JP2021038995A - Impurity analysis method of silicon substrate surface - Google Patents

Impurity analysis method of silicon substrate surface Download PDF

Info

Publication number
JP2021038995A
JP2021038995A JP2019160250A JP2019160250A JP2021038995A JP 2021038995 A JP2021038995 A JP 2021038995A JP 2019160250 A JP2019160250 A JP 2019160250A JP 2019160250 A JP2019160250 A JP 2019160250A JP 2021038995 A JP2021038995 A JP 2021038995A
Authority
JP
Japan
Prior art keywords
silicon substrate
phase decomposition
gas phase
impurities
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019160250A
Other languages
Japanese (ja)
Other versions
JP7409806B2 (en
Inventor
健司 荒木
Kenji Araki
健司 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2019160250A priority Critical patent/JP7409806B2/en
Publication of JP2021038995A publication Critical patent/JP2021038995A/en
Application granted granted Critical
Publication of JP7409806B2 publication Critical patent/JP7409806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

To provide a silicon substrate surface impurity analysis method in which impurities on the surface of a silicon substrate are analyzed by total reflection fluorescent X-ray analysis.SOLUTION: A silicon substrate surface impurity analysis method is a method in which a vapor-phase cracking is performed by making a hydrofluoric acid of 20-30% volume concentration and vapors rising from a hydrogen peroxide solution of 12.4-18.6% volume concentration contact with the surface of the silicon substrate for 15 minutes or more; and subsequently impurities on the surface of the silicon substrate are assessed using a total reflection fluorescent X-ray analysis method.SELECTED DRAWING: Figure 3

Description

本発明は、シリコン基板表面の不純物分析方法であって、特に全反射蛍光X線分析によりシリコン基板表面の不純物の分析を行う、シリコン基板表面の不純物分析方法に関するものである。 The present invention relates to a method for analyzing impurities on the surface of a silicon substrate, and particularly to a method for analyzing impurities on the surface of a silicon substrate, which analyzes impurities on the surface of the silicon substrate by total internal reflection fluorescent X-ray analysis.

半導体デバイス製造工程では、ウェーハ清浄度管理が重要であり、ウェーハ表面不純物分析方法としてWSA(Wafer Surface Analysis)が行われている。
WSAでは、ウェーハ表面を酸蒸気に晒し、ウェーハ表面自然酸化膜を溶解後、酸溶液でウェーハ表面を走査することで、自然酸化膜を含むウェーハ表面の不純物を回収し、回収した酸溶液を誘導結合プラズマ質量分析装置等で測定している。この方法は、ウェーハ表面不純物を回収・濃縮することで高感度分析が行えることを特徴とする反面、ウェーハ面内の不純物の位置情報は消失してしまう欠点がある。
Wafer cleanliness control is important in the semiconductor device manufacturing process, and WSA (Wafer Surface Analysis) is used as a wafer surface impurity analysis method.
In WSA, the wafer surface is exposed to acid vapor, the natural oxide film on the wafer surface is dissolved, and then the wafer surface is scanned with an acid solution to recover impurities on the wafer surface including the natural oxide film and induce the recovered acid solution. It is measured with a coupled plasma mass analyzer or the like. This method is characterized in that high-sensitivity analysis can be performed by recovering and concentrating impurities on the wafer surface, but has a drawback that the position information of impurities on the wafer surface is lost.

一方、簡便にウェーハ表面不純物を分析できる方法として全反射蛍光X線分析法(Total refrection X−Ray Fluorescence analysis、 以下 TXRF法という)がある。TXRF法は、全反射条件で入射したX線によりウェーハ表面不純物を励起し、発生する蛍光X線を検出することで、ウェーハ表面不純物を高感度に検出できる方法である。
図1にTXRF法の原理図を示す。TXRF法は、非破壊で、かつ不純物のウェーハ面内分布を分析することが可能で、局所的な汚染の検出には威力を発揮する。一方、WSA等の化学分析に比べ、検出感度が劣るという問題もある。
On the other hand, as a method capable of easily analyzing wafer surface impurities, there is a total reflection X-Ray Fluorescence analysis method (hereinafter referred to as TXRF method). The TXRF method is a method capable of detecting wafer surface impurities with high sensitivity by exciting wafer surface impurities with X-rays incident under total reflection conditions and detecting generated fluorescent X-rays.
FIG. 1 shows a principle diagram of the TXRF method. The TXRF method is non-destructive and can analyze the in-plane distribution of impurities, which is effective in detecting local contamination. On the other hand, there is also a problem that the detection sensitivity is inferior to that of chemical analysis such as WSA.

そこで、近年は、WSAとTXRF法を組み合わせ、不純物回収を行った酸溶液をウェーハ上で乾燥させ、その乾燥痕上でTXRF分析を行うことで、TXRF法の高感度化も行われているが、TXRF法の利点であった不純物の位置情報が失われる欠点がある。
このため、ウェーハ表面を気相分解後に乾燥することで、ウェーハ表面不純物をパーティクル状に凝集させ(図2)、その状態でTXRF分析を行うことで、ウェーハ面内不純物の位置情報を保ったまま、検出強度が増加する効果を利用した方法も行われている。
図3に気相分解−TXRF法のフロー図を示す(特許文献1)。
Therefore, in recent years, the TXRF method has been made more sensitive by combining the WSA and the TXRF method, drying the acid solution from which impurities have been recovered on the wafer, and performing TXRF analysis on the drying marks. , The advantage of the TXRF method is that the position information of impurities is lost.
Therefore, by drying the wafer surface after vapor phase decomposition, impurities on the wafer surface are aggregated into particles (Fig. 2), and by performing TXRF analysis in that state, the position information of the impurities in the wafer surface is maintained. , A method utilizing the effect of increasing the detection intensity is also used.
FIG. 3 shows a flow chart of the gas phase decomposition-TXRF method (Patent Document 1).

特許第3690484号Patent No. 3690484

しかし、ウェーハ表面不純物のパーティクル状への形態変化における気相分解条件は、一般的にフッ化水素酸(以下HFと略す)が用いられているものの、濃度や気相分解時間の最適値までは言及されていなかった。
このため適切な気相分解が行われず、パーティクル状への形態変化が不十分となり、結果、ばらつきの増大につながることが問題となることがわかった。
However, although hydrofluoric acid (hereinafter abbreviated as HF) is generally used as the gas phase decomposition condition for the morphological change of wafer surface impurities into particles, the optimum values of concentration and gas phase decomposition time are reached. It was not mentioned.
For this reason, it has been found that proper gas phase decomposition is not performed, the morphological change into particles is insufficient, and as a result, it leads to an increase in variation.

そこで、本発明は、気相分解条件によるパーティクル状への形態変化と適切な気相分解条件を提供することにより、ウェーハ面内不純物の位置情報を保ったまま、更なる高感度でTXRF分析を行う方法を提供することを目的とする。 Therefore, the present invention provides TXRF analysis with higher sensitivity while maintaining the position information of impurities in the wafer plane by providing a particle-like morphological change according to the vapor phase decomposition conditions and appropriate vapor phase decomposition conditions. The purpose is to provide a way to do it.

本発明は、上記の課題を解決するためになされたもので、シリコン基板表面の不純物分析方法であって、シリコン基板表面に20〜30%体積濃度のフッ化水素酸と12.4〜18.6%体積濃度の過酸化水素水から発生する蒸気を15分間以上接触させて気相分解を行い、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することを特徴とするシリコン基板表面の不純物分析方法を提供する。 The present invention has been made to solve the above-mentioned problems, and is a method for analyzing impurities on the surface of a silicon substrate, wherein 20 to 30% volume concentration of hydrogen peroxide and 12.4 to 18. Silicon characterized in that vapors generated from a 6% volume concentration hydrogen peroxide solution are brought into contact with each other for 15 minutes or more to perform vapor phase decomposition, and then impurities on the surface of the silicon substrate are evaluated by a total reflected fluorescent X-ray analysis method. A method for analyzing impurities on the surface of a substrate is provided.

HF濃度が20〜30%、H濃度が12.4〜18.6%の濃度で混合した酸溶液を用いた気相分解後のTXRF分析によるX線強度は、HFのみ(50%)の気相分解後のTXRF分析によるX線強度より4倍程度増加し、気相分解時間は15分間以上で最大の効果を発揮する。 HF concentration is 20 to 30%, X-ray intensity by TXRF analysis after vapor phase decomposition of the concentration of H 2 O 2 was used mixed acid solution at a concentration of 12.4 to 18.6% is, HF only (50% ) Is increased by about 4 times from the X-ray intensity by TXRF analysis after the gas phase decomposition, and the maximum effect is exhibited when the gas phase decomposition time is 15 minutes or more.

また、前記気相分解を行うにあたり、開口を有する容器内に薬液を注入し、前記容器の開口を前記シリコン基板により覆うことにより密閉空間を形成し、前記薬液の蒸気により、前記密閉空間に面した前記シリコン基板表面を気相分解するようにすることができる。 Further, in performing the gas phase decomposition, a chemical solution is injected into a container having an opening, a closed space is formed by covering the opening of the container with the silicon substrate, and the vapor of the chemical solution makes a surface on the closed space. The surface of the silicon substrate can be vapor-phase decomposed.

このように、容器の密閉空間内に充満する薬液の蒸気に、前記密閉空間に面した前記シリコン基板表面を晒すことができ、前記シリコン基板表面を気相分解することができる。 In this way, the surface of the silicon substrate facing the closed space can be exposed to the vapor of the chemical solution that fills the closed space of the container, and the surface of the silicon substrate can be vapor-phase decomposed.

また、前記気相分解後に、前記シリコン基板表面を乾燥させ、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することができる。 Further, after the vapor phase decomposition, the surface of the silicon substrate can be dried, and then impurities on the surface of the silicon substrate can be evaluated by total reflection fluorescent X-ray analysis.

このように、前記気相分解後に、前記シリコン基板表面を乾燥させることで、シリコン基板表面不純物をパーティクル状に凝集させ、その状態で全反射蛍光X線分析法により前記シリコン基板表面の不純物を位置情報を保ったまま評価することができる。 In this way, after the vapor phase decomposition, the surface of the silicon substrate is dried to aggregate the impurities on the surface of the silicon substrate into particles, and in that state, the impurities on the surface of the silicon substrate are positioned by the total reflection fluorescent X-ray analysis method. It can be evaluated while preserving the information.

また、前記シリコン基板表面の乾燥を、前記シリコン基板を気相分解した容器を加熱することにより行うことができる。 Further, the surface of the silicon substrate can be dried by heating a container in which the silicon substrate is vapor-phase-decomposed.

このように、前記シリコン基板を気相分解した容器を加熱することにより、容易に前記シリコン基板表面の乾燥が促進される。 In this way, by heating the container in which the silicon substrate is vapor-phase-decomposed, drying of the surface of the silicon substrate is easily promoted.

また本発明は、前記シリコン基板表面の乾燥を、前記シリコン基板に赤外線を照射して行うことができる。 Further, in the present invention, the surface of the silicon substrate can be dried by irradiating the silicon substrate with infrared rays.

このようにすれば、赤外線により前記シリコン基板を直接加熱して、前記シリコン基板表面の乾燥を促進することができる。 In this way, the silicon substrate can be directly heated by infrared rays to accelerate the drying of the surface of the silicon substrate.

本発明のシリコン基板表面の不純物分析方法であれば、HF濃度が20〜30%、H濃度が12.4〜18.6%の濃度で混合した酸溶液を用いた気相分解後のTXRF分析によるX線強度は、HFのみ(50%)の気相分解後のTXRF分析によるX線強度より4倍程度増加し、気相分解時間は15分間以上で最大の効果を発揮することができる。従って、極めて高感度で分析することができる。
さらには、気相分解後に、前記シリコン基板表面を乾燥させることで、シリコン基板表面不純物をパーティクル状に凝集させることができるので、ウェーハ面内不純物の位置情報を保ったまま、更なる高感度でTXRF分析を行うことができる。
If impurity analysis method of the silicon substrate surface of the present invention, HF concentration of 20~30%, H 2 O 2 concentration after gas phase decomposition using mixed acid solution at a concentration of 12.4 to 18.6% The X-ray intensity by TXRF analysis is about 4 times higher than the X-ray intensity by TXRF analysis after gas phase decomposition of HF only (50%), and the maximum effect is exhibited when the gas phase decomposition time is 15 minutes or more. Can be done. Therefore, it is possible to analyze with extremely high sensitivity.
Furthermore, by drying the surface of the silicon substrate after vapor phase decomposition, impurities on the surface of the silicon substrate can be aggregated in the form of particles, so that the position information of the impurities in the wafer surface can be maintained and the sensitivity can be further increased. TXRF analysis can be performed.

TXRF法の原理図である。It is a principle diagram of the TXRF method. 気相分解〜乾燥過程におけるパーティクルへの形態変化を示す図である。It is a figure which shows the morphological change into a particle in a gas phase decomposition-drying process. 気相分解−TXRF法のフロー図である。It is a flow chart of a gas phase decomposition-TXRF method. 気相分解容器の一例を示す断面図である。It is sectional drawing which shows an example of a gas phase decomposition container. HF+H気相分解時間と気相分解後のX線強度増大を示す。The HF + H 2 O 2 gas phase decomposition time and the increase in X-ray intensity after the gas phase decomposition are shown. HF+H気相分解時間とTXRF検出下限値を示す。The HF + H 2 O 2 vapor phase decomposition time and the lower limit of TXRF detection are shown. HF+H組成と気相分解前後のX線強度増大比の結果を示す。The results of the HF + H 2 O 2 composition and the X-ray intensity increase ratio before and after the gas phase decomposition are shown. HF気相分解時間と気相分解後のX線強度増大比の結果を示す。The results of the HF gas phase decomposition time and the X-ray intensity increase ratio after the gas phase decomposition are shown. HF気相分解時間とTXRF検出下限値の結果を示す。The results of the HF vapor phase decomposition time and the lower limit of TXRF detection are shown.

以下、本発明を詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

TXRF法によれば、非破壊で、かつ不純物のウェーハ面内分布を分析することが可能で、局所的な汚染の検出には威力を発揮するが、WSA等の化学分析に比べ、検出感度が劣るという問題もある。 According to the TXRF method, it is possible to analyze the in-plane distribution of impurities in a non-destructive manner, which is effective in detecting local contamination, but the detection sensitivity is higher than that of chemical analysis such as WSA. There is also the problem of being inferior.

WSAとTXRF法を組み合わせ、TXRF法の高感度化も行われているが、TXRF法の利点であった不純物の位置情報が失われる欠点がある。
このため、ウェーハ表面を気相分解後に乾燥することで、ウェーハ表面不純物をパーティクル状に凝集させ、その状態でTXRF分析を行うことで、ウェーハ面内不純物の位置情報を保ったまま、検出強度が増加させることも行われた。
Although the TXRF method has been made more sensitive by combining the WSA and the TXRF method, there is a drawback that the position information of impurities, which is an advantage of the TXRF method, is lost.
Therefore, by drying the wafer surface after vapor phase decomposition, impurities on the wafer surface are aggregated into particles, and by performing TXRF analysis in that state, the detection intensity can be increased while maintaining the position information of the impurities on the wafer surface. It was also increased.

しかし、適切な気相分解条件が不明で、パーティクル状への形態変化が不十分となり、結果、ばらつきの増大につながることが問題となることがわかった。 However, it has been found that the appropriate vapor phase decomposition conditions are unknown, and the morphological change into particles is insufficient, resulting in an increase in variation.

そこで、本発明者は、気相分解条件によるパーティクル状への形態変化と適切な気相分解条件を提供することにより、ウェーハ面内不純物の位置情報を保ったまま、更なる高感度でTXRF分析を行う方法を提供するべく、フッ化水素酸(HF)と過酸化水素水(H)の混酸による気相分解により、TXRF分析に適したパーティクル状への形態変化を及ぼすことを見出した。さらに、HFとHの濃度および気相分解時間の関係も見出し、従来より高感度にTXRF分析が可能となることを見出した。
すなわち、本発明は、シリコン基板表面の不純物分析方法であって、前記シリコン基板表面に20〜30%体積濃度のフッ化水素酸と12.4〜18.6%体積濃度の過酸化水素水から発生する蒸気を15分間以上接触させて気相分解を行い、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することを特徴とするシリコン基板表面の不純物分析方法である。
HF体積濃度が20〜30%、H体積濃度が12.4〜18.6%の濃度で混合した酸溶液を用いた気相分解後のTXRF分析によるX線強度は、HFのみ(50%)の気相分解後のTXRF分析によるX線強度より4倍程度増加し、気相分解時間は15分間以上で最大の効果を発揮する。
Therefore, the present inventor provides TXRF analysis with higher sensitivity while maintaining the position information of impurities in the wafer surface by providing the morphological change into particles according to the gas phase decomposition conditions and the appropriate gas phase decomposition conditions. In order to provide a method for performing the above, it was found that the vapor phase decomposition by a mixed acid of hydrofluoric acid (HF) and hydrogen peroxide solution (H 2 O 2) exerts a morphological change into particles suitable for TXRF analysis. It was. Furthermore, we also found the relationship between the concentration of HF and H 2 O 2 and the gas phase decomposition time, and found that TXRF analysis can be performed with higher sensitivity than before.
That is, the present invention is a method for analyzing impurities on the surface of a silicon substrate, from 20 to 30% volume concentration of hydrofluoric acid and 12.4 to 18.6% volume concentration of hydrogen peroxide solution on the surface of the silicon substrate. This is a method for analyzing impurities on the surface of a silicon substrate, which comprises contacting the generated steam for 15 minutes or more to perform gas phase decomposition, and then evaluating impurities on the surface of the silicon substrate by a total reflected fluorescent X-ray analysis method.
The X-ray intensity by TXRF analysis after gas phase decomposition using an acid solution mixed at a concentration of HF volume concentration of 20 to 30% and H 2 O 2 volume concentration of 12.4 to 18.6% is HF only ( 50%) is increased by about 4 times from the X-ray intensity by TXRF analysis after gas phase decomposition, and the maximum effect is exhibited when the gas phase decomposition time is 15 minutes or more.

以下、本発明のシリコン基板表面の不純物分析方法を、図面を参照して説明する。
本発明のシリコン基板の表面の不純物分析方法は、典型的には、シリコン基板表面をフッ化水素酸と過酸化水素水とを混合した酸溶液の蒸気により気相分解を行う気相分解を行い、気相分解されたシリコン基板の表面を乾燥させ、乾燥したシリコン基板表面に、全反射条件の臨界角より小さな入射角でX線を照射して、反射される蛍光X線から前記シリコン基板表面の不純物を分析する全反射蛍光X線分析を行う。
Hereinafter, the method for analyzing impurities on the surface of a silicon substrate of the present invention will be described with reference to the drawings.
In the method for analyzing impurities on the surface of a silicon substrate of the present invention, the surface of the silicon substrate is typically subjected to gas phase decomposition by vapor of an acid solution of a mixture of hydrofluoric acid and hydrogen peroxide solution. The surface of the vapor-decomposed silicon substrate is dried, and the dried silicon substrate surface is irradiated with X-rays at an incident angle smaller than the critical angle of total reflection conditions, and the reflected fluorescent X-rays are used to irradiate the surface of the silicon substrate. Perform total internal reflection X-ray fluorescence analysis to analyze impurities in.

ここで用いられる分析試料としてのシリコン基板には、X線の全反射を利用して分析を行うために、表面が平坦な鏡面仕上げされたものを用いている。なお、全反射蛍光X線分析法(TXRF法)については、図1に示し、上記で説明したのでここでは省略する。 As the silicon substrate used here as an analysis sample, a silicon substrate having a flat surface and a mirror finish is used in order to perform analysis by utilizing total reflection of X-rays. The total reflection fluorescent X-ray analysis method (TXRF method) is shown in FIG. 1 and has been described above, and is omitted here.

気相分解を行うにあたり、図4に示すように、開口2aを有する容器2を用いている。
この容器2における開口2aは、分析試料としてのシリコン基板1により覆うことにより気密状態に密閉して、内部空間に密閉空間2bを形成している。かかる密閉空間2bには、図示しない注入手段により、薬液を注入するようにしている。
薬液は、ここでは、HF体積濃度が20〜30%、H体積濃度が12.4〜18.6%で混合した酸溶液を用いている。
前記薬液が容器2内の密閉空間2b内に注入されると、そのときの密閉空間2b内の雰囲気温度により一部蒸気となって、かかる蒸気が容器2内の密閉空間2b内に充満し、容器2内の密閉空間2b内に面したシリコン基板1の表面が晒され、気相分解されるようになっている。この場合、体積濃度が20〜30%のHFと体積濃度が12.4〜18.6%のHから発生する蒸気を15分間以上接触させることができるようになっている。
なお、上述の容器2は、シリコン基板1の表面と薬液の蒸気との接触効率を考慮して用いたが、本発明は容器2を用いる方法に限らない。
In performing the gas phase decomposition, as shown in FIG. 4, a container 2 having an opening 2a is used.
The opening 2a in the container 2 is sealed in an airtight state by covering it with a silicon substrate 1 as an analysis sample, and a closed space 2b is formed in the internal space. The chemical solution is injected into the closed space 2b by an injection means (not shown).
Chemical solution, here, HF volume concentration of 20~30%, H 2 O 2 volume concentration is used mixed acid solution at 12.4 to 18.6%.
When the chemical solution is injected into the closed space 2b in the container 2, it becomes a part of steam due to the atmospheric temperature in the closed space 2b at that time, and the steam fills the closed space 2b in the container 2. The surface of the silicon substrate 1 facing the closed space 2b in the container 2 is exposed and gas phase decomposition is performed. In this case, the vapor generated from HF having a volume concentration of 20 to 30% and H 2 O 2 having a volume concentration of 12.4 to 18.6% can be brought into contact with each other for 15 minutes or more.
The above-mentioned container 2 was used in consideration of the contact efficiency between the surface of the silicon substrate 1 and the vapor of the chemical solution, but the present invention is not limited to the method using the container 2.

次に、気相分解されたシリコン基板1の表面を乾燥させる手法について説明する。
なお、乾燥するにあたり、加熱がなされなくてもよいが、加熱を行う場合の加熱手段は適宜である。すなわち、加熱手段は、気相分解時には容器2をヒーター等で加熱しても良いし、シリコン基板1上部から赤外線ランプ等を照射しても良く、気相分解時にシリコン基板表面に凝集した水滴が大きくなり過ぎないようにすることが必要である。ここでは、密閉空間2b内の雰囲気温度が23℃で、ヒーター等の加熱は行わないで実施した。
Next, a method of drying the surface of the vapor-phase-decomposed silicon substrate 1 will be described.
It should be noted that heating does not have to be performed for drying, but the heating means for heating is appropriate. That is, the heating means may heat the container 2 with a heater or the like at the time of vapor phase decomposition, or may irradiate an infrared lamp or the like from the upper part of the silicon substrate 1, and water droplets aggregated on the surface of the silicon substrate during the vapor phase decomposition may be generated. It is necessary not to grow too large. Here, the ambient temperature in the closed space 2b was 23 ° C., and the heating was performed without heating the heater or the like.

なお、実験では気相分解時における蒸気についてHFのみならず、HF+Hの混酸から発生する蒸気において、気相分解時間におけるX線強度変化について明らかにした。その結果、気相分解後のX線強度は気相分解前のX線強度に対して、HFのみでは約3倍の増加であるのに対して、HF+Hでは約12倍の増加が見られることを見出した。 In the experiment, the change in X-ray intensity during the gas phase decomposition time was clarified not only for the vapor during the gas phase decomposition but also for the steam generated from the mixed acid of HF + H 2 O 2. As a result, the X-ray intensity after gas phase decomposition is about 3 times higher than that before gas phase decomposition with HF alone, whereas it is about 12 times higher with HF + H 2 O 2. Found to be seen.

このことは、Hを添加することによりシリコン基板1の表面に凝集した水滴の酸化還元電位が高くなるとともに、酸化力が増加するため、HF単独で気相分解を行うより不純物の凝集効果が高くなったものと考えられる。
その結果、入射X線は凝集体(パーティクル)内部に僅かに侵入し、凝集体表面および内部からも蛍光X線が放出されることから、X線検出強度が増加したものと考えられる。また、気相分解時間におけるX線強度は、後述する表1や表2に示すように、およそ15分で最大に達し、以降は気相分解時間を延長してもX線強度に増加は見られないことも見出した。
ただしこれらの効果は、評価するウェーハをシリコンウェーハとした場合には、シリコンよりイオン化傾向の小さいCuのような元素にはあまり効果が見られず、本発明でも気相分解前後でのX線強度増加はほとんど見られなかった。
This is because the addition of H 2 O 2 increases the redox potential of the water droplets aggregated on the surface of the silicon substrate 1 and increases the oxidizing power, so that the aggregation of impurities is higher than the gas phase decomposition performed by HF alone. It is probable that the effect was improved.
As a result, the incident X-rays slightly penetrate into the aggregate (particles), and fluorescent X-rays are emitted from the surface and the inside of the aggregate, so that it is considered that the X-ray detection intensity is increased. In addition, as shown in Tables 1 and 2 described later, the X-ray intensity at the gas phase decomposition time reaches the maximum in about 15 minutes, and thereafter, the X-ray intensity does not increase even if the gas phase decomposition time is extended. I also found that I couldn't.
However, when the wafer to be evaluated is a silicon wafer, these effects are not so effective for elements such as Cu, which have a lower ionization tendency than silicon, and even in the present invention, the X-ray intensity before and after gas phase decomposition is not so effective. Little increase was seen.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、これは本発明を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but this does not limit the present invention.

{実施例、比較例}
シリコン基板の表面の不純物分析方法を行うために、シリコン基板として強制汚染ウェーハを用いた。強制汚染ウェーハとしては、清浄な直径200mmのp型のPWウェーハを用い、関東化学製1000ppm原子吸光用標準溶液(Cr、Fe、Ni、Cu)を適宜希釈し、多摩化学製超高純度エタノール(AA100)溶媒で調製した溶液をウェーハ中心に20μL滴下し、自然乾燥させ、滴下溶液中の各元素含有量が0.05ng、0.5ng、5ng、50ngのウェーハを準備した。
全反射蛍光X線分析装置はテクノス製TREX630Tを使用した。分析条件は、40kV、40mAでX線入射角は0.05度で、測定時間は300秒/点とした。また、シリコンウェーハは、図4に示す気相分解容器2を用いて気相分解を行った。
{Example, Comparative Example}
A forcibly contaminated wafer was used as the silicon substrate in order to analyze impurities on the surface of the silicon substrate. As the forced contamination wafer, a clean p-type PW wafer having a diameter of 200 mm is used, and a 1000 ppm atomic absorption standard solution (Cr, Fe, Ni, Cu) manufactured by Kanto Chemical Co., Ltd. is appropriately diluted, and ultra-high purity ethanol manufactured by Tama Chemical Co., Ltd. ( AA100) A solution prepared with a solvent was added dropwise to the center of the wafer in an amount of 20 μL, and the solution was air-dried to prepare wafers having a content of each element of 0.05 ng, 0.5 ng, 5 ng, and 50 ng in the added dropwise solution.
The total reflection fluorescence X-ray analyzer used was TREX630T manufactured by Technos. The analysis conditions were 40 kV, 40 mA, the X-ray incident angle was 0.05 degrees, and the measurement time was 300 seconds / point. Further, the silicon wafer was subjected to gas phase decomposition using the gas phase decomposition container 2 shown in FIG.

(実施例)
気相分解容器内にステラケミファ製EL級フッ化水素酸(50%)と三徳化学製EL級過酸化水素水(31%)を1:1の比率(25%HF+15.5%H)で合計200mL注入し、前記シリコン基板をPW面が下向きになるように気相分解容器に載せ、HF+Hガスを密閉することで気相分解を行った。気相分解時間は3分、5分、10分、15分、20分、30分の6水準とし、気相分解後はクリーンドラフト内での自然乾燥とした。
(Example)
A 1: 1 ratio (25% HF + 15.5% H 2 O 2 ) of Stella Chemifa EL-grade hydrofluoric acid (50%) and Santoku Kagaku EL-grade hydrogen peroxide solution (31%) in a gas phase decomposition vessel. ), A total of 200 mL was injected, the silicon substrate was placed on a gas phase decomposition container so that the PW surface faced downward, and the gas phase decomposition was performed by sealing the HF + H 2 O 2 gas. The gas phase decomposition time was set to 6 levels of 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 30 minutes, and after the gas phase decomposition, it was naturally dried in a clean draft.

表1にHF+H気相分解による気相分解前後のX線強度(cps)と気相分解後のX線強度÷気相分解前のX線強度(Ratio)を算出し、気相分解時間との関係を表した。気相分解前に比べ、気相分解後はX線強度が増加しており、X線強度の増加は、気相分解時間が15分までは増加の傾向を示す。実際には約12倍の強度向上が見られた。しかし、分解時間が15分以降はそれ以上気相分解を行ってもX線強度の増加は見られない。 Table 1 shows the X-ray intensity (cps) before and after the vapor phase decomposition by HF + H 2 O 2 vapor phase decomposition and the X-ray intensity after the vapor phase decomposition ÷ the X-ray intensity before the vapor phase decomposition (Ratio). It shows the relationship with time. The X-ray intensity increases after the gas phase decomposition as compared with that before the gas phase decomposition, and the increase in the X-ray intensity shows a tendency of increasing up to 15 minutes in the gas phase decomposition time. In fact, a strength improvement of about 12 times was observed. However, after the decomposition time is 15 minutes, no increase in X-ray intensity is observed even if the gas phase decomposition is performed further.

Figure 2021038995
Figure 2021038995

また、図5にHF+H気相分解時間と気相分解後のX線強度増大比について示す。各プロットは0.05ng、0.5ng、5ng、50ngでの平均値を表し、エラーバーは最大値および最小値とした。 Further, FIG. 5 shows the HF + H 2 O 2 gas phase decomposition time and the X-ray intensity increase ratio after the gas phase decomposition. Each plot represents the average value at 0.05 ng, 0.5 ng, 5 ng, and 50 ng, and the error bars are the maximum value and the minimum value.

同様に、それぞれの条件でのTXRFにおける各元素の検出下限値(atoms/cm)を表2および図6に示す。表2において、気相分解前後のX線強度増大比が大きくなる程検出下限値が小さくなることがわかった。この結果から、バックグラウンド強度変化はほとんど影響せず、単純にX線強度の増加が見られていると考えられる。 Similarly, the lower limit of detection (atoms / cm 2 ) of each element in TXRF under each condition is shown in Table 2 and FIG. In Table 2, it was found that the lower limit of detection becomes smaller as the ratio of increase in X-ray intensity before and after gas phase decomposition increases. From this result, it is considered that the change in background intensity has almost no effect and the X-ray intensity is simply increased.

Figure 2021038995
Figure 2021038995

さらに、気相分解15分におけるHF+Hの混合比率における気相分解前後のX線強度およびX線強度比率を表3および図7に示す。
この結果から、HFとHとの混酸においては、HF濃度が高過ぎても、また、低過ぎても、気相分解後のX線強度は効果が低減し、最大効果を発揮するのは比率が1:1(25%HF+15.5%H)とした場合であった。また、気相分解前後のX線強度比が10倍を超える条件は、HFが20%〜30%のとき、Hは12.4%〜18.6%である。
Further, Table 3 and FIG. 7 show the X-ray intensity and the X-ray intensity ratio before and after the gas phase decomposition in the mixing ratio of HF + H 2 O 2 at 15 minutes of the gas phase decomposition.
From this result, in the mixed acid of HF and H 2 O 2 , the effect of the X-ray intensity after vapor phase decomposition is reduced and the maximum effect is exhibited even if the HF concentration is too high or too low. This was the case when the ratio was 1: 1 (25% HF + 15.5% H 2 O 2 ). Further, the condition that the X-ray intensity ratio before and after the vapor phase decomposition exceeds 10 times is that H 2 O 2 is 12.4% to 18.6% when HF is 20% to 30%.

Figure 2021038995
Figure 2021038995

(比較例)
気相分解容器内にステラケミファ製EL級フッ化水素酸(50%)を200mL注入し、シリコン基板をPW面が下向きになるように気相分解容器2に載せ、HF蒸気を密閉することで気相分解を行った。気相分解時間は3分、5分、10分、15分、20分、30分の6水準とし、気相分解後はクリーンドラフト内での自然乾燥とした。
(Comparison example)
By injecting 200 mL of STELLA CHEMIFA EL-grade hydrofluoric acid (50%) into the gas phase decomposition container, placing the silicon substrate on the gas phase decomposition container 2 so that the PW side faces downward, and sealing the HF vapor. Gas phase decomposition was performed. The gas phase decomposition time was set to 6 levels of 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 30 minutes, and after the gas phase decomposition, it was naturally dried in a clean draft.

表4にHF気相分解による気相分解前後のX線強度(cps)と気相分解後のX線強度÷気相分解前のX線強度(Ratio)を算出し、気相分解時間との関係を表した。気相分解前に比べ、気相分解後はX線強度が増加しており、X線強度の増加は、気相分解時間が15分までは増加の傾向を示す。実際には約3倍の強度向上が見られた。しかし、分解時間が15分以降はそれ以上気相分解を行ってもX線強度の増加は見られない。 In Table 4, the X-ray intensity (cps) before and after the gas phase decomposition by HF vapor decomposition and the X-ray intensity after the gas phase decomposition ÷ the X-ray intensity before the gas phase decomposition (Ratio) are calculated and calculated as the gas phase decomposition time. Represented the relationship. The X-ray intensity increases after the gas phase decomposition as compared with that before the gas phase decomposition, and the increase in the X-ray intensity shows a tendency of increasing until the gas phase decomposition time is 15 minutes. In fact, the strength was improved about 3 times. However, after the decomposition time is 15 minutes, no increase in X-ray intensity is observed even if the gas phase decomposition is performed further.

Figure 2021038995
Figure 2021038995

また、図8にHF気相分解時間と気相分解後のX線強度増大比について示す。各プロットは0.05ng、0.5ng、5ng、50ngでの平均値を表し、エラーバーは最大値および最小値とした。同様に、それぞれの条件における全反射蛍光X線における各元素の検出下限値(atoms/cm)を表5および図9に示す。 Further, FIG. 8 shows the HF gas phase decomposition time and the X-ray intensity increase ratio after the gas phase decomposition. Each plot represents the average value at 0.05 ng, 0.5 ng, 5 ng, and 50 ng, and the error bars are the maximum value and the minimum value. Similarly, the lower limit of detection (atoms / cm 2 ) of each element in total internal reflection fluorescent X-ray under each condition is shown in Table 5 and FIG.

Figure 2021038995
Figure 2021038995

以上の結果から、気相分解にはHF+Hを用い、それらの混合比率はHF体積濃度が20〜30%、H体積濃度が12.4〜18.6%の濃度で混合する基準とする。また、気相分解時間を15分以上とすることで、気相分解前のX線強度より気相分解後のX線強度は約12倍となり、HFのみで気相分解を行った後のX線強度から更に4倍のX線強度が得られる。また、検出下限値はHFのみの気相分解の場合よりさらに約1/4となる。 From the above results, HF + H 2 O 2 was used for gas phase decomposition, and the mixing ratios thereof were 20 to 30% for HF volume concentration and 12.4 to 18.6% for H 2 O 2 volume concentration. The standard to be used. Further, by setting the gas phase decomposition time to 15 minutes or more, the X-ray intensity after the gas phase decomposition becomes about 12 times the X-ray intensity before the gas phase decomposition, and the X after the gas phase decomposition is performed only by HF. An X-ray intensity four times higher than the line intensity can be obtained. In addition, the lower limit of detection is about 1/4 of that in the case of gas phase decomposition using only HF.

以上、総括すれば、シリコンウェーハ表面金属不純物を分析する場合、シリコンよりイオン化傾向が大きいあるいはシリコンと同等の元素については、HFのみで気相分解後にTXRF分析を行う場合に比べ、更に4倍の感度向上が可能となる。 In summary, when analyzing metal impurities on the surface of a silicon wafer, elements with a higher ionization tendency than silicon or equivalent to silicon are four times more than when TXRF analysis is performed after vapor phase decomposition using only HF. Sensitivity can be improved.

本発明のシリコン基板表面の不純物分析方法であれば、HF濃度が20〜30%、H濃度が12.4〜18.6%の濃度で混合した酸溶液を用いた気相分解後のTXRF分析によるX線強度は、HFのみ(50%)の気相分解後のTXRF分析によるX線強度より4倍程度増加し、気相分解時間は15分間以上で最大の効果を発揮することができる。
さらには、気相分解後に、前記シリコン基板表面を乾燥させることで、シリコン基板表面不純物をパーティクル状に凝集させることができるので、ウェーハ面内不純物の位置情報を保ったまま、更なる高感度でTXRF分析を行うことができる。
If impurity analysis method of the silicon substrate surface of the present invention, HF concentration of 20~30%, H 2 O 2 concentration after gas phase decomposition using mixed acid solution at a concentration of 12.4 to 18.6% The X-ray intensity by TXRF analysis is about 4 times higher than the X-ray intensity by TXRF analysis after gas phase decomposition of HF only (50%), and the maximum effect is exhibited when the gas phase decomposition time is 15 minutes or more. Can be done.
Furthermore, by drying the surface of the silicon substrate after vapor phase decomposition, impurities on the surface of the silicon substrate can be aggregated in the form of particles, so that the position information of the impurities in the wafer surface can be maintained and the sensitivity can be further increased. TXRF analysis can be performed.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention.

1…シリコン基板、 2…容器、 2a…開口、 2b…密閉空間。 1 ... Silicon substrate, 2 ... Container, 2a ... Aperture, 2b ... Sealed space.

Claims (5)

シリコン基板表面の不純物分析方法であって、前記シリコン基板表面に20〜30%体積濃度のフッ化水素酸と12.4〜18.6%体積濃度の過酸化水素水から発生する蒸気を15分間以上接触させて気相分解を行い、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することを特徴とするシリコン基板表面の不純物分析方法。 This is a method for analyzing impurities on the surface of a silicon substrate. Steam generated from 20 to 30% volumetric acid fluoride and 12.4 to 18.6% volumetric hydrogen peroxide solution is applied to the surface of the silicon substrate for 15 minutes. A method for analyzing impurities on the surface of a silicon substrate, which comprises contacting the above to perform gas phase decomposition and then evaluating impurities on the surface of the silicon substrate by a total reflected fluorescent X-ray analysis method. 前記気相分解を行うにあたり、開口を有する容器内に薬液を注入し、前記容器の開口を前記シリコン基板により覆うことにより密閉空間を形成し、前記薬液の蒸気により、前記密閉空間に面した前記シリコン基板表面を気相分解することを特徴とする請求項1に記載のシリコン基板表面の不純物分析方法。 In performing the gas phase decomposition, a chemical solution is injected into a container having an opening, a closed space is formed by covering the opening of the container with the silicon substrate, and the vapor of the chemical solution is used to face the closed space. The method for analyzing impurities on the surface of a silicon substrate according to claim 1, wherein the surface of the silicon substrate is vapor-phase decomposed. 前記気相分解後に、前記シリコン基板表面を乾燥させ、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することを特徴とする請求項1又は請求項2に記載のシリコン基板表面の不純物分析方法。 The silicon substrate surface according to claim 1 or 2, wherein after the vapor phase decomposition, the surface of the silicon substrate is dried, and then impurities on the surface of the silicon substrate are evaluated by a total reflection fluorescent X-ray analysis method. Impurity analysis method. 前記シリコン基板表面の乾燥を、前記シリコン基板を気相分解した容器を加熱することにより行うことを特徴とする請求項3に記載のシリコン基板表面の不純物分析方法。 The method for analyzing impurities on the surface of a silicon substrate according to claim 3, wherein the surface of the silicon substrate is dried by heating a container obtained by vapor-phase-decomposing the silicon substrate. 前記シリコン基板表面の乾燥を、前記シリコン基板に赤外線を照射して行うことを特徴とする請求項3に記載のシリコン基板表面の不純物分析方法。 The method for analyzing impurities on the surface of a silicon substrate according to claim 3, wherein the surface of the silicon substrate is dried by irradiating the silicon substrate with infrared rays.
JP2019160250A 2019-09-03 2019-09-03 Method for analyzing impurities on silicon substrate surface Active JP7409806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019160250A JP7409806B2 (en) 2019-09-03 2019-09-03 Method for analyzing impurities on silicon substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019160250A JP7409806B2 (en) 2019-09-03 2019-09-03 Method for analyzing impurities on silicon substrate surface

Publications (2)

Publication Number Publication Date
JP2021038995A true JP2021038995A (en) 2021-03-11
JP7409806B2 JP7409806B2 (en) 2024-01-09

Family

ID=74848547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019160250A Active JP7409806B2 (en) 2019-09-03 2019-09-03 Method for analyzing impurities on silicon substrate surface

Country Status (1)

Country Link
JP (1) JP7409806B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122232A (en) * 1994-10-28 1996-05-17 Nec Corp Drier
JPH1137992A (en) * 1997-07-17 1999-02-12 Toshiba Ceramics Co Ltd Method for analyzing surface layer of silicon wafer
JP2001153768A (en) * 1999-11-29 2001-06-08 Mitsubishi Materials Silicon Corp Analytical method for metal impurities on surface of silicon substrate
JP2005101298A (en) * 2003-09-25 2005-04-14 Toshiba Corp Etching apparatus, and apparatus and method for evaluating substrate surface
JP2005265718A (en) * 2004-03-19 2005-09-29 Sumitomo Mitsubishi Silicon Corp Analytical method for impurity
JP2006214877A (en) * 2005-02-03 2006-08-17 Rigaku Industrial Co Vapor phase decomposition device, sample pretreatment device using the same, and x-ray fluorescence analytical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132376B2 (en) 2016-03-24 2017-05-24 株式会社大一商会 Game machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122232A (en) * 1994-10-28 1996-05-17 Nec Corp Drier
JPH1137992A (en) * 1997-07-17 1999-02-12 Toshiba Ceramics Co Ltd Method for analyzing surface layer of silicon wafer
JP2001153768A (en) * 1999-11-29 2001-06-08 Mitsubishi Materials Silicon Corp Analytical method for metal impurities on surface of silicon substrate
JP2005101298A (en) * 2003-09-25 2005-04-14 Toshiba Corp Etching apparatus, and apparatus and method for evaluating substrate surface
JP2005265718A (en) * 2004-03-19 2005-09-29 Sumitomo Mitsubishi Silicon Corp Analytical method for impurity
JP2006214877A (en) * 2005-02-03 2006-08-17 Rigaku Industrial Co Vapor phase decomposition device, sample pretreatment device using the same, and x-ray fluorescence analytical system

Also Published As

Publication number Publication date
JP7409806B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP6075307B2 (en) Method for evaluating carbon concentration in silicon single crystal and method for manufacturing semiconductor device
JP5087855B2 (en) Heat treatment evaluation wafer, heat treatment evaluation method, and semiconductor wafer manufacturing method
JP6118031B2 (en) Impurity analysis apparatus and method
Dixit et al. Effect of high dose γ-ray irradiation on GaAs pin photodetectors
Ueoka et al. Analysis of electronic structure of amorphous InGaZnO/SiO2 interface by angle-resolved X-ray photoelectron spectroscopy
Constant et al. Effects of photons on 4H-SiC rapid thermal oxidation using nitrous oxide gas
JP2021038995A (en) Impurity analysis method of silicon substrate surface
JP3680476B2 (en) Heat treatment evaluation wafer and heat treatment evaluation method using the same
JP5413342B2 (en) Silicon wafer surface layer etching method and silicon wafer metal contamination analysis method
JP7196825B2 (en) Metal impurity evaluation method on silicon substrate surface
Collins et al. Electronic properties of deep levels in p‐type CdTe
JP6819883B2 (en) Metal impurity analysis method for silicon wafers
JP3690484B2 (en) Method for analyzing metal impurities on silicon substrate surface
Lau et al. Changes in surface composition and Fermi level position during thermal desorption of ultraviolet radiation/ozone formed oxides on GaAs
JPH0590378A (en) Impurity analyzing method
Tan Application of vapor phase decomposition techniques (VPD/AAS and ICP-MS) for trace element analysis in oxide coatings on silicon
JP5541190B2 (en) Metal impurity concentration evaluation method for P-type silicon wafer
Lauer et al. Effect of thermal annealing on charge exchange between oxygen interstitial defects within HfO2 and oxygen-deficient silicon centers within the SiO2/Si interface
Mäkelä et al. Decreasing Defect‐State Density of Al2O3/GaxIn1− xAs Device Interfaces with InOx Structures
Ghita et al. XPS study of Ti/oxidized GaAs interface
Nutsch et al. Characterization of organic contamination in semiconductor manufacturing processes
JP7327714B1 (en) Gallium arsenide single crystal substrate and manufacturing method thereof
Romanyuk et al. Atomic and electronic structure of N-terminated GaN (0001̄)(1× 1) surface
Szuber Non-stoichiometry and electronic properties of GaAs (100) surfaces thermally cleaned in ultrahigh vacuum
Boyko et al. The effect of neutron irradiation and annealing temperature on the electrical properties and lattice constant of epitaxial gallium nitride layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221115

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221129

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221216

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221220

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7409806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150