と目標を反射した間接波との検出時刻差から距離を導出することで、目標と想定される検出信号に対しての位置を位置推定する。 In a passive radar device that detects a target by radio waves using another radar as a transmitting station, the azimuth angle and elevation angle are derived by angle measurement processing for the target detection signal, and the wave and target are reflected directly from the transmitting station. By deriving the distance from the detection time difference from the indirect wave, the position with respect to the detection signal assumed to be the target is estimated.

このように、パッシブ型レーダ装置の位置推定時における距離の導出では、直接波の受信時刻と間接波の検出時刻の時刻差を把握する必要がある。もし、送信局がパッシブ型レーダ装置の電波の見通し外に位置する場合など、パッシブ型レーダ装置側で直接波が得られない環境下においては、パッシブ型レーダ装置では距離の算出が困難になり、目標の位置を位置推定することができなくなる。そのため、パッシブ型レーダ装置には、運用範囲が送信局の直接波が届く範囲(例えばLine Of Sight)に制限されてしまうという問題があった。 As described above, in deriving the distance at the time of estimating the position of the passive radar device, it is necessary to grasp the time difference between the reception time of the direct wave and the detection time of the indirect wave. If the transmitting station is located outside the line of sight of the radio waves of the passive radar device, or in an environment where direct waves cannot be obtained on the passive radar device side, it becomes difficult for the passive radar device to calculate the distance. It becomes impossible to estimate the position of the target. Therefore, the passive radar device has a problem that the operating range is limited to the range where the direct wave of the transmitting station can reach (for example, Line Of Sight).

特開2016−138787号公報Japanese Unexamined Patent Publication No. 2016-138787 特開2002−311132号公報JP-A-2002-3111132

M. I. Skolnik, “Radar Handbook,” Third edition, pp. 23.1-23.13, McGraw-Hill, New York,M. I. Skolnik, “Radar Handbook,” Third edition, pp. 23.1-23.13, McGraw-Hill, New York, N. J. Wills, “Bistatic Radar,” Second edition, Silver Spring, MD: Technology Service Corp., 1995. Corrected and republished by Raleigh, NC: SciTech Publishing, Inc., 2005N. J. Wills, “Bistatic Radar,” Second edition, Silver Spring, MD: Technology Service Corp., 1995. Corrected and republished by Raleigh, NC: SciTech Publishing, Inc., 2005

以上のように、従来のパッシブ型レーダ装置では、運用範囲が送信局の直接波が届く範囲に制限されてしまうという問題があった。 As described above, the conventional passive radar device has a problem that the operating range is limited to the range where the direct wave of the transmitting station can reach.

本発明の実施形態は、送信局との同期に必要となる直接波が得られない環境下においても、目標の位置を特定することのできるパッシブ型レーダ装置及びパッシブ型レーダ信号処理方法を提供することを目的とする。 An embodiment of the present invention provides a passive radar device and a passive radar signal processing method capable of specifying a target position even in an environment where a direct wave required for synchronization with a transmitting station cannot be obtained. The purpose is.

一実施形態に係るパッシブ型レーダ装置は、送信諸元が既知の送信局から送信されるレーダ波の直接波が得られない環境下で、前記レーダ波が目標で反射された間接波を受信して目標の位置を検出する装置であって、受信部と、制御部と、信号処理部とを備える。前記受信部は、前記間接波を受信し、ゲートを開いて前記間接波の受信信号から目標検出信号を抽出する。前記制御部は、前記送信局の送信諸元の既知情報を基に、スキャンレートに合わせて、前記目標の移動速度及び距離の仮の値を設定して前記受信部に前記ゲートを設定する。前記信号処理部は、前記受信部において前記スキャンレートで抽出される目標検出信号から目標航跡を確立し、レーダ覆域の距離範囲内で前記目標航跡のベクトル情報の導出及び前記既知情報に基づく目標移動モデルのベクトル情報の導出を繰り返し行い、それぞれのベクトル情報の導出結果の差分値を導出し、その差分値が最小値となる位置ベクトルを導出し、前記目標航跡に前記位置ベクトルに基づく初期位置を入力して目標位置を位置推定する。 The passive radar device according to the embodiment receives an indirect wave in which the radar wave is reflected by a target in an environment where a direct wave of a radar wave transmitted from a transmission station whose transmission specifications are known cannot be obtained. It is a device for detecting the position of a target, and includes a receiving unit, a control unit, and a signal processing unit. The receiving unit receives the indirect wave, opens the gate, and extracts a target detection signal from the received signal of the indirect wave. Based on the known information of the transmission specifications of the transmitting station, the control unit sets temporary values of the target moving speed and distance according to the scan rate, and sets the gate in the receiving unit. The signal processing unit establishes a target track from the target detection signal extracted at the scan rate in the receiving unit, derives vector information of the target track within the range of the radar coverage, and targets based on the known information. The vector information of the movement model is repeatedly derived, the difference value of the derivation result of each vector information is derived, the position vector at which the difference value is the minimum value is derived, and the initial position based on the position vector is derived from the target track. Is input to estimate the target position.

図1は、本実施形態が適用されるパッシブ型レーダ装置を備えるレーダシステムの構成を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration of a radar system including a passive radar device to which the present embodiment is applied. 図2は、本実施形態が適用されるパッシブ型レーダ装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a passive radar device to which the present embodiment is applied. 図3は、本実施形態が適用されるパッシブ型レーダ装置による距離算出方法を示す図である。FIG. 3 is a diagram showing a distance calculation method using a passive radar device to which the present embodiment is applied. 図4は、本実施形態に係るパッシブ型レーダ装置において、直接波が得られない場合のレーダ信号処理手順を示すフローチャートである。FIG. 4 is a flowchart showing a radar signal processing procedure when a direct wave cannot be obtained in the passive radar device according to the present embodiment. 図5は、本実施形態に係るパッシブ型レーダ装置の目標航跡イメージ化を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining the target track imaging of the passive radar device according to the present embodiment. 図6は、本実施形態に係るパッシブ型レーダ装置の移動モデルの仮想イメージを示す概念図である。FIG. 6 is a conceptual diagram showing a virtual image of a moving model of the passive radar device according to the present embodiment.

以下、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態が適用されるパッシブ型レーダ装置(以下、パッシブレーダ)100を備えるレーダシステムの構成を示す概念図である。図1において、パッシブレーダ100は、送信局200から送出される送信波を直接受信する直接波W1と目標Tに反射して到来する間接波W2を受信し、それぞれの受信波の角度及び時間差から目標Tの位置を特定する。 FIG. 1 is a conceptual diagram showing a configuration of a radar system including a passive radar device (hereinafter, passive radar) 100 to which the present embodiment is applied. In FIG. 1, the passive radar 100 receives the direct wave W1 that directly receives the transmitted wave transmitted from the transmitting station 200 and the indirect wave W2 that is reflected by the target T and arrives, and from the angle and time difference of each received wave. Identify the position of the target T.

図2は、上記パッシブレーダ100の構成を示すブロック図である。図2において、パッシブレーダ100は、第1のアンテナ部101と、間接波信号処理部102と、累積部103と、合成部104と、目標位置特定部105とを備える。また、パッシブレーダ100は、第2のアンテナ部106と、直接波信号処理部107と、制御部108とを備える。なお、累積部103、合成部104及び目標位置特定部105、制御部108は、演算回路及び制御回路としての機能を備えるコンピュータ装置で実現可能である。 FIG. 2 is a block diagram showing the configuration of the passive radar 100. In FIG. 2, the passive radar 100 includes a first antenna unit 101, an indirect wave signal processing unit 102, a cumulative unit 103, a synthesis unit 104, and a target position specifying unit 105. Further, the passive radar 100 includes a second antenna unit 106, a direct wave signal processing unit 107, and a control unit 108. The cumulative unit 103, the combining unit 104, the target position specifying unit 105, and the control unit 108 can be realized by a computer device having functions as an arithmetic circuit and a control circuit.

第1のアンテナ部101は、到来波を捕捉して受信信号を得るアンテナ素子を備える。間接波信号処理部102は、制御部108からの制御を受けて、第1のアンテナ部101により得られた受信信号のうち間接波W2が到来する期間の信号(間接波信号)を抽出し、その間接波信号に対してリミッタ処理、増幅処理、フィルタ処理、およびA/D変換処理などの受信処理を施す。受信処理が施された間接波信号は、累積部103に出力される。 The first antenna unit 101 includes an antenna element that captures an incoming wave and obtains a received signal. Under the control of the control unit 108, the indirect wave signal processing unit 102 extracts a signal (indirect wave signal) during the period when the indirect wave W2 arrives from the received signals obtained by the first antenna unit 101. The indirect wave signal is subjected to reception processing such as limiter processing, amplification processing, filter processing, and A / D conversion processing. The indirect wave signal that has undergone reception processing is output to the cumulative unit 103.

累積部103は、制御部108により制御される累積期間において、間接波信号の信号値を累積する演算器で、入力される間接波信号の信号値を累積する。 The accumulation unit 103 is an arithmetic unit that accumulates the signal values of the indirect wave signals during the cumulative period controlled by the control unit 108, and accumulates the signal values of the input indirect wave signals.

第2のアンテナ部106は、第1のアンテナ部101とは別に(共用または一部供用でもよい)、到来波を捕捉して受信信号を得るアンテナ素子を備える。直接波信号処理部107は、第2のアンテナ部106により得られた受信信号のうち直接波W1の到来する期間の信号(直接波信号)を抽出し、その直接波信号に対してリミッタ処理、増幅処理、フィルタ処理、およびA/D変換処理などの受信処理を施す。受信処理が施された直接波信号は、制御部108に出力される。 The second antenna unit 106 includes an antenna element that captures the incoming wave and obtains a received signal, in addition to the first antenna unit 101 (which may be shared or partially used). The direct wave signal processing unit 107 extracts a signal (direct wave signal) during the period when the direct wave W1 arrives from the received signals obtained by the second antenna unit 106, and performs limiter processing on the direct wave signal. Receive processing such as amplification processing, filtering processing, and A / D conversion processing is performed. The direct wave signal that has undergone reception processing is output to the control unit 108.

制御部108は、直接波信号処理部107により得られた直接波信号に基づいて、直接波W1の到来タイミング及びインターバルの開始タイミングを求め、直接波W1の到来タイミングに基づいて間接波信号を抽出する期間(間接波W2の到来期間)を制御する。また、制御部108は、累積部103における間接波信号の累積期間を制御する。 The control unit 108 obtains the arrival timing of the direct wave W1 and the start timing of the interval based on the direct wave signal obtained by the direct wave signal processing unit 107, and extracts the indirect wave signal based on the arrival timing of the direct wave W1. The period (the arrival period of the indirect wave W2) is controlled. Further, the control unit 108 controls the cumulative period of the indirect wave signal in the cumulative unit 103.

合成部104は、累積部103により累積された結果を合成する。目標位置特定部105は、合成部104により合成された結果に基づいて目標Tの位置を特定する。目標位置特定部105により特定された目標Tの位置情報は、例えば、外部に出力されて目標Tの探知結果として表示される。 The synthesis unit 104 synthesizes the results accumulated by the accumulation unit 103. The target position specifying unit 105 specifies the position of the target T based on the result synthesized by the synthesis unit 104. The position information of the target T specified by the target position specifying unit 105 is output to the outside and displayed as a detection result of the target T, for example.

上記構成によるパッシブレーダ100では、目標Tの検出信号に対して、測角処理により方位角度θと仰角角度φを導出し、図3に示すように、送信局200の直接波の受信時刻tと間接波の検出時刻tとの時間差ΔTrt(=t−t)から距離Rを導出することで、目標Tと想定される検出信号に対しての位置(R,θ,φ)を位置推定する。なお、距離の導出には以下の式が適用される。

Figure 2021047105
In the passive radar 100 having the above configuration, the azimuth angle θ and the elevation angle φ are derived by angle measurement processing for the detection signal of the target T, and as shown in FIG. 3, the reception time t 1 of the direct wave of the transmitting station 200 is derived. By deriving the distance R r from the time difference ΔT rt (= t 2- t 1 ) between the indirect wave and the detection time t 2 , the position (R r , θ,) with respect to the detection signal assumed to be the target T φ) is estimated. The following equation is applied to derive the distance.
Figure 2021047105

ここで、cは光速、Lはパッシブレーダ100と送信局200との距離(ベースライン)、αはパッシブレーダ100の測角角度(パッシブレーダ100から見た送信局100と目標Tとのなす角)である。 Here, c is the speed of light, L is the distance between the passive radar 100 and the transmission station 200 (baseline), and α is the angle measurement angle of the passive radar 100 (the angle between the transmission station 100 and the target T as seen from the passive radar 100). ).

尚、本実施形態の前提条件として、パッシブレーダ100は送信局200の送信諸元(送信局位置、スキャンレート、パルスタイミング(PRI(Pulse Repeat Interval:パルス繰り返し周期)、パルス数など))が既知であることとする。 As a precondition of this embodiment, the passive radar 100 has known transmission specifications (transmission station position, scan rate, pulse timing (PRI (Pulse Repeat Interval), number of pulses, etc.)) of the transmission station 200. It is assumed that.

上記レーダシステムにおいて、以下、本実施形態の処理の流れについて、図4を参照して説明する。図4は、パッシブレーダ100において、送信局200との同期に必要となる直接波が得られない環境下におかれた場合の、制御部108によるレーダ信号処理手順を示すフローチャートである。 In the radar system, the processing flow of the present embodiment will be described below with reference to FIG. FIG. 4 is a flowchart showing a radar signal processing procedure by the control unit 108 when the passive radar 100 is placed in an environment where the direct wave required for synchronization with the transmission station 200 cannot be obtained.

図4において、制御部108は、直接波信号が得られない環境下になったと判断すると、間接波信号を入力して目標検出信号を抽出し(ステップS11)、この目標検出信号と送信諸元の既知情報とを基に、移動速度や距離の仮の値を設定して目標航跡の確立を図る(ステップS12)。航跡の確立手段としては、一般的な追跡レーダのTWS(Track While Scan)方式(得られた目標情報を基にデータ上で追跡する方式)の適用を想定している。TWS方式の追跡では、検出信号を中心に想定する目標速度をパラメータとしてゲートを開く。ここで、ゲートとは、検出目標が次の検出機会までの時間(本実施形態では、送信局200のスキャンレート)で移動しうる最大の範囲に相当する。 In FIG. 4, when the control unit 108 determines that the environment is such that a direct wave signal cannot be obtained, it inputs an indirect wave signal to extract a target detection signal (step S11), and the target detection signal and transmission specifications. Based on the known information of the above, a temporary value of the moving speed and the distance is set to establish the target track (step S12). As a means for establishing a track, it is assumed that a general tracking radar TWS (Track While Scan) method (a method of tracking on data based on the obtained target information) is applied. In the TWS tracking, the gate is opened with the target speed assumed centering on the detection signal as a parameter. Here, the gate corresponds to the maximum range in which the detection target can move in the time until the next detection opportunity (in this embodiment, the scan rate of the transmitting station 200).

ステップS12で目標航跡が確立した場合には、目標航跡のベクトル情報を導出する(ステップS13)。次に、既知情報に基づく目標移動モデルのベクトル情報の導出(ステップS14)とベクトル情報の差分値の導出(ステップS15)を、捜索覆域の距離範囲(例えば50km≦R≦250km)で繰り返し実行する。その後、差分値が最小となる位置ベクトルRを導出し(ステップS17)、目標航跡に位置ベクトルRに相当する初期位置を入力して目標位置を位置推定する(ステップS18)。 When the target track is established in step S12, the vector information of the target track is derived (step S13). Next, the derivation of the vector information of the target movement model based on the known information (step S14) and the derivation of the difference value of the vector information (step S15) are repeatedly executed within the distance range of the search coverage area (for example, 50 km ≦ R ≦ 250 km). To do. After that, the position vector R having the minimum difference value is derived (step S17), and the initial position corresponding to the position vector R is input to the target track to estimate the position of the target position (step S18).

以上の処理について、具体的に説明する。 The above processing will be specifically described.

まず、はじめに目標検出信号を基に目標航跡の確立を図る。航跡の確立のため、TWS方式で目標検出信号を中心に想定する目標速度をパラメータとして、送信局200のスキャンレートでゲートを開く。次スキャンで挙がった目標検出信号がゲート内に入った場合、これらの検出信号を同一目標として連結する。連結した検出目標の移動量より、更に次のスキャンに対するゲートを開き、以降これらの処理の繰り返しにより目標航跡を連結していく。 First, the target track is established based on the target detection signal. In order to establish a wake, the gate is opened at the scan rate of the transmitting station 200 with the target speed assumed centering on the target detection signal in the TWS method as a parameter. When the target detection signals raised in the next scan enter the gate, these detection signals are connected as the same target. Based on the movement amount of the connected detection target, the gate for the next scan is opened, and then the target track is connected by repeating these processes.

一方、本実施形態のパッシブレーダ100では、距離の算出が困難な状況を想定し、信号検出された目標Tの距離が不明であるため、想定される目標速度を設定しても開くゲートの広さを決定することができない(厳密なゲートの広さはパッシブレーダと信号検出された目標Tとの相対距離に応じて変化するため)。そのため、例えば捜索覆域の最大径とする距離の中間(50km〜250kmを捜索距離とした場合、その中間の150km)を仮値として設定し、当該距離に対して想定する目標速度を設定してゲートの広さを決定する方法を適用する。 On the other hand, in the passive radar 100 of the present embodiment, assuming a situation where it is difficult to calculate the distance, since the distance of the target T in which the signal is detected is unknown, the gate that opens even if the assumed target speed is set is wide. The exact gate size cannot be determined (because the exact gate size varies depending on the relative distance between the passive radar and the signal-detected target T). Therefore, for example, the middle of the distance that is the maximum diameter of the search coverage area (150 km in the middle when 50 km to 250 km is the search distance) is set as a provisional value, and the assumed target speed is set for the distance. Apply the method of determining the size of the gate.

なお、当該仮値として設定した距離は、システムの用途により可変に設定できるものとする。例えば、誤航跡を許容できるシステムであれば、覆域のうち、最も遠い距離を設定してゲートを広く開き、誤航跡を許容しないシステムであれば、比較的近い距離を設定しゲートを狭く開くなどの処理を施す。 The distance set as the temporary value can be set variably depending on the purpose of the system. For example, if the system can tolerate wakes, set the farthest distance in the coverage and open the gate wide, and if the system does not allow wakes, set a relatively short distance and open the gate narrowly. And so on.

次いで、確立した航跡に対して、初期位置の推定を行う。確立した目標航跡のイメージ図を図5に示す。ここで、目標航跡の各検出目標Tの方位θと仰角φはパッシブレーダ100の測角処理結果となり、誤差を含んだ値となる。距離は不明であるがnスキャン目とn+1スキャン目の時間差分により移動距離成分が推定できるため、当該移動距離成分を算出する。 Next, the initial position is estimated for the established track. An image of the established target wake is shown in FIG. Here, the directional θ and the elevation angle φ of each detection target T of the target track are the results of the angle measurement processing of the passive radar 100, and are values including an error. Although the distance is unknown, the moving distance component can be estimated from the time difference between the nth scan and the n + 1th scan, so the moving distance component is calculated.

以下に目標航跡のベクトル情報を示す。ここで、N(n=1〜N)は送信局200のスキャンレートに応じたスキャン番号を表しており、θn+1はn+1スキャン目の検出目標の方位情報、φn+1はn+1スキャン目の検出目標の仰角情報、ΔRn+1はnスキャン目の検出目標の距離情報とn+1スキャン目の検出目標の距離情報の差分となる。

Figure 2021047105
The vector information of the target track is shown below. Here, N (n = 1 to N) represents a scan number corresponding to the scan rate of the transmitting station 200, θ n + 1 is the orientation information of the detection target of the n + 1th scan, and φ n + 1 is the detection target of the n + 1th scan. The elevation angle information, ΔR n + 1, is the difference between the distance information of the detection target of the nth scan and the distance information of the detection target of the n + 1th scan.
Figure 2021047105

次に、目標移動モデルを仮定する。目標移動モデルは初期位置と移動方向を設定し、送信局200のスキャンレートで目標検出が挙がる目標検出仮定位置を導出する。なお、移動方向については、既に求められた目標航跡ベクトルの情報より、線形近似などで求めてもよい。仮定した目標移動モデルのベクトル情報(θ,φ,ΔR)を以下に示す。

Figure 2021047105
Next, assume a target movement model. The target movement model sets the initial position and the movement direction, and derives the target detection assumed position where the target detection is raised at the scan rate of the transmitting station 200. The moving direction may be obtained by linear approximation or the like from the information of the target track vector already obtained. The vector information (θ, φ, ΔR) of the assumed target movement model is shown below.
Figure 2021047105

また、移動モデルの仮定イメージを図6に示す。 Further, a hypothetical image of the moving model is shown in FIG.

上記目標航跡の初期位置の推定は、先に確立した目標航跡のベクトルと仮定した目標移動モデルのベクトル情報の差分値を基に行う。仮定する目標移動モデルの初期位置ベクトルRnを設定することで、目標移動モデルのベクトル情報が導き出される。このため、誤差が最小となる移動モデルの推定式は以下で表される。

Figure 2021047105
The initial position of the target track is estimated based on the difference value of the vector information of the target movement model assumed to be the vector of the target track established earlier. By setting the initial position vector Rn of the assumed target movement model, the vector information of the target movement model is derived. Therefore, the estimation formula of the movement model that minimizes the error is expressed as follows.
Figure 2021047105

上式のベクトルRnをパラメータとし、ベクトルRnごとに目標移動モデルのベクトル情報を導出し、目標航跡のベクトル情報との差分値を計算し、その差分値が最小となる目標移動モデルを探索する。なお、α,β,γは方位、仰角、距離の情報特性の違いによる差分の度合いを平滑化するための重みづけ係数とする。探索した差分値が最小となる目標移動モデルの初期位置ベクトルRnが、先に確立した目標航跡の初期位置となる。この目標航跡の初期位置を特定することで、目標Tの現在位置を特定することができる。 Using the vector Rn in the above equation as a parameter, the vector information of the target movement model is derived for each vector Rn, the difference value from the vector information of the target track is calculated, and the target movement model with the minimum difference value is searched. In addition, α, β, and γ are weighting coefficients for smoothing the degree of difference due to the difference in information characteristics of azimuth, elevation, and distance. The initial position vector Rn of the target movement model that minimizes the searched difference value becomes the initial position of the previously established target track. By specifying the initial position of the target track, the current position of the target T can be specified.

したがって、本実施形態に係るパッシブレーダによれば、送信局との同期に必要となる直接波が得られない環境下においても、目標の位置を特定することができる。 Therefore, according to the passive radar according to the present embodiment, the target position can be specified even in an environment where the direct wave required for synchronization with the transmitting station cannot be obtained.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.

100…パッシブレーダ、101…第1のアンテナ部、102…間接波信号処理部、103…累積部、104…合成部、105…目標位置特定部、106…第2のアンテナ部、107…直接波信号処理部、108…制御部。200…送信局。 100 ... Passive radar, 101 ... First antenna unit, 102 ... Indirect wave signal processing unit, 103 ... Cumulative unit, 104 ... Synthesis unit, 105 ... Target position identification unit, 106 ... Second antenna unit, 107 ... Direct wave Signal processing unit, 108 ... Control unit. 200 ... Transmitting station.

Claims (4)

送信諸元が既知の送信局から送信されるレーダ波の直接波が得られない環境下で、前記レーダ波が目標で反射された間接波を受信して目標の位置を検出するパッシブ型レーダ装置であって、
前記間接波を受信し、ゲートを開いて前記間接波の受信信号から目標検出信号を抽出する受信部と、
前記送信局の送信諸元の既知情報を基に、スキャンレートに合わせて、前記目標の移動速度及び距離の仮の値を設定して前記受信部に前記ゲートを設定する制御部と、
前記受信部において前記スキャンレートで抽出される目標検出信号から目標航跡を確立し、レーダ覆域の距離範囲内で前記目標航跡のベクトル情報の導出及び前記既知情報に基づく目標移動モデルのベクトル情報について導出を繰り返し行い、それぞれのベクトル情報の導出結果の差分値を導出し、その差分値が最小値となる位置ベクトルを導出し、前記目標航跡に前記位置ベクトルに基づく初期位置を入力して目標位置を位置推定する信号処理部と
を具備するパッシブ型レーダ装置。
A passive radar device that detects the position of a target by receiving the indirect wave reflected by the target in an environment where the direct wave of the radar wave transmitted from a transmission station whose transmission specifications are known cannot be obtained. And
A receiver that receives the indirect wave, opens the gate, and extracts a target detection signal from the received signal of the indirect wave.
Based on the known information of the transmission specifications of the transmitting station, a control unit that sets a temporary value of the target moving speed and a distance according to the scan rate and sets the gate in the receiving unit.
The target track is established from the target detection signal extracted at the scan rate in the receiving unit, the vector information of the target track is derived within the distance range of the radar coverage, and the vector information of the target movement model based on the known information. The derivation is repeated, the difference value of the derivation result of each vector information is derived, the position vector whose difference value is the minimum value is derived, and the initial position based on the position vector is input to the target track to enter the target position. A passive radar device including a signal processing unit that estimates the position of the vector.
前記制御部は、前記目標検出信号の中心に想定する目標の移動速度をパラメータとして、前記目標が次に検出される機会までの時間で移動しうる最大の範囲に相当するゲートを設定する請求項1記載のパッシブ型レーダ装置。 The control unit sets a gate corresponding to the maximum range in which the target can move in the time until the next detection of the target, using the movement speed of the target assumed at the center of the target detection signal as a parameter. 1 The passive radar device according to 1. 前記信号処理部は、前記レーダ覆域の最大径とする距離の中間を前記仮の値とし、当該距離に対して想定する目標速度を設定して前記ゲートの広さを決定する請求項1記載のパッシブ型レーダ装置。 The first aspect of the present invention, wherein the signal processing unit sets the middle of the distance to be the maximum diameter of the radar covering area as the provisional value, sets an assumed target speed for the distance, and determines the width of the gate. Passive radar device. 送信諸元が既知の送信局から送信されるレーダ波の直接波が得られない環境下で、
前記レーダ波が目標で反射された間接波を受信し、
ゲートを開いて前記間接波の受信信号から目標検出信号を抽出し、
前記送信局の送信諸元の既知情報を基に、スキャンレートに合わせて、前記目標の移動速度及び距離の仮の値を設定して前記ゲートを設定し、
前記スキャンレートで抽出される目標検出信号から目標航跡を確立し、
レーダ覆域の距離範囲内で前記目標航跡のベクトル情報の導出及び前記既知情報に基づく目標移動モデルのベクトル情報の導出を繰り返し行い、
前記目標航跡のベクトル情報及び前記目標移動モデルのベクトル情報それぞれの導出結果の差分値を導出し、
前記差分値が最小値となる位置ベクトルを導出し、
前記目標航跡に前記位置ベクトルに基づく初期位置を入力して目標位置を位置推定する
パッシブ型レーダ信号処理方法。
In an environment where direct waves of radar waves transmitted from transmission stations with known transmission specifications cannot be obtained.
The radar wave receives the indirect wave reflected by the target and receives the indirect wave.
Open the gate and extract the target detection signal from the received signal of the indirect wave.
Based on the known information of the transmission specifications of the transmission station, the gate is set by setting temporary values of the target movement speed and distance according to the scan rate.
Establish a target track from the target detection signal extracted at the scan rate,
The vector information of the target track and the vector information of the target movement model based on the known information are repeatedly derived within the distance range of the radar coverage area.
The difference value of the derivation result of each of the vector information of the target track and the vector information of the target movement model is derived.
Derivation of the position vector at which the difference value is the minimum value is derived.
A passive radar signal processing method for estimating the position of a target position by inputting an initial position based on the position vector into the target track.
JP2019170321A 2019-09-19 2019-09-19 Passive type radar device, and passive type radar signal processing method Pending JP2021047105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019170321A JP2021047105A (en) 2019-09-19 2019-09-19 Passive type radar device, and passive type radar signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170321A JP2021047105A (en) 2019-09-19 2019-09-19 Passive type radar device, and passive type radar signal processing method

Publications (1)

Publication Number Publication Date
JP2021047105A true JP2021047105A (en) 2021-03-25

Family

ID=74876608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170321A Pending JP2021047105A (en) 2019-09-19 2019-09-19 Passive type radar device, and passive type radar signal processing method

Country Status (1)

Country Link
JP (1) JP2021047105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116788533A (en) * 2023-08-21 2023-09-22 济钢防务技术有限公司 Passive radar recognition flying body device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116788533A (en) * 2023-08-21 2023-09-22 济钢防务技术有限公司 Passive radar recognition flying body device

Similar Documents

Publication Publication Date Title
US11057862B2 (en) Wi-Fi radar detection using synchronized wireless access point
US11105912B2 (en) Coherent Wi-Fi radar using wireless access point
US8111797B2 (en) Enhanced system and method for detecting the leading edge of a waveform
US6703968B2 (en) System and method for mitigating co-channel interference in passive coherent location applications
US9019159B2 (en) Ranging diversity-reception method and receiver
CN103777178B (en) A kind of synchronous error compensation method, equipment and system
US11506745B2 (en) Vehicular self-positioning
CN111220946A (en) Multi-moving-target positioning error elimination method based on improved extended Kalman filtering
US20030001778A1 (en) System and method for detection and feature extraction in passive coherent location applications
JP2016138787A (en) Passive radar device
JP2010181182A (en) Onboard radar device, and target recognition method
JP2021047105A (en) Passive type radar device, and passive type radar signal processing method
JP3613120B2 (en) Bistatic radar device
JP3608001B2 (en) Passive radar device
US20240036183A1 (en) Radar method and radar system for a phase-coherent analysis
US12055649B2 (en) Vehicle positioning based on wireless signal transmission
RU2572079C2 (en) Method and system for combined processing of range and velocity measurements for multirange all-round looking radar system
JP4193939B2 (en) Array antenna, incoming wave estimation device, and planar array synthesis method
JP3614400B2 (en) Radar signal processing apparatus and radar signal processing method
JP2021047106A (en) Passive type radar device, and passive type radar signal processing method
US6498924B2 (en) Apparatus for measuring the distance between a mobile station and a base station in a mobile radiocommunications system
Coraluppi et al. Intra-ping timing issues in multistatic sonar tracking
RU2824754C1 (en) Method of frequency-time processing of signals from several moving objects
JP2003227872A (en) Synthetic aperture radar apparatus
US6473029B1 (en) System for recognizing signal of interest within noise