JP2021046391A - Plant lactobacillus extracellular polysaccharide and action thereof in preparing ace inhibitor composition - Google Patents

Plant lactobacillus extracellular polysaccharide and action thereof in preparing ace inhibitor composition Download PDF

Info

Publication number
JP2021046391A
JP2021046391A JP2020137287A JP2020137287A JP2021046391A JP 2021046391 A JP2021046391 A JP 2021046391A JP 2020137287 A JP2020137287 A JP 2020137287A JP 2020137287 A JP2020137287 A JP 2020137287A JP 2021046391 A JP2021046391 A JP 2021046391A
Authority
JP
Japan
Prior art keywords
lactic acid
plant
extracellular polysaccharide
derived lactic
polysaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2020137287A
Other languages
Japanese (ja)
Inventor
韓美▲き▼
Meiqi Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2021046391A publication Critical patent/JP2021046391A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/351Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/665Phosphorus compounds having oxygen as a ring hetero atom, e.g. fosfomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7004Monosaccharides having only carbon, hydrogen and oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7024Esters of saccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To provide plant lactobacillus extracellular polysaccharide exhibiting significant ACE inhibiting activity and no cytotoxicity.SOLUTION: Disclosed is a plant lactobacillus extracellular polysaccharide capable of inhibiting angiotensin converting enzyme (ACE), having the following 1) and/or 2) characteristics: 1) a weight-average molecular weight of the extracellular polysaccharide is 1.35×106 Da; and 2) the extracellular polysaccharide is composed of mannose, galactose and glucose with a molar ratio of 5.6:7.3:1. The invention also provides a phosphorylated derivative of the plant lactobacillus extracellular polysaccharide. The invention also provides a composition for preventing or treating cardiovascular disease, which comprises the plant lactobacillus extracellular polysaccharide and/or the phosphorylated derivative thereof, where the cardiovascular disease is one or more diseases selected from the group consisting of hypertension, heart disease, stroke, thrombus, arteriosclerosis, angina pectoris, heart failure and myocardial infarction.SELECTED DRAWING: Figure 1

Description

本発明は、微生物技術分野に関し、具体的には、植物性乳酸菌細胞外多糖および植物性乳酸菌細胞外多糖がACE阻害薬製造中に果たす作用に関する。 The present invention relates to the field of microbial technology, and specifically to the action of plant-derived lactic acid bacteria extracellular polysaccharides and plant-derived lactic acid bacteria extracellular polysaccharides during the production of ACE inhibitors.

多糖は、自然界においてありふれたバイオポリマーであり、すべての動物、植物および微生物に存在し、同じ単糖から構成されるホモ多糖と異なる単糖から構成されるヘテロ多糖とに分けられる。近年、多糖の活性に対する研究が大きく前進し、レンチナン、霊芝多糖など多くな多糖が抗腫瘍活性を有することが証明され、人参多糖が免疫力を強化する機能を有することが証明される。微生物多糖は、生産量が安定で、気候や地理に影響されにくいため、研究ブームを迎える。多糖の生物活性多糖の生物活性は、自身の水溶性と、分子量(Mw)と、置換度と置換基の四つの要素によって影響修飾される。化学修飾によって多糖の生物活性に明らかな強化又は新しい活性が生じ、新型薬に開発できることが、多くの研究によって発見される。多糖の分子修飾と構造改造は重要意味を有する。 Polysaccharides are common biopolymers in nature and are present in all animals, plants and microorganisms and are divided into homopolysaccharides composed of the same monosaccharides and heteropolysaccharides composed of different monosaccharides. In recent years, research on the activity of polysaccharides has made great progress, and it has been proved that many polysaccharides such as lentinan and Ganoderma lucidum have antitumor activity, and that ginseng polysaccharide has a function of strengthening immunity. Microbial polysaccharides enter a research boom because their production is stable and they are not easily affected by climate and geography. Biological activity of polysaccharides The biological activity of polysaccharides is influenced and modified by four factors: their water solubility, their molecular weight (Mw), their degree of substitution and their substituents. Many studies have found that chemical modifications result in obvious enhancements or new activities in the biological activity of polysaccharides that can be developed into new drugs. Molecular modification and structural modification of polysaccharides are important.

微生物多糖の免疫調節活性は主に、マクロファージとナチュラルキラー細胞を活性化させることに体現される。中国には、良質な乳酸菌資源を有し、多くの伝統発酵食品には乳酸菌が含まれ、これらの資源に対し、研究や開発を行うことで、国民生活を改善することに役立てる。菌体外多糖乳酸菌の有益機能は主に自身の菌体外多糖によって決められると思う学者もいる。乳酸菌の菌体外多糖(Exopolysaccharides,□EPS)は一般、菌体の表面に緊密に結合する細胞結合性の菌体外多糖と、周囲の液体環境に放出される放出多糖(Released□exopolysaccharides,□r−EPS)に分けられる。報道される大部分の乳酸菌は、r−EPSだけを生じるが、C−EPSとr−EPSを同時に生じる乳酸菌もある。現在、報道された乳酸菌細胞外多糖乳酸菌は主に30種類くらいある。乳酸菌細胞外多糖が免疫調節作用を強化させる機能を有することに対し、乳酸菌細胞外多糖の抽出が簡単であり、遠心によって菌体と液体を分離させ、そして液体を濃縮してエタノールを添加すればr−EPSが沈殿する。一部のウェルシュ菌は、C−EPSの抽出に使用されることができ、また、他の微生物多糖に比べ、乳酸菌細胞外多糖は、安全性がよく、各種食品と薬に応用できる。したがって、乳酸菌細胞外多糖に対する研究は非常に必要である。 The immunomodulatory activity of microbial polysaccharides is primarily embodied in the activation of macrophages and natural killer cells. China has high-quality lactic acid bacteria resources, and many traditional fermented foods contain lactic acid bacteria, and research and development of these resources will help improve people's lives. Some scholars believe that the beneficial functions of exopolysaccharide lactic acid bacteria are mainly determined by their own exopolysaccharide. Lactic acid bacteria exopolysaccharides (Exopolysaccharides, □ EPS) are generally cell-binding exopolysaccharides that bind tightly to the surface of the bacterium and released polysaccharides (Released □ exopolysaccharides, □) that are released into the surrounding liquid environment. It is divided into r-EPS). Most of the reported lactic acid bacteria produce only r-EPS, but some lactic acid bacteria produce C-EPS and r-EPS at the same time. Currently, there are mainly about 30 types of lactic acid bacteria extracellular polysaccharide lactic acid bacteria reported. Lactobacillus extracellular polysaccharide has a function of enhancing immunomodulatory action, whereas extraction of lactic acid bacterium extracellular polysaccharide is easy, if the cells and liquid are separated by centrifugation, and the liquid is concentrated and ethanol is added. r-EPS precipitates. Some Clostridium perfringens can be used for extraction of C-EPS, and lactic acid bacteria extracellular polysaccharides are safer than other microbial polysaccharides and can be applied to various foods and medicines. Therefore, research on lactic acid bacteria extracellular polysaccharides is very necessary.

中国特許出願公開第105837699号明細書Chinese Patent Application Publication No. 1058376999

本発明は、上記の技術的問題を解決するために、顕著なACE阻害活性を示す、細胞傷害性を有しない植物性乳酸菌細胞外多糖を提供することを目的とする。 An object of the present invention is to provide a non-cytotoxic plant-derived lactic acid bacterium extracellular polysaccharide that exhibits remarkable ACE inhibitory activity in order to solve the above technical problems.

上記の目的を実現するために、本発明の植物性乳酸菌細胞外多糖は、1)と2)の少なくともいずれか一つの特徴を有し、
前記1)は、重量平均分子量は、1.35×106Daであり、
前記2)は、モル比が5.6:7.3:1のマンノースと、ガラクトースとブドウ糖から構成される。
In order to achieve the above object, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention has at least one of the characteristics of 1) and 2).
In 1), the weight average molecular weight is 1.35 × 106 Da.
The above 2) is composed of mannose having a molar ratio of 5.6: 7.3: 1, galactose and glucose.

前記植物性乳酸菌細胞外多糖は、アンジオテンシン変換酵素(ACE)を阻害できる。本発明の植物性乳酸菌細胞外多糖は、アンジオテンシン変換酵素(ACE)阻害活性を示し、血圧調節および高血圧予防の機能の作用を果たし、したがって、本発明の植物性乳酸菌細胞外多糖を心臓血管疾患予防・治療のための組成物の活性成分に使用できる。かつ、本発明の植物性乳酸菌細胞外多糖は、細胞傷害性を有しない。 The plant-derived lactic acid bacterium extracellular polysaccharide can inhibit angiotensin converting enzyme (ACE). The plant-derived lactic acid bacterium extracellular polysaccharide of the present invention exhibits angiotensin converting enzyme (ACE) inhibitory activity and fulfills the functions of blood pressure regulation and hypertension prevention. Therefore, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention can be used for cardiovascular disease prevention. -Can be used as an active ingredient in therapeutic compositions. Moreover, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention does not have cytotoxicity.

本発明は、植物性乳酸菌細胞外多糖がACE阻害薬組成物の調製時の作用を更に提供する。本発明の細胞外多糖は、顕著なACE阻害活性を示し、かつ細胞傷害性がなく、ACE活性阻害剤組成物として有効に使用することができる。 The present invention further provides the action of plant-derived lactic acid bacteria extracellular polysaccharides in the preparation of ACE inhibitor compositions. The extracellular polysaccharide of the present invention exhibits remarkable ACE inhibitory activity, is not cytotoxic, and can be effectively used as an ACE activity inhibitor composition.

本発明は、植物性乳酸菌細胞外多糖のリン酸化誘導体を更に提供する。本発明の植物性乳酸菌細胞外多糖のリン酸化誘導体は、ACE阻害活性を示し、血圧調節および高血圧予防の作用を有し、且つかつ細胞傷害性を有しない。 The present invention further provides a phosphorylated derivative of a plant-derived lactic acid bacterium extracellular polysaccharide. The phosphorylated derivative of the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention exhibits ACE inhibitory activity, has an action of regulating blood pressure and preventing hypertension, and has no cytotoxicity.

前記植物性乳酸菌細胞外多糖の置換度は、0.24である。 The degree of substitution of the plant-derived lactic acid bacterium extracellular polysaccharide is 0.24.

本発明は、心臓血管疾患予防・治療用の組成物を更に提供し、前記細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを含む。前記組成物は、食品組成物又は医薬組成物であり、組成物全重量に対して、細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを0.1〜80wt%含む。 The present invention further provides a composition for the prevention and treatment of cardiovascular diseases, and includes at least one of the extracellular polysaccharide and a phosphorylated derivative thereof. The composition is a food composition or a pharmaceutical composition, and contains 0.1 to 80 wt% of at least one of an extracellular polysaccharide and a phosphorylated derivative thereof based on the total weight of the composition.

前記心血管疾患は、高血圧、心疾患、脳卒中、血栓、動脈硬化、狭心症、心不全および心筋梗塞からなる群から選択される一種または複数種の疾患である。 The cardiovascular disease is one or more diseases selected from the group consisting of hypertension, heart disease, stroke, thrombosis, atherosclerosis, angina, heart failure and myocardial infarction.

前記組成物は、経口組成物である。 The composition is an oral composition.

前記組成物は、成人が一日あたりに0.1−500mgの植物性乳酸菌細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを摂取する方式で使用される。好ましくは、毎日50−100mg/kgであり、毎日1−3回である。 The composition is used in such a manner that an adult ingests 0.1-500 mg of at least one of a plant-derived lactic acid bacterium extracellular polysaccharide and a phosphorylated derivative thereof per day. Preferably, it is 50-100 mg / kg daily, 1-3 times daily.

前記組成物は、9−12週間又はもっと長い時間で摂取する方式で使用される。 The composition is used in a manner of ingestion for 9-12 weeks or longer.

本発明は、従来技術と比べ、下記のメリットを有する。 The present invention has the following merits as compared with the prior art.

本発明の植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は、いずれもACE阻害活性を示し、血圧調節および高血圧予防の機能を有し、これによって本発明の植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は、心臓血管疾患の予防と治療のための組成物の活性成分に使用できる。また、本発明の植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は、細胞傷害性を有しなく、幅広く応用されることができる。 The plant-derived lactic acid bacterium extracellular polysaccharide of the present invention and its phosphorylated derivative all exhibit ACE inhibitory activity and have functions of blood pressure regulation and hypertension prevention, whereby the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention and its phosphorylation are exhibited. Derivatives can be used as active ingredients in compositions for the prevention and treatment of cardiovascular disease. In addition, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention and its phosphorylated derivative have no cytotoxicity and can be widely applied.

本発明は、上記技術的解決手段を採用して、植物性乳酸菌細胞外多糖および植物性乳酸菌細胞外多糖がACE阻害薬製造中に果たす作用を提供し、従来技術の不足を補い、デザインが合理的で、操作が便利である。 The present invention employs the above technical solutions to provide the effects of plant-derived lactic acid bacteria extracellular polysaccharides and plant-derived lactic acid bacteria extracellular polysaccharides during the production of ACE inhibitors, compensating for the lack of prior art, and rationalizing the design. Targeted and convenient to operate.

試験例1においての植物性乳酸菌ATCC8014の成長曲線である。It is a growth curve of the plant-derived lactic acid bacterium ATCC8014 in Test Example 1. 試験例2においての高性能液体クロマトグラフィーで植物性乳酸菌細胞外多糖の分子量を測定する標準曲線である。6 is a standard curve for measuring the molecular weight of plant-derived lactic acid bacteria extracellular polysaccharide by high performance liquid chromatography in Test Example 2. 試験例2においての植物性乳酸菌細胞外多糖の高速液体クロマトグラムである。It is a high performance liquid chromatogram of a plant-derived lactic acid bacterium extracellular polysaccharide in Test Example 2. 試験例2においての植物性乳酸菌細胞外多糖と標準単糖のガスクロマトグラムである。3 is a gas chromatogram of a plant-derived lactic acid bacterium extracellular polysaccharide and a standard monosaccharide in Test Example 2. 試験例4においての植物性乳酸菌細胞外多糖及びそのリン酸化誘導体がACEに対する抑制作用である。The plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative in Test Example 4 have an inhibitory effect on ACE. 試験例4においての植物性乳酸菌細胞外多糖及びそのリン酸化誘導体の細胞傷害性である。It is the cytotoxicity of the plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative in Test Example 4. 試験例4においての植物性乳酸菌細胞外多糖及びそのリン酸化誘導体が高血圧自然発症ラットの収縮期血圧に対する影響である。The effect of the plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative in Test Example 4 on the systolic blood pressure of spontaneously hypertensive rats. 試験例4においての植物性乳酸菌細胞外多糖及びそのリン酸化誘導体が高血圧自然発症ラットの拡張期血圧に対する影響である。The effect of the plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative in Test Example 4 on the diastolic blood pressure of spontaneously hypertensive rats.

下記に、本発明について、詳しく説明します。 The present invention will be described in detail below.

本実施方法は、植物性乳酸菌細胞外多糖を提供し、具体的には1)と2)の少なくともいずれか一つの特徴を有する。
1)重量平均分子量は、1.35×106Daであり、
2)モル比が5.6:7.3:1のマンノースと、ガラクトースとブドウ糖から構成される。
The present method provides a plant-derived lactic acid bacterium extracellular polysaccharide, and specifically has at least one of the characteristics of 1) and 2).
1) The weight average molecular weight is 1.35 × 106 Da.
2) It is composed of mannose with a molar ratio of 5.6: 7.3: 1, galactose and glucose.

好ましい具体例として、前記植物性乳酸菌細胞外多糖は、アンジオテンシン変換酵素(ACE)を阻害できる。本発明の植物性乳酸菌細胞外多糖は、アンジオテンシン変換酵素(ACE)阻害活性を示し、血圧調節および高血圧予防の機能の作用を果たし、したがって、本発明の植物性乳酸菌細胞外多糖を心臓血管疾患予防・治療のための組成物の活性成分に使用できる。かつ、本発明の植物性乳酸菌細胞外多糖は、細胞傷害性を有しない。 As a preferred embodiment, the plant-derived lactic acid bacterium extracellular polysaccharide can inhibit angiotensin converting enzyme (ACE). The plant-derived lactic acid bacterium extracellular polysaccharide of the present invention exhibits angiotensin converting enzyme (ACE) inhibitory activity and fulfills the functions of blood pressure regulation and hypertension prevention. Therefore, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention can be used for cardiovascular disease prevention. -Can be used as an active ingredient in therapeutic compositions. Moreover, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention does not have cytotoxicity.

本実施方法の植物性乳酸菌細胞外多糖は、
植物性乳酸菌を発酵させ、発酵液を収集するステップ1と、
トリクロロ酢酸水溶液と発酵液とを撹拌混合し、反応させ、反応液に含まれる上澄み液を収集するステップ2と、
上澄み液と無水エタノールとを撹拌混合し静置し、沈殿物を収集するステップ3と、
沈殿物を水に溶解させ、透析純化し、植物性乳酸菌細胞外多糖を得るステップ4と、
の方法によって調製される。
The plant-derived lactic acid bacteria extracellular polysaccharide of this method is
Step 1 of fermenting plant-derived lactic acid bacteria and collecting fermented liquid,
Step 2 in which the trichloroacetic acid aqueous solution and the fermentation broth are stirred and mixed, reacted, and the supernatant liquor contained in the reaction broth is collected.
Step 3 of mixing the supernatant and absolute ethanol with stirring and allowing them to stand to collect the precipitate, and
Step 4 in which the precipitate is dissolved in water and purified by dialysis to obtain a plant-derived lactic acid bacterium extracellular polysaccharide,
It is prepared by the method of.

好ましい具体例として、植物性乳酸菌細胞外多糖の調製方法は、
植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、濃度0.02〜0.1μMのテトラエチルチウラムジスルフィド及び0.1〜0.5mMのラクトースを含有するMRS培地に移し、30〜40℃で12〜24h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と70〜80%のトリクロロ酢酸水溶液を均一に混合し、常温で1〜2h撹拌反応させ、反応液中の上澄み液を採取し、発酵液中の細胞及びタンパク質を除去するステップ2と、
上澄み液に2?3倍体積の無水エタノールを加え、均一に混合し、4℃で10―15h静置し、さらに4℃、8000?15000r/minで20―30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を5〜10h毎に交換し、12―24h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖をイオン交換カラムクロマトグラフィー及びゲルカラムにより精製し、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、
を含み、
前記ステップ1において、テトラエチルチウラムジスルフィド及びラクトースを含有するMRS培地を使用することで、細胞外多糖の化学構造を変えて本発明の植物性乳酸菌細胞外多糖を得ることができるだけでなく、植物性乳酸菌細胞外多糖の対数期及び安定期の延長に有利であり、細胞外多糖を大量に合成して、植物性乳酸菌細胞外の多糖産生力を向上させ、最終的に細胞外多糖の収量を高めることができる。
As a preferred specific example, a method for preparing a plant-derived lactic acid bacterium extracellular polysaccharide is described.
The plant-derived lactic acid bacterium ATCC8014 was continuously activated for two generations, and then transferred to an MRS medium containing tetraethylthiuram disulfide having a concentration of 0.02 to 0.1 μM and lactose of 0.1 to 0.5 mM at 30 to 40 ° C. Step 1 to collect the fermented liquid by statically fermenting for 12 to 24 hours in
The fermentation broth and a 70 to 80% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 1 to 2 hours, the supernatant liquor in the reaction broth is collected, and cells and proteins in the fermented broth are removed. ,
Add 2 to 3 times the volume of absolute ethanol to the supernatant, mix uniformly, allow to stand at 4 ° C for 10 to 15 hours, and further centrifuge at 4 ° C and 8000 to 15000 r / min for 20 to 30 minutes to collect the precipitate. Step 3 and
The step of dissolving the precipitate in water, transferring to a dialysis bag, exchanging deionized water every 5 to 10 hours, dialyzing for 12 to 24 hours, then collecting the product and lyophilizing to obtain crude extracellular polysaccharide. 4 and
Step 5 to obtain plant-derived lactic acid bacteria extracellular polysaccharide by purifying the crude extracellular polysaccharide by ion exchange column chromatography and gel column and freeze-drying.
Including
In step 1, by using an MRS medium containing tetraethylthiuram disulfide and lactose, not only can the chemical structure of the extracellular polysaccharide be changed to obtain the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention, but also the plant-derived lactic acid bacterium can be obtained. It is advantageous for prolonging the logarithmic phase and stable phase of extracellular polysaccharides, synthesizing a large amount of extracellular polysaccharides, improving the ability of plant-derived lactic acid bacteria to produce extracellular polysaccharides, and finally increasing the yield of extracellular polysaccharides. Can be done.

本発明は、植物性乳酸菌細胞外多糖がACE阻害薬組成物の調製時の作用を更に提供する。多糖分子は、リン酸化修飾された後、分岐鎖上の水酸基がリン酸基で置換され、多糖水溶性を高め、鎖立体配座を改変することにより、本発明の細胞外多糖は、顕著なACE阻害活性を示し、かつ細胞傷害性がなく、ACE活性阻害剤組成物として有効に使用することができる。 The present invention further provides the action of plant-derived lactic acid bacteria extracellular polysaccharides in the preparation of ACE inhibitor compositions. After phosphorylation modification of the polysaccharide molecule, the hydroxyl group on the branched chain is replaced with a phosphate group to increase the water solubility of the polysaccharide and modify the chain configuration, whereby the extracellular polysaccharide of the present invention is remarkable. It exhibits ACE inhibitory activity and is not cytotoxic, and can be effectively used as an ACE activity inhibitor composition.

本発明は、植物性乳酸菌細胞外多糖のリン酸化誘導体を更に提供する。 The present invention further provides a phosphorylated derivative of a plant-derived lactic acid bacterium extracellular polysaccharide.

好ましい具体例として、植物性乳酸菌細胞外多糖のリン酸化誘導体は、植物性乳酸菌細胞外多糖を、固液比1:10―30g/mLでジメチルスルホキシドに溶解し、50―70℃で20―40min加熱して十分に溶解させた後、尿素およびリン酸を加え、50―70℃で2―5h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを使用して反応液を中和し、透析し、凍結乾燥することにより、調製される。前記植物性乳酸菌細胞外多糖のリン酸化誘導体の調製方法において、植物性乳酸菌細胞外多糖と尿素の重量比は、1:15−20であり、植物性乳酸菌細胞外多糖とリン酸の固液比は、1:5−10g/mLであり、植物性乳酸菌細胞外多糖と脱イオン水の固液比は、1:8−12g/mLである。 As a preferred embodiment, the phosphorylated derivative of the plant-derived lactic acid bacterium extracellular polysaccharide dissolves the plant-derived lactic acid bacterium extracellular polysaccharide in dimethyl sulfoxide at a solid-liquid ratio of 1:10 to 30 g / mL and 20 to 40 min at 50 to 70 ° C. After heating to sufficiently dissolve, urea and phosphoric acid are added, and the reaction is carried out at 50-70 ° C. for 2-5 hours, then deionized water is added to terminate the reaction, and the reaction solution is completed using 1 M NaOH. Is prepared by neutralizing, dialyzing, and lyophilizing. In the method for preparing a phosphorylated derivative of a plant-derived lactic acid bacterium extracellular polysaccharide, the weight ratio of the plant-derived lactic acid bacterium extracellular polysaccharide to urea is 1: 15-20, and the solid-liquid ratio of the plant-derived lactic acid bacterium extracellular polysaccharide to phosphoric acid. Is 1: 5-10 g / mL, and the solid-liquid ratio of plant-derived lactic acid bacteria extracellular polysaccharide to deionized water is 1: 8-12 g / mL.

好ましい具体例として、植物性乳酸菌細胞外多糖の置換度は、0.24である。 As a preferred specific example, the degree of substitution of the plant-derived lactic acid bacterium extracellular polysaccharide is 0.24.

本発明は、心臓血管疾患予防・治療用の組成物を更に提供し、前記細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを含む。該組成物は、食品組成物又は医薬組成物であり、組成物全重量に対して、細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを0.1〜80wt%含む。本発明の食品組成物に関し、本発明の細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを飲料、肉、ソーセージ、パン、ビスケット、餅、チョコレート、キャンディ、菓子、クッキー、パンケーキ、ラーメン、チューインガム、乳製品(アイスクリームを含む)、特殊栄養食(例えば、配合粉乳や幼児食)、加工肉製品、魚製品、豆腐、でんぷんゲル製品、健康補助食品、調味食品(例えば醤油、豆弁ジャム、唐辛子、かき揚げジャム)、ソース、その他の加工食品、漬物(例えば、漬物やソース野菜)、スープ、飲料、アルコール飲料及びビタミン複合体に添加することができ、広い意味では、健康食品の生産に適した食品がほとんど含まれているといえる。本発明の医薬組成物はさらに様々な栄養素、ビタミン、ミネラル、調味剤、着色剤、ペクチン酸及びその塩、アルギン酸及びその塩、有機酸、保護コロイド増粘剤、pH調整剤、安定剤、防腐剤、グリセリン、アルコール、ソーダ水に添加するための炭酸化剤等を含むことができる。前記担体、賦形剤又は希釈剤は、ラクトース、グルコース、スクロース、ソルビトール、マンニトール、キシリトール、エリスリトール、マルチトール、デンプン、アラビアガム、アルギン酸塩/エステル、ゼラチン、リン酸カルシウム、ケイ酸カルシウム、セルロース、メチルセルロース、微結晶セルロース、ポリビニルピロリドン、水、ヒドロキシ安息香酸メチル、ヒドロキシ安息香酸プロピル、タルク、ステアリン酸マグネシウム、鉱物油、デキストリン、炭酸カルシウム、プロピレングリコール、流動パラフィン及び塩水からなる群から選択されるが、必ずしもこれに限定されるものではない。なお、全ての成分は、単独で添加してもよく、また、共に添加してもよい。 The present invention further provides a composition for the prevention and treatment of cardiovascular diseases, and includes at least one of the extracellular polysaccharide and a phosphorylated derivative thereof. The composition is a food composition or a pharmaceutical composition and contains 0.1 to 80 wt% of at least one of an extracellular polysaccharide and a phosphorylated derivative thereof based on the total weight of the composition. With respect to the food composition of the present invention, at least one of the extracellular polysaccharide of the present invention and a phosphorylated derivative thereof is used as a beverage, meat, sausage, bread, biscuits, rice cake, chocolate, candy, confectionery, cookie, pancake, ramen. , Chewing gum, dairy products (including ice cream), special nutrition foods (eg compound milk powder and infant food), processed meat products, fish products, tofu, starch gel products, health supplements, seasoning foods (eg soy sauce, bean biscuits) Can be added to jams, peppers, fried jams), sauces and other processed foods, pickles (eg pickles and sauce vegetables), soups, beverages, alcoholic beverages and vitamin complexes, in a broad sense the production of health foods It can be said that most of the foods suitable for are contained. The pharmaceutical compositions of the present invention further include various nutrients, vitamins, minerals, seasonings, colorants, pectic acid and its salts, alginic acid and its salts, organic acids, protective colloid thickeners, pH regulators, stabilizers, preservatives. It can contain agents, glycerin, alcohol, carbonating agents for addition to soda water, and the like. The carriers, excipients or diluents include lactose, glucose, sucrose, sorbitol, mannitol, xylitol, erythritol, martitol, starch, arabic gum, alginate / ester, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, etc. It is selected from the group consisting of microcrystalline cellulose, polyvinylpyrrolidone, water, methyl hydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate, mineral oil, dextrin, calcium carbonate, propylene glycol, liquid paraffin and salt water, but not necessarily. It is not limited to this. All the components may be added alone or together.

好ましい具体例として、心血管疾患は、高血圧、心疾患、脳卒中、血栓、動脈硬化、狭心症、心不全および心筋梗塞からなる群から選択される一種または複数種の疾患である。 As a preferred embodiment, cardiovascular disease is one or more diseases selected from the group consisting of hypertension, heart disease, stroke, thrombosis, atherosclerosis, angina, heart failure and myocardial infarction.

好ましい具体例として、前記組成物は、経口組成物である。 As a preferred embodiment, the composition is an oral composition.

好ましい具体例として、前記組成物は、成人が一日あたりに0.1−500mgの植物性乳酸菌細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを摂取する方式で使用される。好ましくは、毎日50−100mg/kgであり、毎日1−3回である。 As a preferred embodiment, the composition is used in such a manner that an adult ingests 0.1-500 mg of a plant-derived lactic acid bacterium extracellular polysaccharide and at least one of a phosphorylated derivative thereof per day. Preferably, it is 50-100 mg / kg daily, 1-3 times daily.

好ましい具体例として、前記組成物は、9−12週間又はもっと長い時間で摂取する方式で使用される。 As a preferred embodiment, the composition is used in a manner of ingestion for 9-12 weeks or longer.

下記に、実施例によって本発明を更に説明する。理解すべきは、前記実施例は本発明を実施する一案であり、本発明の範囲を制限しない。 The present invention will be further described below by way of examples. It should be understood that the above embodiment is an embodiment of the present invention and does not limit the scope of the present invention.

実施例1: Example 1:

本発明の植物性乳酸菌細胞外多糖の調製方法は、
上海北諾生物科技有限公司から購入の植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、濃度0.05μMのテトラエチルチウラムジスルフィド及び0.2mMのラクトースを含有するMRS培地に移し、37℃で15h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と75%のトリクロロ酢酸水溶液を均一に混合し、常温で2h撹拌反応させ、反応液中の上澄み液を採取するステップ2と、
上澄み液に2倍体積の無水エタノールを加え、均一に混合し、4℃で12h静置し、さらに4℃、12000r/minで30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を8h毎に交換し、15h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖を蒸留水で溶解(10mg/mL)した後、DEAE?Cellulose52イオン交換カラムに100mgローディングし、蒸留水と、0.1mol/LのNaClと、0.3mol/LのNaClおよび0.5mol/LのNaClで直線的に勾配溶出し、溶出速度が1mL/minであり、チューブ毎に5mLを採取し、多糖含有量(多糖含有量は硫酸フェノール法で検出して溶出曲線を描く)をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分をそれぞれ合わせて収集し、脱イオン水で透析、凍結乾燥するステップ4と、
0.3mol/LのNaClで溶出した多糖成分を蒸留水で溶解(5mg/mL)した後、SephadexG?100ゲルカラムにローディングし、脱イオン水を用いて溶出し、溶出レートが0.2mL/minであり、溶出液を自動部分収集装置で収集し、チューブ毎に体積2mLを収集し、多糖含有量をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分を合わせて収集し、脱イオン水で透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、
を含む。
The method for preparing the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention is:
The plant-derived lactic acid bacterium ATCC8014 purchased from Shanghai Hokujo Biotechnology Co., Ltd. was continuously activated for two generations, and then transferred to an MRS medium containing 0.05 μM of tetraethylthiuram disulfide and 0.2 mM lactose at 37 ° C. Step 1 to collect the fermented liquid by statically fermenting for 15 hours in
Step 2 and step 2 in which the fermentation broth and a 75% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 2 hours, and the supernatant liquor in the reaction broth is collected.
In step 3, 2 times the volume of absolute ethanol is added to the supernatant, mixed uniformly, allowed to stand at 4 ° C. for 12 hours, and further centrifuged at 4 ° C. and 12000 r / min for 30 minutes to collect the precipitate.
The precipitate is dissolved in water, transferred to a dialysis bag, the deionized water is replaced every 8 hours, dialyzed for 15 hours, and then the product is collected and lyophilized to obtain crude extracellular polysaccharide.
After dissolving the crude extracellular polysaccharide in distilled water (10 mg / mL), 100 mg was loaded on a DEAE? Cellulose 52 ion exchange column, and distilled water, 0.1 mol / L NaCl, 0.3 mol / L NaCl and 0 were loaded. Linear gradient elution with .5 mol / L NaCl, elution rate is 1 mL / min, 5 mL is collected for each tube, and polysaccharide content (polysaccharide content is detected by the phenol sulfate method and an elution curve is drawn. ) Is detected for each tube, single peak components are collected together according to the polysaccharide content detection value, dialyzed with deionized water, and freeze-dried.
The polysaccharide component eluted with 0.3 mol / L NaCl is dissolved in distilled water (5 mg / mL), loaded onto a Sephadex G-100 gel column, eluted with deionized water, and the elution rate is 0.2 mL / min. The eluate is collected by an automatic partial collector, a volume of 2 mL is collected for each tube, the polysaccharide content is detected for each tube, and a single peak component is collected together according to the polysaccharide content detection value, and then removed. Step 5 to obtain plant-derived lactic acid bacteria extracellular polysaccharide by dialysis with ionized water and freeze-drying,
including.

植物性乳酸菌細胞外多糖の収率は、収率(%)=(純成分質量/粗細胞外多糖質量)×100で計算される。
算出した植物性乳酸菌細胞外多糖の収率は、53.72%である。
The yield of plant-derived lactic acid bacteria extracellular polysaccharide is calculated by yield (%) = (pure component mass / crude extracellular polysaccharide mass) × 100.
The calculated yield of plant-derived lactic acid bacterium extracellular polysaccharide is 53.72%.

実施例2 Example 2

植物性乳酸菌細胞外多糖のリン酸化誘導体の調整方法は、下記のようにである。 The method for preparing a phosphorylated derivative of a plant-derived lactic acid bacterium extracellular polysaccharide is as follows.

実施例1で得られた植物性乳酸菌細胞外多糖2gを100mLのジメチルスルホキシドに溶解し、60℃で30min加熱して十分に溶解させた後、36gの尿素と15mLのリン酸を加え、60℃で3h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを用いて反応液を中和し、透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖のリン酸化誘導体を得る。 2 g of the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Example 1 was dissolved in 100 mL of dimethyl sulfoxide, heated at 60 ° C. for 30 minutes to sufficiently dissolve it, and then 36 g of urea and 15 mL of phosphoric acid were added to add 60 ° C. After reacting for 3 hours with, deionized water was added to terminate the reaction, the reaction solution was neutralized with 1 M NaOH, dialyzed, and freeze-dried to obtain a phosphorylated derivative of the extracellular polysaccharide of plant-derived lactic acid bacteria. obtain.

比較例1 Comparative Example 1

植物性乳酸菌細胞外多糖を、
上海北諾生物科技有限公司から購入の植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、濃度0.05μMのテトラエチルチウラムジスルフィドを含有するMRS培地に移し、37℃で15h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と75%のトリクロロ酢酸水溶液を均一に混合し、常温で2h撹拌反応させ、反応液中の上澄み液を採取するステップ2と、
上澄み液に2倍体積の無水エタノールを加え、均一に混合し、4℃で12h静置し、さらに4℃、12000r/minで30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を8h毎に交換し、15h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖を蒸留水で溶解(10mg/mL)した後、DEAE?Cellulose52イオン交換カラムに100mgローディングし、蒸留水と、0.1mol/LのNaClと、0.3mol/LのNaClおよび0.5mol/LのNaClで直線的に勾配溶出し、溶出速度が1mL/minであり、チューブ毎に5mLを採取し、多糖含有量(多糖含有量は硫酸フェノール法で検出して溶出曲線を描く)をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分をそれぞれ合わせて収集し、脱イオン水で透析、凍結乾燥し、
0.3mol/LのNaClで溶出した多糖成分を蒸留水で溶解(5mg/mL)した後、SephadexG?100ゲルカラムにローディングし、脱イオン水を用いて溶出し、溶出レートが0.2mL/minであり、溶出液を自動部分収集装置で収集し、チューブ毎に体積2mLを収集し、多糖含有量をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分を合わせて収集し、脱イオン水で透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、によって調製し、収率が36.74%である。
Plant-derived lactic acid bacteria extracellular polysaccharide,
The plant-derived lactic acid bacterium ATCC8014 purchased from Shanghai Hokujo Biotechnology Co., Ltd. was continuously activated for two generations, then transferred to an MRS medium containing a tetraethylthiuram disulfide having a concentration of 0.05 μM, and allowed to ferment at 37 ° C. for 15 hours. Step 1 to collect the fermented liquid and
Step 2 and step 2 in which the fermentation broth and a 75% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 2 hours, and the supernatant liquor in the reaction broth is collected.
In step 3, 2 times the volume of absolute ethanol is added to the supernatant, mixed uniformly, allowed to stand at 4 ° C. for 12 hours, and further centrifuged at 4 ° C. and 12000 r / min for 30 minutes to collect the precipitate.
The precipitate is dissolved in water, transferred to a dialysis bag, the deionized water is replaced every 8 hours, dialyzed for 15 hours, and then the product is collected and lyophilized to obtain crude extracellular polysaccharide.
After dissolving the crude extracellular polysaccharide in distilled water (10 mg / mL), 100 mg was loaded on a DEAE? Cellulose 52 ion exchange column, and distilled water, 0.1 mol / L NaCl, 0.3 mol / L NaCl and 0 were loaded. Linear gradient elution with .5 mol / L NaCl, elution rate is 1 mL / min, 5 mL is collected for each tube, and polysaccharide content (polysaccharide content is detected by the phenol sulfate method and an elution curve is drawn. ) Is detected for each tube, single peak components are collected together according to the polysaccharide content detection value, dialyzed with deionized water, freeze-dried, and then dried.
The polysaccharide component eluted with 0.3 mol / L NaCl is dissolved in distilled water (5 mg / mL), loaded onto a Sephadex G-100 gel column, eluted with deionized water, and the elution rate is 0.2 mL / min. The eluate is collected by an automatic partial collector, a volume of 2 mL is collected for each tube, the polysaccharide content is detected for each tube, and a single peak component is collected together according to the polysaccharide content detection value, and then removed. It was prepared in step 5 of obtaining a plant-derived lactic acid bacterium extracellular polysaccharide by dialysis and lyophilization with ionized water, and the yield was 36.74%.

比較例2 Comparative Example 2

植物性乳酸菌細胞外多糖を、
上海北諾生物科技有限公司から購入の植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、濃度0.2mMのラクトースを含有するMRS培地に移し、37℃で15h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と75%のトリクロロ酢酸水溶液を均一に混合し、常温で2h撹拌反応させ、反応液中の上澄み液を採取するステップ2と、
上澄み液に2倍体積の無水エタノールを加え、均一に混合し、4℃で12h静置し、さらに4℃、12000r/minで30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を8h毎に交換し、15h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖を蒸留水で溶解(10mg/mL)した後、DEAE?Cellulose52イオン交換カラムに100mgローディングし、蒸留水と、0.1mol/LのNaClと、0.3mol/LのNaClおよび0.5mol/LのNaClで直線的に勾配溶出し、溶出速度が1mL/minであり、チューブ毎に5mLを採取し、多糖含有量(多糖含有量は硫酸フェノール法で検出して溶出曲線を描く)をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分をそれぞれ合わせて収集し、脱イオン水で透析、凍結乾燥し、
0.3mol/LのNaClで溶出した多糖成分を蒸留水で溶解(5mg/mL)した後、SephadexG?100ゲルカラムにローディングし、脱イオン水を用いて溶出し、溶出レートが0.2mL/minであり、溶出液を自動部分収集装置で収集し、チューブ毎に体積2mLを収集し、多糖含有量をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分を合わせて収集し、脱イオン水で透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、によって調製し、収率が43.68%である。
Plant-derived lactic acid bacteria extracellular polysaccharide,
The plant-derived lactic acid bacterium ATCC8014 purchased from Shanghai Hokuyo Biotechnology Co., Ltd. was continuously activated for two generations, then transferred to an MRS medium containing lactose at a concentration of 0.2 mM, and allowed to ferment at 37 ° C. for 15 hours for fermentation. Step 1 to collect the liquid and
Step 2 and step 2 in which the fermentation broth and a 75% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 2 hours, and the supernatant liquor in the reaction broth is collected.
In step 3, 2 times the volume of absolute ethanol is added to the supernatant, mixed uniformly, allowed to stand at 4 ° C. for 12 hours, and further centrifuged at 4 ° C. and 12000 r / min for 30 minutes to collect the precipitate.
The precipitate is dissolved in water, transferred to a dialysis bag, the deionized water is replaced every 8 hours, dialyzed for 15 hours, and then the product is collected and lyophilized to obtain crude extracellular polysaccharide.
After dissolving the crude extracellular polysaccharide in distilled water (10 mg / mL), 100 mg was loaded on a DEAE? Cellulose 52 ion exchange column, and distilled water, 0.1 mol / L NaCl, 0.3 mol / L NaCl and 0 were loaded. Linear gradient elution with .5 mol / L NaCl, elution rate is 1 mL / min, 5 mL is collected for each tube, and polysaccharide content (polysaccharide content is detected by the phenol sulfate method and an elution curve is drawn. ) Is detected for each tube, single peak components are collected together according to the polysaccharide content detection value, dialyzed with deionized water, freeze-dried, and then dried.
The polysaccharide component eluted with 0.3 mol / L NaCl is dissolved in distilled water (5 mg / mL), loaded onto a Sephadex G-100 gel column, eluted with deionized water, and the elution rate is 0.2 mL / min. The eluate is collected by an automatic partial collector, a volume of 2 mL is collected for each tube, the polysaccharide content is detected for each tube, and a single peak component is collected together according to the polysaccharide content detection value, and then removed. It was prepared in step 5 of obtaining a plant-derived lactic acid bacterium extracellular polysaccharide by dialysis and lyophilization with ionized water, and the yield was 43.68%.

比較例3 Comparative Example 3

植物性乳酸菌細胞外多糖を、
上海北諾生物科技有限公司から購入の植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、MRS培地に移し、37℃で15h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と75%のトリクロロ酢酸水溶液を均一に混合し、常温で2h撹拌反応させ、反応液中の上澄み液を採取するステップ2と、
上澄み液に2倍体積の無水エタノールを加え、均一に混合し、4℃で12h静置し、さらに4℃、12000r/minで30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を8h毎に交換し、15h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖を蒸留水で溶解(10mg/mL)した後、DEAE?Cellulose52イオン交換カラムに100mgローディングし、蒸留水と、0.1mol/LのNaClと、0.3mol/LのNaClおよび0.5mol/LのNaClで直線的に勾配溶出し、溶出速度が1mL/minであり、チューブ毎に5mLを採取し、多糖含有量(多糖含有量は硫酸フェノール法で検出して溶出曲線を描く)をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分をそれぞれ合わせて収集し、脱イオン水で透析、凍結乾燥し、
0.3mol/LのNaClで溶出した多糖成分を蒸留水で溶解(5mg/mL)した後、SephadexG?100ゲルカラムにローディングし、脱イオン水を用いて溶出し、溶出レートが0.2mL/minであり、溶出液を自動部分収集装置で収集し、チューブ毎に体積2mLを収集し、多糖含有量をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分を合わせて収集し、脱イオン水で透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、によって調製し、収率が35.01%である。
Plant-derived lactic acid bacteria extracellular polysaccharide,
Step 1 of continuously activating the plant-derived lactic acid bacterium ATCC8014 purchased from Shanghai Hokuyo Biotechnology Co., Ltd. for two generations, transferring it to an MRS medium, and allowing it to stand still at 37 ° C. for 15 hours to collect the fermentation broth.
Step 2 and step 2 in which the fermentation broth and a 75% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 2 hours, and the supernatant liquor in the reaction broth is collected.
In step 3, 2 times the volume of absolute ethanol is added to the supernatant, mixed uniformly, allowed to stand at 4 ° C. for 12 hours, and further centrifuged at 4 ° C. and 12000 r / min for 30 minutes to collect the precipitate.
The precipitate is dissolved in water, transferred to a dialysis bag, the deionized water is replaced every 8 hours, dialyzed for 15 hours, and then the product is collected and lyophilized to obtain crude extracellular polysaccharide.
After dissolving the crude extracellular polysaccharide in distilled water (10 mg / mL), 100 mg was loaded on a DEAE? Cellulose 52 ion exchange column, and distilled water, 0.1 mol / L NaCl, 0.3 mol / L NaCl and 0 were loaded. Linear gradient elution with .5 mol / L NaCl, elution rate is 1 mL / min, 5 mL is collected for each tube, and polysaccharide content (polysaccharide content is detected by the phenol sulfate method and an elution curve is drawn. ) Is detected for each tube, single peak components are collected together according to the polysaccharide content detection value, dialyzed with deionized water, freeze-dried, and then dried.
The polysaccharide component eluted with 0.3 mol / L NaCl is dissolved in distilled water (5 mg / mL), loaded onto a Sephadex G-100 gel column, eluted with deionized water, and the elution rate is 0.2 mL / min. The eluate is collected by an automatic partial collector, a volume of 2 mL is collected for each tube, the polysaccharide content is detected for each tube, and a single peak component is collected together according to the polysaccharide content detection value, and then removed. It was prepared in step 5 of obtaining a plant-derived lactic acid bacterium extracellular polysaccharide by dialysis and lyophilization with ionized water, and the yield was 35.01%.

比較例4 Comparative Example 4

比較例1で得た植物性乳酸菌細胞外多糖2gを100mLのジメチルスルホキシドに溶解し、60℃で30min加熱して十分に溶解させた後、36gの尿素と15mLのリン酸を加え、60℃で3h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを用いて反応液を中和し、透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖のリン酸化誘導体を得る。 2 g of the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Comparative Example 1 was dissolved in 100 mL of dimethyl sulfoxide, heated at 60 ° C. for 30 minutes to sufficiently dissolve it, and then 36 g of urea and 15 mL of phosphoric acid were added, and the temperature was increased to 60 ° C. After the reaction for 3 hours, deionized water is added to terminate the reaction, the reaction solution is neutralized with 1 M NaOH, dialyzed and freeze-dried to obtain a phosphorylated derivative of the extracellular polysaccharide of plant-derived lactic acid bacteria. ..

比較例5 Comparative Example 5

比較例2で得た植物性乳酸菌細胞外多糖2gを100mLのジメチルスルホキシドに溶解し、60℃で30min加熱して十分に溶解させた後、36gの尿素と15mLのリン酸を加え、60℃で3h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを用いて反応液を中和し、透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖のリン酸化誘導体を得る。 2 g of the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Comparative Example 2 was dissolved in 100 mL of dimethyl sulfoxide, heated at 60 ° C. for 30 minutes to sufficiently dissolve it, and then 36 g of urea and 15 mL of phosphoric acid were added, and the temperature was increased to 60 ° C. After the reaction for 3 hours, deionized water is added to terminate the reaction, the reaction solution is neutralized with 1 M NaOH, dialyzed and freeze-dried to obtain a phosphorylated derivative of the extracellular polysaccharide of plant-derived lactic acid bacteria. ..

比較例6 Comparative Example 6

比較例3で得た植物性乳酸菌細胞外多糖2gを100mLのジメチルスルホキシドに溶解し、60℃で30min加熱して十分に溶解させた後、36gの尿素と15mLのリン酸を加え、60℃で3h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを用いて反応液を中和し、透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖のリン酸化誘導体を得る。 2 g of the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Comparative Example 3 was dissolved in 100 mL of dimethyl sulfoxide, heated at 60 ° C. for 30 minutes to sufficiently dissolve it, and then 36 g of urea and 15 mL of phosphoric acid were added, and the temperature was increased to 60 ° C. After the reaction for 3 hours, deionized water is added to terminate the reaction, the reaction solution is neutralized with 1 M NaOH, dialyzed and freeze-dried to obtain a phosphorylated derivative of the extracellular polysaccharide of plant-derived lactic acid bacteria. ..

試験例1 Test Example 1

植物性乳酸菌ATCC8014の成長曲線の測定に関する: Regarding the measurement of the growth curve of the plant-derived lactic acid bacterium ATCC8014:

菌株を、2%の接種量で、実施例1と比較例1?3に使用の培地に、それぞれ接種し、振とうして振り混ぜた後37℃で静置発酵し、2hおきに取り出し、培地をブランク溶液としてゼロ点調製を行い、600nmの波長で吸光値を検出する。時間を横軸、吸光値を縦軸にして、図1に示すように、前記菌株の成長曲線を得る。ATCC8014の成長曲線グラフから明らかなように、実施例1の植物性乳酸菌ATCC8014は、概ね2h以降から対数増殖期に入り始め、6h以降は定常期に入り始め、安定期が長く、比較例1及び比較例3の植物性乳酸菌ATCC8014は概ね3h以降から対数増殖期に入り始め、14h以降は安定期に入り始め、比較例2の植物性乳酸菌ATCC8014は概ね3h以降から対数増殖期に入り始め、14h以降は安定期に入り始めることから、実施例1の培地で植物性乳酸菌ATCC8014を培養すると、植物性乳酸菌の対数期と安定期が比較例1?3よりも長く、かつ植物性乳酸菌の密度も比較例1?3よりも明らかに高かくなる。 The strain was inoculated into the mediums used in Example 1 and Comparative Examples 1 to 3 at an inoculation amount of 2%, shaken and shaken, and then allowed to ferment at 37 ° C. and taken out every 2 hours. Zero point preparation is performed using the medium as a blank solution, and the absorption value is detected at a wavelength of 600 nm. As shown in FIG. 1, the growth curve of the strain is obtained with time on the horizontal axis and absorption value on the vertical axis. As is clear from the growth curve graph of ATCC8014, the plant-derived lactic acid bacterium ATCC8014 of Example 1 begins to enter the logarithmic growth phase after about 2h, enters the stationary phase after 6h, has a long stable phase, and has a long stable phase, and Comparative Example 1 and The plant-derived lactic acid bacterium ATCC8014 of Comparative Example 3 began to enter the logarithmic growth phase after about 3h, and started to enter the stable period after 14h, and the plant-derived lactic acid bacterium ATCC8014 of Comparative Example 2 began to enter the logarithmic growth phase from about 3h or later, 14h After that, since the stable period begins, when the plant-derived lactic acid bacterium ATCC8014 is cultured in the medium of Example 1, the logarithmic period and the stable period of the plant-derived lactic acid bacteria are longer than those of Comparative Examples 1 to 3, and the density of the plant-derived lactic acid bacteria is also increased. It is clearly higher than Comparative Examples 1 to 3.

植物性乳酸菌ATCC8014の成長曲線と、実施例1、比較例1−3で得られた細胞外多糖の収率から、テトラエチルチウラムジスルフィドおよびラクトースを含有するMRS培地で植物性乳酸菌ATCC8014を培養することにより、植物性乳酸菌の対数期および安定期の延長に有利となり、細胞外多糖を多く合成し、植物性乳酸菌の多糖産生力を向上させ、最終的に細胞外多糖の収量を向上させることができることがわかる。 From the growth curve of plant-derived lactic acid bacterium ATCC8014 and the yield of extracellular polysaccharides obtained in Example 1 and Comparative Example 1-3, by culturing the plant-derived lactic acid bacterium ATCC8014 in an MRS medium containing tetraethylthiuram disulfide and lactose. , It is advantageous for prolonging the logarithmic phase and stable phase of plant-derived lactic acid bacteria, it is possible to synthesize a large amount of extracellular lactose, improve the polysaccharide-producing ability of plant-derived lactic acid bacteria, and finally improve the yield of extracellular lactose. Understand.

試験例2 Test Example 2

植物性乳酸菌細胞外多糖の性能測定に関する: Regarding performance measurement of plant-derived lactic acid bacteria extracellular polysaccharide:

1.植物性乳酸菌細胞外多糖の分子量の測定 1. 1. Measurement of molecular weight of plant-derived lactic acid bacteria extracellular polysaccharide

分子量の異なるDextran標準品を順次に測定対象多糖サンプルに注入し、保留時間(TR)を記録し、各標準品の保留時間(TR)を横軸とし、各多糖標準品のピーク分子量の対数(log Mol Wt)を縦軸にして検量線(図2)を作成し、分子量と保留時間(TR)との回帰式を求め、y=11.9972?0.40662x、R2=0.99824とする。測定対象多糖サンプルに上記手順でDextran標準品を注入し、得られた保留時間(TR)に基づいて、標準分子量曲線から測定対象多糖サンプルの平均相対分子量を自動的に算出するとともに、多糖サンプルのクロマトグラム上のピークの数および形状から多糖の純度を同定することができる。実施例1、比較例1−3に係る細胞外多糖の高性能液体クロマトグラフィーは、図3に示すように、図から明らかなように、実施例1、比較例1−3に係る細胞外多糖は、いずれも単一ピーク形状であり、4種の多糖がいずれも均一の多糖であることを説明した。実施例1、比較例1−3の細胞外多糖の保留時間は順に14.428min、15.660min、15.660min及び15.660minであり,対応する保留時間を標準分子量と保留時間の回帰式に代入して、実施例1、比較例1−3で得られた細胞外多糖の分子量は順に1.35×106Da、4.26×105Da、4.26×105Da及び4.26×105Daである。 Dextran standard products with different molecular weights are sequentially injected into the polysaccharide sample to be measured, the hold time (TR) is recorded, the hold time (TR) of each standard product is on the horizontal axis, and the logarithmic peak molecular weight of each polysaccharide standard product ( A calibration curve (FIG. 2) is created with log Mol Wt) as the vertical axis, and the regression equation between the molecular weight and the holding time (TR) is obtained, and y = 11.9972 to 0.40662x and R2 = 0.99824. .. The Dextran standard product is injected into the polysaccharide sample to be measured according to the above procedure, and the average relative molecular weight of the polysaccharide sample to be measured is automatically calculated from the standard molecular weight curve based on the obtained hold time (TR), and the polysaccharide sample is automatically calculated. The purity of the polysaccharide can be identified from the number and shape of peaks on the chromatogram. As shown in FIG. 3, high performance liquid chromatography of the extracellular polysaccharide according to Example 1 and Comparative Example 1-3 is performed on the extracellular polysaccharide according to Example 1 and Comparative Example 1-3, as is clear from the figure. Explained that all of them had a single peak shape, and that all four types of polysaccharides were uniform polysaccharides. The holding times of the extracellular polysaccharides of Example 1 and Comparative Example 1-3 are 14.428min, 15.660min, 15.660min and 15.660min, respectively, and the corresponding holding times are expressed in the regression equation of the standard molecular weight and the holding time. Substituting, the molecular weights of the extracellular polysaccharides obtained in Example 1 and Comparative Example 1-3 are 1.35 × 106 Da, 4.26 × 105 Da, 4.26 × 105 Da and 4.26 × 105 Da, respectively.

2.植物性乳酸菌細胞外多糖の単糖構成分析 2. Monosaccharide composition analysis of plant-derived lactic acid bacteria extracellular polysaccharide

2.1多糖の加水分解 2.1 Hydrolysis of polysaccharides

細胞外多糖サンプル5mgをアンプルに入れ、さらに2mol/Lトリフルオロ酢酸2mLを加えてアルコールランプで封口し、オーブン中120℃で2h加水分解し、加水分解液を減圧留去した後、さらに少量のメタノールを加えて減圧留去し(5回繰り返し)、残ったトリフルオロ酢酸を除去した後、少量の水を加えて溶解し、凍結乾燥すれば、完全酸加水分解された単糖サンプルを得る。 Put 5 mg of the extracellular polysaccharide sample in an ampol, add 2 mL of 2 mol / L trifluoroacetic acid, seal with an alcohol lamp, hydrolyze in an oven at 120 ° C. for 2 hours, distill off the hydrolyzate under reduced pressure, and then distill off a smaller amount. Methanol is added and distilled off under reduced pressure (repeated 5 times) to remove the remaining trifluoroacetic acid, and then a small amount of water is added to dissolve the mixture, and the mixture is freeze-dried to obtain a completely acid-hydrolyzed monosaccharide sample.

2.2糖のニトリル酢酸メンチル誘導体の調製 2.2 Preparation of nitrile mentyl acetate derivative of sugar

各単糖標準品5mg、NaBH430mg及び5mgのイノシトールをアンプルに量り取り、徐々に2mLの蒸留水を滴下しながら振盪し、室温で糖アルコールに還元反応させ(2h反応し)、気泡が発生しなくなるまで氷酢酸を滴下して過剰量のNaBH4を中和する。ロータリーエバポレーターを60℃に温調してサンプルが完全に乾燥するまで真空回転蒸発させ、その後、0.1%(v/v)塩酸メタノール溶液2mLで再溶解した後、再度蒸発乾固し、ホウ酸塩を除去するように4〜5回繰り返す。処理済みの生成物を105℃オーブンで15min脱水し、ピリジンと無水酢酸をそれぞれ0.5mL出し、アルコールジェットで封口し、沸騰水浴で1h反応させ、得られた生成物を微孔膜(0.22μm)を経て不純物を除去し、ガスクロマトグラフィー分析を行う。完全酸加水分解後の細胞外多糖サンプル誘導体の調製は同様にこの方法に従って調製される。 Weigh 5 mg of each monosaccharide standard, 430 mg of NaBH and 5 mg of inositol into an ampol, shake while gradually dropping 2 mL of distilled water, and reduce reaction to sugar alcohol at room temperature (react for 2 hours), and no bubbles are generated. Glacial acetic acid is added dropwise to neutralize the excess amount of NaBH4. The rotary evaporator was heated to 60 ° C. and vacuum rotary evaporated until the sample was completely dried, then redissolved in 2 mL of 0.1% (v / v) hydrochloric acid-methanol solution, evaporated to dryness again, and borate. Repeat 4-5 times to remove the acid salt. The treated product was dehydrated in an oven at 105 ° C. for 15 minutes, 0.5 mL each of pyridine and acetic anhydride were taken out, sealed with an alcohol jet, and reacted in a boiling water bath for 1 h, and the obtained product was subjected to a microporous membrane (0. Impurities are removed through 22 μm), and gas chromatography analysis is performed. Preparation of the extracellular polysaccharide sample derivative after complete acid hydrolysis is similarly prepared according to this method.

2.3ガスクロマトグラフィー条件クロマトグラフ 2.3 Gas Chromatography Condition Chromatography

Agilent7890Aガスクロマトグラフを採用し、カラムは、DB225キャピラリカラム(30m×0.25mm)であり、検出器は、酸素炎イオン検出器であり、流速は、1mL/minであり、スプリット比は、1:50であり、注入量は、1μLである。昇温プログラム:80℃で3min保持し、5℃/minで195℃まで昇温して1min保持し、5℃/minで215℃まで昇温して1min保持し、10℃/minで230℃まで昇温して3min保持する。 Adopting the Agent7890A gas chromatograph, the column is a DB225 capillary column (30 m x 0.25 mm), the detector is an oxygen flame ion detector, the flow velocity is 1 mL / min, and the split ratio is 1: It is 50 and the injection volume is 1 μL. Temperature rise program: Hold at 80 ° C for 3 min, raise to 195 ° C at 5 ° C / min for 1 min, raise to 215 ° C at 5 ° C / min for 1 min, hold at 230 ° C at 10 ° C / min The temperature is raised to 3 min.

実施例1、比較例1−3で得られた細胞外多糖をトリフルオロ酢酸で加水分解した後のガスクロマトグラフィー分析及び単糖標準品との比較結果は図4に示すとおりである。単糖標準品の保留時間(図4標準品)は左から右へ順にラムノース(26.215min)、フコース(26.427min)、アラビノース(26.531min)、キシロース(26.951min)、マンノース(30.553min)、フルクトース(31.553min)、グルコース(31.714min)、ガラクトース(31.921min)である。実施例1、比較例1−3の細胞外多糖はいずれも保留時間が30.553min、31.714min及び31.921minの時にピークを出し(図4の実施例1、比較例1−3)、実施例1、比較例1−3の細胞外多糖はいずれも主にマンノース、ガラクトース及びグルコースの三種類の単糖から構成されることを示す。面積正規化法による定量分析により、実施例1に係る細胞外多糖におけるマンノース、ガラクトース及びグルコースのモル比は、5.6:7.3:1であり、比較例1−3に係る細胞外多糖におけるマンノース、ガラクトース及びグルコースのモル比は、1:2.6:4.2である。 The results of gas chromatography analysis after hydrolysis of the extracellular polysaccharides obtained in Example 1 and Comparative Example 1-3 with trifluoroacetic acid and comparison with the monosaccharide standard are shown in FIG. The holding time of the monosaccharide standard (Fig. 4 standard) is from left to right: rhamnose (26.215 min), fucose (26.427 min), arabinose (26.531 min), xylose (26.951 min), mannose (30). .553 min), fructose (31.553 min), glucose (31.714 min), galactose (31.921 min). The extracellular polysaccharides of Example 1 and Comparative Example 1-3 all peaked at the retention times of 30.535 min, 31.714 min and 31.921 min (Example 1 and Comparative Example 1-3 in FIG. 4). It is shown that the extracellular polysaccharides of Example 1 and Comparative Example 1-3 are mainly composed of three types of monosaccharides, mannose, galactose and glucose. According to the quantitative analysis by the area normalization method, the molar ratio of mannose, galactose and glucose in the extracellular polysaccharide according to Example 1 was 5.6: 7.3: 1, and the extracellular polysaccharide according to Comparative Example 1-3. The molar ratio of mannose, galactose and glucose in is 1: 2.6: 4.2.

細胞外多糖の分子量と単糖構成から、テトラエチルチウラムジスルフィドとラクトースを含有するMRS培地で植物性乳酸菌ATCC8014を培養することで、細胞外多糖の化学構造を変更し、本発明の細胞外多糖を得ることができることがわかる。 From the molecular weight and monosaccharide composition of the extracellular polysaccharide, the chemical structure of the extracellular polysaccharide is changed by culturing the plant-derived lactic acid bacterium ATCC8014 in an MRS medium containing tetraethylthiuram disulfide and lactose, and the extracellular polysaccharide of the present invention is obtained. You can see that you can.

試験例2 Test Example 2

植物性乳酸菌細胞外多糖リン酸化誘導体の置換度測定 Measurement of degree of substitution of plant-derived lactic acid bacteria extracellular polysaccharide phosphorylated derivative

リン元素の含有量は誘導結合−原子発光分光計を用いて測定し、実施例1、比較例1―3で得られたリン酸化誘導体のリン元素の含有量(P%)はそれぞれ4.11%、2.34%、2.34%、2.34%であり、置換度(リン酸化の程度)は、置換度=(5.22×P%)/(1−2.61×P%)により算出する。 The phosphorus element content was measured using an induction bond-atomic emission spectrometer, and the phosphorus element content (P%) of the phosphorylated derivatives obtained in Example 1 and Comparative Example 1-3 was 4.11, respectively. %, 2.34%, 2.34%, 2.34%, and the degree of substitution (degree of phosphorylation) is the degree of substitution = (5.22 × P%) / (1-2.61 × P%). ).

実施例1、比較例1―3で得られたリン酸化誘導体のリン元素の含有量(P%)の算出結果は、それぞれ0.24、0.13、0.13及び0.13である。 The calculation results of the phosphorus element content (P%) of the phosphorylated derivatives obtained in Example 1 and Comparative Example 1-3 are 0.24, 0.13, 0.13 and 0.13, respectively.

試験例3 Test Example 3

1.植物性乳酸菌細胞外多糖及びそのリン酸化誘導体のACE阻害性能測定 1. 1. Measurement of ACE inhibition performance of plant-derived lactic acid bacteria extracellular polysaccharide and its phosphorylated derivative

ACEは、人の血管を収縮させ、血圧を上昇させることができる。活性化されたACEは、高血圧病を致す主要原因である。したがって、阻害剤でACEに活性を失わせる又は活性を阻害することは、血圧を下降させる潜在的な手段の一つである。植物性乳酸菌細胞外多糖及びそのリン酸化誘導体のACE阻害性能は、下記の方法によって測定する。 ACE can constrict a person's blood vessels and raise blood pressure. Activated ACE is a major cause of hypertension. Therefore, causing ACE to lose or inhibit activity with an inhibitor is one of the potential means of lowering blood pressure. The ACE inhibitory performance of plant-derived lactic acid bacteria extracellular polysaccharides and their phosphorylated derivatives is measured by the following method.

質量濃度100mg/mLの植物性乳酸菌細胞外多糖及びそのリン酸化誘導体のサンプル溶液を採取し、ACE阻害活性を測定し、試験管に基質として6.5mmol/LHHL溶液100mL、サンプル溶液200mL、100mmol/Lリン酸塩緩衝液(pH=8.3)200mLを順次加え、37℃恒温水浴で3〜5min予熱した後、ACE酵素液500mLを加えて反応を開始し、37℃で30min水浴した後、1mol/LHClを100mL加えて反応を終了する。そして酢酸エチルを1.5mL加え、均一に混合した後遠心分離(5200r/min,10min)を行った後、上層の酢酸エチルを1mL吸引して別の試験管に移し、120℃のオーブンに入れて30min揮発させ、冷却後に蒸留水6mLを加え、均一に混合した後にその吸光度値を228nmで測定し、算出式は、ACE阻害率(%)=(Ab−Aa)/(Ab−Ac)×100とする。 A sample solution of a plant-derived lactic acid bacterium extracellular polysaccharide having a mass concentration of 100 mg / mL and a phosphorylated derivative thereof was collected, the ACE inhibitory activity was measured, and a 6.5 mmol / LHHL solution 100 mL, a sample solution 200 mL, 100 mmol / was placed in a test tube as a substrate. 200 mL of L phosphate buffer (pH = 8.3) was sequentially added, preheated in a constant temperature water bath at 37 ° C. for 3 to 5 minutes, then 500 mL of ACE enzyme solution was added to start the reaction, and after bathing in water at 37 ° C. for 30 minutes, the reaction was started. Add 100 mL of 1 mol / LHCl to terminate the reaction. Then, 1.5 mL of ethyl acetate was added, mixed uniformly, and then centrifuged (5200 r / min, 10 min). Then, 1 mL of ethyl acetate in the upper layer was aspirated, transferred to another test tube, and placed in an oven at 120 ° C. After volatilizing for 30 minutes, add 6 mL of distilled water after cooling, mix uniformly, and then measure the absorbance value at 228 nm. The calculation formula is ACE inhibition rate (%) = (Ab-Aa) / (Ab-Ac) ×. Let it be 100.

Aaは、ACEとHHLに阻害剤を添加して反応させた後のサンプルの吸光度値である。 Aa is the absorbance value of the sample after the inhibitor was added to ACE and HHL and reacted.

Abは、阻害剤を添加せず、ACEとHHLが完全に反応する対照群の吸光度値である。 Ab is the absorbance value of the control group in which ACE and HHL completely react with each other without adding an inhibitor.

Acは、阻害剤を添加し、反応前に予め不活性化されたACEをHHLと反応させるブランク対照群の吸光度値である。 Ac is the absorbance value of the blank control group in which the inhibitor is added and the ACE previously inactivated before the reaction is reacted with HHL.

植物性乳酸菌細胞外多糖及びそのリン酸化誘導体のACEへの阻害作用は、図5に示すとおりであり、実施例1で得られた植物性乳酸菌細胞外多糖および実施例2で得られた植物性乳酸菌細胞外多糖のリン酸化誘導体は、ACEに対し、顕著な阻害作用を有し、比較例1−6で得られた植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は、ACEに対する阻害作用が明らかでない。 The inhibitory effect of the plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative on ACE is as shown in FIG. 5, and the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Example 1 and the plant-derived product obtained in Example 2 are shown. The phosphorylated derivative of the lactic acid bacterium extracellular polysaccharide has a remarkable inhibitory effect on ACE, and the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Comparative Example 1-6 and its phosphorylated derivative have a clear inhibitory effect on ACE. Not.

2.植物性乳酸菌細胞外多糖及びそのリン酸化誘導体の細胞傷害性測定
MTT法により、培養終了前4h、ウェル当たり20μLMTT(5g/L)を加え、4h培養を継続する。培養終了後にジメチルスルホキシド150μlを添加する。酵素結合免疫検出器は570nmでA570値を測定する。その結果、図6に示すように、異なる濃度の植物性乳酸菌細胞外多糖及びそのリン酸化誘導体を添加した時の細胞培養液は、対照群と比較してOD値の間に有意差がなく、実施例1?2、比較例1?6で得られた植物性乳酸菌細胞外多糖及びそのリン酸化誘導はいずれも細胞毒性を示さなかったことが明らかとなった。
2. Measurement of cytotoxicity of plant-derived lactic acid bacteria extracellular polysaccharide and its phosphorylated derivative By the MTT method, 20 μLMTT (5 g / L) per well is added 4 hours before the end of the culture, and the culture is continued for 4 hours. After completion of the culture, 150 μl of dimethyl sulfoxide is added. The enzyme-bound immunodetector measures the A570 value at 570 nm. As a result, as shown in FIG. 6, there was no significant difference in OD value between the cell culture solutions when different concentrations of plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative were added, as compared with the control group. It was clarified that none of the plant-derived lactic acid bacteria extracellular polysaccharides obtained in Examples 1 and 2 and Comparative Examples 1 to 6 and their phosphorylation induction showed cytotoxicity.

3.植物性乳酸菌細胞外多糖及びそのリン酸化誘導体の体内抗高血圧活性測定 3. 3. Measurement of in-vivo antihypertensive activity of plant-derived lactic acid bacteria extracellular polysaccharide and its phosphorylated derivative

動物実験は倫理基準に合致する(承認番号:20140405)。高血圧自然発症ラットは恒温条件下(22±2℃)で飼育し、12hの明暗サイクルを与え、摂食を自由にする。実施例1の細胞外多糖及び実施例2の細胞外多糖のリン酸化誘導体を生理食塩水で0.05g/kgの用量に調製し、毎回胃内に1mL投与し、対照群に等量の生理食塩水を投与する。第0、2、4、6、8、12、24hにおいて、それぞれラットの収縮期血圧と拡張期血圧を測定し、収縮期血圧(SBP)と拡張期血圧(DBP)の変化を観察して、植物性乳酸菌細胞外多糖及びそのリン酸化誘導体の降圧効果を評価する((図7及び図8)。陰性対照群(生理食塩水)のラットのSBPとDBPは24h内に顕著に変化しない。実施例1の細胞外多糖群のラット血圧変化は明らかであり、実施例1の細胞外多糖を胃内に投与した8h後、収縮期血圧は53.8mmHg下降し、拡張期血圧は68.1mmHg下降し、投与した24h後は初期レベルに対する収縮期血圧の差圧は2.1mmHg、初期レベルに対する拡張期血圧の差圧は2.1mmHgであり、実施例2の細胞外多糖のリン酸化誘導体群のラット血圧変化は明らかであり、実施例1の細胞外多糖を胃内に投与した6h後、収縮期血圧は61.6mmHg下降し、拡張期血圧は68.7mmHg下降し、投与した24h後は収縮期血圧の初期レベルに対する差圧は6.4mmHg、拡張期血圧の初期水平に対する差圧は2.5mmHgである。体内の降圧結果はインビトロでACEの酵素に対する阻害作用結果と一致する。体内、インビトロ実験結果により、植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は高い降圧作用を有することを示す。 Animal studies meet ethical standards (approval number: 2014405). Spontaneous hypertensive rats are bred under homeothermic conditions (22 ± 2 ° C.) and given a 12 h light-dark cycle to free feeding. The extracellular polysaccharide of Example 1 and the phosphorylated derivative of the extracellular polysaccharide of Example 2 were prepared in physiological saline at a dose of 0.05 g / kg, and 1 mL was administered intragastrically each time, and the same amount of physiology was given to the control group. Administer saline solution. At the 0th, 2nd, 4th, 6th, 8th, 12th, and 24th hours, the systolic blood pressure and the diastolic blood pressure of the rats were measured, and the changes in the systolic blood pressure (SBP) and the diastolic blood pressure (DBP) were observed. The antihypertensive effect of plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative is evaluated ((FIG. 7 and 8). SBP and DBP of rats in the negative control group (physiological saline) do not change significantly within 24 hours. Changes in rat blood pressure in the extracellular polysaccharide group of Example 1 are clear, and after 8 hours of intragastric administration of the extracellular polysaccharide of Example 1, systolic blood pressure decreased by 53.8 mmHg and diastolic blood pressure decreased by 68.1 mmHg. However, 24 hours after administration, the differential pressure of systolic blood pressure with respect to the initial level was 2.1 mmHg, and the differential pressure of diastolic blood pressure with respect to the initial level was 2.1 mmHg. Changes in rat blood pressure are clear: systolic blood pressure decreased by 61.6 mmHg, diastolic blood pressure decreased by 68.7 mmHg after 6 hours of intragastric administration of the extracellular polysaccharide of Example 1, and contraction occurred 24 hours after administration. The differential pressure of systolic blood pressure with respect to the initial level is 6.4 mmHg, and the differential pressure of diastolic blood pressure with respect to the initial horizontal is 2.5 mmHg. Experimental results show that plant-derived lactic acid bacteria extracellular polysaccharides and their phosphorylated derivatives have a high antihypertensive effect.

上記実施例における従来技術は当業者に知られている従来技術であるため、ここでは詳細な説明を省略する。 Since the prior art in the above embodiment is a prior art known to those skilled in the art, detailed description thereof will be omitted here.

以上の実施形態は、本発明を説明するためのものであり、本発明を限定するものではなく、本発明の精神及び範囲から逸脱することなく、様々な変形や変形が可能であることは当業者に明らかである。したがって、すべての同等の技術的解決手段も本発明の範疇に含まれるものであり、本発明の特許請求の範囲は、特許請求の範囲によって制限されるべきである。 The above embodiments are for explaining the present invention, do not limit the present invention, and can be variously modified and modified without departing from the spirit and scope of the present invention. It is obvious to the trader. Therefore, all equivalent technical solutions are also included in the scope of the present invention, and the scope of claims of the present invention should be limited by the scope of claims.

本発明は、微生物技術分野に関し、具体的には、植物性乳酸菌細胞外多糖および植物性乳酸菌細胞外多糖がACE阻害薬製造中に果たす作用に関する。 The present invention relates to the field of microbial technology, and specifically to the action of plant-derived lactic acid bacteria extracellular polysaccharides and plant-derived lactic acid bacteria extracellular polysaccharides during the production of ACE inhibitors.

多糖は、自然界においてありふれたバイオポリマーであり、すべての動物、植物および微生物に存在し、同じ単糖から構成されるホモ多糖と異なる単糖から構成されるヘテロ多糖とに分けられる。近年、多糖の活性に対する研究が大きく前進し、レンチナン、霊芝多糖など多くな多糖が抗腫瘍活性を有することが証明され、人参多糖が免疫力を強化する機能を有することが証明される。微生物多糖は、生産量が安定で、気候や地理に影響されにくいため、研究ブームを迎える。多糖の生物活性多糖の生物活性は、自身の水溶性と、分子量(Mw)と、置換度と置換基の四つの要素によって影響修飾される。化学修飾によって多糖の生物活性に明らかな強化又は新しい活性が生じ、新型薬に開発できることが、多くの研究によって発見される。多糖の分子修飾と構造改造は重要意味を有する。 Polysaccharides are common biopolymers in nature and are present in all animals, plants and microorganisms and are divided into homopolysaccharides composed of the same monosaccharides and heteropolysaccharides composed of different monosaccharides. In recent years, research on the activity of polysaccharides has made great progress, and it has been proved that many polysaccharides such as lentinan and Ganoderma lucidum have antitumor activity, and that ginseng polysaccharide has a function of strengthening immunity. Microbial polysaccharides enter a research boom because their production is stable and they are not easily affected by climate and geography. Biological activity of polysaccharides The biological activity of polysaccharides is influenced and modified by four factors: their water solubility, their molecular weight (Mw), their degree of substitution and their substituents. Many studies have found that chemical modifications result in obvious enhancements or new activities in the biological activity of polysaccharides that can be developed into new drugs. Molecular modification and structural modification of polysaccharides are important.

微生物多糖の免疫調節活性は主に、マクロファージとナチュラルキラー細胞を活性化させることに体現される。中国には、良質な乳酸菌資源を有し、多くの伝統発酵食品には乳酸菌が含まれ、これらの資源に対し、研究や開発を行うことで、国民生活を改善することに役立てる。菌体外多糖乳酸菌の有益機能は主に自身の菌体外多糖によって決められると思う学者もいる。乳酸菌の菌体外多糖(Exopolysaccharides,□EPS)は一般、菌体の表面に緊密に結合する細胞結合性の菌体外多糖と、周囲の液体環境に放出される放出多糖(Released□exopolysaccharides,□r−EPS)に分けられる。報道される大部分の乳酸菌は、r−EPSだけを生じるが、C−EPSとr−EPSを同時に生じる乳酸菌もある。現在、報道された乳酸菌細胞外多糖乳酸菌は主に30種類くらいある。乳酸菌細胞外多糖が免疫調節作用を強化させる機能を有することに対し、乳酸菌細胞外多糖の抽出が簡単であり、遠心によって菌体と液体を分離させ、そして液体を濃縮してエタノールを添加すればr−EPSが沈殿する。一部のウェルシュ菌は、C−EPSの抽出に使用されることができ、また、他の微生物多糖に比べ、乳酸菌細胞外多糖は、安全性がよく、各種食品と薬に応用できる。したがって、乳酸菌細胞外多糖に対する研究は非常に必要である。 The immunomodulatory activity of microbial polysaccharides is primarily embodied in the activation of macrophages and natural killer cells. China has high-quality lactic acid bacteria resources, and many traditional fermented foods contain lactic acid bacteria, and research and development of these resources will help improve people's lives. Some scholars believe that the beneficial functions of exopolysaccharide lactic acid bacteria are mainly determined by their own exopolysaccharide. Lactic acid bacteria exopolysaccharides (Exopolysaccharides, □ EPS) are generally cell-binding exopolysaccharides that bind tightly to the surface of the bacterium and released polysaccharides (Released □ exopolysaccharides, □) that are released into the surrounding liquid environment. It is divided into r-EPS). Most of the reported lactic acid bacteria produce only r-EPS, but some lactic acid bacteria produce C-EPS and r-EPS at the same time. Currently, there are mainly about 30 types of lactic acid bacteria extracellular polysaccharide lactic acid bacteria reported. Lactobacillus extracellular polysaccharide has a function of enhancing immunomodulatory action, whereas extraction of lactic acid bacterium extracellular polysaccharide is easy, if the cells and liquid are separated by centrifugation, and the liquid is concentrated and ethanol is added. r-EPS precipitates. Some Clostridium perfringens can be used for extraction of C-EPS, and lactic acid bacteria extracellular polysaccharides are safer than other microbial polysaccharides and can be applied to various foods and medicines. Therefore, research on lactic acid bacteria extracellular polysaccharides is very necessary.

中国特許出願公開第105837699号明細書Chinese Patent Application Publication No. 1058376999

本発明は、上記の技術的問題を解決するために、顕著なACE阻害活性を示す、細胞傷害性を有しない植物性乳酸菌細胞外多糖を提供することを目的とする。 An object of the present invention is to provide a non-cytotoxic plant-derived lactic acid bacterium extracellular polysaccharide that exhibits remarkable ACE inhibitory activity in order to solve the above technical problems.

上記の目的を実現するために、本発明の植物性乳酸菌細胞外多糖は、1)と2)の少なくともいずれか一つの特徴を有し、
前記1)は、重量平均分子量は、1.35×106Daであり、
前記2)は、モル比が5.6:7.3:1のマンノースと、ガラクトースとブドウ糖から構成される。
In order to achieve the above object, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention has at least one of the characteristics of 1) and 2).
In 1), the weight average molecular weight is 1.35 × 106 Da.
The above 2) is composed of mannose having a molar ratio of 5.6: 7.3: 1, galactose and glucose.

前記植物性乳酸菌細胞外多糖は、アンジオテンシン変換酵素(ACE)を阻害できる。本発明の植物性乳酸菌細胞外多糖は、アンジオテンシン変換酵素(ACE)阻害活性を示し、血圧調節および高血圧予防の機能の作用を果たし、したがって、本発明の植物性乳酸菌細胞外多糖を心臓血管疾患予防・治療のための組成物の活性成分に使用できる。かつ、本発明の植物性乳酸菌細胞外多糖は、細胞傷害性を有しない。 The plant-derived lactic acid bacterium extracellular polysaccharide can inhibit angiotensin converting enzyme (ACE). The plant-derived lactic acid bacterium extracellular polysaccharide of the present invention exhibits angiotensin converting enzyme (ACE) inhibitory activity and fulfills the functions of blood pressure regulation and hypertension prevention. Therefore, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention can be used for cardiovascular disease prevention. -Can be used as an active ingredient in therapeutic compositions. Moreover, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention does not have cytotoxicity.

本発明は、植物性乳酸菌細胞外多糖がACE阻害薬組成物の調製時の作用を更に提供する。本発明の細胞外多糖は、顕著なACE阻害活性を示し、かつ細胞傷害性がなく、ACE活性阻害剤組成物として有効に使用することができる。 The present invention further provides the action of plant-derived lactic acid bacteria extracellular polysaccharides in the preparation of ACE inhibitor compositions. The extracellular polysaccharide of the present invention exhibits remarkable ACE inhibitory activity, is not cytotoxic, and can be effectively used as an ACE activity inhibitor composition.

本発明は、植物性乳酸菌細胞外多糖のリン酸化誘導体を更に提供する。本発明の植物性乳酸菌細胞外多糖のリン酸化誘導体は、ACE阻害活性を示し、血圧調節および高血圧予防の作用を有し、且つかつ細胞傷害性を有しない。 The present invention further provides a phosphorylated derivative of a plant-derived lactic acid bacterium extracellular polysaccharide. The phosphorylated derivative of the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention exhibits ACE inhibitory activity, has an action of regulating blood pressure and preventing hypertension, and has no cytotoxicity.

前記植物性乳酸菌細胞外多糖の置換度は、0.24である。 The degree of substitution of the plant-derived lactic acid bacterium extracellular polysaccharide is 0.24.

本発明は、心臓血管疾患予防・治療用の組成物を更に提供し、前記細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを含む。前記組成物は、食品組成物又は医薬組成物であり、組成物全重量に対して、細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを0.1〜80wt%含む。 The present invention further provides a composition for the prevention and treatment of cardiovascular diseases, and includes at least one of the extracellular polysaccharide and a phosphorylated derivative thereof. The composition is a food composition or a pharmaceutical composition, and contains 0.1 to 80 wt% of at least one of an extracellular polysaccharide and a phosphorylated derivative thereof based on the total weight of the composition.

前記心血管疾患は、高血圧、心疾患、脳卒中、血栓、動脈硬化、狭心症、心不全および心筋梗塞からなる群から選択される一種または複数種の疾患である。 The cardiovascular disease is one or more diseases selected from the group consisting of hypertension, heart disease, stroke, thrombosis, atherosclerosis, angina, heart failure and myocardial infarction.

前記組成物は、経口組成物である。 The composition is an oral composition.

前記組成物は、成人が一日あたりに0.1−500mgの植物性乳酸菌細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを摂取する方式で使用される。好ましくは、毎日50−100mg/kgであり、毎日1−3回である。 The composition is used in such a manner that an adult ingests 0.1-500 mg of at least one of a plant-derived lactic acid bacterium extracellular polysaccharide and a phosphorylated derivative thereof per day. Preferably, it is 50-100 mg / kg daily, 1-3 times daily.

前記組成物は、9−12週間又はもっと長い時間で摂取する方式で使用される。 The composition is used in a manner of ingestion for 9-12 weeks or longer.

本発明は、従来技術と比べ、下記のメリットを有する。 The present invention has the following merits as compared with the prior art.

本発明の植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は、いずれもACE阻害活性を示し、血圧調節および高血圧予防の機能を有し、これによって本発明の植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は、心臓血管疾患の予防と治療のための組成物の活性成分に使用できる。また、本発明の植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は、細胞傷害性を有しなく、幅広く応用されることができる。 The plant-derived lactic acid bacterium extracellular polysaccharide of the present invention and its phosphorylated derivative all exhibit ACE inhibitory activity and have functions of blood pressure regulation and hypertension prevention, whereby the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention and its phosphorylation are exhibited. Derivatives can be used as active ingredients in compositions for the prevention and treatment of cardiovascular disease. In addition, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention and its phosphorylated derivative have no cytotoxicity and can be widely applied.

本発明は、上記技術的解決手段を採用して、植物性乳酸菌細胞外多糖および植物性乳酸菌細胞外多糖がACE阻害薬製造中に果たす作用を提供し、従来技術の不足を補い、デザインが合理的で、操作が便利である。 The present invention employs the above technical solutions to provide the effects of plant-derived lactic acid bacteria extracellular polysaccharides and plant-derived lactic acid bacteria extracellular polysaccharides during the production of ACE inhibitors, compensating for the lack of prior art, and rationalizing the design. Targeted and convenient to operate.

試験例1においての植物性乳酸菌ATCC8014の成長曲線である。It is a growth curve of the plant-derived lactic acid bacterium ATCC8014 in Test Example 1. 試験例2においての高性能液体クロマトグラフィーで植物性乳酸菌細胞外多糖の分子量を測定する標準曲線である。6 is a standard curve for measuring the molecular weight of plant-derived lactic acid bacteria extracellular polysaccharide by high performance liquid chromatography in Test Example 2. 試験例2においての植物性乳酸菌細胞外多糖の高速液体クロマトグラムである。It is a high performance liquid chromatogram of a plant-derived lactic acid bacterium extracellular polysaccharide in Test Example 2. 試験例2においての植物性乳酸菌細胞外多糖と標準単糖のガスクロマトグラムである。3 is a gas chromatogram of a plant-derived lactic acid bacterium extracellular polysaccharide and a standard monosaccharide in Test Example 2. 試験例4においての植物性乳酸菌細胞外多糖及びそのリン酸化誘導体がACEに対する抑制作用である。The plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative in Test Example 4 have an inhibitory effect on ACE. 試験例4においての植物性乳酸菌細胞外多糖及びそのリン酸化誘導体の細胞傷害性である。It is the cytotoxicity of the plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative in Test Example 4. 試験例4においての植物性乳酸菌細胞外多糖及びそのリン酸化誘導体が高血圧自然発症ラットの収縮期血圧に対する影響である。The effect of the plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative in Test Example 4 on the systolic blood pressure of spontaneously hypertensive rats. 試験例4においての植物性乳酸菌細胞外多糖及びそのリン酸化誘導体が高血圧自然発症ラットの拡張期血圧に対する影響である。The effect of the plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative in Test Example 4 on the diastolic blood pressure of spontaneously hypertensive rats.

下記に、本発明について、詳しく説明します。 The present invention will be described in detail below.

本実施方法は、植物性乳酸菌細胞外多糖を提供し、具体的には1)と2)の少なくともいずれか一つの特徴を有する。
1)重量平均分子量は、1.35×106Daであり、
2)モル比が5.6:7.3:1のマンノースと、ガラクトースとブドウ糖から構成される。
The present method provides a plant-derived lactic acid bacterium extracellular polysaccharide, and specifically has at least one of the characteristics of 1) and 2).
1) The weight average molecular weight is 1.35 × 106 Da.
2) It is composed of mannose with a molar ratio of 5.6: 7.3: 1, galactose and glucose.

好ましい具体例として、前記植物性乳酸菌細胞外多糖は、アンジオテンシン変換酵素(ACE)を阻害できる。本発明の植物性乳酸菌細胞外多糖は、アンジオテンシン変換酵素(ACE)阻害活性を示し、血圧調節および高血圧予防の機能の作用を果たし、したがって、本発明の植物性乳酸菌細胞外多糖を心臓血管疾患予防・治療のための組成物の活性成分に使用できる。かつ、本発明の植物性乳酸菌細胞外多糖は、細胞傷害性を有しない。 As a preferred embodiment, the plant-derived lactic acid bacterium extracellular polysaccharide can inhibit angiotensin converting enzyme (ACE). The plant-derived lactic acid bacterium extracellular polysaccharide of the present invention exhibits angiotensin converting enzyme (ACE) inhibitory activity and fulfills the functions of blood pressure regulation and hypertension prevention. Therefore, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention can be used for cardiovascular disease prevention. -Can be used as an active ingredient in therapeutic compositions. Moreover, the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention does not have cytotoxicity.

本実施方法の植物性乳酸菌細胞外多糖は、
植物性乳酸菌を発酵させ、発酵液を収集するステップ1と、
トリクロロ酢酸水溶液と発酵液とを撹拌混合し、反応させ、反応液に含まれる上澄み液を収集するステップ2と、
上澄み液と無水エタノールとを撹拌混合し静置し、沈殿物を収集するステップ3と、
沈殿物を水に溶解させ、透析純化し、植物性乳酸菌細胞外多糖を得るステップ4と、
の方法によって調製される。
The plant-derived lactic acid bacteria extracellular polysaccharide of this method is
Step 1 of fermenting plant-derived lactic acid bacteria and collecting fermented liquid,
Step 2 in which the trichloroacetic acid aqueous solution and the fermentation broth are stirred and mixed, reacted, and the supernatant liquor contained in the reaction broth is collected.
Step 3 of mixing the supernatant and absolute ethanol with stirring and allowing them to stand to collect the precipitate, and
Step 4 in which the precipitate is dissolved in water and purified by dialysis to obtain a plant-derived lactic acid bacterium extracellular polysaccharide,
It is prepared by the method of.

好ましい具体例として、植物性乳酸菌細胞外多糖の調製方法は、
植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、濃度0.02〜0.1μMのテトラエチルチウラムジスルフィド及び0.1〜0.5mMのラクトースを含有するMRS培地に移し、30〜40℃で12〜24h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と70〜80%のトリクロロ酢酸水溶液を均一に混合し、常温で1〜2h撹拌反応させ、反応液中の上澄み液を採取し、発酵液中の細胞及びタンパク質を除去するステップ2と、
上澄み液に23倍体積の無水エタノールを加え、均一に混合し、4℃で10―15h静置し、さらに4℃、800015000r/minで20―30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を5〜10h毎に交換し、12―24h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖をイオン交換カラムクロマトグラフィー及びゲルカラムにより精製し、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、
を含み、
前記ステップ1において、テトラエチルチウラムジスルフィド及びラクトースを含有するMRS培地を使用することで、細胞外多糖の化学構造を変えて本発明の植物性乳酸菌細胞外多糖を得ることができるだけでなく、植物性乳酸菌細胞外多糖の対数期及び安定期の延長に有利であり、細胞外多糖を大量に合成して、植物性乳酸菌細胞外の多糖産生力を向上させ、最終的に細胞外多糖の収量を高めることができる。
As a preferred specific example, a method for preparing a plant-derived lactic acid bacterium extracellular polysaccharide is described.
The plant-derived lactic acid bacterium ATCC8014 was continuously activated for two generations, and then transferred to an MRS medium containing tetraethylthiuram disulfide having a concentration of 0.02 to 0.1 μM and lactose of 0.1 to 0.5 mM at 30 to 40 ° C. Step 1 to collect the fermented liquid by statically fermenting for 12 to 24 hours in
The fermentation broth and a 70 to 80% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 1 to 2 hours, the supernatant liquor in the reaction broth is collected, and cells and proteins in the fermented broth are removed. ,
Supernatant 2 - 3 volumes of absolute ethanol added and uniformly mixed, 10-15H allowed to stand at 4 ° C., further 4 ℃, 8000 - 20-30min centrifuged at 15,000 r / min, collecting the precipitate Step 3 and
The step of dissolving the precipitate in water, transferring to a dialysis bag, exchanging deionized water every 5 to 10 hours, dialyzing for 12 to 24 hours, then collecting the product and lyophilizing to obtain crude extracellular polysaccharide. 4 and
Step 5 to obtain plant-derived lactic acid bacteria extracellular polysaccharide by purifying the crude extracellular polysaccharide by ion exchange column chromatography and gel column and freeze-drying.
Including
In step 1, by using an MRS medium containing tetraethylthiuram disulfide and lactose, not only can the chemical structure of the extracellular polysaccharide be changed to obtain the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention, but also the plant-derived lactic acid bacterium can be obtained. It is advantageous for prolonging the logarithmic phase and stable phase of extracellular polysaccharides, synthesizing a large amount of extracellular polysaccharides, improving the ability of plant-derived lactic acid bacteria to produce extracellular polysaccharides, and finally increasing the yield of extracellular polysaccharides. Can be done.

本発明は、植物性乳酸菌細胞外多糖がACE阻害薬組成物の調製時の作用を更に提供する。多糖分子は、リン酸化修飾された後、分岐鎖上の水酸基がリン酸基で置換され、多糖水溶性を高め、鎖立体配座を改変することにより、本発明の細胞外多糖は、顕著なACE阻害活性を示し、かつ細胞傷害性がなく、ACE活性阻害剤組成物として有効に使用することができる。 The present invention further provides the action of plant-derived lactic acid bacteria extracellular polysaccharides in the preparation of ACE inhibitor compositions. After phosphorylation modification of the polysaccharide molecule, the hydroxyl group on the branched chain is replaced with a phosphate group to increase the water solubility of the polysaccharide and modify the chain configuration, whereby the extracellular polysaccharide of the present invention is remarkable. It exhibits ACE inhibitory activity and is not cytotoxic, and can be effectively used as an ACE activity inhibitor composition.

本発明は、植物性乳酸菌細胞外多糖のリン酸化誘導体を更に提供する。 The present invention further provides a phosphorylated derivative of a plant-derived lactic acid bacterium extracellular polysaccharide.

好ましい具体例として、植物性乳酸菌細胞外多糖のリン酸化誘導体は、植物性乳酸菌細胞外多糖を、固液比1:10―30g/mLでジメチルスルホキシドに溶解し、50―70℃で20―40min加熱して十分に溶解させた後、尿素およびリン酸を加え、50―70℃で2―5h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを使用して反応液を中和し、透析し、凍結乾燥することにより、調製される。前記植物性乳酸菌細胞外多糖のリン酸化誘導体の調製方法において、植物性乳酸菌細胞外多糖と尿素の重量比は、1:15−20であり、植物性乳酸菌細胞外多糖とリン酸の固液比は、1:5−10g/mLであり、植物性乳酸菌細胞外多糖と脱イオン水の固液比は、1:8−12g/mLである。 As a preferred embodiment, the phosphorylated derivative of the plant-derived lactic acid bacterium extracellular polysaccharide dissolves the plant-derived lactic acid bacterium extracellular polysaccharide in dimethyl sulfoxide at a solid-liquid ratio of 1:10 to 30 g / mL and 20 to 40 min at 50 to 70 ° C. After heating to sufficiently dissolve, urea and phosphoric acid are added, and the reaction is carried out at 50-70 ° C. for 2-5 hours, then deionized water is added to terminate the reaction, and the reaction solution is completed using 1 M NaOH. Is prepared by neutralizing, dialyzing, and lyophilizing. In the method for preparing a phosphorylated derivative of a plant-derived lactic acid bacterium extracellular polysaccharide, the weight ratio of the plant-derived lactic acid bacterium extracellular polysaccharide to urea is 1: 15-20, and the solid-liquid ratio of the plant-derived lactic acid bacterium extracellular polysaccharide to phosphoric acid. Is 1: 5-10 g / mL, and the solid-liquid ratio of plant-derived lactic acid bacteria extracellular polysaccharide to deionized water is 1: 8-12 g / mL.

好ましい具体例として、植物性乳酸菌細胞外多糖の置換度は、0.24である。 As a preferred specific example, the degree of substitution of the plant-derived lactic acid bacterium extracellular polysaccharide is 0.24.

本発明は、心臓血管疾患予防・治療用の組成物を更に提供し、前記細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを含む。該組成物は、食品組成物又は医薬組成物であり、組成物全重量に対して、細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを0.1〜80wt%含む。本発明の食品組成物に関し、本発明の細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを飲料、肉、ソーセージ、パン、ビスケット、餅、チョコレート、キャンディ、菓子、クッキー、パンケーキ、ラーメン、チューインガム、乳製品(アイスクリームを含む)、特殊栄養食(例えば、配合粉乳や幼児食)、加工肉製品、魚製品、豆腐、でんぷんゲル製品、健康補助食品、調味食品(例えば醤油、豆弁ジャム、唐辛子、かき揚げジャム)、ソース、その他の加工食品、漬物(例えば、漬物やソース野菜)、スープ、飲料、アルコール飲料及びビタミン複合体に添加することができ、広い意味では、健康食品の生産に適した食品がほとんど含まれているといえる。本発明の医薬組成物はさらに様々な栄養素、ビタミン、ミネラル、調味剤、着色剤、ペクチン酸及びその塩、アルギン酸及びその塩、有機酸、保護コロイド増粘剤、pH調整剤、安定剤、防腐剤、グリセリン、アルコール、ソーダ水に添加するための炭酸化剤等を含むことができる。前記担体、賦形剤又は希釈剤は、ラクトース、グルコース、スクロース、ソルビトール、マンニトール、キシリトール、エリスリトール、マルチトール、デンプン、アラビアガム、アルギン酸塩/エステル、ゼラチン、リン酸カルシウム、ケイ酸カルシウム、セルロース、メチルセルロース、微結晶セルロース、ポリビニルピロリドン、水、ヒドロキシ安息香酸メチル、ヒドロキシ安息香酸プロピル、タルク、ステアリン酸マグネシウム、鉱物油、デキストリン、炭酸カルシウム、プロピレングリコール、流動パラフィン及び塩水からなる群から選択されるが、必ずしもこれに限定されるものではない。なお、全ての成分は、単独で添加してもよく、また、共に添加してもよい。 The present invention further provides a composition for the prevention and treatment of cardiovascular diseases, and includes at least one of the extracellular polysaccharide and a phosphorylated derivative thereof. The composition is a food composition or a pharmaceutical composition, and contains 0.1 to 80 wt% of at least one of an extracellular polysaccharide and a phosphorylated derivative thereof based on the total weight of the composition. With respect to the food composition of the present invention, at least one of the extracellular polysaccharide of the present invention and a phosphorylated derivative thereof is used as a beverage, meat, sausage, bread, biscuits, rice cake, chocolate, candy, confectionery, cookie, pancake, ramen. , Chewing gum, dairy products (including ice cream), special nutrition foods (eg compound milk powder and infant food), processed meat products, fish products, tofu, starch gel products, health supplements, seasoning foods (eg soy sauce, bean biscuits) Can be added to jams, peppers, fried jams), sauces and other processed foods, pickles (eg pickles and sauce vegetables), soups, beverages, alcoholic beverages and vitamin complexes, in a broad sense the production of health foods It can be said that most of the foods suitable for are contained. The pharmaceutical compositions of the present invention further include various nutrients, vitamins, minerals, seasonings, colorants, pectic acid and its salts, alginic acid and its salts, organic acids, protective colloid thickeners, pH regulators, stabilizers, preservatives. Agents, glycerin, alcohol, carbonates for addition to soda water and the like can be included. The carriers, excipients or diluents include lactose, glucose, sucrose, sorbitol, mannitol, xylitol, erythritol, martitol, starch, arabic gum, alginate / ester, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, It is selected from the group consisting of microcrystalline cellulose, polyvinylpyrrolidone, water, methyl hydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate, mineral oil, dextrin, calcium carbonate, propylene glycol, liquid paraffin and salt water, but not necessarily. It is not limited to this. All the components may be added alone or together.

好ましい具体例として、心血管疾患は、高血圧、心疾患、脳卒中、血栓、動脈硬化、狭心症、心不全および心筋梗塞からなる群から選択される一種または複数種の疾患である。 As a preferred embodiment, cardiovascular disease is one or more diseases selected from the group consisting of hypertension, heart disease, stroke, thrombosis, atherosclerosis, angina, heart failure and myocardial infarction.

好ましい具体例として、前記組成物は、経口組成物である。 As a preferred embodiment, the composition is an oral composition.

好ましい具体例として、前記組成物は、成人が一日あたりに0.1−500mgの植物性乳酸菌細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを摂取する方式で使用される。好ましくは、毎日50−100mg/kgであり、毎日1−3回である。 As a preferred embodiment, the composition is used in such a manner that an adult ingests 0.1-500 mg of a plant-derived lactic acid bacterium extracellular polysaccharide and at least one of a phosphorylated derivative thereof per day. Preferably, it is 50-100 mg / kg daily, 1-3 times daily.

好ましい具体例として、前記組成物は、9−12週間又はもっと長い時間で摂取する方式で使用される。 As a preferred embodiment, the composition is used in a manner of ingestion for 9-12 weeks or longer.

下記に、実施例によって本発明を更に説明する。理解すべきは、前記実施例は本発明を実施する一案であり、本発明の範囲を制限しない。 The present invention will be further described below by way of examples. It should be understood that the above embodiment is an embodiment of the present invention and does not limit the scope of the present invention.

実施例1: Example 1:

本発明の植物性乳酸菌細胞外多糖の調製方法は、
上海北諾生物科技有限公司から購入の植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、濃度0.05μMのテトラエチルチウラムジスルフィド及び0.2mMのラクトースを含有するMRS培地に移し、37℃で15h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と75%のトリクロロ酢酸水溶液を均一に混合し、常温で2h撹拌反応させ、反応液中の上澄み液を採取するステップ2と、
上澄み液に2倍体積の無水エタノールを加え、均一に混合し、4℃で12h静置し、さらに4℃、12000r/minで30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を8h毎に交換し、15h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖を蒸留水で溶解(10mg/mL)した後、DEAECellulose52イオン交換カラムに100mgローディングし、蒸留水と、0.1mol/LのNaClと、0.3mol/LのNaClおよび0.5mol/LのNaClで直線的に勾配溶出し、溶出速度が1mL/minであり、チューブ毎に5mLを採取し、多糖含有量(多糖含有量は硫酸フェノール法で検出して溶出曲線を描く)をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分をそれぞれ合わせて収集し、脱イオン水で透析、凍結乾燥するステップ4と、
0.3mol/LのNaClで溶出した多糖成分を蒸留水で溶解(5mg/mL)した後、SephadexG100ゲルカラムにローディングし、脱イオン水を用いて溶出し、溶出レートが0.2mL/minであり、溶出液を自動部分収集装置で収集し、チューブ毎に体積2mLを収集し、多糖含有量をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分を合わせて収集し、脱イオン水で透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、
を含む。
The method for preparing the plant-derived lactic acid bacterium extracellular polysaccharide of the present invention is:
The plant-derived lactic acid bacterium ATCC8014 purchased from Shanghai Hokujo Biotechnology Co., Ltd. was continuously activated for two generations, and then transferred to an MRS medium containing 0.05 μM of tetraethylthiuram disulfide and 0.2 mM lactose at 37 ° C. Step 1 to collect the fermented liquid by statically fermenting for 15 hours in
Step 2 and step 2 in which the fermentation broth and a 75% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 2 hours, and the supernatant liquor in the reaction broth is collected.
In step 3, 2 times the volume of absolute ethanol is added to the supernatant, mixed uniformly, allowed to stand at 4 ° C. for 12 hours, and further centrifuged at 4 ° C. and 12000 r / min for 30 minutes to collect the precipitate.
The precipitate is dissolved in water, transferred to a dialysis bag, the deionized water is replaced every 8 hours, dialyzed for 15 hours, and then the product is collected and lyophilized to obtain crude extracellular polysaccharide.
After dissolving the crude extracellular polysaccharide in distilled water (10 mg / mL) , 100 mg was loaded on a DEAE- Cellulose 52 ion exchange column, and distilled water, 0.1 mol / L NaCl, 0.3 mol / L NaCl and 0 were loaded. Linear gradient elution with .5 mol / L NaCl, elution rate is 1 mL / min, 5 mL is collected for each tube, and polysaccharide content (polysaccharide content is detected by the phenol sulfate method and an elution curve is drawn. ) Is detected for each tube, and single peak components are collected together according to the detection value of the polysaccharide content, dialyzed with deionized water, and freeze-dried.
After the polysaccharide components eluted at NaCl of 0.3 mol / L was dissolved in distilled water (5mg / mL), SephadexG - 100 loaded onto gel column, eluted with deionized water, elution rate is 0.2 mL / min The eluate is collected by an automatic partial collector, a volume of 2 mL is collected for each tube, the polysaccharide content is detected for each tube, and a single peak component is collected together according to the polysaccharide content detection value, and then removed. Step 5 to obtain plant-derived lactic acid bacterium extracellular polysaccharide by dialysis with ionized water and freeze-drying,
including.

植物性乳酸菌細胞外多糖の収率は、収率(%)=(純成分質量/粗細胞外多糖質量)×100で計算される。
算出した植物性乳酸菌細胞外多糖の収率は、53.72%である。
The yield of plant-derived lactic acid bacteria extracellular polysaccharide is calculated by yield (%) = (pure component mass / crude extracellular polysaccharide mass) × 100.
The calculated yield of plant-derived lactic acid bacterium extracellular polysaccharide is 53.72%.

実施例2 Example 2

植物性乳酸菌細胞外多糖のリン酸化誘導体の調整方法は、下記のようにである。 The method for preparing a phosphorylated derivative of a plant-derived lactic acid bacterium extracellular polysaccharide is as follows.

実施例1で得られた植物性乳酸菌細胞外多糖2gを100mLのジメチルスルホキシドに溶解し、60℃で30min加熱して十分に溶解させた後、36gの尿素と15mLのリン酸を加え、60℃で3h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを用いて反応液を中和し、透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖のリン酸化誘導体を得る。 2 g of the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Example 1 was dissolved in 100 mL of dimethyl sulfoxide, heated at 60 ° C. for 30 minutes to sufficiently dissolve it, and then 36 g of urea and 15 mL of phosphoric acid were added to add 60 ° C. After reacting for 3 hours with, deionized water was added to terminate the reaction, the reaction solution was neutralized with 1 M NaOH, dialyzed, and freeze-dried to obtain a phosphorylated derivative of the extracellular polysaccharide of plant-derived lactic acid bacteria. obtain.

比較例1 Comparative Example 1

植物性乳酸菌細胞外多糖を、
上海北諾生物科技有限公司から購入の植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、濃度0.05μMのテトラエチルチウラムジスルフィドを含有するMRS培地に移し、37℃で15h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と75%のトリクロロ酢酸水溶液を均一に混合し、常温で2h撹拌反応させ、反応液中の上澄み液を採取するステップ2と、
上澄み液に2倍体積の無水エタノールを加え、均一に混合し、4℃で12h静置し、さらに4℃、12000r/minで30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を8h毎に交換し、15h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖を蒸留水で溶解(10mg/mL)した後、DEAECellulose52イオン交換カラムに100mgローディングし、蒸留水と、0.1mol/LのNaClと、0.3mol/LのNaClおよび0.5mol/LのNaClで直線的に勾配溶出し、溶出速度が1mL/minであり、チューブ毎に5mLを採取し、多糖含有量(多糖含有量は硫酸フェノール法で検出して溶出曲線を描く)をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分をそれぞれ合わせて収集し、脱イオン水で透析、凍結乾燥し、
0.3mol/LのNaClで溶出した多糖成分を蒸留水で溶解(5mg/mL)した後、SephadexG100ゲルカラムにローディングし、脱イオン水を用いて溶出し、溶出レートが0.2mL/minであり、溶出液を自動部分収集装置で収集し、チューブ毎に体積2mLを収集し、多糖含有量をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分を合わせて収集し、脱イオン水で透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、によって調製し、収率が36.74%である。
Plant-derived lactic acid bacteria extracellular polysaccharide,
The plant-derived lactic acid bacterium ATCC8014 purchased from Shanghai Hokujo Biotechnology Co., Ltd. was continuously activated for two generations, then transferred to an MRS medium containing a tetraethylthiuram disulfide having a concentration of 0.05 μM, and allowed to ferment at 37 ° C. for 15 hours. Step 1 to collect the fermented liquid and
Step 2 and step 2 in which the fermentation broth and a 75% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 2 hours, and the supernatant liquor in the reaction broth is collected.
In step 3, 2 times the volume of absolute ethanol is added to the supernatant, mixed uniformly, allowed to stand at 4 ° C. for 12 hours, and further centrifuged at 4 ° C. and 12000 r / min for 30 minutes to collect the precipitate.
The precipitate is dissolved in water, transferred to a dialysis bag, the deionized water is replaced every 8 hours, dialyzed for 15 hours, and then the product is collected and lyophilized to obtain crude extracellular polysaccharide.
After dissolving the crude extracellular polysaccharide in distilled water (10 mg / mL) , 100 mg was loaded on a DEAE- Cellulose 52 ion exchange column, and distilled water, 0.1 mol / L NaCl, 0.3 mol / L NaCl and 0 were loaded. Linear gradient elution with .5 mol / L NaCl, elution rate is 1 mL / min, 5 mL is collected for each tube, and polysaccharide content (polysaccharide content is detected by the phenol sulfate method and an elution curve is drawn. ) Is detected for each tube, and single peak components are collected together according to the detected value of polysaccharide content, dialyzed with deionized water, freeze-dried, and then dried.
After the polysaccharide components eluted at NaCl of 0.3 mol / L was dissolved in distilled water (5mg / mL), SephadexG - 100 loaded onto gel column, eluted with deionized water, elution rate is 0.2 mL / min The eluate is collected by an automatic partial collector, a volume of 2 mL is collected for each tube, the polysaccharide content is detected for each tube, and a single peak component is collected together according to the polysaccharide content detection value, and then removed. It was prepared in step 5 of obtaining a plant-derived lactic acid bacterium extracellular polysaccharide by dialysis and lyophilization with ionized water, and the yield was 36.74%.

比較例2 Comparative Example 2

植物性乳酸菌細胞外多糖を、
上海北諾生物科技有限公司から購入の植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、濃度0.2mMのラクトースを含有するMRS培地に移し、37℃で15h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と75%のトリクロロ酢酸水溶液を均一に混合し、常温で2h撹拌反応させ、反応液中の上澄み液を採取するステップ2と、
上澄み液に2倍体積の無水エタノールを加え、均一に混合し、4℃で12h静置し、さらに4℃、12000r/minで30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を8h毎に交換し、15h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖を蒸留水で溶解(10mg/mL)した後、DEAECellulose52イオン交換カラムに100mgローディングし、蒸留水と、0.1mol/LのNaClと、0.3mol/LのNaClおよび0.5mol/LのNaClで直線的に勾配溶出し、溶出速度が1mL/minであり、チューブ毎に5mLを採取し、多糖含有量(多糖含有量は硫酸フェノール法で検出して溶出曲線を描く)をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分をそれぞれ合わせて収集し、脱イオン水で透析、凍結乾燥し、
0.3mol/LのNaClで溶出した多糖成分を蒸留水で溶解(5mg/mL)した後、SephadexG100ゲルカラムにローディングし、脱イオン水を用いて溶出し、溶出レートが0.2mL/minであり、溶出液を自動部分収集装置で収集し、チューブ毎に体積2mLを収集し、多糖含有量をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分を合わせて収集し、脱イオン水で透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、によって調製し、収率が43.68%である。
Plant-derived lactic acid bacteria extracellular polysaccharide,
The plant-derived lactic acid bacterium ATCC8014 purchased from Shanghai Hokuyo Biotechnology Co., Ltd. was continuously activated for two generations, then transferred to an MRS medium containing lactose at a concentration of 0.2 mM, and allowed to ferment at 37 ° C. for 15 hours for fermentation. Step 1 to collect the liquid and
Step 2 and step 2 in which the fermentation broth and a 75% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 2 hours, and the supernatant liquor in the reaction broth is collected.
In step 3, 2 times the volume of absolute ethanol is added to the supernatant, mixed uniformly, allowed to stand at 4 ° C. for 12 hours, and further centrifuged at 4 ° C. and 12000 r / min for 30 minutes to collect the precipitate.
The precipitate is dissolved in water, transferred to a dialysis bag, the deionized water is replaced every 8 hours, dialyzed for 15 hours, and then the product is collected and lyophilized to obtain crude extracellular polysaccharide.
After dissolving the crude extracellular polysaccharide in distilled water (10 mg / mL) , 100 mg was loaded on a DEAE- Cellulose 52 ion exchange column, and distilled water, 0.1 mol / L NaCl, 0.3 mol / L NaCl and 0 were loaded. Linear gradient elution with .5 mol / L NaCl, elution rate is 1 mL / min, 5 mL is collected for each tube, and polysaccharide content (polysaccharide content is detected by the phenol sulfate method and an elution curve is drawn. ) Is detected for each tube, and single peak components are collected together according to the detected value of polysaccharide content, dialyzed with deionized water, freeze-dried, and then dried.
After the polysaccharide components eluted at NaCl of 0.3 mol / L was dissolved in distilled water (5mg / mL), SephadexG - 100 loaded onto gel column, eluted with deionized water, elution rate is 0.2 mL / min The eluate is collected by an automatic partial collector, a volume of 2 mL is collected for each tube, the polysaccharide content is detected for each tube, and a single peak component is collected together according to the polysaccharide content detection value, and then removed. It was prepared in step 5 of obtaining a plant-derived lactic acid bacterium extracellular polysaccharide by dialysis and lyophilization with ionized water, and the yield was 43.68%.

比較例3 Comparative Example 3

植物性乳酸菌細胞外多糖を、
上海北諾生物科技有限公司から購入の植物性乳酸菌ATCC8014を、連続的に二世代活性化した後、MRS培地に移し、37℃で15h静置発酵させて発酵液を採取するステップ1と、
前記発酵液と75%のトリクロロ酢酸水溶液を均一に混合し、常温で2h撹拌反応させ、反応液中の上澄み液を採取するステップ2と、
上澄み液に2倍体積の無水エタノールを加え、均一に混合し、4℃で12h静置し、さらに4℃、12000r/minで30min遠心分離し、沈殿物を採取するステップ3と、
沈殿物を水に溶解し、透析袋に移し、脱イオン水を8h毎に交換し、15h透析した後、生成物を採取し、凍結乾燥して、粗細胞外多糖を得るステップ4と、
粗細胞外多糖を蒸留水で溶解(10mg/mL)した後、DEAECellulose52イオン交換カラムに100mgローディングし、蒸留水と、0.1mol/LのNaClと、0.3mol/LのNaClおよび0.5mol/LのNaClで直線的に勾配溶出し、溶出速度が1mL/minであり、チューブ毎に5mLを採取し、多糖含有量(多糖含有量は硫酸フェノール法で検出して溶出曲線を描く)をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分をそれぞれ合わせて収集し、脱イオン水で透析、凍結乾燥し、
0.3mol/LのNaClで溶出した多糖成分を蒸留水で溶解(5mg/mL)した後、SephadexG100ゲルカラムにローディングし、脱イオン水を用いて溶出し、溶出レートが0.2mL/minであり、溶出液を自動部分収集装置で収集し、チューブ毎に体積2mLを収集し、多糖含有量をチューブ毎に検出し、多糖含有量検出値により単一ピーク成分を合わせて収集し、脱イオン水で透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖を得るステップ5と、によって調製し、収率が35.01%である。
Plant-derived lactic acid bacteria extracellular polysaccharide,
Step 1 of continuously activating the plant-derived lactic acid bacterium ATCC8014 purchased from Shanghai Hokuyo Biotechnology Co., Ltd. for two generations, transferring it to an MRS medium, and allowing it to stand still at 37 ° C. for 15 hours to collect the fermentation broth.
Step 2 and step 2 in which the fermentation broth and a 75% trichloroacetic acid aqueous solution are uniformly mixed, stirred and reacted at room temperature for 2 hours, and the supernatant liquor in the reaction broth is collected.
In step 3, 2 times the volume of absolute ethanol is added to the supernatant, mixed uniformly, allowed to stand at 4 ° C. for 12 hours, and further centrifuged at 4 ° C. and 12000 r / min for 30 minutes to collect the precipitate.
The precipitate is dissolved in water, transferred to a dialysis bag, the deionized water is replaced every 8 hours, dialyzed for 15 hours, and then the product is collected and lyophilized to obtain crude extracellular polysaccharide.
After dissolving the crude extracellular polysaccharide in distilled water (10 mg / mL) , 100 mg was loaded on a DEAE- Cellulose 52 ion exchange column, and distilled water, 0.1 mol / L NaCl, 0.3 mol / L NaCl and 0 were loaded. Linear gradient elution with .5 mol / L NaCl, elution rate is 1 mL / min, 5 mL is collected for each tube, and polysaccharide content (polysaccharide content is detected by the phenol sulfate method and an elution curve is drawn. ) Is detected for each tube, and single peak components are collected together according to the detected value of polysaccharide content, dialyzed with deionized water, freeze-dried, and then dried.
After the polysaccharide components eluted at NaCl of 0.3 mol / L was dissolved in distilled water (5mg / mL), SephadexG - 100 loaded onto gel column, eluted with deionized water, elution rate is 0.2 mL / min The eluate is collected by an automatic partial collector, a volume of 2 mL is collected for each tube, the polysaccharide content is detected for each tube, and a single peak component is collected together according to the polysaccharide content detection value, and then removed. It was prepared in step 5 of obtaining a plant-derived lactic acid bacterium extracellular polysaccharide by dialysis and lyophilization with ionized water, and the yield was 35.01%.

比較例4 Comparative Example 4

比較例1で得た植物性乳酸菌細胞外多糖2gを100mLのジメチルスルホキシドに溶解し、60℃で30min加熱して十分に溶解させた後、36gの尿素と15mLのリン酸を加え、60℃で3h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを用いて反応液を中和し、透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖のリン酸化誘導体を得る。 2 g of the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Comparative Example 1 was dissolved in 100 mL of dimethyl sulfoxide, heated at 60 ° C. for 30 minutes to sufficiently dissolve it, and then 36 g of urea and 15 mL of phosphoric acid were added, and the temperature was increased to 60 ° C. After the reaction for 3 hours, deionized water is added to terminate the reaction, the reaction solution is neutralized with 1 M NaOH, dialyzed and freeze-dried to obtain a phosphorylated derivative of the extracellular polysaccharide of plant-derived lactic acid bacteria. ..

比較例5 Comparative Example 5

比較例2で得た植物性乳酸菌細胞外多糖2gを100mLのジメチルスルホキシドに溶解し、60℃で30min加熱して十分に溶解させた後、36gの尿素と15mLのリン酸を加え、60℃で3h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを用いて反応液を中和し、透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖のリン酸化誘導体を得る。 2 g of the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Comparative Example 2 was dissolved in 100 mL of dimethyl sulfoxide, heated at 60 ° C. for 30 minutes to sufficiently dissolve it, and then 36 g of urea and 15 mL of phosphoric acid were added, and the temperature was increased to 60 ° C. After the reaction for 3 hours, deionized water is added to terminate the reaction, the reaction solution is neutralized with 1 M NaOH, dialyzed and freeze-dried to obtain a phosphorylated derivative of the extracellular polysaccharide of plant-derived lactic acid bacteria. ..

比較例6 Comparative Example 6

比較例3で得た植物性乳酸菌細胞外多糖2gを100mLのジメチルスルホキシドに溶解し、60℃で30min加熱して十分に溶解させた後、36gの尿素と15mLのリン酸を加え、60℃で3h反応させた後、脱イオン水を加えて反応を終了し、1MのNaOHを用いて反応液を中和し、透析、凍結乾燥することにより、植物性乳酸菌細胞外多糖のリン酸化誘導体を得る。 2 g of the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Comparative Example 3 was dissolved in 100 mL of dimethyl sulfoxide, heated at 60 ° C. for 30 minutes to sufficiently dissolve it, and then 36 g of urea and 15 mL of phosphoric acid were added, and the temperature was increased to 60 ° C. After the reaction for 3 hours, deionized water is added to terminate the reaction, the reaction solution is neutralized with 1 M NaOH, dialyzed and freeze-dried to obtain a phosphorylated derivative of the extracellular polysaccharide of plant-derived lactic acid bacteria. ..

試験例1 Test Example 1

植物性乳酸菌ATCC8014の成長曲線の測定に関する: Regarding the measurement of the growth curve of the plant-derived lactic acid bacterium ATCC8014:

菌株を、2%の接種量で、実施例1と比較例13に使用の培地に、それぞれ接種し、振とうして振り混ぜた後37℃で静置発酵し、2hおきに取り出し、培地をブランク溶液としてゼロ点調製を行い、600nmの波長で吸光値を検出する。時間を横軸、吸光値を縦軸にして、図1に示すように、前記菌株の成長曲線を得る。ATCC8014の成長曲線グラフから明らかなように、実施例1の植物性乳酸菌ATCC8014は、概ね2h以降から対数増殖期に入り始め、6h以降は定常期に入り始め、安定期が長く、比較例1及び比較例3の植物性乳酸菌ATCC8014は概ね3h以降から対数増殖期に入り始め、14h以降は安定期に入り始め、比較例2の植物性乳酸菌ATCC8014は概ね3h以降から対数増殖期に入り始め、14h以降は安定期に入り始めることから、実施例1の培地で植物性乳酸菌ATCC8014を培養すると、植物性乳酸菌の対数期と安定期が比較例13よりも長く、かつ植物性乳酸菌の密度も比較例13よりも明らかに高かくなる。 Strains with an inoculum of 2%, Example 1 and Comparative Example 1 - the medium of use 3, respectively inoculated, shaken and allowed to stand fermented at 37 ° C. After shaking, it is taken out to 2h intervals, Zero point preparation is performed using the medium as a blank solution, and the absorption value is detected at a wavelength of 600 nm. As shown in FIG. 1, the growth curve of the strain is obtained with time on the horizontal axis and absorption value on the vertical axis. As is clear from the growth curve graph of ATCC8014, the plant-derived lactic acid bacterium ATCC8014 of Example 1 begins to enter the logarithmic growth phase after about 2h, enters the stationary phase after 6h, has a long stable phase, and has a long stable phase, and Comparative Example 1 and The plant-derived lactic acid bacterium ATCC8014 of Comparative Example 3 began to enter the logarithmic growth phase after about 3h, and began to enter the stable phase after 14h, and the plant-derived lactic acid bacterium ATCC8014 of Comparative Example 2 began to enter the logarithmic growth phase from about 3h or later, and entered the logarithmic growth phase for 14h. since the later begins to enter the stable period, the cultured plant lactic acid bacteria ATCC8014 with medium of example 1, comparison exponential phase and plateau vegetable lactic acid bacteria example 1 - longer than 3, and also the density of the plant lactic acid bacteria Comparative example 1 - 3 obviously becomes higher nuclear than.

植物性乳酸菌ATCC8014の成長曲線と、実施例1、比較例1−3で得られた細胞外多糖の収率から、テトラエチルチウラムジスルフィドおよびラクトースを含有するMRS培地で植物性乳酸菌ATCC8014を培養することにより、植物性乳酸菌の対数期および安定期の延長に有利となり、細胞外多糖を多く合成し、植物性乳酸菌の多糖産生力を向上させ、最終的に細胞外多糖の収量を向上させることができることがわかる。 From the growth curve of plant-derived lactic acid bacterium ATCC8014 and the yield of extracellular polysaccharides obtained in Example 1 and Comparative Example 1-3, by culturing the plant-derived lactic acid bacterium ATCC8014 in an MRS medium containing tetraethylthiuram disulfide and lactose. , It is advantageous for prolonging the logarithmic phase and stable phase of plant-derived lactic acid bacteria, it is possible to synthesize a large amount of extracellular lactose, improve the polysaccharide-producing ability of plant-derived lactic acid bacteria, and finally improve the yield of extracellular lactose. Understand.

試験例2 Test Example 2

植物性乳酸菌細胞外多糖の性能測定に関する: Regarding performance measurement of plant-derived lactic acid bacteria extracellular polysaccharide:

1.植物性乳酸菌細胞外多糖の分子量の測定 1. 1. Measurement of molecular weight of plant-derived lactic acid bacteria extracellular polysaccharide

分子量の異なるDextran標準品を順次に測定対象多糖サンプルに注入し、保留時間(TR)を記録し、各標準品の保留時間(TR)を横軸とし、各多糖標準品のピーク分子量の対数(log Mol Wt)を縦軸にして検量線(図2)を作成し、分子量と保留時間(TR)との回帰式を求め、y=11.99720.40662x、R2=0.99824とする。測定対象多糖サンプルに上記手順でDextran標準品を注入し、得られた保留時間(TR)に基づいて、標準分子量曲線から測定対象多糖サンプルの平均相対分子量を自動的に算出するとともに、多糖サンプルのクロマトグラム上のピークの数および形状から多糖の純度を同定することができる。実施例1、比較例1−3に係る細胞外多糖の高性能液体クロマトグラフィーは、図3に示すように、図から明らかなように、実施例1、比較例1−3に係る細胞外多糖は、いずれも単一ピーク形状であり、4種の多糖がいずれも均一の多糖であることを説明した。実施例1、比較例1−3の細胞外多糖の保留時間は順に14.428min、15.660min、15.660min及び15.660minであり,対応する保留時間を標準分子量と保留時間の回帰式に代入して、実施例1、比較例1−3で得られた細胞外多糖の分子量は順に1.35×106Da、4.26×105Da、4.26×105Da及び4.26×105Daである。 Dextran standard products with different molecular weights are sequentially injected into the polysaccharide sample to be measured, the hold time (TR) is recorded, the hold time (TR) of each standard product is on the horizontal axis, and the logarithmic peak molecular weight of each polysaccharide standard product ( and a log Mol Wt) on the vertical axis to create a calibration curve (Fig. 2), a regression equation between the molecular weight and the hold time (TR), y = 11.9972 - and 0.40662x, R2 = 0.99824 .. The Dextran standard product is injected into the polysaccharide sample to be measured according to the above procedure, and the average relative molecular weight of the polysaccharide sample to be measured is automatically calculated from the standard molecular weight curve based on the obtained hold time (TR), and the polysaccharide sample is automatically calculated. The purity of the polysaccharide can be identified from the number and shape of peaks on the chromatogram. As shown in FIG. 3, high performance liquid chromatography of the extracellular polysaccharide according to Example 1 and Comparative Example 1-3 is performed on the extracellular polysaccharide according to Example 1 and Comparative Example 1-3, as is clear from the figure. Explained that all of them had a single peak shape, and that all four types of polysaccharides were uniform polysaccharides. The holding times of the extracellular polysaccharides of Example 1 and Comparative Example 1-3 are 14.428min, 15.660min, 15.660min and 15.660min, respectively, and the corresponding holding times are expressed in the regression equation of the standard molecular weight and the holding time. Substituting, the molecular weights of the extracellular polysaccharides obtained in Example 1 and Comparative Example 1-3 are 1.35 × 106 Da, 4.26 × 105 Da, 4.26 × 105 Da and 4.26 × 105 Da, respectively.

2.植物性乳酸菌細胞外多糖の単糖構成分析 2. Monosaccharide composition analysis of plant-derived lactic acid bacteria extracellular polysaccharide

2.1多糖の加水分解 2.1 Hydrolysis of polysaccharides

細胞外多糖サンプル5mgをアンプルに入れ、さらに2mol/Lトリフルオロ酢酸2mLを加えてアルコールランプで封口し、オーブン中120℃で2h加水分解し、加水分解液を減圧留去した後、さらに少量のメタノールを加えて減圧留去し(5回繰り返し)、残ったトリフルオロ酢酸を除去した後、少量の水を加えて溶解し、凍結乾燥すれば、完全酸加水分解された単糖サンプルを得る。 Put 5 mg of the extracellular polysaccharide sample in an ampol, add 2 mL of 2 mol / L trifluoroacetic acid, seal with an alcohol lamp, hydrolyze in an oven at 120 ° C. for 2 hours, distill off the hydrolyzate under reduced pressure, and then distill off a smaller amount. Methanol is added and distilled off under reduced pressure (repeated 5 times) to remove the remaining trifluoroacetic acid, and then a small amount of water is added to dissolve the mixture, and the mixture is freeze-dried to obtain a completely acid-hydrolyzed monosaccharide sample.

2.2糖のニトリル酢酸メンチル誘導体の調製 2.2 Preparation of nitrile mentyl acetate derivative of sugar

各単糖標準品5mg、NaBH430mg及び5mgのイノシトールをアンプルに量り取り、徐々に2mLの蒸留水を滴下しながら振盪し、室温で糖アルコールに還元反応させ(2h反応し)、気泡が発生しなくなるまで氷酢酸を滴下して過剰量のNaBH4を中和する。ロータリーエバポレーターを60℃に温調してサンプルが完全に乾燥するまで真空回転蒸発させ、その後、0.1%(v/v)塩酸メタノール溶液2mLで再溶解した後、再度蒸発乾固し、ホウ酸塩を除去するように4〜5回繰り返す。処理済みの生成物を105℃オーブンで15min脱水し、ピリジンと無水酢酸をそれぞれ0.5mL出し、アルコールジェットで封口し、沸騰水浴で1h反応させ、得られた生成物を微孔膜(0.22μm)を経て不純物を除去し、ガスクロマトグラフィー分析を行う。完全酸加水分解後の細胞外多糖サンプル誘導体の調製は同様にこの方法に従って調製される。 Weigh 5 mg of each monosaccharide standard, 430 mg of NaBH and 5 mg of inositol into an ampol, shake while gradually dropping 2 mL of distilled water, and reduce reaction to sugar alcohol at room temperature (react for 2 hours), and no bubbles are generated. Glacial acetic acid is added dropwise to neutralize the excess amount of NaBH4. The rotary evaporator was heated to 60 ° C. and vacuum rotary evaporated until the sample was completely dried, then redissolved in 2 mL of 0.1% (v / v) hydrochloric acid-methanol solution, evaporated to dryness again, and borate. Repeat 4-5 times to remove the acid salt. The treated product was dehydrated in an oven at 105 ° C. for 15 minutes, 0.5 mL each of pyridine and acetic anhydride were taken out, sealed with an alcohol jet, and reacted in a boiling water bath for 1 h, and the obtained product was subjected to a microporous membrane (0. Impurities are removed through 22 μm), and gas chromatography analysis is performed. Preparation of the extracellular polysaccharide sample derivative after complete acid hydrolysis is similarly prepared according to this method.

2.3ガスクロマトグラフィー条件クロマトグラフ 2.3 Gas Chromatography Condition Chromatography

Agilent7890Aガスクロマトグラフを採用し、カラムは、DB225キャピラリカラム(30m×0.25mm)であり、検出器は、酸素炎イオン検出器であり、流速は、1mL/minであり、スプリット比は、1:50であり、注入量は、1μLである。昇温プログラム:80℃で3min保持し、5℃/minで195℃まで昇温して1min保持し、5℃/minで215℃まで昇温して1min保持し、10℃/minで230℃まで昇温して3min保持する。 Adopting the Agent7890A gas chromatograph, the column is a DB225 capillary column (30 m x 0.25 mm), the detector is an oxygen flame ion detector, the flow velocity is 1 mL / min, and the split ratio is 1: It is 50 and the injection volume is 1 μL. Temperature rise program: Hold at 80 ° C for 3 min, raise to 195 ° C at 5 ° C / min for 1 min, raise to 215 ° C at 5 ° C / min for 1 min, hold at 230 ° C at 10 ° C / min The temperature is raised to 3 min.

実施例1、比較例1−3で得られた細胞外多糖をトリフルオロ酢酸で加水分解した後のガスクロマトグラフィー分析及び単糖標準品との比較結果は図4に示すとおりである。単糖標準品の保留時間(図4標準品)は左から右へ順にラムノース(26.215min)、フコース(26.427min)、アラビノース(26.531min)、キシロース(26.951min)、マンノース(30.553min)、フルクトース(31.553min)、グルコース(31.714min)、ガラクトース(31.921min)である。実施例1、比較例1−3の細胞外多糖はいずれも保留時間が30.553min、31.714min及び31.921minの時にピークを出し(図4の実施例1、比較例1−3)、実施例1、比較例1−3の細胞外多糖はいずれも主にマンノース、ガラクトース及びグルコースの三種類の単糖から構成されることを示す。面積正規化法による定量分析により、実施例1に係る細胞外多糖におけるマンノース、ガラクトース及びグルコースのモル比は、5.6:7.3:1であり、比較例1−3に係る細胞外多糖におけるマンノース、ガラクトース及びグルコースのモル比は、1:2.6:4.2である。 The results of gas chromatography analysis after hydrolysis of the extracellular polysaccharides obtained in Example 1 and Comparative Example 1-3 with trifluoroacetic acid and comparison with the monosaccharide standard are shown in FIG. The holding time of the monosaccharide standard (Fig. 4 standard) is from left to right: rhamnose (26.215 min), fucose (26.427 min), arabinose (26.531 min), xylose (26.951 min), mannose (30). .553 min), fructose (31.553 min), glucose (31.714 min), galactose (31.921 min). The extracellular polysaccharides of Example 1 and Comparative Example 1-3 all peaked at the retention times of 30.535 min, 31.714 min and 31.921 min (Example 1 and Comparative Example 1-3 in FIG. 4). It is shown that the extracellular polysaccharides of Example 1 and Comparative Example 1-3 are mainly composed of three types of monosaccharides, mannose, galactose and glucose. According to the quantitative analysis by the area normalization method, the molar ratio of mannose, galactose and glucose in the extracellular polysaccharide according to Example 1 was 5.6: 7.3: 1, and the extracellular polysaccharide according to Comparative Example 1-3. The molar ratio of mannose, galactose and glucose in is 1: 2.6: 4.2.

細胞外多糖の分子量と単糖構成から、テトラエチルチウラムジスルフィドとラクトースを含有するMRS培地で植物性乳酸菌ATCC8014を培養することで、細胞外多糖の化学構造を変更し、本発明の細胞外多糖を得ることができることがわかる。 From the molecular weight and monosaccharide composition of the extracellular polysaccharide, the chemical structure of the extracellular polysaccharide is changed by culturing the plant-derived lactic acid bacterium ATCC8014 in an MRS medium containing tetraethylthiuram disulfide and lactose, and the extracellular polysaccharide of the present invention is obtained. You can see that you can.

試験例2 Test Example 2

植物性乳酸菌細胞外多糖リン酸化誘導体の置換度測定 Measurement of degree of substitution of plant-derived lactic acid bacteria extracellular polysaccharide phosphorylated derivative

リン元素の含有量は誘導結合−原子発光分光計を用いて測定し、実施例1、比較例1―3で得られたリン酸化誘導体のリン元素の含有量(P%)はそれぞれ4.11%、2.34%、2.34%、2.34%であり、置換度(リン酸化の程度)は、置換度=(5.22×P%)/(1−2.61×P%)により算出する。 The phosphorus element content was measured using an induction bond-atomic emission spectrometer, and the phosphorus element content (P%) of the phosphorylated derivatives obtained in Example 1 and Comparative Example 1-3 was 4.11, respectively. %, 2.34%, 2.34%, 2.34%, and the degree of substitution (degree of phosphorylation) is the degree of substitution = (5.22 × P%) / (1-2.61 × P%). ).

実施例1、比較例1―3で得られたリン酸化誘導体のリン元素の含有量(P%)の算出結果は、それぞれ0.24、0.13、0.13及び0.13である。 The calculation results of the phosphorus element content (P%) of the phosphorylated derivatives obtained in Example 1 and Comparative Example 1-3 are 0.24, 0.13, 0.13 and 0.13, respectively.

試験例3 Test Example 3

1.植物性乳酸菌細胞外多糖及びそのリン酸化誘導体のACE阻害性能測定 1. 1. Measurement of ACE inhibition performance of plant-derived lactic acid bacteria extracellular polysaccharide and its phosphorylated derivative

ACEは、人の血管を収縮させ、血圧を上昇させることができる。活性化されたACEは、高血圧病を致す主要原因である。したがって、阻害剤でACEに活性を失わせる又は活性を阻害することは、血圧を下降させる潜在的な手段の一つである。植物性乳酸菌細胞外多糖及びそのリン酸化誘導体のACE阻害性能は、下記の方法によって測定する。 ACE can constrict a person's blood vessels and raise blood pressure. Activated ACE is a major cause of hypertension. Therefore, causing ACE to lose or inhibit activity with an inhibitor is one of the potential means of lowering blood pressure. The ACE inhibitory performance of plant-derived lactic acid bacteria extracellular polysaccharides and their phosphorylated derivatives is measured by the following method.

質量濃度100mg/mLの植物性乳酸菌細胞外多糖及びそのリン酸化誘導体のサンプル溶液を採取し、ACE阻害活性を測定し、試験管に基質として6.5mmol/LHHL溶液100mL、サンプル溶液200mL、100mmol/Lリン酸塩緩衝液(pH=8.3)200mLを順次加え、37℃恒温水浴で3〜5min予熱した後、ACE酵素液500mLを加えて反応を開始し、37℃で30min水浴した後、1mol/LHClを100mL加えて反応を終了する。そして酢酸エチルを1.5mL加え、均一に混合した後遠心分離(5200r/min,10min)を行った後、上層の酢酸エチルを1mL吸引して別の試験管に移し、120℃のオーブンに入れて30min揮発させ、冷却後に蒸留水6mLを加え、均一に混合した後にその吸光度値を228nmで測定し、算出式は、ACE阻害率(%)=(Ab−Aa)/(Ab−Ac)×100とする。 A sample solution of a plant-derived lactic acid bacterium extracellular polysaccharide having a mass concentration of 100 mg / mL and a phosphorylated derivative thereof was collected, the ACE inhibitory activity was measured, and a 6.5 mmol / LHHL solution 100 mL, a sample solution 200 mL, 100 mmol / was placed in a test tube as a substrate. 200 mL of L phosphate buffer (pH = 8.3) was sequentially added, preheated in a constant temperature water bath at 37 ° C. for 3 to 5 minutes, then 500 mL of ACE enzyme solution was added to start the reaction, and after bathing in water at 37 ° C. for 30 minutes, the reaction was started. Add 100 mL of 1 mol / LHCl to terminate the reaction. Then, 1.5 mL of ethyl acetate was added, mixed uniformly, and then centrifuged (5200 r / min, 10 min). Then, 1 mL of ethyl acetate in the upper layer was aspirated, transferred to another test tube, and placed in an oven at 120 ° C. After volatilizing for 30 minutes, add 6 mL of distilled water after cooling, mix uniformly, and then measure the absorbance value at 228 nm. The calculation formula is ACE inhibition rate (%) = (Ab-Aa) / (Ab-Ac) ×. Let it be 100.

Aaは、ACEとHHLに阻害剤を添加して反応させた後のサンプルの吸光度値である。 Aa is the absorbance value of the sample after the inhibitor was added to ACE and HHL and reacted.

Abは、阻害剤を添加せず、ACEとHHLが完全に反応する対照群の吸光度値である。 Ab is the absorbance value of the control group in which ACE and HHL completely react with each other without adding an inhibitor.

Acは、阻害剤を添加し、反応前に予め不活性化されたACEをHHLと反応させるブランク対照群の吸光度値である。 Ac is the absorbance value of the blank control group in which the inhibitor is added and the ACE previously inactivated before the reaction is reacted with HHL.

植物性乳酸菌細胞外多糖及びそのリン酸化誘導体のACEへの阻害作用は、図5に示すとおりであり、実施例1で得られた植物性乳酸菌細胞外多糖および実施例2で得られた植物性乳酸菌細胞外多糖のリン酸化誘導体は、ACEに対し、顕著な阻害作用を有し、比較例1−6で得られた植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は、ACEに対する阻害作用が明らかでない。 The inhibitory effect of the plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative on ACE is as shown in FIG. 5, and the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Example 1 and the plant-derived product obtained in Example 2 are shown. The phosphorylated derivative of the lactic acid bacterium extracellular polysaccharide has a remarkable inhibitory effect on ACE, and the plant-derived lactic acid bacterium extracellular polysaccharide obtained in Comparative Example 1-6 and its phosphorylated derivative have a clear inhibitory effect on ACE. Not.

2.植物性乳酸菌細胞外多糖及びそのリン酸化誘導体の細胞傷害性測定
MTT法により、培養終了前4h、ウェル当たり20μLMTT(5g/L)を加え、4h培養を継続する。培養終了後にジメチルスルホキシド150μlを添加する。酵素結合免疫検出器は570nmでA570値を測定する。その結果、図6に示すように、異なる濃度の植物性乳酸菌細胞外多糖及びそのリン酸化誘導体を添加した時の細胞培養液は、対照群と比較してOD値の間に有意差がなく、実施例12、比較例16で得られた植物性乳酸菌細胞外多糖及びそのリン酸化誘導はいずれも細胞毒性を示さなかったことが明らかとなった。
2. Measurement of cytotoxicity of plant-derived lactic acid bacteria extracellular polysaccharide and its phosphorylated derivative By the MTT method, 20 μLMTT (5 g / L) per well is added 4 hours before the end of the culture, and the culture is continued for 4 hours. After completion of the culture, 150 μl of dimethyl sulfoxide is added. The enzyme-bound immunodetector measures the A570 value at 570 nm. As a result, as shown in FIG. 6, there was no significant difference in OD value between the cell culture solutions when different concentrations of plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative were added, as compared with the control group. example 1 - 2, Comparative example 1 - obtained plant lactic acid bacteria exopolysaccharides and its phosphorylated induced 6 clear that none cytotoxicity.

3.植物性乳酸菌細胞外多糖及びそのリン酸化誘導体の体内抗高血圧活性測定 3. 3. Measurement of in-vivo antihypertensive activity of plant-derived lactic acid bacteria extracellular polysaccharide and its phosphorylated derivative

動物実験は倫理基準に合致する(承認番号:20140405)。高血圧自然発症ラットは恒温条件下(22±2℃)で飼育し、12hの明暗サイクルを与え、摂食を自由にする。実施例1の細胞外多糖及び実施例2の細胞外多糖のリン酸化誘導体を生理食塩水で0.05g/kgの用量に調製し、毎回胃内に1mL投与し、対照群に等量の生理食塩水を投与する。第0、2、4、6、8、12、24hにおいて、それぞれラットの収縮期血圧と拡張期血圧を測定し、収縮期血圧(SBP)と拡張期血圧(DBP)の変化を観察して、植物性乳酸菌細胞外多糖及びそのリン酸化誘導体の降圧効果を評価する((図7及び図8)。陰性対照群(生理食塩水)のラットのSBPとDBPは24h内に顕著に変化しない。実施例1の細胞外多糖群のラット血圧変化は明らかであり、実施例1の細胞外多糖を胃内に投与した8h後、収縮期血圧は53.8mmHg下降し、拡張期血圧は68.1mmHg下降し、投与した24h後は初期レベルに対する収縮期血圧の差圧は2.1mmHg、初期レベルに対する拡張期血圧の差圧は2.1mmHgであり、実施例2の細胞外多糖のリン酸化誘導体群のラット血圧変化は明らかであり、実施例1の細胞外多糖を胃内に投与した6h後、収縮期血圧は61.6mmHg下降し、拡張期血圧は68.7mmHg下降し、投与した24h後は収縮期血圧の初期レベルに対する差圧は6.4mmHg、拡張期血圧の初期水平に対する差圧は2.5mmHgである。体内の降圧結果はインビトロでACEの酵素に対する阻害作用結果と一致する。体内、インビトロ実験結果により、植物性乳酸菌細胞外多糖及びそのリン酸化誘導体は高い降圧作用を有することを示す。 Animal studies meet ethical standards (approval number: 2014405). Spontaneous hypertensive rats are bred under homeothermic conditions (22 ± 2 ° C.) and given a 12 h light-dark cycle to free feeding. The extracellular polysaccharide of Example 1 and the phosphorylated derivative of the extracellular polysaccharide of Example 2 were prepared in physiological saline at a dose of 0.05 g / kg, and 1 mL was administered intragastrically each time, and the same amount of physiology was given to the control group. Administer saline solution. At the 0th, 2nd, 4th, 6th, 8th, 12th, and 24th hours, the systolic blood pressure and the diastolic blood pressure of the rats were measured, and the changes in the systolic blood pressure (SBP) and the diastolic blood pressure (DBP) were observed. The antihypertensive effect of plant-derived lactic acid bacterium extracellular polysaccharide and its phosphorylated derivative is evaluated ((FIG. 7 and 8). SBP and DBP of rats in the negative control group (physiological saline) do not change significantly within 24 hours. Changes in rat blood pressure in the extracellular polysaccharide group of Example 1 are clear, and after 8 hours of intragastric administration of the extracellular polysaccharide of Example 1, systolic blood pressure decreased by 53.8 mmHg and diastolic blood pressure decreased by 68.1 mmHg. However, 24 hours after administration, the differential pressure of systolic blood pressure with respect to the initial level was 2.1 mmHg, and the differential pressure of diastolic blood pressure with respect to the initial level was 2.1 mmHg. Changes in rat blood pressure are clear: systolic blood pressure decreased by 61.6 mmHg, diastolic blood pressure decreased by 68.7 mmHg after 6 hours of intragastric administration of the extracellular polysaccharide of Example 1, and contraction occurred 24 hours after administration. The differential pressure of systolic blood pressure with respect to the initial level is 6.4 mmHg, and the differential pressure of diastolic blood pressure with respect to the initial horizontal is 2.5 mmHg. Experimental results show that plant-derived lactic acid bacteria extracellular polysaccharides and their phosphorylated derivatives have a high antihypertensive effect.

上記実施例における従来技術は当業者に知られている従来技術であるため、ここでは詳細な説明を省略する。 Since the prior art in the above embodiment is a prior art known to those skilled in the art, detailed description thereof will be omitted here.

以上の実施形態は、本発明を説明するためのものであり、本発明を限定するものではなく、本発明の精神及び範囲から逸脱することなく、様々な変形や変形が可能であることは当業者に明らかである。したがって、すべての同等の技術的解決手段も本発明の範疇に含まれるものであり、本発明の特許請求の範囲は、特許請求の範囲によって制限されるべきである。 The above embodiments are for explaining the present invention, do not limit the present invention, and can be variously modified and modified without departing from the spirit and scope of the present invention. It is obvious to the trader. Therefore, all equivalent technical solutions are also included in the scope of the present invention, and the scope of claims of the present invention should be limited by the scope of claims.

Claims (10)

植物性乳酸菌細胞外多糖であって、1)と2)の少なくともいずれか一つの特徴を有し、
前記1)は、重量平均分子量は、1.35×106Daであり、
前記2)は、モル比が5.6:7.3:1のマンノースと、ガラクトースとブドウ糖から構成される、
ことを特徴とする植物性乳酸菌細胞外多糖。
It is a plant-derived lactic acid bacterium extracellular polysaccharide and has at least one of the characteristics of 1) and 2).
In 1), the weight average molecular weight is 1.35 × 106 Da.
The above 2) is composed of mannose having a molar ratio of 5.6: 7.3: 1, galactose and glucose.
It is characterized by the fact that it is a plant-derived lactic acid bacterium extracellular polysaccharide.
アンジオテンシン変換酵素(ACE)を阻害できる、
ことを特徴とする請求項1に記載の植物性乳酸菌細胞外多糖。
Can inhibit angiotensin converting enzyme (ACE),
The plant-derived lactic acid bacterium extracellular polysaccharide according to claim 1.
請求項1又は請求項2に記載の植物性乳酸菌細胞外多糖がACE阻害剤組成物の製造時に果たす作用。 The action of the plant-derived lactic acid bacterium extracellular polysaccharide according to claim 1 or 2 during the production of the ACE inhibitor composition. 請求項1又は請求項2に記載の植物性乳酸菌細胞外多糖のリン酸化誘導体。 The phosphorylated derivative of the plant-derived lactic acid bacterium extracellular polysaccharide according to claim 1 or 2. 置換度は、0.24である、
ことを特徴とする請求項4に記載の植物性乳酸菌細胞外多糖。
The degree of substitution is 0.24.
The plant-derived lactic acid bacterium extracellular polysaccharide according to claim 4, wherein the polysaccharide is characterized by the above.
請求項1又は2に記載の植物性乳酸菌細胞外多糖、と、請求項4又は請求項5に記載の植物性乳酸菌細胞外多糖のリン酸化誘導体、との少なくともいずれか一つを含む、
ことを特徴とする心臓血管疾患予防・治療用の組成物。
It comprises at least one of the plant-derived lactic acid bacterium extracellular polysaccharide according to claim 1 or 2 and the phosphorylated derivative of the plant-derived lactic acid bacterium extracellular polysaccharide according to claim 4 or 5.
A composition for the prevention and treatment of cardiovascular diseases.
前記心血管疾患は、高血圧、心疾患、脳卒中、血栓、動脈硬化、狭心症、心不全および心筋梗塞からなる群から選択される一種または複数種の疾患である、
ことを特徴とする請求項6に記載の心臓血管疾患予防・治療用の組成物。
The cardiovascular disease is one or more diseases selected from the group consisting of hypertension, heart disease, stroke, thrombosis, atherosclerosis, angina, heart failure and myocardial infarction.
The composition for preventing / treating cardiovascular disease according to claim 6.
前記組成物は、経口組成物である、
ことを特徴とする請求項6に記載の心臓血管疾患予防・治療用の組成物。
The composition is an oral composition.
The composition for preventing / treating cardiovascular disease according to claim 6.
前記組成物は、成人が一日あたりに0.1−500mgの植物性乳酸菌細胞外多糖とそのリン酸化誘導体の少なくともいずれか一つを摂取する方式で使用される、
ことを特徴とする請求項6又は請求項8に記載の心臓血管疾患予防・治療用の組成物。
The composition is used in such a manner that an adult ingests 0.1-500 mg of at least one of a plant-derived lactic acid bacterium extracellular polysaccharide and a phosphorylated derivative thereof per day.
The composition for the prevention / treatment of cardiovascular disease according to claim 6 or 8.
前記組成物は、9−12週間又はもっと長い時間で摂取する方式で使用される、
ことを特徴とする請求項6又は請求項8に記載の心臓血管疾患予防・治療用の組成物。
The composition is used in a manner of ingestion for 9-12 weeks or longer.
The composition for the prevention / treatment of cardiovascular disease according to claim 6 or 8.
JP2020137287A 2019-09-17 2020-08-17 Plant lactobacillus extracellular polysaccharide and action thereof in preparing ace inhibitor composition Ceased JP2021046391A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910874239.4 2019-09-17
CN201910874239.4A CN110714038B (en) 2019-09-17 2019-09-17 Lactobacillus plantarum exopolysaccharide and application thereof in preparation of ACE inhibitor composition

Publications (1)

Publication Number Publication Date
JP2021046391A true JP2021046391A (en) 2021-03-25

Family

ID=69210534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020137287A Ceased JP2021046391A (en) 2019-09-17 2020-08-17 Plant lactobacillus extracellular polysaccharide and action thereof in preparing ace inhibitor composition

Country Status (2)

Country Link
JP (1) JP2021046391A (en)
CN (1) CN110714038B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090884A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
JP2021090883A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
JP2021090881A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
JP2021090882A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
JP2021090880A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
CN116656577A (en) * 2023-07-25 2023-08-29 内蒙古大学 Lactobacillus plantarum extracellular polysaccharide and application thereof in preparation of immunoadjuvant

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698503B (en) * 2021-08-16 2022-05-24 华南理工大学 Lactobacillus plantarum neutral exopolysaccharide and application thereof
CN114058510A (en) * 2021-11-10 2022-02-18 广东丸美生物技术股份有限公司 Extraction method of lactobacillus lysis active substance and lactobacillus lysis active substance obtained by same
WO2023230515A1 (en) * 2022-05-26 2023-11-30 Pouda Biotech Llc Lactobacillus plantarum pdg8 and use in treating cardiovascular diseases
CN118006485B (en) * 2024-01-23 2024-07-12 朗恒科技集团有限公司 Lactobacillus plantarum ST10-7 and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052808A (en) * 2009-11-13 2011-05-19 충북대학교 산학협력단 A polysaccharide producing lactobacillus paracasei and a use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005211224A1 (en) * 2004-02-04 2005-08-18 Danisco A/S Cheese products
CN100484963C (en) * 2005-08-19 2009-05-06 光明乳业股份有限公司 Exo-polysaccharide of lactobacillus casei and crude product, prepartion method and application
JP6524468B2 (en) * 2013-09-19 2019-06-05 日東薬品工業株式会社 Exopolysaccharides produced by lactic acid bacteria
CN105441357A (en) * 2015-12-16 2016-03-30 北京工商大学 Lactobacillus plantarum for producing antitumor activity exopolysaccharides
CN107058422B (en) * 2017-05-17 2020-03-17 华南农业大学 Method for high yield of exopolysaccharide by lactobacillus plantarum
CN109295126B (en) * 2018-08-31 2021-01-08 四川农业大学 Lactobacillus plantarum exopolysaccharide with immunoregulatory activity and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052808A (en) * 2009-11-13 2011-05-19 충북대학교 산학협력단 A polysaccharide producing lactobacillus paracasei and a use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOL. PHARM. BULL, vol. 40, JPN6020041827, 2017, pages 621 - 629, ISSN: 0004377197 *
FOOD CHEMISTRY, vol. 133, JPN6020041823, 2012, pages 383 - 389, ISSN: 0004377195 *
J. DAIRY SCI, vol. 100, JPN6020041825, 2017, pages 7771 - 7779, ISSN: 0004377196 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090884A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
JP2021090883A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
JP2021090881A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
JP2021090882A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
JP2021090880A (en) * 2021-03-19 2021-06-17 株式会社三洋物産 Game machine
CN116656577A (en) * 2023-07-25 2023-08-29 内蒙古大学 Lactobacillus plantarum extracellular polysaccharide and application thereof in preparation of immunoadjuvant
CN116656577B (en) * 2023-07-25 2023-09-26 内蒙古大学 Lactobacillus plantarum extracellular polysaccharide and application thereof in preparation of immunoadjuvant

Also Published As

Publication number Publication date
CN110714038B (en) 2021-03-23
CN110714038A (en) 2020-01-21

Similar Documents

Publication Publication Date Title
JP2021046391A (en) Plant lactobacillus extracellular polysaccharide and action thereof in preparing ace inhibitor composition
CN101932719B (en) Branched -glucan, -glucosyltransferase producing the same, method for producing the same and use thereof
JP3633648B2 (en) Maltose / trehalose converting enzyme, its production method and use
KR100391376B1 (en) Thermostable trehalose-releasing enzyme, and its preparation and uses
CN109718255B (en) Preparation method of hangover relieving enzyme powder and hangover relieving composition containing the same
JP5671622B2 (en) Fructosylated puerarin and its preparation and use
CN105105110A (en) Making method of monascus and tartary buckwheat functional food and application thereof
KR101513712B1 (en) A preparation method for extract of fermented sparassis crispa which has increased soluble dietary fiber
CN105124597A (en) Preparation method and application of functional monascus-fermented corn bran food
CN105054021A (en) Monascus purpureus transformed corn bran fermentation liquid preparation method and application thereof
JP2000262247A (en) Immunomodulation agent, immunomodulation food and immunomodulation feed
TWI590766B (en) Thrombotic disease prevention preparation
JP5479754B2 (en) Powdered composition and tablet, and method for preventing browning of γ-aminobutyric acid and browning inhibitor
JP5502449B2 (en) Intestinal flora balance improving agent and method for producing the same
JP2018145161A (en) Composition for inhibiting elevation of blood pressure and method for producing the same
JP2747206B2 (en) Composition for improving hyperglycemia
KR101608502B1 (en) Composition for prevention or treatment of cardiovascular diseases comprising fermentation product of garlic
JP2005323596A (en) Method for producing vitamin k by culture of unnan sl-001 strain
JP6563827B2 (en) Tie2 activator
CN117016713A (en) Salsola collina monascus fermented beverage and preparation method and application thereof
CN115844921A (en) Sparassis Crispa extracellular polysaccharide and application thereof
KR20190109853A (en) Method of producing poly gamma glutamic acid-containing fermented product
KR20130020446A (en) Preparation method of fermented red ginseng having high ginsenoside contents using surface culture
JPS6141551B2 (en)
JP2009084166A (en) Cholesterol-reducing agent

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200818

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210614

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20230718