JP2021042110A - Surface-treated zinc oxide particle and coating composition - Google Patents

Surface-treated zinc oxide particle and coating composition Download PDF

Info

Publication number
JP2021042110A
JP2021042110A JP2019166665A JP2019166665A JP2021042110A JP 2021042110 A JP2021042110 A JP 2021042110A JP 2019166665 A JP2019166665 A JP 2019166665A JP 2019166665 A JP2019166665 A JP 2019166665A JP 2021042110 A JP2021042110 A JP 2021042110A
Authority
JP
Japan
Prior art keywords
zinc oxide
coating composition
mass
particles
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019166665A
Other languages
Japanese (ja)
Other versions
JP7267159B2 (en
Inventor
隆二 元野
Ryuji Motono
隆二 元野
貴仁 浅沼
Takahito Asanuma
貴仁 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2019166665A priority Critical patent/JP7267159B2/en
Publication of JP2021042110A publication Critical patent/JP2021042110A/en
Application granted granted Critical
Publication of JP7267159B2 publication Critical patent/JP7267159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide surface-treated zinc oxide particles capable of forming a hardly-whitening ultraviolet light-shielding film, and to provide a coating composition.SOLUTION: A surface-treated zinc oxide particle has a dibenzoylmethane-based ultraviolet absorber and an organic siloxane compound on a surface of a core material particle of zinc oxide. The organic siloxane compound comprises a condensation product of at least one silane compound selected from the group comprising dimethyldimethoxysilane and phenyltrimethoxysilane. Preferably, the dibenzoylmethane-based ultraviolet absorber is 4-tert-butyl-4'-methoxy dibenzoylmethane.SELECTED DRAWING: None

Description

本発明は表面処理酸化亜鉛粒子に関する。また本発明は塗布用組成物に関する。本発明の表面処理酸化亜鉛粒子を含む膜及び本発明の塗布用組成物から形成される膜は紫外線遮蔽膜として有用である。 The present invention relates to surface-treated zinc oxide particles. The present invention also relates to a coating composition. The film containing the surface-treated zinc oxide particles of the present invention and the film formed from the coating composition of the present invention are useful as an ultraviolet shielding film.

酸化亜鉛は紫外線遮蔽能を有することが知られている。その特性を活かして酸化亜鉛の粒子は、化粧料、塗料、接着剤、樹脂成形品等にしばしば配合される。この場合、酸化亜鉛の粒子は有機紫外線吸収剤と併用されることがある。例えば特許文献1には、ブチルメトキシジベンゾイルメタンによってコーティングされた酸化亜鉛粒子が開示されている。 Zinc oxide is known to have an ultraviolet shielding ability. Taking advantage of its characteristics, zinc oxide particles are often blended in cosmetics, paints, adhesives, resin molded products and the like. In this case, the zinc oxide particles may be used in combination with an organic UV absorber. For example, Patent Document 1 discloses zinc oxide particles coated with butylmethoxydibenzoylmethane.

特許文献2には、シリカ系物質で被覆された酸化亜鉛粒子が開示されている。この粒子における被覆層は、その内層がシリカからなり、外層がメチルトリメトキシシランからなる。同文献は、この粒子に4−tert−ブチル−4’−メトキシジベンゾイルメタンを添加してなる分散液が開示されている。
特許文献3には、シランカップリング剤で被覆された酸化亜鉛粒子が開示されている。シランカップリング剤としては、分子内にオクチル基及びアルコキシ基を有するものが特に優れていることが記載されている。また、紫外線吸収剤を含んでもよいことが同文献には記載されており、紫外線吸収剤の一例として4−tert−ブチル−4’−メトキシジベンゾイルメタンが記載されている。
Patent Document 2 discloses zinc oxide particles coated with a silica-based substance. The inner layer of the coating layer of these particles is made of silica, and the outer layer is made of methyltrimethoxysilane. The document discloses a dispersion prepared by adding 4-tert-butyl-4'-methoxydibenzoylmethane to the particles.
Patent Document 3 discloses zinc oxide particles coated with a silane coupling agent. It is described that the silane coupling agent having an octyl group and an alkoxy group in the molecule is particularly excellent. Further, it is described in the same document that an ultraviolet absorber may be contained, and 4-tert-butyl-4'-methoxydibenzoylmethane is described as an example of the ultraviolet absorber.

特開2012−121810号公報Japanese Unexamined Patent Publication No. 2012-121810 特開2000−319128号公報Japanese Unexamined Patent Publication No. 2000-319128 特開2019−26525号公報JP-A-2019-26525

上述のとおり、酸化亜鉛粒子と4−tert−ブチル−4’−メトキシジベンゾイルメタンとを併用することが従来知られているところ、これらを含む塗料を用いて紫外線遮蔽膜を形成すると、該膜が白化する場合があることが本発明者の検討の結果判明した。
したがって本発明の課題は、白化しづらい紫外線遮蔽膜を形成し得る原料を提供することにある。
As described above, it has been conventionally known that zinc oxide particles and 4-tert-butyl-4'-methoxydibenzoylmethane are used in combination. When a coating film containing these is used to form an ultraviolet shielding film, the film is formed. As a result of the examination by the present inventor, it has been found that there is a case of whitening.
Therefore, an object of the present invention is to provide a raw material capable of forming an ultraviolet shielding film that is difficult to whiten.

前記の課題を解決すべく本発明者は鋭意検討した結果、酸化亜鉛粒子と紫外線吸収剤とを併用するに場合に、特定のシラン化合物を用いることで、紫外線遮蔽膜の白化を抑制し得ることを知見した。本発明はかかる知見に基づきなされたものであり、酸化亜鉛の芯材粒子の表面に、ジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物を有してなり、
前記有機シロキサン化合物が、ジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物の脱水縮合生成物を含む、表面処理酸化亜鉛粒子を提供することによって前記の課題を解決したものである。
As a result of diligent studies to solve the above problems, the present inventor has found that when zinc oxide particles and an ultraviolet absorber are used in combination, whitening of an ultraviolet shielding film can be suppressed by using a specific silane compound. Was found. The present invention has been made based on such findings, and comprises having a dibenzoylmethane-based ultraviolet absorber and an organic siloxane compound on the surface of zinc oxide core material particles.
The organic siloxane compound solves the above-mentioned problems by providing surface-treated zinc oxide particles containing a dehydration condensation product of at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane. Is.

また本発明は、前記の表面処理酸化亜鉛粒子と、バインダー樹脂と、有機溶媒とを含む塗布用組成物を提供するものである。 The present invention also provides a coating composition containing the above-mentioned surface-treated zinc oxide particles, a binder resin, and an organic solvent.

更に本発明は、酸化亜鉛粒子と、ジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物と、ジベンゾイルメタン系紫外線吸収剤と、バインダー樹脂と、有機溶媒とを含む塗布用組成物を提供するものである。 Further, the present invention is a coating containing zinc oxide particles, at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane, a dibenzoylmethane-based ultraviolet absorber, a binder resin, and an organic solvent. It provides a composition for use.

本発明によれば、白化しづらい紫外線遮蔽膜を形成し得る表面処理酸化亜鉛粒子及び塗布用組成物が提供される。 According to the present invention, there are provided surface-treated zinc oxide particles and a coating composition capable of forming an ultraviolet shielding film that is difficult to whiten.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の表面処理酸化亜鉛粒子は、酸化亜鉛の芯材粒子が表面処理されてなるものである。芯材粒子の表面処理は、ジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物による処理である。表面処理によって、芯材粒子の表面にジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物が存在することになる。芯材粒子の表面におけるジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物の存在状態に特に制限はなく、例えばこれら2種の化合物が互いに異なる層をなしていてもよく、あるいは両者が混合した状態で単一の層をなしていてもよい。 Hereinafter, the present invention will be described based on its preferred embodiment. The surface-treated zinc oxide particles of the present invention are obtained by surface-treating the zinc oxide core material particles. The surface treatment of the core material particles is a treatment with a dibenzoylmethane-based ultraviolet absorber and an organic siloxane compound. By the surface treatment, the dibenzoylmethane-based ultraviolet absorber and the organic siloxane compound will be present on the surface of the core material particles. The presence state of the dibenzoylmethane-based ultraviolet absorber and the organic siloxane compound on the surface of the core material particles is not particularly limited. For example, these two compounds may form different layers from each other, or both may be in a mixed state. It may be in a single layer.

本発明で用いられるジベンゾイルメタン系紫外線吸収剤としては、ジベンゾイルメタン及びその誘導体が挙げられる。ジベンゾイルメタンの誘導体としては、ジベンゾイルメタンにおけるベンゼン環中の任意の水素原子がアルキル基、アルコキシ基、水酸基、カルボキシル基などの置換基で置換された化合物が挙げられる。例えば、2−メチルジベンゾイルメタン、4−メチルジベンゾイルメタン、4−イソプロピルジベンゾイルメタン、4−tert−ブチルジベンゾイルメタン、2,4−ジメチルジベンゾイルメタン、2,5−ジメチルジベンゾイルメタン、4,4’−ジイソプロピルジベンゾイルメタン、4,4’−ジメトキシジベンゾイルメタン、4−tert−ブチル−4’−メトキシジベンゾイルメタン、2−メチル−5−イソプロピル−4’−メトキシジベンゾイルメタン、2,4−ジメチル−4’−メトキシジベンゾイルメタン、2,6−ジメチル−4−tert−ブチル−4’−メトキシジベンゾイルメタン、2−カルボキシル−4’−メトキシジベンゾイルメタン、及び4−tert−ブチル−4’−ヒドロキシジベンゾイルメタン等が挙げられる。特に、ジベンゾイルメタンにおけるベンゼン環中の任意の水素原子が、炭素数1以上6以下のアルキル基及び/又は炭素数1以上6以下のアルコキシ基で置換された化合物が紫外線吸収能の高さの点から好ましい。とりわけ、ジベンゾイルメタンの誘導体として、4−tert−ブチル−4’−メトキシジベンゾイルメタンを用いることが、紫外線吸収能が非常に高い点から好ましい。 Examples of the dibenzoylmethane-based ultraviolet absorber used in the present invention include dibenzoylmethane and its derivatives. Derivatives of dibenzoylmethane include compounds in which any hydrogen atom in the benzene ring of dibenzoylmethane is substituted with a substituent such as an alkyl group, an alkoxy group, a hydroxyl group, or a carboxyl group. For example, 2-methyldibenzoylmethane, 4-methyldibenzoylmethane, 4-isopropyldibenzoylmethane, 4-tert-butyldibenzoylmethane, 2,4-dimethyldibenzoylmethane, 2,5-dimethyldibenzoylmethane, 4,4'-diisopropyldibenzoylmethane, 4,4'-dimethoxydibenzoylmethane, 4-tert-butyl-4'-methoxydibenzoylmethane, 2-methyl-5-isopropyl-4'-methoxydibenzoylmethane, 2,4-Dimethyl-4'-methoxydibenzoylmethane, 2,6-dimethyl-4-tert-butyl-4'-methoxydibenzoylmethane, 2-carboxy-4'-methoxydibenzoylmethane, and 4-tert -Butyl-4'-Hydroxydibenzoylmethane and the like can be mentioned. In particular, a compound in which any hydrogen atom in the benzene ring of dibenzoylmethane is replaced with an alkyl group having 1 to 6 carbon atoms and / or an alkoxy group having 1 to 6 carbon atoms has a high ultraviolet absorption capacity. It is preferable from the point of view. In particular, it is preferable to use 4-tert-butyl-4'-methoxydibenzoylmethane as a derivative of dibenzoylmethane because it has a very high ultraviolet absorbing ability.

ジベンゾイルメタン系紫外線吸収剤と併用される有機シロキサン化合物は、酸化亜鉛の芯材粒子の分散性を高めるために用いられる。有機シロキサン化合物は、−Si−O−Si−で表されるシロキサン結合を有するか、又はシロキサン結合が複数連なったポリシロキサン結合を有するとともに、アルキル基、アルコキシ基及びフェニル基等の有機基を有する化合物である。本発明においては、有機シロキサン化合物を、ジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物から形成することが、紫外線遮蔽膜の白化を抑制する観点から好ましい。本発明者の検討の結果、シラン化合物としてジメチルジメトキシシラン及びフェニルトリメトキシシラン以外のものを用いた場合には紫外線遮蔽膜の白化を十分に抑制できないことが判明した。 The organic siloxane compound used in combination with the dibenzoylmethane-based ultraviolet absorber is used to enhance the dispersibility of the zinc oxide core material particles. The organic siloxane compound has a siloxane bond represented by −Si—O—Si−, or has a polysiloxane bond in which a plurality of siloxane bonds are connected, and also has an organic group such as an alkyl group, an alkoxy group, and a phenyl group. It is a compound. In the present invention, it is preferable to form the organic siloxane compound from at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane from the viewpoint of suppressing whitening of the ultraviolet shielding film. As a result of the study by the present inventor, it has been found that when a silane compound other than dimethyldimethoxysilane and phenyltrimethoxysilane is used, the whitening of the ultraviolet shielding film cannot be sufficiently suppressed.

ジメチルジメトキシシラン及びフェニルトリメトキシシランは一般にシランカップリング剤として知られている化合物の一種である。シランカップリング剤は水の存在下で加水分解反応を起こし、引き続き脱水縮合反応することで、シロキサン結合又はポリシロキサン結合を有する化合物を生成する。ジメチルジメトキシシラン及びフェニルトリメトキシシランも同様の反応機構によってシロキサン結合又はポリシロキサン結合を有する化合物を生成する。したがって本発明で用いられる好ましい有機シロキサン化合物は、ジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物を脱水縮合させた生成物を含むものである。 Didimethyldimethoxysilane and phenyltrimethoxysilane are a type of compound generally known as silane coupling agents. The silane coupling agent undergoes a hydrolysis reaction in the presence of water and subsequently undergoes a dehydration condensation reaction to produce a compound having a siloxane bond or a polysiloxane bond. Didimethyldimethoxysilane and phenyltrimethoxysilane also produce compounds having a siloxane bond or a polysiloxane bond by the same reaction mechanism. Therefore, the preferred organic siloxane compound used in the present invention contains a product obtained by dehydration condensation of at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane.

本発明の表面処理酸化亜鉛粒子に含まれるジベンゾイルメタン系紫外線吸収剤の割合は、該酸化亜鉛粒子から形成される紫外線遮蔽膜の紫外線遮蔽能を十分に発揮させる観点から、炭素原子換算で、1.0質量%以上30質量%以下であることが好ましく、2.0質量%以上20質量%以下であることが更に好ましく、3.0質量%以上10質量%以下であることが一層好ましい。 The proportion of the dibenzoylmethane-based ultraviolet absorber contained in the surface-treated zinc oxide particles of the present invention is converted into carbon atoms from the viewpoint of fully exerting the ultraviolet shielding ability of the ultraviolet shielding film formed from the zinc oxide particles. It is preferably 1.0% by mass or more and 30% by mass or less, more preferably 2.0% by mass or more and 20% by mass or less, and further preferably 3.0% by mass or more and 10% by mass or less.

表面処理酸化亜鉛粒子に含まれるジベンゾイルメタン系紫外線吸収剤の炭素原子換算での割合は、燃焼−非分散型赤外線吸収法によって炭素原子の量を測定することで得られる。本発明においては、LECOジャパン社から販売されている炭素・硫黄分析装置CS844を用い、これによって測定された炭素原子の量からジベンゾイルメタン系紫外線吸収剤の炭素原子換算での割合を算出する。 The ratio of the dibenzoylmethane-based ultraviolet absorber contained in the surface-treated zinc oxide particles in terms of carbon atoms can be obtained by measuring the amount of carbon atoms by the combustion-non-dispersion type infrared absorption method. In the present invention, the carbon / sulfur analyzer CS844 sold by LECO Japan is used, and the ratio of the dibenzoylmethane-based ultraviolet absorber in terms of carbon atoms is calculated from the amount of carbon atoms measured thereby.

一方、本発明の表面処理酸化亜鉛粒子に含まれる有機シロキサン化合物の割合は、該酸化亜鉛粒子から形成される紫外線遮蔽膜の白化を効果的に抑制する観点から、ケイ素原子換算で、0.001質量%以上7質量%以下であることが好ましく、0.01質量%以上5質量%以下であることが更に好ましく、0.08質量%以上3質量%以下であることが一層好ましい。 On the other hand, the proportion of the organic siloxane compound contained in the surface-treated zinc oxide particles of the present invention is 0.001 in terms of silicon atom from the viewpoint of effectively suppressing the whitening of the ultraviolet shielding film formed from the zinc oxide particles. It is preferably mass% or more and 7 mass% or less, more preferably 0.01 mass% or more and 5 mass% or less, and further preferably 0.08 mass% or more and 3 mass% or less.

表面処理酸化亜鉛粒子に含まれる有機シロキサン化合物のケイ素原子換算での割合は例えば、該粒子について酸分解法による前処理を行い、高周波誘導結合プラズマ(ICP)発光分光分析を行うことで測定できる。 The ratio of the organic siloxane compound contained in the surface-treated zinc oxide particles in terms of silicon atoms can be measured, for example, by pretreating the particles by an acid decomposition method and performing high-frequency inductively coupled plasma (ICP) emission spectroscopic analysis.

酸化亜鉛の芯材粒子の表面には、上述したジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物に加えて、本発明の表面処理酸化亜鉛粒子の各種性能を高め得る剤が存在していてもよい。例えば、樹脂との相溶性を高める剤や、樹脂中での粒子の分散性を高める剤が存在していてもよい。樹脂との相溶性を高める剤としては、例えばポリオキシエチレン系化合物、高分子不飽和カルボン酸系化合物、カチオン基含有アクリルポリマー、シランカップリング剤(ただしジメチルジメトキシシラン及びフェニルトリメトキシシランを除く。)などが挙げられる。樹脂中での分散性を高める剤としては、例えば脂肪酸、脂肪酸エステル、脂肪酸石鹸及び有機チタネート化合物などが挙げられる。 On the surface of the zinc oxide core material particles, in addition to the above-mentioned dibenzoylmethane-based ultraviolet absorber and organic siloxane compound, an agent capable of enhancing various performances of the surface-treated zinc oxide particles of the present invention may be present. .. For example, there may be an agent that enhances compatibility with the resin and an agent that enhances the dispersibility of particles in the resin. Examples of the agent that enhances compatibility with the resin include polyoxyethylene compounds, polymer unsaturated carboxylic acid compounds, cation group-containing acrylic polymers, and silane coupling agents (however, dimethyldimethoxysilane and phenyltrimethoxysilane are excluded. ) And so on. Examples of the agent for enhancing the dispersibility in the resin include fatty acids, fatty acid esters, fatty acid soaps and organic titanate compounds.

表面処理酸化亜鉛粒子は、例えば酸化亜鉛の芯材粒子の表面にジベンゾイルメタン系紫外線吸収剤を施し、次いでジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物を施し、該シラン化合物を脱水縮合させることで得られる。あるいは、表面処理酸化亜鉛粒子は、酸化亜鉛の芯材粒子の表面にジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物を施し、該シラン化合物を脱水縮合させ、次いでジベンゾイルメタン系紫外線吸収剤を施すことで得られる。あるいは、表面処理酸化亜鉛粒子は、酸化亜鉛の芯材粒子の表面に、ジベンゾイルメタン系紫外線吸収剤と、ジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物とを施し、次いで該シラン化合物を脱水縮合させることで得られる。ジベンゾイルメタン系紫外線吸収剤が固体である場合には、該ジベンゾイルメタン系紫外線吸収剤の溶解が可能な有機溶媒に、該ジベンゾイルメタン系紫外線吸収剤を溶解させて用いることが好ましい。 Surface-treated zinc oxide particles are prepared by, for example, applying a dibenzoylmethane-based ultraviolet absorber to the surface of zinc oxide core particles, and then applying at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane. It is obtained by dehydrating and condensing the silane compound. Alternatively, for the surface-treated zinc oxide particles, at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane is applied to the surface of the zinc oxide core material particles, and the silane compound is dehydrated and condensed, and then didi. Obtained by applying a benzoylmethane-based ultraviolet absorber. Alternatively, the surface-treated zinc oxide particles are prepared by applying a dibenzoylmethane-based ultraviolet absorber and at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane on the surface of the zinc oxide core material particles. Then, it is obtained by dehydrating and condensing the silane compound. When the dibenzoylmethane-based ultraviolet absorber is a solid, it is preferable to dissolve the dibenzoylmethane-based ultraviolet absorber in an organic solvent capable of dissolving the dibenzoylmethane-based ultraviolet absorber.

表面処理酸化亜鉛粒子における芯材粒子である酸化亜鉛粒子は、その粒子径が、一次粒子径で表して、5nm以上100nm以下であることが好ましく、10nm以上90nm以下であることが更に好ましく、20nm以上80nm以下であることが一層好ましい。一次粒子とは、酸化亜鉛の芯材粒子を電子顕微鏡で50000倍に拡大観察したときに、外見上の幾何学的形態から判断して、粒子としての最小単位と認められる物体のことをいう。酸化亜鉛の芯材粒子の一次粒子径がこの範囲であると、粒子の透明性の観点から有利である。一次粒子径は、酸化亜鉛粒子を製造するときの条件、例えば焼成条件等を調整することでコントロールできる。なお、酸化亜鉛の芯材粒子の表面に存在するジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物の量は微量なので、酸化亜鉛の芯材粒子の一次粒子径と、表面処理酸化亜鉛粒子の一次粒子径とは実質的に同じである。したがって表面処理酸化亜鉛粒子の一次粒子径の好ましい範囲は上述のとおりとなる。 The zinc oxide particles, which are the core particles of the surface-treated zinc oxide particles, have a particle size of preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 90 nm or less, and more preferably 20 nm in terms of the primary particle size. It is more preferably 80 nm or less. The primary particles are objects that are recognized as the smallest unit as particles, judging from their apparent geometrical morphology, when the zinc oxide core material particles are observed at a magnification of 50,000 times with an electron microscope. When the primary particle size of the zinc oxide core material particles is in this range, it is advantageous from the viewpoint of particle transparency. The primary particle size can be controlled by adjusting conditions for producing zinc oxide particles, for example, firing conditions. Since the amount of the dibenzoylmethane-based ultraviolet absorber and the organic siloxane compound present on the surface of the zinc oxide core material particles is very small, the primary particle size of the zinc oxide core material particles and the primary particles of the surface-treated zinc oxide particles The diameter is substantially the same. Therefore, the preferable range of the primary particle diameter of the surface-treated zinc oxide particles is as described above.

酸化亜鉛の芯材粒子及び表面処理酸化亜鉛粒子の一次粒子径は、次の方法で測定される。日本電子株式会社製の透過型電子顕微鏡JEM−2100型を用い、50000倍に拡大した粒子の透過型電子顕微鏡像を得る。撮像視野に観察される粒子を任意に30個選択し、フェレ径を測定する。フェレ径の算術平均値を求め、その値を粒子の一次粒子径とする。 The primary particle size of the zinc oxide core particle and the surface-treated zinc oxide particle is measured by the following method. Using a transmission electron microscope JEM-2100 manufactured by JEOL Ltd., a transmission electron microscope image of particles magnified 50,000 times is obtained. Arbitrarily select 30 particles to be observed in the imaging field of view, and measure the ferret diameter. Obtain the arithmetic mean value of the ferret diameter, and use that value as the primary particle diameter of the particle.

酸化亜鉛の芯材粒子としては市販品を用いることができる。あるいは合成したものを用いることもできる。芯材粒子の合成は、例えば亜鉛源となる化合物が溶解した水溶液と、水酸化ナトリウム等の塩基性物質とを混合して、亜鉛を含む沈殿物を液中に生成させ、該沈殿物を分離した後に酸素含有雰囲気下で焼成する工程を含む。焼成は例えば350℃以上700℃以下で行うことができる。 Commercially available products can be used as the core material particles of zinc oxide. Alternatively, a synthesized product can be used. In the synthesis of core material particles, for example, an aqueous solution in which a compound serving as a zinc source is dissolved is mixed with a basic substance such as sodium hydroxide to form a zinc-containing precipitate in a solution, and the precipitate is separated. After that, the step of firing in an oxygen-containing atmosphere is included. Firing can be performed at, for example, 350 ° C. or higher and 700 ° C. or lower.

酸化亜鉛の芯材粒子は、以下に定義される相対スペクトル吸収強度I/Iが0.001以上であることが、可視光の波長領域に近い長波長の紫外線の遮蔽が可能となることから好ましい。本明細書において、可視光の波長領域に近い長波長の紫外線とは、波長領域が360nm以上400nm以下の紫外線のことである。
:84Kにおいて、電子スピン共鳴法で得られる4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル(以下「TEMPOL」ともいう。)の2.0mmol/Lのトルエン溶液の吸収強度。
I:84Kにおいて、電子スピン共鳴法で得られる酸化亜鉛の芯材粒子1g当たりのスペクトル吸収強度。
Since the zinc oxide core material particles have a relative spectral absorption intensity I / I 0 of 0.001 or more as defined below, it is possible to shield ultraviolet rays having a long wavelength close to the wavelength region of visible light. preferable. In the present specification, the ultraviolet rays having a long wavelength close to the wavelength region of visible light are ultraviolet rays having a wavelength region of 360 nm or more and 400 nm or less.
At I 0 : 84K, a 2.0 mmol / L toluene solution of 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (hereinafter also referred to as “TEMPOL”) obtained by electron spin resonance method. Absorption strength of.
I: At 84K, the spectral absorption intensity per 1 g of zinc oxide core material particles obtained by the electron spin resonance method.

酸化亜鉛の紫外線遮蔽能について本発明者が鋭意検討したところ、酸化亜鉛に特定の異種元素がドープされることに起因してバンドギャップが変化することが紫外線遮蔽の程度と関係していることを知見した。またバンドギャップの変化に起因して不対電子に変化が生じ、不対電子の変化を電子スピン共鳴法(以下「ESR」ともいう。)で検出できることを知見した。一般に物質の電子状態はESRによって測定される強度の値に反映される。 As a result of diligent studies by the present inventor on the UV shielding ability of zinc oxide, it was found that the change in bandgap due to the doping of zinc oxide with a specific dissimilar element is related to the degree of UV shielding. I found out. It was also found that changes in unpaired electrons occur due to changes in the bandgap, and changes in unpaired electrons can be detected by the electron spin resonance method (hereinafter, also referred to as "ESR"). Generally, the electronic state of a substance is reflected in the intensity value measured by ESR.

TEMPOLは本発明においてESR測定の標準物質として用いられるものである。TEMPOLを標準物質とした理由は、この物質から生じるラジカルが安定であることによるものである。ESR測定の温度を84Kとした理由は、ESR測定においてマイクロ波の吸収に関与する不対電子の数が低温になるほど多くなり、そのことに起因して低温で測定するほど感度が上がることによるものである。 TEMPOL is used as a standard substance for ESR measurement in the present invention. The reason for using TEMPOL as a standard substance is that the radicals generated from this substance are stable. The reason why the temperature of the ESR measurement is set to 84K is that the number of unpaired electrons involved in the absorption of microwaves in the ESR measurement increases as the temperature decreases, and as a result, the sensitivity increases as the temperature is measured at a lower temperature. Is.

相対スペクトル吸収強度I/Iが0.001以上である酸化亜鉛の芯材粒子は、長波長の紫外線の遮蔽能が高いものとなる。相対スペクトル吸収強度はその値が大きければ大きいほど好ましく、具体的には0.005以上であることが好ましく、0.008以上であることが更に好ましい。相対スペクトル吸収強度の上限値には特に制限はないが、現時点で到達可能な上限値は0.1程度である。 Zinc oxide core material particles having a relative spectral absorption intensity I / I 0 of 0.001 or more have a high shielding ability for long-wavelength ultraviolet rays. The larger the value of the relative spectral absorption intensity, the more preferable, specifically, 0.005 or more, and further preferably 0.008 or more. The upper limit of the relative spectral absorption intensity is not particularly limited, but the upper limit that can be reached at present is about 0.1.

相対スペクトル吸収強度I/Iを求めるためのESRの測定法は以下に述べるとおりである。
日本電子株式会社製のXバンド(9GHz帯)電子スピン共鳴装置(JES−X330)を使用して測定する。外径5mmの石英管に測定試料を入れ、以下の測定条件で測定を行い、ESRスペクトルを得る。酸化亜鉛の芯材粒子については、得られたESRスペクトルの吸収強度を、試料の1g当たりの値に換算する。
試料質量:20mg
石英管:日本電子株式会社製No.193−S(高精度用)
マイクロ波出力:0.25mW
磁場掃引幅:20mT
変調磁場:0.3mT
感度:50
時定数:0.03秒
測定時間:30秒
測定温度:84K
The method for measuring ESR for obtaining the relative spectral absorption intensity I / I 0 is as described below.
The measurement is performed using an X band (9 GHz band) electron spin resonance apparatus (JES-X330) manufactured by JEOL Ltd. A measurement sample is placed in a quartz tube having an outer diameter of 5 mm, and measurement is performed under the following measurement conditions to obtain an ESR spectrum. For the zinc oxide core material particles, the absorption intensity of the obtained ESR spectrum is converted into a value per 1 g of the sample.
Sample mass: 20 mg
Quartz tube: No. 1 manufactured by JEOL Ltd. 193-S (for high precision)
Microwave output: 0.25mW
Magnetic field sweep width: 20mT
Modulated magnetic field: 0.3mT
Sensitivity: 50
Time constant: 0.03 seconds Measurement time: 30 seconds Measurement temperature: 84K

酸化亜鉛の芯材粒子が上述した物性を有するためには、該芯材粒子の製造方法において、微量の塩素等の一種以上のハロゲンを酸化亜鉛に含有させることが有利であることが本発明者の検討の結果判明した。本発明においてハロゲンとは、第17族元素のうち、フッ素、塩素、臭素及びヨウ素を意味する。アスタチン及びテネシンは本発明にいうハロゲンに包含されない。芯材粒子の製造方法において、特にハロゲンとして塩素、ヨウ素及び臭素からなる群より選択される一種又は二種以上の元素を用いると、長波長の紫外線遮蔽能が一層優れるので好ましい。芯材粒子におけるハロゲンの含有量は、各ハロゲンについて、0.02質量%以上1.0質量%以下であることが好ましく、0.05質量%以上0.8質量%以下であることが更に好ましく、0.08質量%以上0.7質量%以下であることが一層好ましい。特に、すべてのハロゲンの合計の含有量が、この範囲内であることが好ましい。この範囲でハロゲンを含有することで、芯材粒子は、長波長の紫外線遮蔽能に更に一層優れたものとなる。 In order for the zinc oxide core material particles to have the above-mentioned physical properties, it is advantageous for the present inventor to include a trace amount of one or more halogens such as chlorine in zinc oxide in the method for producing the core material particles. It turned out as a result of the examination of. In the present invention, halogen means fluorine, chlorine, bromine and iodine among the Group 17 elements. Astatine and tennessine are not included in the halogens referred to in the present invention. In the method for producing core particle, it is particularly preferable to use one or more elements selected from the group consisting of chlorine, iodine and bromine as halogen because the long wavelength ultraviolet ray shielding ability is further excellent. The halogen content in the core material particles is preferably 0.02% by mass or more and 1.0% by mass or less, and more preferably 0.05% by mass or more and 0.8% by mass or less for each halogen. , 0.08% by mass or more and 0.7% by mass or less is more preferable. In particular, the total content of all halogens is preferably within this range. By containing halogen in this range, the core material particles become even more excellent in long-wavelength ultraviolet shielding ability.

酸化亜鉛の芯材粒子に含まれるハロゲンの量は、株式会社三菱ケミカルアナリテック製の自動試料燃焼装置AQF−100で前処理を行い、Dionex Corporation製イオンクロマトグラフICS−1000によって測定される。 The amount of halogen contained in the zinc oxide core particle is pretreated with an automatic sample combustion device AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd., and measured by an ion chromatograph ICS-1000 manufactured by Dionex Corporation.

酸化亜鉛の芯材粒子が塩素等のハロゲンを含有することが好適であることとは対照的に、該芯材粒子は、三価又は四価をとり得る元素を非含有であることが好ましい。三価又は四価をとり得る元素としては、三価の元素の例としてAl、Cr、Fe、B、In、Gaなどが挙げられる。一方、四価の元素の例としてZr、Ti、Hfなどが挙げられる。これらの元素は、可視光の透過性を低下させる一因となる点で有利とはいないので、芯材粒子に含有させないことが望ましい。この観点から、酸化亜鉛の芯材粒子は、三価又は四価をとり得る元素として、特にAl、Ga、Inを非含有であることが好ましい。三価又は四価をとり得る元素は、それらの合計量が、芯材粒子中の亜鉛原子に対して0.2原子量%未満であることが好ましく、0.1原子量%未満であることが更に好ましい。酸化亜鉛の芯材粒子におけるこれらの元素の含有量は、株式会社日立ハイテクサンエンス製の誘導結合プラズマ発光分光分析装置(ICP−AES)SPS5100によって測定される。 In contrast to zinc oxide core particles preferably containing halogens such as chlorine, the core particles preferably do not contain trivalent or tetravalent elements. Examples of trivalent or tetravalent elements include Al, Cr, Fe, B, In, and Ga. On the other hand, examples of tetravalent elements include Zr, Ti, Hf and the like. Since these elements are not advantageous in that they contribute to reducing the transparency of visible light, it is desirable that they are not contained in the core material particles. From this viewpoint, it is preferable that the zinc oxide core material particles do not contain Al, Ga, and In as trivalent or tetravalent elements. The total amount of trivalent or tetravalent elements is preferably less than 0.2 atomic weight%, and more preferably less than 0.1 atomic weight%, based on the zinc atom in the core material particles. preferable. The content of these elements in the zinc oxide core particles is measured by an inductively coupled plasma emission spectrophotometer (ICP-AES) SPS5100 manufactured by Hitachi High-Tech Sanence Co., Ltd.

相対スペクトル吸収強度I/Iが0.001以上である酸化亜鉛の芯材粒子は、例えば以下に述べる方法によって好適に製造される。まず出発原料としてのハロゲン化亜鉛、例えば塩化亜鉛(ZnCl)を用意し、これを水に溶かして亜鉛及びハロゲンを含有する水溶液とする。ハロゲン化亜鉛は、三価又は四価をとり得る元素を非含有である高純度のものを用いることが好ましい。例えば純度が99質量%以上のものを用いることが好ましい。水溶液中の亜鉛の濃度は、粒子径制御の観点から、10質量%以上80質量%以下とすることが好ましく、20質量%以上70質量%以下とすることが更に好ましく、30質量%以上60質量%以下とすることが一層好ましい。 Zinc oxide core material particles having a relative spectral absorption intensity I / I 0 of 0.001 or more are suitably produced by, for example, the method described below. First, zinc halide, for example zinc chloride (ZnCl 2 ), is prepared as a starting material and dissolved in water to prepare an aqueous solution containing zinc and halogen. As the zinc halide, it is preferable to use a high-purity zinc halide that does not contain a trivalent or tetravalent element. For example, it is preferable to use one having a purity of 99% by mass or more. From the viewpoint of particle size control, the concentration of zinc in the aqueous solution is preferably 10% by mass or more and 80% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and 30% by mass or more and 60% by mass or less. It is more preferably% or less.

このようにして調製したハロゲン化亜鉛の水溶液と、塩基性物質とを混合して、亜鉛を含む沈殿物を液中に生成させる。塩基性物質はそのままの状態でハロゲン化亜鉛の水溶液と混合してもよく、あるいは水溶液の状態でハロゲン化亜鉛の水溶液と混合してもよい。いずれの場合であっても、塩基性物質の添加量は、モル基準で、金属イオン中和当量に対して好ましくは1.2倍以上2.8倍以下であることが好ましい。その際の金属塩水溶液濃度は、1質量%以上40質量%以下とすることが好ましく、塩基性物質の水溶液濃度は5質量%以上50質量%以下とすることが好ましい。 The aqueous solution of zinc halide prepared in this manner is mixed with a basic substance to form a zinc-containing precipitate in the liquid. The basic substance may be mixed with an aqueous solution of zinc halide as it is, or may be mixed with an aqueous solution of zinc halide in the state of an aqueous solution. In any case, the amount of the basic substance added is preferably 1.2 times or more and 2.8 times or less with respect to the metal ion neutralization equivalent on a molar basis. At that time, the concentration of the aqueous metal salt solution is preferably 1% by mass or more and 40% by mass or less, and the concentration of the aqueous solution of the basic substance is preferably 5% by mass or more and 50% by mass or less.

ハロゲン化亜鉛水溶液と塩基性物質の混合は、室温下、非加熱状態で行ってもよく、あるいは加熱状態で行ってもよい。加熱状態で混合を行う場合、混合液の温度は30℃以上90℃以下に設定することが好ましく、35℃以上80℃以下に設定することが更に好ましく、40℃以上70℃以下に設定することが一層好ましい。この範囲の温度で塩化亜鉛水溶液と塩基性物質とを混合することで、前記の沈殿物を首尾よく生成させることができる。 The mixing of the zinc halide aqueous solution and the basic substance may be carried out at room temperature in an unheated state or in a heated state. When mixing in a heated state, the temperature of the mixed solution is preferably set to 30 ° C. or higher and 90 ° C. or lower, more preferably 35 ° C. or higher and 80 ° C. or lower, and 40 ° C. or higher and 70 ° C. or lower. Is more preferable. By mixing the zinc chloride aqueous solution and the basic substance at a temperature in this range, the above-mentioned precipitate can be successfully produced.

ハロゲン化亜鉛水溶液と塩基性物質の混合は、例えば、ハロゲン化亜鉛水溶液中に塩基性物質を添加することで行うことができる。この場合、塩基性物質の添加は一括添加でもよく、あるいは逐次添加でもよい。塩基性物質を逐次添加する場合、該塩基性物質をその水溶液の状態で、所定の時間にわたり連続的に添加することが、前記の沈殿物を首尾よく生成させ得る点から好ましい。 The mixing of the zinc halide aqueous solution and the basic substance can be performed, for example, by adding the basic substance to the zinc halide aqueous solution. In this case, the basic substance may be added all at once or sequentially. When the basic substance is added sequentially, it is preferable to add the basic substance continuously in the state of the aqueous solution for a predetermined time from the viewpoint that the precipitate can be successfully formed.

塩基性物質としては、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物、アンモニア、無機炭酸塩及び無機炭酸水素塩などが挙げられる。これらの塩基性物質は一種を単独で用いることができ、あるいは二種以上を組み合わせて用いることもできる。これらの塩基性物質のうち、アルカリ金属の水酸化物を用いることが、沈殿物を首尾よく生成させ得る点から好ましく、特に水酸化ナトリウムを用いることが経済的観点からも好ましい。 Examples of the basic substance include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide, ammonia, inorganic carbonates and inorganic hydrogen carbonates. One of these basic substances can be used alone, or two or more of these basic substances can be used in combination. Of these basic substances, it is preferable to use an alkali metal hydroxide from the viewpoint of successfully forming a precipitate, and it is particularly preferable to use sodium hydroxide from an economical point of view.

このようにして液中に沈殿物が生成したら、この沈殿物を濾別して水洗する。水洗の程度は、最終的に得られる酸化亜鉛の芯材粒子に含まれるハロゲンの量と関係する。この観点から、沈殿物の水洗は、洗浄水の導電率(25℃)が好ましくは1μS/cm以上10000μS/cm以下となるように行い、更に好ましくは2μS/cm以上5000μS/cm以下となるように行い、一層好ましくは5μS/cm以上4000μS/cm以下となるように行う。この条件で水洗を行うことで、最終的に得られる酸化亜鉛の芯材粒子に含まれるハロゲンの量を所望の範囲内とすることができる。 When a precipitate is formed in the liquid in this way, the precipitate is filtered off and washed with water. The degree of washing with water is related to the amount of halogen contained in the final zinc oxide core particles. From this point of view, the sediment is washed with water so that the conductivity (25 ° C.) of the washing water is preferably 1 μS / cm or more and 10000 μS / cm or less, and more preferably 2 μS / cm or more and 5000 μS / cm or less. More preferably, it is carried out so as to be 5 μS / cm or more and 4000 μS / cm or less. By washing with water under these conditions, the amount of halogen contained in the finally obtained zinc oxide core material particles can be kept within a desired range.

前記の沈殿物を水洗したら、次いで該沈殿物を焼成し、目的とする酸化亜鉛の芯材粒子を得る。焼成の雰囲気としては、例えば大気などの酸化性雰囲気、水素含有雰囲気などの還元性雰囲気、及び窒素雰囲気などの不活性ガス雰囲気が挙げられる。安全性や経済性を考慮すると、大気などの酸化性雰囲気を用いることが好ましい。 After washing the precipitate with water, the precipitate is then calcined to obtain zinc oxide core particles of interest. Examples of the firing atmosphere include an oxidizing atmosphere such as the atmosphere, a reducing atmosphere such as a hydrogen-containing atmosphere, and an inert gas atmosphere such as a nitrogen atmosphere. Considering safety and economy, it is preferable to use an oxidizing atmosphere such as air.

焼成の雰囲気が上述のいずれの場合であっても、焼成温度は350℃以上750℃以下であることが好ましく、400℃以上700℃以下であることが更に好ましく、450℃以上650℃以下であることが一層好ましい。この範囲の温度で焼成を行うことで、目的とする紫外線遮蔽能を有する酸化亜鉛の芯材粒子を首尾よく得ることができる。同様の観点から、焼成時間は0.5時間以上20時間以下とすることが好ましく、0.5時間以上10時間以下とすることが更に好ましく、1時間以上5時間以下とすることが一層好ましい。 Regardless of the above-mentioned calcination atmosphere, the calcination temperature is preferably 350 ° C. or higher and 750 ° C. or lower, more preferably 400 ° C. or higher and 700 ° C. or lower, and 450 ° C. or higher and 650 ° C. or lower. Is even more preferable. By firing at a temperature in this range, zinc oxide core particles having the desired ultraviolet shielding ability can be successfully obtained. From the same viewpoint, the firing time is preferably 0.5 hours or more and 20 hours or less, more preferably 0.5 hours or more and 10 hours or less, and further preferably 1 hour or more and 5 hours or less.

このようにして、目的とする酸化亜鉛の芯材粒子が得られる。この粒子は、必要に応じ粉砕等の後処理に付され、所望の粒径を有するものとなる。粉砕手段に特に制限はなく、各種のメディアミルを用いることができる。 In this way, the desired zinc oxide core material particles are obtained. The particles are subjected to post-treatment such as pulverization as necessary to have a desired particle size. The crushing means is not particularly limited, and various media mills can be used.

本発明の表面処理酸化亜鉛粒子は、紫外線遮蔽膜を製造するための塗布用組成物の構成成分として特に有用である。この塗布用組成物は、表面処理酸化亜鉛粒子と、バインダー樹脂と、有機溶媒とを含んで構成されるものである。この塗布用組成物を基材の表面に塗布して塗膜を形成し、該塗膜から有機溶媒を除去することで、紫外線遮蔽膜を形成することができる。 The surface-treated zinc oxide particles of the present invention are particularly useful as constituents of a coating composition for producing an ultraviolet shielding film. This coating composition is composed of surface-treated zinc oxide particles, a binder resin, and an organic solvent. An ultraviolet shielding film can be formed by applying this coating composition to the surface of a base material to form a coating film and removing an organic solvent from the coating film.

塗布用組成物の塗布の方法に特に制限はなく、従来公知の塗布方法を用いることができる。例えばインクジェット法、ディスペンサ法、マイクロディスペンサ法、グラビア印刷法、スクリーン印刷法、ディップコーティング法、スピンコーティング法、スプレー塗布法、バーコーティング法、ロールコーティング法などを用いることができる。 The coating method of the coating composition is not particularly limited, and a conventionally known coating method can be used. For example, an inkjet method, a dispenser method, a microdispenser method, a gravure printing method, a screen printing method, a dip coating method, a spin coating method, a spray coating method, a bar coating method, a roll coating method and the like can be used.

塗布用組成物に含まれるバインダー樹脂としては、例えばアクリル樹脂、メタクリル樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ウレタン樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、フェノール樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、アミノ樹脂、フッ素樹脂、シリコーン樹脂、スチレン樹脂、不飽和ポリエステル樹脂、ナイロン樹脂などが挙げられる。これらのバインダー樹脂は1種を単独で、又は2種以上を組み合わせて用いることができる。基材としては、例えばガラス、樹脂フィルム、繊維製品、陶器などが挙げられる。 Examples of the binder resin contained in the coating composition include acrylic resin, methacrylic resin, polyvinyl butyral resin, polyvinyl alcohol resin, urethane resin, epoxy resin, polyimide resin, polyamide resin, polyamideimide resin, phenol resin, polyacetal resin, and polycarbonate. Examples thereof include resins, amino resins, fluororesins, silicone resins, styrene resins, unsaturated polyester resins and nylon resins. These binder resins may be used alone or in combination of two or more. Examples of the base material include glass, resin film, textile products, pottery and the like.

有機溶媒としては、例えば、炭素数1以上6以下の脂肪族一価アルコール、該一価アルコールのエステル、多価アルコール、多価アルコールのエステル、メチルエチルケトン等のケトン類、エーテル類、及びトルエン等の芳香族類等が挙げられる。これらの有機溶媒は1種を単独で、又は2種以上を組み合わせて用いることができる。 Examples of the organic solvent include aliphatic monohydric alcohols having 1 to 6 carbon atoms, esters of the monohydric alcohols, polyhydric alcohols, esters of polyhydric alcohols, ketones such as methyl ethyl ketone, ethers, and toluene. Examples include aromatics. These organic solvents may be used alone or in combination of two or more.

塗布用組成物に含まれる表面処理酸化亜鉛粒子の割合は、該塗布用組成物から形成される紫外線遮蔽膜の紫外線遮蔽能を十分に高める観点から、5質量%以上30質量%以下であることが好ましく、7質量%以上25質量%以下であることが更に好ましく、10質量%以上20質量%以下であることが一層好ましい。
塗布用組成物に含まれるバインダー樹脂の割合は、該塗布用組成物から形成される紫外線遮蔽膜に十分な強度を付与する観点から、1質量%以上30質量%以下であることが好ましく、2質量%以上20質量%以下であることが更に好ましく、3質量%以上15質量%以下であることが一層好ましい。
塗布用組成物に含まれる有機溶媒の割合は、該塗布用組成物を塗布するときの操作性を良好にする観点から、50質量%以上94質量%以下であることが好ましく、55質量%以上90質量%以下であることが更に好ましく、60質量%以上85質量%以下であることが一層好ましい。
The proportion of the surface-treated zinc oxide particles contained in the coating composition shall be 5% by mass or more and 30% by mass or less from the viewpoint of sufficiently enhancing the ultraviolet shielding ability of the ultraviolet shielding film formed from the coating composition. Is more preferable, and it is more preferably 7% by mass or more and 25% by mass or less, and further preferably 10% by mass or more and 20% by mass or less.
The proportion of the binder resin contained in the coating composition is preferably 1% by mass or more and 30% by mass or less from the viewpoint of imparting sufficient strength to the ultraviolet shielding film formed from the coating composition. It is more preferably 3% by mass or more and 20% by mass or less, and further preferably 3% by mass or more and 15% by mass or less.
The proportion of the organic solvent contained in the coating composition is preferably 50% by mass or more and 94% by mass or less, and 55% by mass or more, from the viewpoint of improving operability when the coating composition is applied. It is more preferably 90% by mass or less, and further preferably 60% by mass or more and 85% by mass or less.

塗布用組成物の別の実施形態として、上述した表面処理酸化亜鉛粒子を用いない実施形態が挙げられる。この実施形態の塗布用組成物は、ジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物による表面処理を施していない酸化亜鉛粒子と、ジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物と、ジベンゾイルメタン系紫外線吸収剤と、バインダー樹脂と、有機溶媒とを含むものである(以下、この塗布用組成物を「第2の塗布用組成物」ともいう。)。第2の塗布用組成物を用いた場合にも、目的とする紫外線遮蔽膜を首尾よく形成できる。尤も、紫外線遮蔽膜の白化の抑制効果が一層高い観点からは、上述した表面処理酸化亜鉛粒子を含む塗布用組成物を用いることが有利である。 Another embodiment of the coating composition is an embodiment that does not use the above-mentioned surface-treated zinc oxide particles. The coating composition of this embodiment is at least one selected from the group consisting of zinc oxide particles that have not been surface-treated with a dibenzoylmethane-based ultraviolet absorber and an organic siloxane compound, and dimethyldimethoxysilane and phenyltrimethoxysilane. It contains a silane compound, a dibenzoylmethane-based ultraviolet absorber, a binder resin, and an organic solvent (hereinafter, this coating composition is also referred to as a "second coating composition"). Even when the second coating composition is used, the target ultraviolet shielding film can be successfully formed. However, from the viewpoint of further enhancing the effect of suppressing whitening of the ultraviolet shielding film, it is advantageous to use the coating composition containing the above-mentioned surface-treated zinc oxide particles.

第2の塗布用組成物に含まれる、表面処理を施していない酸化亜鉛粒子の割合は、該塗布用組成物から形成される紫外線遮蔽膜の紫外線遮蔽能を十分に高める観点から、5質量%以上30質量%以下であることが好ましく、7質量%以上25質量%以下であることが更に好ましく、10質量%以上20質量%以下であることが一層好ましい。
第2の塗布用組成物に含まれるシラン化合物の割合は、該塗布用組成物中での酸化亜鉛粒子の分散性を十分に高める観点から、0.01質量%以上20質量%以下であることが好ましく、0.1質量%以上10質量%以下であることが更に好ましく、0.8質量%以上7質量%以下であることが一層好ましい。
第2の塗布用組成物に含まれるジベンゾイルメタン系紫外線吸収剤の割合は、該塗布用組成物から形成される紫外線遮蔽膜の紫外線遮蔽能を十分に高める観点から、0.1質量%以上30質量%以下であることが好ましく、0.5質量%以上20質量%以下であることが更に好ましく、0.8質量%以上10質量%以下であることが一層好ましい。
第2の塗布用組成物に含まれるバインダー樹脂及び溶媒の割合は、先に述べた塗布用組成物に含まれるバインダー樹脂及び溶媒の割合と同様とすることができる。
The proportion of the unsurface-treated zinc oxide particles contained in the second coating composition is 5% by mass from the viewpoint of sufficiently enhancing the ultraviolet shielding ability of the ultraviolet shielding film formed from the coating composition. It is preferably 30% by mass or more, more preferably 7% by mass or more and 25% by mass or less, and further preferably 10% by mass or more and 20% by mass or less.
The proportion of the silane compound contained in the second coating composition shall be 0.01% by mass or more and 20% by mass or less from the viewpoint of sufficiently enhancing the dispersibility of the zinc oxide particles in the coating composition. Is more preferable, and it is more preferably 0.1% by mass or more and 10% by mass or less, and further preferably 0.8% by mass or more and 7% by mass or less.
The ratio of the dibenzoylmethane-based ultraviolet absorber contained in the second coating composition is 0.1% by mass or more from the viewpoint of sufficiently enhancing the ultraviolet shielding ability of the ultraviolet shielding film formed from the coating composition. It is preferably 30% by mass or less, more preferably 0.5% by mass or more and 20% by mass or less, and further preferably 0.8% by mass or more and 10% by mass or less.
The ratio of the binder resin and the solvent contained in the second coating composition can be the same as the ratio of the binder resin and the solvent contained in the above-mentioned coating composition.

上述した各塗布用組成物から形成される紫外線遮蔽膜は、背景技術の項で述べた特許文献1ないし3に記載の酸化亜鉛粒子を用いて形成された紫外線遮蔽膜に比べて経時的な白化が抑制されたものとなる。したがって、上述した各塗布用組成物から形成される紫外線遮蔽膜は、例えば紫外線遮蔽性能を有し、かつ内容物視認性や透明性を有することが求められるプラスチック軟包装や容器包装、ディスプレイ関連部材用シート、太陽電池部材用シート、農業用シートに設けられる紫外線遮蔽層として有用なものとなる。 The ultraviolet shielding film formed from each of the above-mentioned coating compositions is whitened over time as compared with the ultraviolet shielding film formed by using the zinc oxide particles described in Patent Documents 1 to 3 described in the section of background technology. Is suppressed. Therefore, the ultraviolet shielding film formed from each of the above-mentioned coating compositions is required to have, for example, ultraviolet shielding performance, and visibility and transparency of the contents, such as plastic flexible packaging, container packaging, and display-related members. It is useful as an ultraviolet shielding layer provided for a sheet for a solar cell, a sheet for a solar cell member, and a sheet for agriculture.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, "%" means "mass%".

〔実施例1〕
本実施例では、酸化亜鉛の芯材粒子を表面処理して表面処理酸化亜鉛粒子を製造し、該表面処理酸化亜鉛粒子を用いて塗布用組成物を調製した。
[Example 1]
In this example, surface-treated zinc oxide core particles were surface-treated to produce surface-treated zinc oxide particles, and the surface-treated zinc oxide particles were used to prepare a coating composition.

(1)酸化亜鉛の芯材粒子の合成
純度98%の硫酸亜鉛七水和物100gを純水12リットルに溶解して水溶液を得た。この操作とは別に、25%水酸化ナトリウム水溶液を1400g用意した。流量調整可能なポンプを用い、塩化亜鉛水溶液に水酸化ナトリウム水溶液を連続して供給した。供給速度は40ml/分に設定した。この間、混合液を60℃に加温してpHを9−10に調整した。また、水酸化ナトリウム水溶液の供給中は、液を高速撹拌し続けた。これによって液中に、亜鉛を含む沈殿物を生成させた。
(1) Synthesis of Zinc Oxide Core Material Particles 100 g of zinc sulfate heptahydrate having a purity of 98% was dissolved in 12 liters of pure water to obtain an aqueous solution. Separately from this operation, 1400 g of a 25% aqueous sodium hydroxide solution was prepared. A sodium hydroxide aqueous solution was continuously supplied to the zinc chloride aqueous solution using a flow rate adjustable pump. The supply rate was set to 40 ml / min. During this time, the mixture was heated to 60 ° C. to adjust the pH to 9-10. Further, while the sodium hydroxide aqueous solution was being supplied, the solution was continuously stirred at high speed. As a result, a zinc-containing precipitate was formed in the liquid.

沈殿物が生成した液を濾過し、水洗を繰り返した後に、沈殿物を150℃で乾燥させ、引き続き大気雰囲気下、550℃で1.5時間にわたり焼成した。これによって、酸化亜鉛の芯材粒子を得た。この芯材粒子をビーズミルで粉砕して所望の粒径にした。 The liquid in which the precipitate was formed was filtered and washed with water repeatedly, and then the precipitate was dried at 150 ° C. and then calcined at 550 ° C. for 1.5 hours in an air atmosphere. As a result, zinc oxide core material particles were obtained. The core material particles were pulverized with a bead mill to obtain a desired particle size.

(2)表面処理
4−tert−ブチル−4’−メトキシジベンゾイルメタンを酢酸エチルに溶解して溶液となした。この溶液中に酸化亜鉛の芯材粒子を添加して混合した。次いで、溶液中から芯材粒子を引き上げた後、該芯材粒子をジメチルジメトキシシラン中に添加して混合した。次いで芯材粒子を引き上げた後、大気中で150℃に加熱して、ジメチルジメトキシシランの脱水縮合反応を行い、有機シロキサン化合物を生成させた。このようにして、酸化亜鉛の芯材粒子の表面を、ジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物によって処理してなる表面処理酸化亜鉛粒子を得た。表面処理酸化亜鉛粒子に含まれるジベンゾイルメタン系紫外線吸収剤の割合は、炭素原子換算で5.5%であり、有機シロキサン化合物の割合は、ケイ素原子換算で0.10%であった。
(2) Surface Treatment 4-tert-Butyl-4'-methoxydibenzoylmethane was dissolved in ethyl acetate to prepare a solution. Zinc oxide core particles were added to this solution and mixed. Then, the core material particles were pulled up from the solution, and then the core material particles were added to dimethyldimethoxysilane and mixed. Next, the core material particles were pulled up and then heated to 150 ° C. in the air to carry out a dehydration condensation reaction of dimethyldimethoxysilane to produce an organic siloxane compound. In this way, surface-treated zinc oxide particles obtained by treating the surface of the zinc oxide core material particles with a dibenzoylmethane-based ultraviolet absorber and an organic siloxane compound were obtained. The proportion of the dibenzoylmethane-based ultraviolet absorber contained in the surface-treated zinc oxide particles was 5.5% in terms of carbon atoms, and the proportion of the organic siloxane compound was 0.10% in terms of silicon atoms.

(3)塗布用組成物の調製
表面処理酸化亜鉛粒子と、ウレタン樹脂と、酢酸エチルとを混合して塗布用組成物を調製した。塗布用組成物における表面処理酸化亜鉛粒子の割合は14.0%、ウレタン樹脂の割合は5.7%、酢酸エチルの割合は69.0%とした。
(3) Preparation of Coating Composition A coating composition was prepared by mixing surface-treated zinc oxide particles, urethane resin, and ethyl acetate. The proportion of surface-treated zinc oxide particles in the coating composition was 14.0%, the proportion of urethane resin was 5.7%, and the proportion of ethyl acetate was 69.0%.

〔実施例2〕
本実施例では実施例1と同様に、酸化亜鉛の芯材粒子を表面処理して表面処理酸化亜鉛粒子を製造し、該表面処理酸化亜鉛粒子を用いて塗布用組成物を調製した。
[Example 2]
In this example, as in Example 1, surface-treated zinc oxide core particles were surface-treated to produce surface-treated zinc oxide particles, and the surface-treated zinc oxide particles were used to prepare a coating composition.

(1)酸化亜鉛の芯材粒子の合成
純度99%の塩化亜鉛600gを純水12リットルに溶解して水溶液を得た。この操作とは別に、25%水酸化ナトリウム水溶液を1400g用意した。流量調整可能なポンプを用い、塩化亜鉛水溶液に水酸化ナトリウム水溶液を連続して供給した。供給速度は40ml/分に設定した。この間、混合液を60℃に加温してpHを9−10に調整した。また、水酸化ナトリウム水溶液の供給中は、液を高速撹拌し続けた。これによって液中に、亜鉛を含む沈殿物を生成させた。
(1) Synthesis of Zinc Oxide Core Material Particles 600 g of zinc chloride having a purity of 99% was dissolved in 12 liters of pure water to obtain an aqueous solution. Separately from this operation, 1400 g of a 25% aqueous sodium hydroxide solution was prepared. A sodium hydroxide aqueous solution was continuously supplied to the zinc chloride aqueous solution using a flow rate adjustable pump. The supply rate was set to 40 ml / min. During this time, the mixture was heated to 60 ° C. to adjust the pH to 9-10. Further, while the sodium hydroxide aqueous solution was being supplied, the solution was continuously stirred at high speed. As a result, a zinc-containing precipitate was formed in the liquid.

沈殿物が生成した液を濾過し、その洗浄水の導電率(25℃)が400μs/cm以下になるまで水洗を繰り返した。次いで、水洗後の沈殿物を150℃で乾燥させ、引き続き大気雰囲気下、550℃で1.5時間にわたり焼成した。これによって、酸化亜鉛粒子を得た。この酸化亜鉛粒子をビーズミルで粉砕して所望の粒径にした。 The liquid in which the precipitate was formed was filtered, and washing with water was repeated until the conductivity (25 ° C.) of the washing water became 400 μs / cm or less. Then, the precipitate after washing with water was dried at 150 ° C., and subsequently calcined at 550 ° C. for 1.5 hours in an air atmosphere. As a result, zinc oxide particles were obtained. The zinc oxide particles were pulverized with a bead mill to obtain a desired particle size.

(2)表面処理及び塗布用組成物の調製
実施例1と同様とした。表面処理酸化亜鉛粒子に含まれるジベンゾイルメタン系紫外線吸収剤の割合は、炭素原子換算で5.5%であり、有機シロキサン化合物の割合は、ケイ素原子換算で0.10%であった。
(2) Surface Treatment and Preparation of Coating Composition The same as in Example 1. The proportion of the dibenzoylmethane-based ultraviolet absorber contained in the surface-treated zinc oxide particles was 5.5% in terms of carbon atoms, and the proportion of the organic siloxane compound was 0.10% in terms of silicon atoms.

〔実施例3〕
本実施例では実施例1と同様に、酸化亜鉛の芯材粒子を表面処理して表面処理酸化亜鉛粒子を製造し、該表面処理酸化亜鉛粒子を用いて塗布用組成物を調製した。
本実施例においては、実施例1で用いたジメチルジメトキシシランに代えてフェニルトリメトキシシランを用いた。これ以外は実施例1と同様にして、表面処理酸化亜鉛粒子及びそれを含む塗布用組成物を得た。表面処理酸化亜鉛粒子に含まれるジベンゾイルメタン系紫外線吸収剤の割合は、炭素原子換算で5.5%であり、有機シロキサン化合物の割合は、ケイ素原子換算で0.10%であった。
[Example 3]
In this example, as in Example 1, surface-treated zinc oxide core particles were surface-treated to produce surface-treated zinc oxide particles, and the surface-treated zinc oxide particles were used to prepare a coating composition.
In this example, phenyltrimethoxysilane was used instead of the dimethyldimethoxysilane used in Example 1. A surface-treated zinc oxide particles and a coating composition containing the same were obtained in the same manner as in Example 1 except for this. The proportion of the dibenzoylmethane-based ultraviolet absorber contained in the surface-treated zinc oxide particles was 5.5% in terms of carbon atoms, and the proportion of the organic siloxane compound was 0.10% in terms of silicon atoms.

〔実施例4〕
本実施例では実施例2と同様に、酸化亜鉛の芯材粒子を表面処理して表面処理酸化亜鉛粒子を製造し、該表面処理酸化亜鉛粒子を用いて塗布用組成物を調製した。
本実施例においては、実施例2で用いたジメチルジメトキシシランに代えてフェニルトリメトキシシランを用いた。これ以外は実施例2と同様にして、表面処理酸化亜鉛粒子及びそれを含む塗布用組成物を得た。表面処理酸化亜鉛粒子に含まれるジベンゾイルメタン系紫外線吸収剤の割合は、炭素原子換算で5.5%であり、有機シロキサン化合物の割合は、ケイ素原子換算で0.10%であった。
[Example 4]
In this example, as in Example 2, surface-treated zinc oxide core particles were surface-treated to produce surface-treated zinc oxide particles, and the surface-treated zinc oxide particles were used to prepare a coating composition.
In this example, phenyltrimethoxysilane was used instead of the dimethyldimethoxysilane used in Example 2. A surface-treated zinc oxide particles and a coating composition containing the same were obtained in the same manner as in Example 2 except for this. The proportion of the dibenzoylmethane-based ultraviolet absorber contained in the surface-treated zinc oxide particles was 5.5% in terms of carbon atoms, and the proportion of the organic siloxane compound was 0.10% in terms of silicon atoms.

〔実施例5〕
本実施例では、酸化亜鉛の芯材粒子を表面処理せずに使用して塗布用組成物を調製した。詳細には以下に示す成分を、以下に示す組成で混合して塗布用組成物を調製した。
・実施例1で合成した酸化亜鉛の芯材粒子 13%
・ジメチルジメトキシシラン 1%
・4−tert−ブチル−4’−メトキシジベンゾイルメタン 1%
・ウレタン樹脂 6%
・酢酸エチル 残部
[Example 5]
In this example, zinc oxide core particles were used without surface treatment to prepare a coating composition. Specifically, the components shown below were mixed with the composition shown below to prepare a composition for coating.
13% of zinc oxide core particles synthesized in Example 1
・ Didimethyldimethoxysilane 1%
4-tert-Butyl-4'-methoxydibenzoylmethane 1%
・ Urethane resin 6%
・ Ethyl acetate balance

〔実施例6〕
本実施例では、酸化亜鉛の芯材粒子を表面処理せずに使用して塗布用組成物を調製した。詳細には以下に示す成分を、以下に示す組成で混合して塗布用組成物を調製した。
・実施例2で合成した酸化亜鉛の芯材粒子 13%
・ジメチルジメトキシシラン 1%
・4−tert−ブチル−4’−メトキシジベンゾイルメタン 1%
・ウレタン樹脂 6%
・酢酸エチル 残部
[Example 6]
In this example, zinc oxide core particles were used without surface treatment to prepare a coating composition. Specifically, the components shown below were mixed with the composition shown below to prepare a composition for coating.
13% of zinc oxide core particles synthesized in Example 2
・ Didimethyldimethoxysilane 1%
4-tert-Butyl-4'-methoxydibenzoylmethane 1%
・ Urethane resin 6%
・ Ethyl acetate balance

〔実施例7〕
本実施例では、酸化亜鉛の芯材粒子を表面処理せずに使用して塗布用組成物を調製した。詳細には以下に示す成分を、以下に示す組成で混合して塗布用組成物を調製した。
・実施例1で合成した酸化亜鉛の芯材粒子 13%
・フェニルトリメトキシシラン 1%
・4−tert−ブチル−4’−メトキシジベンゾイルメタン 1%
・ウレタン樹脂 6%
・酢酸エチル 残部
[Example 7]
In this example, zinc oxide core particles were used without surface treatment to prepare a coating composition. Specifically, the components shown below were mixed with the composition shown below to prepare a composition for coating.
13% of zinc oxide core particles synthesized in Example 1
・ Phenyltrimethoxysilane 1%
4-tert-Butyl-4'-methoxydibenzoylmethane 1%
・ Urethane resin 6%
・ Ethyl acetate balance

〔実施例8〕
本実施例では、酸化亜鉛の芯材粒子を表面処理せずに使用して塗布用組成物を調製した。詳細には以下に示す成分を、以下に示す組成で混合して塗布用組成物を調製した。
・実施例2で合成した酸化亜鉛の芯材粒子 13%
・フェニルトリメトキシシラン 1%
・4−tert−ブチル−4’−メトキシジベンゾイルメタン 1%
・ウレタン樹脂 6%
・酢酸エチル 残部
[Example 8]
In this example, zinc oxide core particles were used without surface treatment to prepare a coating composition. Specifically, the components shown below were mixed with the composition shown below to prepare a composition for coating.
13% of zinc oxide core particles synthesized in Example 2
・ Phenyltrimethoxysilane 1%
4-tert-Butyl-4'-methoxydibenzoylmethane 1%
・ Urethane resin 6%
・ Ethyl acetate balance

〔比較例1〕
本比較例では実施例6と同様に、酸化亜鉛の芯材粒子を表面処理せずに使用して塗布用組成物を調製した。ただし、本比較例においては、実施例6で用いたジメチルジメトキシシランに代えてメチルトリメトキシシランを用いた。これ以外は実施例6と同様にして、表面処理酸化亜鉛粒子及びそれを含む塗布用組成物を得た。
[Comparative Example 1]
In this comparative example, as in Example 6, a coating composition was prepared using zinc oxide core material particles without surface treatment. However, in this comparative example, methyltrimethoxysilane was used instead of the dimethyldimethoxysilane used in Example 6. A surface-treated zinc oxide particles and a coating composition containing the same were obtained in the same manner as in Example 6 except for this.

〔比較例2〕
本比較例では実施例6と同様に、酸化亜鉛の芯材粒子を表面処理せずに使用して塗布用組成物を調製した。ただし、本比較例においては、実施例6で用いたジメチルジメトキシシランに代えてメチルトリエトキシシランを用いた。これ以外は実施例6と同様にして、表面処理酸化亜鉛粒子及びそれを含む塗布用組成物を得た。
[Comparative Example 2]
In this comparative example, as in Example 6, a coating composition was prepared using zinc oxide core material particles without surface treatment. However, in this comparative example, methyltriethoxysilane was used instead of the dimethyldimethoxysilane used in Example 6. A surface-treated zinc oxide particles and a coating composition containing the same were obtained in the same manner as in Example 6 except for this.

〔比較例3〕
本比較例では実施例6と同様に、酸化亜鉛の芯材粒子を表面処理せずに使用して塗布用組成物を調製した。ただし、本比較例においては、実施例6で用いたジメチルジメトキシシランを用いなかった。これ以外は実施例6と同様にして、表面処理酸化亜鉛粒子及びそれを含む塗布用組成物を得た。
[Comparative Example 3]
In this comparative example, as in Example 6, a coating composition was prepared using zinc oxide core material particles without surface treatment. However, in this comparative example, the dimethyldimethoxysilane used in Example 6 was not used. A surface-treated zinc oxide particles and a coating composition containing the same were obtained in the same manner as in Example 6 except for this.

〔評価〕
実施例及び比較例で合成した酸化亜鉛の芯材粒子について、相対スペクトル吸収強度、ハロゲンの含有量及び一次粒子径を上述の方法で測定した。それらの結果を以下の表1に示す。
また、実施例及び比較例で得られた塗布用組成物を、ポリエチレンテレフタレート製のフィルム(厚さ100μm、東レ株式会社製のT−60(商品名))に塗布した。塗布にはバーコーター(#7)を用いた。塗布量は3g/mとした。このようにして得られた塗膜を大気下に80℃で乾燥した。乾燥時間は15分とした。これによって得られた膜についてヘイズをヘイズメータ(日本電色工業株式会社製、NDH−4000)によって測定した。測定は、膜の形成直後、及び膜の形成後、該膜を40℃、80%RHに保った恒温恒湿槽内に24時間保管後に行った。測定されたヘイズの値からヘイズ上昇率を算出した。その結果を表1に示す。ヘイズ上昇率の算出は以下に示す式を用いて行った。
ヘイズ上昇率(%)=(H2−H1)/H1×100
H1:膜の形成直後のヘイズ
H2:膜を形成して24時間(40℃、80%RH)経過後のヘイズ
[Evaluation]
With respect to the zinc oxide core material particles synthesized in Examples and Comparative Examples, the relative spectral absorption intensity, the halogen content and the primary particle size were measured by the above-mentioned methods. The results are shown in Table 1 below.
Further, the coating compositions obtained in Examples and Comparative Examples were applied to a film made of polyethylene terephthalate (thickness 100 μm, T-60 (trade name) manufactured by Toray Industries, Inc.). A bar coater (# 7) was used for application. The coating amount was 3 g / m 2 . The coating film thus obtained was dried in the air at 80 ° C. The drying time was 15 minutes. The haze of the film thus obtained was measured with a haze meter (NDH-4000, manufactured by Nippon Denshoku Industries Co., Ltd.). The measurement was carried out immediately after the formation of the film and after the film was stored in a constant temperature and humidity chamber kept at 40 ° C. and 80% RH for 24 hours. The haze increase rate was calculated from the measured haze value. The results are shown in Table 1. The haze increase rate was calculated using the formula shown below.
Haze increase rate (%) = (H2-H1) / H1 × 100
H1: Haze immediately after film formation H2: Haze 24 hours (40 ° C., 80% RH) after film formation

Figure 2021042110
Figure 2021042110

表1に示す結果から明らかなとおり、実施例の塗布用組成物から形成された膜は、比較例の塗布用組成物から形成された膜に比べて、経時後の白化が防止されていることが判る。 As is clear from the results shown in Table 1, the film formed from the coating composition of the example is prevented from whitening after aging as compared with the film formed from the coating composition of the comparative example. I understand.

Claims (12)

酸化亜鉛の芯材粒子の表面に、ジベンゾイルメタン系紫外線吸収剤及び有機シロキサン化合物を有してなり、
前記有機シロキサン化合物が、ジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物の脱水縮合生成物を含む、表面処理酸化亜鉛粒子。
A dibenzoylmethane-based ultraviolet absorber and an organic siloxane compound are provided on the surface of zinc oxide core particles.
Surface-treated zinc oxide particles, wherein the organic siloxane compound contains a dehydration condensation product of at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane.
前記ジベンゾイルメタン系紫外線吸収剤が、4−tert−ブチル−4’−メトキシジベンゾイルメタンである請求項1に記載の表面処理酸化亜鉛粒子。 The surface-treated zinc oxide particles according to claim 1, wherein the dibenzoylmethane-based ultraviolet absorber is 4-tert-butyl-4'-methoxydibenzoylmethane. 前記酸化亜鉛の芯材粒子がハロゲンを含有する、請求項1又は2に記載の表面処理酸化亜鉛粒子。 The surface-treated zinc oxide particles according to claim 1 or 2, wherein the zinc oxide core particles contain halogen. ハロゲンの含有量が0.015質量%以上1.0質量%以下である、請求項3に記載の表面処理酸化亜鉛粒子。 The surface-treated zinc oxide particles according to claim 3, wherein the halogen content is 0.015% by mass or more and 1.0% by mass or less. 84Kにおいて、電子スピン共鳴法で得られる4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルの2.0mmol/Lのトルエン溶液の吸収強度をIとし、
84Kにおいて、電子スピン共鳴法で得られる前記酸化亜鉛の芯材粒子1g当たりのスペクトル吸収強度をIとしたとき、
I/Iで表される相対スペクトル吸収強度が0.001以上である、請求項1ないし4のいずれか一項に記載の表面処理酸化亜鉛粒子。
At 84K, the absorption intensity of a 2.0 mmol / L toluene solution of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl obtained by electron spin resonance was set to I 0 .
At 84K, when the spectral absorption intensity per 1 g of the zinc oxide core material particles obtained by the electron spin resonance method is I,
The surface-treated zinc oxide particles according to any one of claims 1 to 4, wherein the relative spectral absorption intensity represented by I / I 0 is 0.001 or more.
請求項1ないし5のいずれか一項に記載の表面処理酸化亜鉛粒子と、バインダー樹脂と、有機溶媒とを含む塗布用組成物。 A coating composition containing the surface-treated zinc oxide particles according to any one of claims 1 to 5, a binder resin, and an organic solvent. 酸化亜鉛粒子と、ジメチルジメトキシシラン及びフェニルトリメトキシシランからなる群より選ばれる少なくとも一種のシラン化合物と、ジベンゾイルメタン系紫外線吸収剤と、バインダー樹脂と、有機溶媒とを含む塗布用組成物。 A coating composition containing zinc oxide particles, at least one silane compound selected from the group consisting of dimethyldimethoxysilane and phenyltrimethoxysilane, a dibenzoylmethane-based ultraviolet absorber, a binder resin, and an organic solvent. 前記ジベンゾイルメタン系紫外線吸収剤が、4−tert−ブチル−4’−メトキシジベンゾイルメタンである請求項7に記載の塗布用組成物。 The coating composition according to claim 7, wherein the dibenzoylmethane-based ultraviolet absorber is 4-tert-butyl-4'-methoxydibenzoylmethane. 前記酸化亜鉛の芯材粒子がハロゲンを含有する、請求項7又は8に記載の塗布用組成物。 The coating composition according to claim 7 or 8, wherein the zinc oxide core particles contain halogen. ハロゲンの含有量が0.015質量%以上1.0質量%以下である、請求項9に記載の塗布用組成物。 The coating composition according to claim 9, wherein the halogen content is 0.015% by mass or more and 1.0% by mass or less. 84Kにおいて、電子スピン共鳴法で得られる4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルの2.0mmol/Lのトルエン溶液の吸収強度をIとし、
84Kにおいて、電子スピン共鳴法で得られる前記酸化亜鉛の芯材粒子1g当たりのスペクトル吸収強度をIとしたとき、
I/Iで表される相対スペクトル吸収強度が0.001以上である、請求項7ないし10のいずれか一項に記載の塗布用組成物。
At 84K, the absorption intensity of a 2.0 mmol / L toluene solution of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl obtained by electron spin resonance was set to I 0 .
At 84K, when the spectral absorption intensity per 1 g of the zinc oxide core material particles obtained by the electron spin resonance method is I,
The coating composition according to any one of claims 7 to 10, wherein the relative spectral absorption intensity represented by I / I 0 is 0.001 or more.
請求項7ないし11のいずれか一項に記載の塗布用組成物を基材の表面に塗布して塗膜を形成し、該塗膜から前記有機溶媒を除去する工程を有する紫外線遮蔽膜の製造方法。 Production of an ultraviolet shielding film having a step of applying the coating composition according to any one of claims 7 to 11 to the surface of a substrate to form a coating film, and removing the organic solvent from the coating film. Method.
JP2019166665A 2019-09-12 2019-09-12 SURFACE-TREATED ZINC OXIDE PARTICLES AND COATING COMPOSITION Active JP7267159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166665A JP7267159B2 (en) 2019-09-12 2019-09-12 SURFACE-TREATED ZINC OXIDE PARTICLES AND COATING COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166665A JP7267159B2 (en) 2019-09-12 2019-09-12 SURFACE-TREATED ZINC OXIDE PARTICLES AND COATING COMPOSITION

Publications (2)

Publication Number Publication Date
JP2021042110A true JP2021042110A (en) 2021-03-18
JP7267159B2 JP7267159B2 (en) 2023-05-01

Family

ID=74861789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166665A Active JP7267159B2 (en) 2019-09-12 2019-09-12 SURFACE-TREATED ZINC OXIDE PARTICLES AND COATING COMPOSITION

Country Status (1)

Country Link
JP (1) JP7267159B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131528A (en) * 1999-08-24 2001-05-15 Kose Corp Hydrous powder composition and method for producing the same and cosmetic containing the same
JP2002154915A (en) * 2000-09-11 2002-05-28 Showa Denko Kk Cosmetic
JP2003096202A (en) * 2001-09-26 2003-04-03 Hakusui Tech Co Ltd Method of manufacturing ultraviolet-shielding resin film
JP2004059421A (en) * 2002-06-05 2004-02-26 Showa Denko Kk Silica coated zinc oxide-containing powder, organic polymer composition containing the same and molded article
JP2007131460A (en) * 2001-09-14 2007-05-31 Showa Denko Kk Silica-coated mixed crystal oxide particle, its production method, and cosmetic using the same
JP2010195773A (en) * 2009-01-27 2010-09-09 Shiseido Co Ltd Water-in-oil type emulsified sunburn care cosmetic
JP2018024577A (en) * 2017-09-11 2018-02-15 住友大阪セメント株式会社 Zinc oxide powder, dispersion liquid, paint, and cosmetics
JP2019026525A (en) * 2017-08-01 2019-02-21 住友大阪セメント株式会社 Method for producing surface-treated zinc oxide particles
JP2020158350A (en) * 2019-03-27 2020-10-01 三井金属鉱業株式会社 Zinc oxide particles and production method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131528A (en) * 1999-08-24 2001-05-15 Kose Corp Hydrous powder composition and method for producing the same and cosmetic containing the same
JP2002154915A (en) * 2000-09-11 2002-05-28 Showa Denko Kk Cosmetic
JP2007131460A (en) * 2001-09-14 2007-05-31 Showa Denko Kk Silica-coated mixed crystal oxide particle, its production method, and cosmetic using the same
JP2003096202A (en) * 2001-09-26 2003-04-03 Hakusui Tech Co Ltd Method of manufacturing ultraviolet-shielding resin film
JP2004059421A (en) * 2002-06-05 2004-02-26 Showa Denko Kk Silica coated zinc oxide-containing powder, organic polymer composition containing the same and molded article
JP2010195773A (en) * 2009-01-27 2010-09-09 Shiseido Co Ltd Water-in-oil type emulsified sunburn care cosmetic
JP2019026525A (en) * 2017-08-01 2019-02-21 住友大阪セメント株式会社 Method for producing surface-treated zinc oxide particles
JP2018024577A (en) * 2017-09-11 2018-02-15 住友大阪セメント株式会社 Zinc oxide powder, dispersion liquid, paint, and cosmetics
JP2020158350A (en) * 2019-03-27 2020-10-01 三井金属鉱業株式会社 Zinc oxide particles and production method thereof

Also Published As

Publication number Publication date
JP7267159B2 (en) 2023-05-01

Similar Documents

Publication Publication Date Title
CN109923062B (en) Zirconium nitride powder and method for producing same
Auffan et al. Long-term aging of a CeO2 based nanocomposite used for wood protection
JP6241700B1 (en) Method for producing silicon compound-coated oxide particles
AU2006202179B2 (en) Lower-energy process for preparing passivated inorganic nanoparticles
Siddiquey et al. Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane
Rahal et al. Photocatalytic efficiency and self-cleaning properties under visible light of cotton fabrics coated with sensitized TiO2
CN110291042B (en) Mixed powder for forming black film and method for producing same
CN110891898A (en) Zirconium nitride powder and method for producing same
US10870105B2 (en) Metatitanic acid particles, method for producing metatitanic acid particles, and composition for forming photocatalyst
CN102459084A (en) Black composite particle, black resin composition, color filter substrate and liquid crystal display
US6117228A (en) Heat-stable iron oxide yellow pigments
JP7267159B2 (en) SURFACE-TREATED ZINC OXIDE PARTICLES AND COATING COMPOSITION
JP6179839B1 (en) Silicon-doped metal oxide particles, and ultraviolet absorbing composition comprising silicon-doped metal oxide particles
El-Toni et al. Silica coating of Zn2Al/4-hydroxy-3-methoxybenzoic acid nanocomposites via seeded polymerization technique
JP7315354B2 (en) Coated zinc oxide particles and method for producing the same
Mariammal et al. Ethanol Sensor Using Zn1− x Cd x O (x= 0.00 and 0.10) Nanorods by Fiber-Optic Technique
US11084936B2 (en) Method for producing oxide particles with controlled color characteristics, oxide particles, and coating or film-like composition comprising the same
JP7096341B2 (en) Method for manufacturing goethite pigment
WO2017208616A1 (en) Colorant / uv protectant
JP2004244599A (en) Modified carbon black particle powder, its manufacturing method, and coating material and resin composition containing it
El-Toni et al. Direct coating for layered double hydroxide/4, 4′-diaminostilbene–2, 2′-disulfonic acid nanocomposite with silica by seeded polymerization technique
JP2023107263A (en) Zirconium nitride powder containing zinc-based composition and manufacturing method of the same
JP2023132124A (en) Zirconium nitride powder, and method of producing the same
JP6183677B1 (en) Colored UV protection agent
Gutiérrez Franco et al. Gadolinium-based micro and nanophosphors: a comparative study of properties and synthesis methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R150 Certificate of patent or registration of utility model

Ref document number: 7267159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150