JP2021045782A - Weld zone monitoring device, welding equipment and welding method - Google Patents

Weld zone monitoring device, welding equipment and welding method Download PDF

Info

Publication number
JP2021045782A
JP2021045782A JP2019171398A JP2019171398A JP2021045782A JP 2021045782 A JP2021045782 A JP 2021045782A JP 2019171398 A JP2019171398 A JP 2019171398A JP 2019171398 A JP2019171398 A JP 2019171398A JP 2021045782 A JP2021045782 A JP 2021045782A
Authority
JP
Japan
Prior art keywords
welding
sensor
signal
processing unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019171398A
Other languages
Japanese (ja)
Inventor
中村 博昭
Hiroaki Nakamura
博昭 中村
将広 上北
Masahiro Kamikita
将広 上北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2019171398A priority Critical patent/JP2021045782A/en
Publication of JP2021045782A publication Critical patent/JP2021045782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To highly sensitively detect occurrence of defect or the like including a crack occurring upon welding.SOLUTION: A weld zone monitoring device includes: a first AE sensor provided in a first measurement portion of a welding target and having a first frequency characteristic; a second AE sensor provided in a second measurement portion apart from the first measurement portion of the welding target and having a second frequency characteristic different from the first frequency characteristic; a reception unit receiving signals from the first AE sensor and the second AE sensor; a difference processing unit obtaining the difference between the signals from the first AE sensor and the second AE sensor received by the reception unit; a differential processing unit obtaining a time differential value for the difference signal obtained by the difference processing unit; and a signal detection unit detecting that the time differential value of the difference signal obtained by the differential processing unit exceeds a predetermined threshold value.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、溶接部モニタリング装置、溶接装置及び溶接方法に関する。 Embodiments of the present invention relate to a weld monitoring device, a welding device, and a welding method.

溶接の際にき裂を含む欠陥等の破壊が構造体に生じると、急速なエネルギの放出によって溶接対象に非定常的な弾性波、いわゆるアコースティック・エミッション(以下、単に「AE」と記す)が発生する事象が生じることがある。このような事象によって生じる弾性波、いわゆるAE波をAEセンサにより検出し、その波形を解析することにより、構造体におけるき裂を含む欠陥等の発生を検出する技術が知られている。 When fractures such as defects including cracks occur in the structure during welding, unsteady elastic waves, so-called acoustic emissions (hereinafter, simply referred to as "AE"), are generated on the welded object due to rapid energy release. Events that occur may occur. A technique is known in which an elastic wave generated by such an event, a so-called AE wave, is detected by an AE sensor and the waveform is analyzed to detect the occurrence of defects including cracks in the structure.

特開2011−64549号JP 2011-64549

AEセンサにより検出された弾性波を示す電気信号(以下、AE信号と記す)は、例えば、増幅回路により増幅され、処理装置等により周波数解析が行われて、周波数スペクトルが求められる。微小なき裂を含む欠陥等から発生する非定常な弾性波は、微弱なものであり、その周波数スペクトルに現れるシグナル信号の強度は、ノイズ信号の強度と比較して小さい場合がある。このような場合、き裂を含む欠陥等に起因する弾性波の、周波数スペクトルの周波数の選定及び検出は困難である。つまり、AE信号に含まれるシグナル信号の強度が、ノイズ信号の強度に対し十分大きくない場合、き裂を含む欠陥等に起因する弾性波の判別は困難である。 An electric signal indicating an elastic wave detected by an AE sensor (hereinafter referred to as an AE signal) is amplified by an amplifier circuit, for example, and frequency analysis is performed by a processing device or the like to obtain a frequency spectrum. Unsteady elastic waves generated from defects including minute cracks are weak, and the intensity of the signal signal appearing in the frequency spectrum may be smaller than the intensity of the noise signal. In such a case, it is difficult to select and detect the frequency of the frequency spectrum of the elastic wave caused by a defect including a crack. That is, when the intensity of the signal signal included in the AE signal is not sufficiently larger than the intensity of the noise signal, it is difficult to discriminate elastic waves caused by defects including cracks.

特にTIG溶接の場合、シールドガス噴出、自動溶接などでは駆動系の影響により周波数スペクトルにノイズ信号が多くなり、ノイズ信号の強度に対するシグナル信号の強度の割合S/Nが低くなる。このように、AEセンサで検出したAE波から、溶接部の微小なき裂を含む欠陥等から発生する弾性波を示すシグナル信号を高い感度で検出することが課題である。 In particular, in the case of TIG welding, in shield gas ejection, automatic welding, etc., the noise signal increases in the frequency spectrum due to the influence of the drive system, and the ratio S / N of the signal signal intensity to the noise signal intensity decreases. As described above, it is a problem to detect with high sensitivity a signal signal indicating an elastic wave generated from a defect including a minute crack in a welded portion from the AE wave detected by the AE sensor.

本発明の実施形態は、上記事情に鑑みてなされたものであって、溶接の際のき裂を含む欠陥等の発生を高い感度で検出することのできる溶接部モニタリング装置、溶接装置及び溶接方法を提供することを目的とする。 An embodiment of the present invention has been made in view of the above circumstances, and is a welded portion monitoring device, a welding device, and a welding method capable of detecting the occurrence of defects including cracks during welding with high sensitivity. The purpose is to provide.

実施形態の溶接モニタリング装置は、溶接対象の第1の測定箇所に対して設けられ第1の周波数特性を有する第1のAEセンサと、前記溶接対象の第1の測定箇所と離間する第2の測定箇所に対して設けられ、前記第1の周波数特性と異なる第2の周波数特性を有する第2のAEセンサと、前記第1のAEセンサと、前記第2のAEセンサからの信号を受信する受信部と、前記受信部で受信された、前記第1のAEセンサ及び前記第2のAEセンサのそれぞれの信号の差分を求める差分処理部と、前記差分処理部により得られた差分信号の時間微分処理値を求める微分処理部と、前記微分処理部により得られた差分信号の時間微分値があらかじめ定めた閾値を超えたことを検出する信号検出部と、を有する。 The welding monitoring device of the embodiment includes a first AE sensor provided for a first measurement point to be welded and having a first frequency characteristic, and a second measurement point to be separated from the first measurement point to be welded. Receives signals from a second AE sensor provided for the measurement location and having a second frequency characteristic different from the first frequency characteristic, the first AE sensor, and the second AE sensor. The time between the receiving unit, the difference processing unit for obtaining the difference between the signals of the first AE sensor and the second AE sensor received by the receiving unit, and the difference signal obtained by the difference processing unit. It has a differential processing unit for obtaining a differential processing value, and a signal detection unit for detecting that the time differential value of the difference signal obtained by the differential processing unit exceeds a predetermined threshold value.

また、実施形態の溶接方法は、第1の周波数特性を有する第1のAEセンサ及び前記第1の周波数特性とは異なる第2の周波数特性を有する第2のAEセンサで溶接施工時に発生する弾性波を受信し、
前記第1のAEセンサで受信した信号と前記第2のAEセンサで受信した信号を差分処理し、前記差分処理により得られた信号の時間微分し、前記時間微分値があらかじめ定めた閾値を超えた場合に前記溶接施工に係る溶接条件を制御する、方法である。
Further, in the welding method of the embodiment, the elasticity generated at the time of welding by the first AE sensor having the first frequency characteristic and the second AE sensor having the second frequency characteristic different from the first frequency characteristic. Receive the wave,
The signal received by the first AE sensor and the signal received by the second AE sensor are subjected to differential processing, the signal obtained by the difference processing is time-differentiated, and the time differential value exceeds a predetermined threshold value. In this case, it is a method of controlling the welding conditions related to the welding work.

本実施形態に係る溶接モニタリング装置を示す概略構成図である。It is a schematic block diagram which shows the welding monitoring apparatus which concerns on this embodiment. 本実施形態の溶接モニタリング装置において異なる2つの受信部が検出した弾性波の波形の一例を示すグラフである。It is a graph which shows an example of the waveform of the elastic wave detected by two different receiving parts in the welding monitoring apparatus of this embodiment. 2つの弾性波の差分処理後の信号強度の一例を示したグラフである。It is a graph which showed an example of the signal strength after the difference processing of two elastic waves. 差分処理部により得られた信号の時間微分処理後の信号強度の一例を示すグラフである。It is a graph which shows an example of the signal strength after the time differential processing of the signal obtained by the difference processing part. 測定時刻に対するスパイク検出処理を行った後の信号強度の一例を示すグラフである。It is a graph which shows an example of the signal strength after performing the spike detection processing with respect to the measurement time.

以下に、本発明の各実施の形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

なお、図面は模式的又は概念的なものであり、各部分の厚さと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。 The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the ratio of the sizes between the parts, and the like are not necessarily the same as the actual ones. Even if the same part is represented, the dimensions and ratios of each may be represented differently depending on the drawing.

なお、本願明細書と各図において、既出の図において説明したものと同様の要素には同一の符号を付して詳細な説明を適宜省略する。 In addition, in the present specification and each figure, the same elements as those described in the above-mentioned drawings are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.

(構成)
図1は、本実施形態に係る溶接モニタリング装置を示す概略構成図である。
(Constitution)
FIG. 1 is a schematic configuration diagram showing a welding monitoring device according to the present embodiment.

本実施形態の溶接部モニタリング装置1は、構造体などの溶接対象10において溶接部のき裂を含む欠陥等から発生する非定常な弾性波(AE波)を検出することにより、当該溶接対象10における溶接部のき裂を含む欠陥等の発生を検出するシステムである。溶接対象10に溶接施工する溶接装置5は、溶接電極2と、溶接棒3と、溶接機6、駆動部7、位置センサ8、とを有する。 The welded portion monitoring device 1 of the present embodiment detects a non-stationary elastic wave (AE wave) generated from a defect including a crack in the welded portion in the welded object 10 of a structure or the like, thereby detecting the welded object 10 It is a system that detects the occurrence of defects including cracks in the welded part. The welding device 5 that welds to the welding target 10 has a welding electrode 2, a welding rod 3, a welding machine 6, a drive unit 7, and a position sensor 8.

溶接電極2は、材料として、例えばタングステン等が用いられる。溶接棒3は、材料として例えば、鋼やステンレス等、溶接対象10と同じ材料が用いられる。 For the welding electrode 2, for example, tungsten or the like is used as the material. For the welding rod 3, the same material as the welding target 10, such as steel or stainless steel, is used as the material.

溶接機6は、溶接電極2、溶接棒3、駆動部7、位置センサ8、及び制御部60と接続している。 The welding machine 6 is connected to a welding electrode 2, a welding rod 3, a driving unit 7, a position sensor 8, and a control unit 60.

溶接機6は、2つの電極を備え、一方の電極には溶接電極2が接続され、他方の電極には溶接棒3が接続される。溶接電極2は、溶接対象10に接続され、溶接機6と溶接対象10を電気的に導通させる。溶接棒3は、後述する駆動部7に保持されて溶接対象10の溶接線近傍に、溶接対象10と接しないように配置される。 The welding machine 6 includes two electrodes, one electrode is connected to the welding electrode 2, and the other electrode is connected to the welding rod 3. The welding electrode 2 is connected to the welding target 10, and electrically conducts the welding machine 6 and the welding target 10. The welding rod 3 is held by a drive unit 7 described later and is arranged in the vicinity of the welding line of the welding target 10 so as not to come into contact with the welding target 10.

駆動部7は、溶接棒3の位置を溶接対象10のあらかじめ定められた溶接線の方向に沿って駆動させるモータなどの駆動装置を備え、溶接棒3の位置を制御可能に構成される。 The drive unit 7 includes a drive device such as a motor that drives the position of the welding rod 3 along the direction of a predetermined welding line of the welding target 10, and is configured to be able to control the position of the welding rod 3.

位置センサ8は、溶接対象10に対する溶接棒3の相対位置を検出可能に構成される。位置センサ8は、例えば、駆動部7の駆動装置に設けられ、駆動部7または溶接棒3のに作用する加速度をを検出する加速度センサであり、検出した加速度の情報を積算することで溶接対象10に対する溶接棒3の相対位置を検出可能に構成されてもよい。または、位置センサ8は、例えば、溶接棒3に設けられ、エンコーダなどにより溶接対象10に対する溶接棒3の相対位置を検出可能に構成されてもよく、もしくは、位置センサ8は、カメラを備え、駆動部7又は溶接対象10に設けられる構造としてもよい。 The position sensor 8 is configured to be able to detect the relative position of the welding rod 3 with respect to the welding target 10. The position sensor 8 is, for example, an acceleration sensor provided in the drive device of the drive unit 7 and detects the acceleration acting on the drive unit 7 or the welding rod 3, and is a welding target by integrating the detected acceleration information. It may be configured so that the relative position of the welding rod 3 with respect to 10 can be detected. Alternatively, the position sensor 8 may be provided on the welding rod 3, for example, and may be configured so that the relative position of the welding rod 3 with respect to the welding target 10 can be detected by an encoder or the like, or the position sensor 8 includes a camera. The structure may be provided on the drive unit 7 or the welding target 10.

溶接対象10は、例えば金属材料で構成された構造体である。本実施形態において溶接対象10は、金属材料、例えば本実施形態では鋼又はステンレスで構成されるが、これには限定されない。 The welding target 10 is, for example, a structure made of a metal material. In this embodiment, the welding target 10 is made of a metal material, for example, steel or stainless steel in this embodiment, but is not limited thereto.

制御部60は、溶接装置5による溶接の施工条件、例えば溶接棒3と溶接対象10の間に印加する電圧、溶接棒3の溶接対象10に対する相対的位置、および/または駆動部7の駆動装置の速度など、を制御するよう溶接機6に信号を送信する構成である。制御部60は、図示しないメモリなどの記憶手段、及びICやマイコン、CPUなどの処理装置を備える。 The control unit 60 uses the welding conditions of welding by the welding device 5, for example, the voltage applied between the welding rod 3 and the welding target 10, the relative position of the welding rod 3 with respect to the welding target 10, and / or the driving device of the driving unit 7. A signal is transmitted to the welding machine 6 to control the speed of the welding machine 6. The control unit 60 includes storage means such as a memory (not shown) and processing devices such as an IC, a microcomputer, and a CPU.

溶接部モニタリング装置1は、それぞれ、溶接対象10からの弾性波を受けて当該弾性波を電気信号に変換する第1のAEセンサ20及び第2のAEセンサ21と、受信部20A、21Aと、増幅部40と、信号処理部50と、制御部60と、を有している。信号処理部50は、差分処理部56と、微分処理部57と、信号検出部59と、を有する。本実施形態の溶接モニタリング装置1は、モニタ結果に基づいて溶接装置5による溶接の施工条件を制御するよう溶接機6に信号を送信する制御部60を備える構成として例示するが、制御部60を備えない構成としてモニタ結果に基づく溶接装置5の溶接条件を制御を行なわなくても構わない。 The welded portion monitoring device 1 receives an elastic wave from the welding target 10 and converts the elastic wave into an electric signal, that is, the first AE sensor 20, the second AE sensor 21, the receiving portions 20A, and 21A, respectively. It has an amplification unit 40, a signal processing unit 50, and a control unit 60. The signal processing unit 50 includes a difference processing unit 56, a differential processing unit 57, and a signal detection unit 59. The welding monitoring device 1 of the present embodiment is exemplified as a configuration including a control unit 60 that transmits a signal to the welding machine 6 so as to control welding construction conditions by the welding device 5 based on the monitoring result. It is not necessary to control the welding conditions of the welding apparatus 5 based on the monitor result as a configuration that is not provided.

第1のAEセンサ20は、、溶接対象10の第1の測定箇所20Bに対して設けられる。第2のAEセンサ21は、、溶接対象10の、第1の測定箇所20Bとは異なる第2の測定箇所21Bに対して設けられる。本実施形態において第1の測定箇所20Bと第2の測定箇所21Bは、溶接が施工される溶接線に沿う方向に離間して設けられている。なお、第1のAEセンサ20、第2のAEセンサ21は溶接対象10に直接設けられるほか、弾性波を検出できる程度の距離(例えば数ミリ等)であれば、溶接対象10に直接接触せずに溶接対象10の近傍に接近又は離間して設けられてもよい。 The first AE sensor 20 is provided for the first measurement point 20B of the welding target 10. The second AE sensor 21 is provided for the second measurement point 21B of the welding target 10, which is different from the first measurement point 20B. In the present embodiment, the first measurement point 20B and the second measurement point 21B are provided apart from each other in the direction along the welding line on which welding is performed. The first AE sensor 20 and the second AE sensor 21 are provided directly on the welding target 10, and if the distance is such that elastic waves can be detected (for example, several millimeters), the first AE sensor 20 and the second AE sensor 21 are brought into direct contact with the welding target 10. It may be provided close to or separated from the welding target 10 without being provided.

第1のAEセンサ20及び第2のAEセンサ21は、それぞれ変換素子として圧電素子を有する。圧電素子は、PZT(チタン酸ジルコン酸鉛)、LiNbO3(ニオブ酸リチウム単結晶)、GaPO4(リン酸ガリウム)、AlN(窒化アルミニウム)、La3Ga5SiO14(ランガサイト)、Ga2Al2SiO7等で構成されている。特に、高温、高放射線の苛酷環境下で使用されるものには、LiNbO3、AlN、Ga2Al2SiO7等により構成された圧電素子が適している。 The first AE sensor 20 and the second AE sensor 21 each have a piezoelectric element as a conversion element. The piezoelectric element is composed of PZT (lead zirconate titanate), LiNbO3 (lithium niobate single crystal), GaPO4 (gallium phosphate), AlN (aluminum nitride), La3Ga5SiO14 (langasite), Ga2Al2SiO7 and the like. In particular, a piezoelectric element composed of LiNbO3, AlN, Ga2Al2SiO7, or the like is suitable for use in a harsh environment of high temperature and high radiation.

また、第1のAEセンサ20及び第2のAEセンサ21の変換素子として、電磁誘導効果と磁界の相互作用によって音響エネルギを電気信号(電気的振動)に変換する電磁超音波探触子(EMAT:electro-magnetic acoustic transducer)を用いてもよい。 Further, as a converting element of the first AE sensor 20 and the second AE sensor 21, an electromagnetic ultrasonic probe (EMAT) that converts acoustic energy into an electric signal (electrical vibration) by the interaction between the electromagnetic induction effect and the magnetic field. : Electro-magnetic acoustic transducer) may be used.

第1のAEセンサ20と、第2のAEセンサ21は異なる周波数特性を有している。第1のAEセンサ20を、例えば、溶接現象に伴い発生する弾性波の波形スペクトルのうち低い帯域でより高感度な周波数特性を持つものを選択し、第2のAEセンサ21を、第1のAEセンサ20の周波数特性とは異なり、溶接現象に伴い発生する弾性波の波形スペクトルのうち高い帯域でより高感度な周波数特性を持つものを選択する。 The first AE sensor 20 and the second AE sensor 21 have different frequency characteristics. For example, the first AE sensor 20 is selected from the waveform spectrum of the elastic wave generated by the welding phenomenon and has a higher sensitive frequency characteristic in a low band, and the second AE sensor 21 is selected as the first AE sensor 21. Unlike the frequency characteristics of the AE sensor 20, the waveform spectrum of the elastic wave generated by the welding phenomenon has a higher frequency characteristic in a high band and is selected.

受信部20Aは第1のAEセンサ20と電気的に接続しており、受信部21Aは第2のAEセンサ21と電気的に接続している。受信部20A、21Aは、増幅部40と電気的に接続され、それぞれ、第1のAEセンサ20の信号と、第2のAEセンサ21の信号を受信可能に構成される。 The receiving unit 20A is electrically connected to the first AE sensor 20, and the receiving unit 21A is electrically connected to the second AE sensor 21. The receiving units 20A and 21A are electrically connected to the amplification unit 40, and are configured to be able to receive the signal of the first AE sensor 20 and the signal of the second AE sensor 21, respectively.

増幅部40は、受信部20A、21A、及び信号処理部50と電気的に接続している。 The amplification unit 40 is electrically connected to the reception units 20A and 21A and the signal processing unit 50.

なお、本実施形態において、受信部20A及び21Aは共通の増幅部40に接続される構成を例示しているが、受信部20Aに接続される増幅部40と受信部21Aに接続される増幅部40を別体として構成しても構わない。 In the present embodiment, the receiving units 20A and 21A are illustrated to be connected to the common amplification unit 40, but the amplification unit 40 connected to the receiving unit 20A and the amplification unit connected to the receiving unit 21A are illustrated. 40 may be configured as a separate body.

本実施形態の増幅部40は、第1のAEセンサ20の圧電素子からの微弱な電気信号を電気的に増幅すると共に、必要に応じて周波数フィルタリングを行う回路を含んでいる。当該回路は、アナログ回路やデジタル回路で構成することができる。また、当該回路は、プログラマブルロジックデバイス(programmable logic device、以下、PLDと記す)を含んでいるものとしても良い。なお、PLDには、例えば、プログラム可能なゲートアレイ、いわゆるFPGA(field-programmable gate array)を用いることができる。 The amplification unit 40 of the present embodiment includes a circuit that electrically amplifies a weak electric signal from the piezoelectric element of the first AE sensor 20 and performs frequency filtering as needed. The circuit can be composed of an analog circuit or a digital circuit. Further, the circuit may include a programmable logic device (hereinafter referred to as PLD). For the PLD, for example, a programmable gate array, a so-called FPGA (field-programmable gate array), can be used.

溶接部のき裂を含む欠陥等で生じる弾性波の周波数は、一般的に、数kHzから数MHzである。よって、増幅部40における増幅帯域は、概ね数kHzないし数十MHzの広帯域とすることが好ましい。この帯域を増幅する周波数フィルタリング処理は、ハイパスフィルタ、ローパスフィルタ及びバンドパスフィルタを用いることにより実現することができる。 The frequency of elastic waves generated by defects including cracks in welds is generally several kHz to several MHz. Therefore, the amplification band in the amplification unit 40 is preferably a wide band of about several kHz to several tens of MHz. The frequency filtering process for amplifying this band can be realized by using a high-pass filter, a low-pass filter, and a band-pass filter.

本実施形態において、第1のAEセンサ20、第2のAEセンサ21からの電気信号は、増幅部40において周波数フィルタリング処理が行われているが、信号検出部59においても、さらに周波数フィルタリング処理を行うものとしても良い。 In the present embodiment, the electrical signals from the first AE sensor 20 and the second AE sensor 21 are subjected to frequency filtering processing in the amplification unit 40, but the signal detection unit 59 is also subjected to frequency filtering processing. You may do it.

信号処理部50は、増幅部40及び制御部60と電気的に接続しており、差分処理部56と、微分処理部57と、信号検出部59と、を有している。 The signal processing unit 50 is electrically connected to the amplification unit 40 and the control unit 60, and has a difference processing unit 56, a differential processing unit 57, and a signal detection unit 59.

本実施形態において、信号処理部50は、各種の演算を実行可能なプロセッサ(図示せず)及び各種の定数を格納可能なメモリ(図示せず)を有している。信号処理部50は、一般的なコンピュータにより実現することができる。なお、信号処理部50は、各種の機能ごとに複数の電気回路(処理回路)や複数の計算機を用いて構成されるものとしても良い。 In the present embodiment, the signal processing unit 50 has a processor (not shown) capable of executing various operations and a memory (not shown) capable of storing various constants. The signal processing unit 50 can be realized by a general computer. The signal processing unit 50 may be configured by using a plurality of electric circuits (processing circuits) and a plurality of computers for each of various functions.

差分処理部56は、増幅部40および微分処理部57とそれぞれ電気的に接続している。微分処理部57は、差分処理部56及び信号処理部59と電気的に接続している。信号検出部59は、微分処理部57と電気的に接続しており、さらに制御部60と電気的に接続している。制御部60は、信号検出部59と溶接機6と電気的に接続され、信号検出器59の検出結果に基づいて溶接機6に制御信号を送信可能に構成されている。 The difference processing unit 56 is electrically connected to the amplification unit 40 and the differentiation processing unit 57, respectively. The differential processing unit 57 is electrically connected to the difference processing unit 56 and the signal processing unit 59. The signal detection unit 59 is electrically connected to the differential processing unit 57 and further electrically connected to the control unit 60. The control unit 60 is electrically connected to the signal detection unit 59 and the welding machine 6, and is configured to be able to transmit a control signal to the welding machine 6 based on the detection result of the signal detector 59.

(作用)
溶接装置5による溶接対象10の溶接部への溶接の施工について以下に説明する。
(Action)
The construction of welding to the welded portion of the welding target 10 by the welding device 5 will be described below.

溶接機6は、2つの電極の間に電圧を印加する。溶接機6の2つの電極の間に電圧を印加すると、溶接機6の一方の電極が溶接電極2を介して溶接対象10に導通しており、溶接機6の他方の電極に接続されている溶接棒3が溶接対象10の溶接線近傍に溶接対象に接しないように配置されていることから、溶接棒3と溶接対象10の間に印加される電圧により発生した放電の熱によって溶接棒3が融解する。駆動部7が溶接棒3を溶接対象10の溶接が施工される溶接線に沿う方向に駆動することで、溶接対象10は溶接線に沿って溶接される。 The welder 6 applies a voltage between the two electrodes. When a voltage is applied between the two electrodes of the welding machine 6, one electrode of the welding machine 6 is conducting to the welding target 10 via the welding electrode 2 and is connected to the other electrode of the welding machine 6. Since the welding rod 3 is arranged near the welding line of the welding target 10 so as not to come into contact with the welding target, the welding rod 3 is generated by the heat of the discharge generated by the voltage applied between the welding rod 3 and the welding target 10. Melts. When the drive unit 7 drives the welding rod 3 in the direction along the welding line where the welding target 10 is welded, the welding target 10 is welded along the welding line.

駆動装置を備える駆動部7は、後述する制御部60の指令に基づいて、溶接棒3を溶接対象10の溶接線の方向に沿って、任意の速度ベクトル(速さ)で制御することが可能である。尚、駆動部7は溶接棒3の位置を制御すると記載したが、溶接対象10に対する溶接棒3の相対位置を制御できればよく、溶接対象10の位置を制御することにより溶接対象10と溶接棒3の相対位置を制御してもよい。 The drive unit 7 including the drive device can control the welding rod 3 with an arbitrary speed vector (speed) along the direction of the welding line of the welding target 10 based on a command of the control unit 60 described later. Is. Although it is described that the drive unit 7 controls the position of the welding rod 3, it suffices if the relative position of the welding rod 3 with respect to the welding target 10 can be controlled, and the welding target 10 and the welding rod 3 can be controlled by controlling the position of the welding target 10. The relative position of may be controlled.

位置センサ8は、一例として、駆動部7に設けられた加速度センサであり、駆動部7の速度を監視し、溶接対象10に対する溶接棒3の相対位置を検出する。 この例では、位置センサ8の検出した時系列の加速度の情報を積分して速度を求め、さらに求められた速度を時間的に積分することで溶接棒3の移動距離を求めることができる。求められた速度および移動距離の情報は、制御部60の備える図示しない記憶手段に時系列で記憶される。 As an example, the position sensor 8 is an acceleration sensor provided in the drive unit 7, monitors the speed of the drive unit 7, and detects the relative position of the welding rod 3 with respect to the welding target 10. In this example, the moving distance of the welding rod 3 can be obtained by integrating the time-series acceleration information detected by the position sensor 8 to obtain the speed, and further integrating the obtained speed over time. The obtained speed and travel distance information is stored in time series in a storage means (not shown) provided in the control unit 60.

溶接機6は、制御部60の情報に基づいて、溶接棒3と溶接対象10の間に印加する電圧及び電流を変化させる。制御部60の記憶手段は、溶接棒3と溶接対象10の間に印加した電圧及び電流、また溶接棒3と溶接対象10の間の距離と、その時の溶接棒3の位置を対応付けて記憶する。 The welding machine 6 changes the voltage and current applied between the welding rod 3 and the welding target 10 based on the information of the control unit 60. The storage means of the control unit 60 stores the voltage and current applied between the welding rod 3 and the welding target 10, the distance between the welding rod 3 and the welding target 10, and the position of the welding rod 3 at that time in association with each other. To do.

溶接対象10に溶接を施工する際に溶接部にき裂を含む欠陥等が発生すると、非定常な弾性波(AE波)が発生する。発生した非定常な弾性波は、溶接対象10の内部を伝播して、第1のAEセンサ20が設けられる位置に対応する第1の位置20Bと、第2のAEセンサ21が設置される位置に対応する第2の位置21Bにそれぞれ到達する。第1のAEセンサ20及び第2のAEセンサ21のそれぞれに設けられた圧電素子などの変換素子は、第1の位置20B及び第2の位置21Bに到達した弾性波の音響エネルギをそれぞれ電気信号、すなわち電圧に変換する。これにより、第1のAEセンサ20及び第2のAEセンサ21が、弾性波を表す電気信号をそれぞれ生成する。第1のAEセンサ20及び第2のAEセンサ21が生成した弾性波を表す電気信号は、それぞれ受信部20A及び20Bを介して増幅部40に送出される。増幅部40は、受信部20A、21Aから受信した弾性波を示す電気信号を増幅させ、信号処理部50に送信する。 If a defect including a crack occurs in the welded portion when welding is performed on the welding target 10, an unsteady elastic wave (AE wave) is generated. The generated unsteady elastic wave propagates inside the welding target 10, and the first position 20B corresponding to the position where the first AE sensor 20 is provided and the position where the second AE sensor 21 is installed are installed. Each reaches the second position 21B corresponding to. A conversion element such as a piezoelectric element provided in each of the first AE sensor 20 and the second AE sensor 21 electrically signals the acoustic energy of the elastic wave that has reached the first position 20B and the second position 21B, respectively. That is, it is converted into a voltage. As a result, the first AE sensor 20 and the second AE sensor 21 generate electric signals representing elastic waves, respectively. The electric signals representing the elastic waves generated by the first AE sensor 20 and the second AE sensor 21 are transmitted to the amplification unit 40 via the reception units 20A and 20B, respectively. The amplification unit 40 amplifies an electric signal indicating an elastic wave received from the reception units 20A and 21A and transmits it to the signal processing unit 50.

溶接対象10の内部で発生する弾性波には、き裂を含む欠陥等で生じる弾性波などの、溶接部におけるき裂を含む欠陥等の発生に直接的に起因する非定常な弾性波だけでなく、周辺機器が発する弾性波など、溶接施工に起因する弾性波も含まれる。第1のAEセンサ20及び第2のAEセンサ21それぞれに設けられた変換素子は、溶接部におけるき裂を含む欠陥等の発生に直接的に起因する非定常な弾性波だけでなく溶接施工に起因する弾性波も信号として出力する。そのため、溶接時の不良を検出するためには、溶接施工自体に起因する弾性波の信号は、ノイズ信号となるため、溶接部のき裂を含む欠陥等の発生など、溶接に直接的に起因する弾性波の信号を検出すべきシグナル信号として効率よく生成することが望ましい。 The elastic waves generated inside the object 10 to be welded include only non-stationary elastic waves directly caused by the generation of defects including cracks in the welded portion, such as elastic waves generated by defects including cracks. It also includes elastic waves caused by welding, such as elastic waves generated by peripheral equipment. The conversion elements provided in each of the first AE sensor 20 and the second AE sensor 21 are used not only for non-stationary elastic waves directly caused by the occurrence of defects including cracks in the welded portion but also for welding work. The resulting elastic wave is also output as a signal. Therefore, in order to detect defects during welding, the elastic wave signal caused by the welding work itself becomes a noise signal, which is directly caused by welding such as the occurrence of defects including cracks in the welded portion. It is desirable to efficiently generate the signal of the elastic wave to be detected as a signal signal to be detected.

ここで、物質中の弾性波が進行する速度は、AEセンサの分解能より十分速いため、第1のAEセンサ20及び第2のAEセンサ21のそれぞれが生成する弾性波の信号は、弾性波が発生した地点から第1のAEセンサ20が設けられる位置に対応する溶接対象10の第1の位置20Bの距離と、弾性波が発生した地点から第2のAEセンサ21が設置される位置に対応する溶接対象10の第2の位置21Bの距離の違いによらない。すなわち、第1のAEセンサ20及び第2のAEセンサ21のそれぞれが生成する弾性波の信号の時間差は無視することができる。従って、第1のAEセンサ20と第2のAEセンサ21で得られる電気信号が異なる場合、その要因は、第1のAEセンサ20と第2のAEセンサ21の周波数特性が異なることによるものとみなすことができる。 Here, since the speed at which the elastic wave in the material travels is sufficiently faster than the resolution of the AE sensor, the elastic wave signal generated by each of the first AE sensor 20 and the second AE sensor 21 is an elastic wave. Corresponds to the distance of the first position 20B of the welding target 10 corresponding to the position where the first AE sensor 20 is installed from the point of occurrence and the position where the second AE sensor 21 is installed from the point where the elastic wave is generated. It does not depend on the difference in the distance between the second positions 21B of the welding target 10 to be welded. That is, the time difference between the elastic wave signals generated by each of the first AE sensor 20 and the second AE sensor 21 can be ignored. Therefore, when the electric signals obtained by the first AE sensor 20 and the second AE sensor 21 are different, the cause is that the frequency characteristics of the first AE sensor 20 and the second AE sensor 21 are different. Can be regarded.

つまり、溶接施工自体に起因する弾性波の信号(ノイズ信号)の周波数は広帯域にわたって検出されるため、周波数特性が異なる第1のAEセンサ20と第2のAEセンサ21の生成する電気信号が異なる場合、これらの電気信号は、溶接部におけるき裂を含む欠陥等の発生による非定常な弾性波に起因する信号とみなすものとする。 That is, since the frequency of the elastic wave signal (noise signal) caused by the welding work itself is detected over a wide band, the electric signals generated by the first AE sensor 20 and the second AE sensor 21 having different frequency characteristics are different. In this case, these electric signals shall be regarded as signals caused by unsteady elastic waves due to the generation of defects including cracks in the welded portion.

信号処理部50は、このことを利用して、第1のAEセンサ20、第2のAEセンサ21により検出され、受信部20、21を介して増幅部40で増幅された電気信号それぞれに対して信号処理を行なう。以下、信号処理部50における信号処理の内容について説明する。 Utilizing this, the signal processing unit 50 uses this for each of the electric signals detected by the first AE sensor 20 and the second AE sensor 21 and amplified by the amplification unit 40 via the reception units 20 and 21. Signal processing is performed. Hereinafter, the content of signal processing in the signal processing unit 50 will be described.

信号処理部50の差分処理部56は、増幅部40から送信された、第1のAEセンサ20、第2のAEセンサ21が検出した電気信号の差分を計算する差分処理を行ない、差分処理した電気信号を微分処理部57に出力する。 The difference processing unit 56 of the signal processing unit 50 performs the difference processing for calculating the difference between the electric signals transmitted by the first AE sensor 20 and the second AE sensor 21 transmitted from the amplification unit 40, and performs the difference processing. The electric signal is output to the differential processing unit 57.

微分処理部57は、差分処理部56が出力した電気信号の時間に対する微分値(時間微分値)を計算する微分処理を行ない、微分処理した電気信号を信号処理部59に出力する。 The differential processing unit 57 performs differential processing for calculating the differential value (time differential value) of the electric signal output by the difference processing unit 56 with respect to time, and outputs the differentially processed electric signal to the signal processing unit 59.

信号検出部59は、微分処理部57により得られた電気信号のうち、瞬間的に上昇・下降する電気信号(スパイクSp)を検出し、スパイクSpの振幅があらかじめ定めた閾値を超えているものを検出し、検出した電気信号を制御部60に出力する。 The signal detection unit 59 detects an electric signal (spike Sp) that momentarily rises and falls among the electric signals obtained by the differential processing unit 57, and the amplitude of the spike Sp exceeds a predetermined threshold value. Is detected, and the detected electric signal is output to the control unit 60.

図2から図5は、本実施形態の溶接モニタリング装置1における弾性波の信号を示すグラフである。 2 to 5 are graphs showing elastic wave signals in the welding monitoring device 1 of the present embodiment.

図2は、本実施形態の溶接モニタリング装置1において異なる2つの受信部20A、21Aが検出した弾性波の波形の一例を示すグラフである。図2の波形は、測定時刻tに対する信号強度I、I’を示している。 FIG. 2 is a graph showing an example of waveforms of elastic waves detected by two different receiving units 20A and 21A in the welding monitoring device 1 of the present embodiment. The waveform of FIG. 2 shows the signal strengths I and I'with respect to the measurement time t.

図3は、本実施形態の溶接モニタリング装置1において、2つの弾性波の差分処理後の測定時刻tに対する信号強度の一例を示すグラフである。差分処理部56は、第1のAEセンサ20、第2のAEセンサ21の同一測定時刻における弾性波の電気信号の振幅の差を算出し、測定時刻tに対する信号強度の差ΔIとして出力する。差分処理部56の出力した信号波形が図3に示すものであり、図2に示した、2つの受信部20A、21Aが検出した弾性波の測定時刻tに対する信号強度のグラフに対して、広帯域の周波数にわたって検出される溶接施工自体のノイズ信号が除去され、シグナル信号が抽出され明確になっていることが判る。 FIG. 3 is a graph showing an example of the signal intensity with respect to the measurement time t after the difference processing of the two elastic waves in the welding monitoring device 1 of the present embodiment. The difference processing unit 56 calculates the difference in the amplitude of the electric signal of the elastic wave at the same measurement time of the first AE sensor 20 and the second AE sensor 21, and outputs it as the difference ΔI of the signal strength with respect to the measurement time t. The signal waveform output by the difference processing unit 56 is shown in FIG. 3, and is wider than the graph of the signal strength with respect to the measurement time t of the elastic waves detected by the two receiving units 20A and 21A shown in FIG. It can be seen that the noise signal of the welding work itself detected over the frequency of is removed, and the signal signal is extracted and clarified.

図4は、本実施形態の溶接モニタリング装置1において、差分処理部56により得られたAEセンサ20と21の差分信号を微分処理した後の、所定の測定時刻での微小時間dtに対する信号強度の一例を示すグラフである。すなわち、微分処理部57は、差分処理部56により得られた信号の微分処理を行い、信号強度差の時間微分d(ΔI)/dtを出力する。図4はこの微分処理部57が出力した信号波形の一例を示すものであり、図3により得られた信号強度の差分に対し、時間微分値を算出することでシグナル信号とノイズ信号をより区別することができる。 FIG. 4 shows the signal strength with respect to the minute time dt at a predetermined measurement time after the difference signals of the AE sensors 20 and 21 obtained by the difference processing unit 56 are differentiated in the welding monitoring device 1 of the present embodiment. It is a graph which shows an example. That is, the differential processing unit 57 performs differential processing of the signal obtained by the difference processing unit 56, and outputs the time derivative d (ΔI) / dt of the signal intensity difference. FIG. 4 shows an example of the signal waveform output by the differential processing unit 57, and the signal signal and the noise signal are further distinguished by calculating the time differential value with respect to the difference in signal strength obtained in FIG. can do.

図5は、本実施形態の溶接モニタリング装置1において、測定時刻に対するスパイクSp検出処理を行ったスパイク信号強度の一例を示すグラフである。信号検出部59は微分処理部57が出力した信号のうちあらかじめ定めた閾値(実線で図示)を超える信号をスパイクSpとして検出し、測定時刻に対するスパイク信号強度を出力する。 FIG. 5 is a graph showing an example of the spike signal intensity obtained by performing the spike Sp detection process with respect to the measurement time in the welding monitoring device 1 of the present embodiment. The signal detection unit 59 detects as spike Sp a signal exceeding a predetermined threshold value (shown by a solid line) among the signals output by the differentiation processing unit 57, and outputs the spike signal intensity with respect to the measurement time.

信号検出部59がスパイクSpを検出すると制御部60は溶接部において異常が発生したと判断する。図5は、この信号検出部59の出力した信号波形の一例を示すものであり、スパイクSpの形状はこれに限らない。 When the signal detection unit 59 detects the spike Sp, the control unit 60 determines that an abnormality has occurred in the welded portion. FIG. 5 shows an example of the signal waveform output by the signal detection unit 59, and the shape of the spike Sp is not limited to this.

制御部60は、信号検出部59により得られた電気信号に基づいて溶接機6を制御する。例えば、制御部60は、信号検出部59により得られた信号に基づいて、制御部60が溶接部の異常を検出した場合に、溶接機6から溶接電極2を介して電気的に接続された溶接対象10と溶接棒3の間に印加される電圧・電流の制御を行う。または、位置センサ8の検出した位置情報に基づいて溶接機6の駆動部7を駆動させ、溶接棒3と溶接対象10の相対位置を制御する。もしくは制御部60は、信号検出部59により得られた電気信号に基づいて溶接部の異常を検出した場合に、駆動部7による溶接棒3の移動速度を調整する。このようにすることで、溶接部に異常が発生するような溶接条件を速やかに是正することができる。 The control unit 60 controls the welding machine 6 based on the electric signal obtained by the signal detection unit 59. For example, the control unit 60 is electrically connected from the welding machine 6 via the welding electrode 2 when the control unit 60 detects an abnormality in the welding portion based on the signal obtained by the signal detection unit 59. The voltage and current applied between the welding target 10 and the welding rod 3 are controlled. Alternatively, the drive unit 7 of the welding machine 6 is driven based on the position information detected by the position sensor 8 to control the relative position between the welding rod 3 and the welding target 10. Alternatively, when the control unit 60 detects an abnormality in the welded portion based on the electric signal obtained by the signal detection unit 59, the control unit 60 adjusts the moving speed of the welding rod 3 by the drive unit 7. By doing so, it is possible to promptly correct the welding conditions that cause an abnormality in the welded portion.

または、制御部60が溶接部の異常を検出した(すなわち、微分処理部57が出力した信号があらかじめ定めた閾値を超えた)際、異常のある部分に再度溶接を行うため、溶接棒3を溶接線に沿って移動させるよう、溶接機6の駆動部7を制御してもよい。この場合、溶接機6が、溶接対象10の異常のある溶接部に再度溶接を行う際に溶接電極2と溶接棒3に印加する電圧または電流は、最初に印加した電圧または電流と異なるものとすることが好ましい。この際、制御部60は、溶接部における異常が生じた際の溶接棒3の位置と、異常が生じたときに溶接機6が印加した電流・電圧を記憶手段から読み出し、溶接装置5の駆動部7を制御することで、溶接部のき裂を含む欠陥等異常が発生した位置まで溶接棒3を移動をさせ、溶接機6に例えば新たな電流・電圧値の指令を送信し、もしくは駆動部7に溶接棒3と溶接対象10との相対的位置や距離、溶接速度の新たな指令値を送信して再度溶接を行うよう制御する。この場合、溶接機6により溶接棒3と溶接対象10の間に印加される電流、電圧、溶接棒3と溶接対象10との相対的位置や距離、または溶接速度の少なくともいずれかが変更される。 Alternatively, when the control unit 60 detects an abnormality in the welded portion (that is, the signal output by the differential processing unit 57 exceeds a predetermined threshold value), the welding rod 3 is used to re-weld the abnormal portion. The drive unit 7 of the welding machine 6 may be controlled so as to move along the welding line. In this case, the voltage or current applied to the welding electrode 2 and the welding rod 3 when the welding machine 6 re-welds the abnormal welded portion of the welding target 10 is different from the voltage or current initially applied. It is preferable to do so. At this time, the control unit 60 reads out the position of the welding rod 3 when an abnormality occurs in the welding portion and the current / voltage applied by the welding machine 6 when the abnormality occurs from the storage means, and drives the welding device 5. By controlling the part 7, the welding rod 3 is moved to a position where an abnormality such as a defect including a crack in the weld has occurred, and a command for a new current / voltage value is transmitted or driven to the welding machine 6, for example. A new command value of the relative position and distance between the welding rod 3 and the welding target 10 and the welding speed is transmitted to the portion 7 to control the welding to be performed again. In this case, at least one of the current and voltage applied between the welding rod 3 and the welding target 10 by the welding machine 6, the relative position and distance between the welding rod 3 and the welding target 10, or the welding speed is changed. ..

または、制御部60が異常を検出した際、溶接電極2に印加する電圧を一時的に停止してもよく、さらに、溶接棒3の移動を停止するよう駆動部7を制御してもよい。 Alternatively, when the control unit 60 detects an abnormality, the voltage applied to the welding electrode 2 may be temporarily stopped, or the drive unit 7 may be controlled so as to stop the movement of the welding rod 3.

(効果)
以上、説明したように本実施形態の溶接モニタリング装置1は、信号処理部50により、受信部20A、21Aから得られる非定常的な弾性波を示す信号に含まれる、き裂を含む欠陥等に起因するシグナル信号を高い感度で検出することができる。これにより、実施形態によれば、溶接の際のき裂を含む欠陥等の発生を高い感度で検出することができる。
(effect)
As described above, the welding monitoring device 1 of the present embodiment has the signal processing unit 50 for defects including cracks included in the signals showing unsteady elastic waves obtained from the receiving units 20A and 21A. The resulting signal can be detected with high sensitivity. Thereby, according to the embodiment, the occurrence of defects including cracks during welding can be detected with high sensitivity.

第1のAEセンサ20と、第2のAEセンサ21によって得られる信号の差分処理を行うことで、シグナル信号に対するノイズ信号の割合を小さくし、シグナル信号の検出の精度を上げることができる。さらに差分処理後に微分処理を行うことで、ノイズ信号が除去されたシグナル信号のうち、溶接部のき裂を含む欠陥等に特有な瞬間的に上昇・下降する電気信号であるスパイクSpを明確に検出することができる。 By performing the difference processing of the signals obtained by the first AE sensor 20 and the second AE sensor 21, the ratio of the noise signal to the signal signal can be reduced and the accuracy of detecting the signal signal can be improved. Furthermore, by performing differential processing after difference processing, spike Sp, which is an electrical signal that rises and falls momentarily, which is peculiar to defects including cracks in welds, is clarified among the signal signals from which noise signals have been removed. Can be detected.

信号処理部50が備える、差分処理部56、微分処理部57、信号検出部59により、シグナル信号とノイズ信号の合波からシグナル信号を検出し、溶接部における異常を効率よく検出することを可能とした。信号処理部59により、信号強度があらかじめ定めた閾値を超えた値をスパイクSpとして検出することで、シグナル信号とノイズ信号の差を明確にし、シグナル信号を検出することができる。 The difference processing unit 56, the differential processing unit 57, and the signal detection unit 59 included in the signal processing unit 50 can detect a signal signal from the combined wave of the signal signal and the noise signal, and efficiently detect an abnormality in the welded portion. And said. The signal processing unit 59 detects a value whose signal strength exceeds a predetermined threshold value as a spike Sp, so that the difference between the signal signal and the noise signal can be clarified and the signal signal can be detected.

さらに検出した溶接部の異常から、異常のある位置を特定し溶接棒3の位置を制御することで溶接部の異常を修正するよう制御することを可能とした。 Further, from the detected abnormality of the welded portion, it is possible to control to correct the abnormality of the welded portion by identifying the position of the abnormality and controlling the position of the welding rod 3.

本実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the present embodiment has been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…溶接部モニタリング装置
2…溶接電極
3…溶接棒
5…溶接装置
6…溶接機
7…駆動部
8…位置センサ
10…溶接対象
20…第1のAEセンサ
20A…受信部
20B…第1の測定箇所
21…第2のAEセンサ
21A…受信部
21B…第2の測定箇所
40…受信部
50…信号処理部
56…差分処理部
57…微分処理部
59…信号検出部
60…制御部
Sp…スパイク
1 ... Welding part monitoring device 2 ... Welding electrode 3 ... Welding rod 5 ... Welding device 6 ... Welding machine 7 ... Drive part 8 ... Position sensor 10 ... Welding target 20 ... First AE sensor 20A ... Receiver part 20B ... First Measurement point 21 ... Second AE sensor 21A ... Reception unit 21B ... Second measurement point 40 ... Reception unit 50 ... Signal processing unit 56 ... Difference processing unit 57 ... Differential processing unit 59 ... Signal detection unit 60 ... Control unit Sp ... spike

Claims (7)

溶接対象の第1の測定箇所に対して設けられ、第1の周波数特性を有する第1のAEセンサと、
前記溶接対象の第1の測定箇所と離間する第2の測定箇所に対して設けられ、前記第1の周波数特性と異なる第2の周波数特性を有する第2のAEセンサと、
前記第1のAEセンサと、前記第2のAEセンサからの信号を受信する受信部と、
前記受信部で受信された、前記第1のAEセンサ及び前記第2のAEセンサのそれぞれの信号の差分を求める差分処理部と、
前記差分処理部により得られた差分信号に対し時間微分値を求める微分処理部と、
前記微分処理部により得られた差分信号の時間微分値があらかじめ定めた閾値を超えたことを検出する信号検出部と、
を有する溶接部モニタリング装置。
A first AE sensor provided for the first measurement point to be welded and having a first frequency characteristic,
A second AE sensor provided for a second measurement point separated from the first measurement point to be welded and having a second frequency characteristic different from the first frequency characteristic,
The first AE sensor, a receiving unit that receives a signal from the second AE sensor, and the like.
A difference processing unit for obtaining the difference between the signals of the first AE sensor and the second AE sensor received by the receiving unit, and a difference processing unit.
A differential processing unit that obtains a time derivative value for the difference signal obtained by the difference processing unit, and a differential processing unit.
A signal detection unit that detects that the time derivative value of the difference signal obtained by the differentiation processing unit exceeds a predetermined threshold value, and a signal detection unit.
Welding part monitoring device with.
前記第1のAEセンサは、溶接時に発生する弾性波形スペクトルのうち低い帯域でより高感度な周波数特性を有し、第2のAEセンサ21は、溶接時に発生する弾性波形スペクトルのうち高い帯域でより高感度な周波数特性を有する、請求項1記載の溶接部モニタリング装置。 The first AE sensor has a more sensitive frequency characteristic in a lower band of the elastic waveform spectrum generated during welding, and the second AE sensor 21 has a higher frequency band in the elastic waveform spectrum generated during welding. The weld monitoring device according to claim 1, which has a more sensitive frequency characteristic. 請求項2に記載の溶接モニタリング装置と、
前記溶接対象を溶接する溶接手段と、
前記信号検出部の検出結果に基づいて溶接手段を制御する制御部と、を有する溶接装置。
The welding monitoring device according to claim 2 and
Welding means for welding the object to be welded and
A welding device including a control unit that controls the welding means based on the detection result of the signal detection unit.
前記溶接手段は、前記溶接対象を溶接する溶接位置を移動させる駆動部と、を備え、
前記制御部は、前記信号処理部が前記閾値を超えたことを検出した位置に前記駆動部による前記溶接位置の移動速度を制御する、
請求項3に記載の溶接装置。
The welding means includes a drive unit for moving a welding position for welding the object to be welded.
The control unit controls the moving speed of the welding position by the driving unit at a position where the signal processing unit detects that the threshold value has been exceeded.
The welding apparatus according to claim 3.
前記溶接手段は、前記溶接対象に電気的に接続される溶接電極と前記溶接対象を溶接する溶接棒を備え、
前記制御部は、前記信号処理部が前記閾値を超えたことを検出した際に前記溶接電極と前記溶接棒の間に印加する電圧を変更させる、
請求項3または4に記載の溶接装置。
The welding means includes a welding electrode electrically connected to the welding target and a welding rod for welding the welding target.
The control unit changes the voltage applied between the welding electrode and the welding rod when the signal processing unit detects that the threshold value has been exceeded.
The welding apparatus according to claim 3 or 4.
前記信号処置部が前記閾値を超えたことを検出した際に、前記溶接手段は、前記溶接電極と前記溶接棒の間に印加する電圧を一時的に停止する、請求項5に記載の溶接装置。 The welding apparatus according to claim 5, wherein when the signal treatment unit detects that the threshold value has been exceeded, the welding means temporarily stops the voltage applied between the welding electrode and the welding rod. .. 第1の周波数特性を有する第1のAEセンサ及び前記第1の周波数特性とは異なる第2の周波数特性を有する第2のAEセンサで溶接施工時に発生する弾性波を受信し、
前記第1のAEセンサで受信した信号と前記第2のAEセンサで受信した信号を差分処理し、
前記差分処理により得られた信号の時間微分値を算出し、
前記時間微分値があらかじめ定めた閾値を超えた場合に前記溶接施工に係る溶接条件を制御する、
溶接方法。
The first AE sensor having the first frequency characteristic and the second AE sensor having the second frequency characteristic different from the first frequency characteristic receive elastic waves generated during welding.
The signal received by the first AE sensor and the signal received by the second AE sensor are subjected to difference processing.
The time derivative value of the signal obtained by the difference processing is calculated.
When the time derivative value exceeds a predetermined threshold value, the welding conditions related to the welding work are controlled.
Welding method.
JP2019171398A 2019-09-20 2019-09-20 Weld zone monitoring device, welding equipment and welding method Pending JP2021045782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019171398A JP2021045782A (en) 2019-09-20 2019-09-20 Weld zone monitoring device, welding equipment and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019171398A JP2021045782A (en) 2019-09-20 2019-09-20 Weld zone monitoring device, welding equipment and welding method

Publications (1)

Publication Number Publication Date
JP2021045782A true JP2021045782A (en) 2021-03-25

Family

ID=74877270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171398A Pending JP2021045782A (en) 2019-09-20 2019-09-20 Weld zone monitoring device, welding equipment and welding method

Country Status (1)

Country Link
JP (1) JP2021045782A (en)

Similar Documents

Publication Publication Date Title
US3986391A (en) Method and apparatus for the real-time monitoring of a continuous weld using stress-wave emission techniques
Miller et al. Development of automated real-time data acquisition system for robotic weld quality monitoring
US3824377A (en) Acoustic emission spot welding controller
US6279810B1 (en) Piezoelectric sensor for measuring bonding parameters
JPWO2007080692A1 (en) AE sensor and AE sensor operation state confirmation method
US3965726A (en) Method and apparatus for the real-time evaluation of welds by emitted stress waves
JP2021045782A (en) Weld zone monitoring device, welding equipment and welding method
JP2010266404A (en) Abnormality discrimination device of welding state
CN112975075B (en) System for monitoring a welding process
JP2021026811A (en) Plasma processing device
US20240036194A1 (en) Ultrasonic sensor system for a motor vehicle and method for operating the ultrasonic sensor system
US4187725A (en) Method for ultrasonic inspection of materials and device for effecting same
US20220299406A1 (en) Inspection system, inspection apparatus, and inspection method
JP2010223653A (en) Device and method for measuring internal state of structure
US4232558A (en) Methods for determining bond failure modes using stress wave emission techniques
CN116275329A (en) Wire-cut electric discharge machining quality on-line monitoring and evaluating system and method
JP4998706B2 (en) Transformer internal abnormality diagnosis method
RU94715U1 (en) DEVICE FOR ULTRASONIC CONTROL OF MECHANICAL PROPERTIES OF WHEEL-WHEELED WHEELS
RU2572067C1 (en) Method of acoustic emission quality control of girth weld during multipass welding and device for its implementation
US9772357B1 (en) Diagnostic apparatus
JP2023160580A (en) Measurement device, method of measurement, and computer program
US20210278375A1 (en) Method and device for compensating for coupling nonuniformities in ultrasonic testing
KR101048563B1 (en) Harmonic Detection System of Tone Burst Ultrasound
SU1562846A1 (en) Method of ultrasonic through-transmission flaw detection of laminated articles
JP2007105838A (en) Device and method of abnormality detection for machining tool

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20211221