JP2021038458A - Non-oriented electromagnetic steel sheet and method for producing the same - Google Patents

Non-oriented electromagnetic steel sheet and method for producing the same Download PDF

Info

Publication number
JP2021038458A
JP2021038458A JP2020145065A JP2020145065A JP2021038458A JP 2021038458 A JP2021038458 A JP 2021038458A JP 2020145065 A JP2020145065 A JP 2020145065A JP 2020145065 A JP2020145065 A JP 2020145065A JP 2021038458 A JP2021038458 A JP 2021038458A
Authority
JP
Japan
Prior art keywords
less
layer
mother
surface layer
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020145065A
Other languages
Japanese (ja)
Other versions
JP7056699B2 (en
Inventor
幸乃 宮本
Yukino MIYAMOTO
幸乃 宮本
善彰 財前
Yoshiaki Zaizen
善彰 財前
尾田 善彦
Yoshihiko Oda
善彦 尾田
智幸 大久保
Tomoyuki Okubo
智幸 大久保
田中 孝明
Takaaki Tanaka
孝明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021038458A publication Critical patent/JP2021038458A/en
Application granted granted Critical
Publication of JP7056699B2 publication Critical patent/JP7056699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a non-oriented electromagnetic steel sheet that has low iron loss even at a frequency of 400 Hz, and has excellent manufacturability.SOLUTION: A non-oriented electromagnetic steel sheet has a base layer composed of a predetermined component, and surface layers that are on both surfaces of the base layer and composed of a predetermined component different from that of the base layer. When a combined total thickness of the sheet of the base layer and the surface layers on both surfaces is defined as t0[mm] and a total thickness of the surface layers on both surfaces is defined as t1[mm], the thickness ratio between them (t1/t0) is 0.040 or less (excluding 0).SELECTED DRAWING: Figure 2

Description

本発明は、無方向性電磁鋼板、特に製造性と磁気特性に優れた無方向性電磁鋼板とその製造方法に関するものである。 The present invention relates to non-oriented electrical steel sheets, particularly non-oriented electrical steel sheets having excellent manufacturability and magnetic properties, and a method for producing the same.

ハイブリッド電気自動車や掃除機用モータは、小型化、高効率化の観点より、高周波域での駆動が行われている。そのため、このようなモータのコア材として使用される無方向性電磁鋼板には、高周波域で低鉄損を有する材料が要求されている。 Hybrid electric vehicles and vacuum cleaner motors are driven in the high frequency range from the viewpoint of miniaturization and high efficiency. Therefore, a non-oriented electrical steel sheet used as a core material of such a motor is required to have a low iron loss in a high frequency region.

高周波域では、渦電流損が支配的であるため、高周波鉄損低減を図るための手段としては、渦電流損の低減に有利な素材の高合金化による固有抵抗の増加が用いられる。ここで、素材の固有抵抗を効率的に上げるため、合金元素としてSiや、Al、Mnなどが用いられる。しかしながら、これらの合金元素を添加すると、固溶強化が生じて素材が脆化し、製造が困難になるという課題がある。 Since the eddy current loss is dominant in the high frequency region, an increase in the natural resistance due to the high alloying of the material, which is advantageous for reducing the eddy current loss, is used as a means for reducing the high frequency iron loss. Here, Si, Al, Mn and the like are used as alloying elements in order to efficiently increase the intrinsic resistance of the material. However, when these alloying elements are added, there is a problem that solid solution strengthening occurs, the material becomes brittle, and production becomes difficult.

この課題に対し、特許文献1では、高Si材の上下面および左右面を炭素鋼で覆い、圧延することを特徴とする電磁鋼板の製造方法が開示されている。また、特許文献2では、鋳ぐるみ法を用いて高合金材の周囲を低合金素材でくるみ、圧延する手法が開示されている。 In response to this problem, Patent Document 1 discloses a method for manufacturing an electromagnetic steel sheet, which comprises covering the upper and lower surfaces and left and right surfaces of a high-Si material with carbon steel and rolling them. Further, Patent Document 2 discloses a method of wrapping a high alloy material with a low alloy material and rolling it by using a casting method.

特開2011−214065号公報Japanese Unexamined Patent Publication No. 2011-214065 特開平5−171281号公報Japanese Unexamined Patent Publication No. 5-171281

しかしながら、前記特許文献1に記載の製造方法では、製品板の鉄損を低減するため、上下面、左右面を覆った炭素鋼を除去する工程が必要となって、コストが増加するという課題がある。また、前記特許文献2に記載の鋳ぐるみ法では、高合金材に対する低合金材の割合が高く、400Hzのような高周波域では十分に鉄損が低減しないといった課題がある。 However, in the manufacturing method described in Patent Document 1, in order to reduce the iron loss of the product plate, a step of removing the carbon steel covering the upper and lower surfaces and the left and right surfaces is required, and there is a problem that the cost increases. is there. Further, the casting method described in Patent Document 2 has a problem that the ratio of the low alloy material to the high alloy material is high and the iron loss is not sufficiently reduced in the high frequency region such as 400 Hz.

本発明は上記問題に鑑み、例えば周波数:400Hzの高周波域であっても低鉄損を有し、かつ製造性に優れた無方向性電磁鋼板を提供しようとするものである。 In view of the above problems, the present invention aims to provide a non-oriented electrical steel sheet having low iron loss and excellent manufacturability even in a high frequency range of, for example, a frequency of 400 Hz.

本発明者らは、上記課題を解決する方法について鋭意検討した。その結果、低鉄損を有する無方向性電磁鋼板を安定して製造するためには、母層の両表面に延性に優れた低合金材を溶接して鋼板の表層とすることが効果的であることを知見した。併せて、かかる母層と表層の板厚比を制御し、さらに表層を溶接する際の溶接条件を減圧雰囲気(真空)とすることが重要であることを見出した。 The present inventors have diligently studied a method for solving the above problems. As a result, in order to stably produce non-oriented electrical steel sheets with low iron loss, it is effective to weld a low alloy material with excellent ductility to both surfaces of the base layer to form the surface layer of the steel sheet. I found that there is. At the same time, it was found that it is important to control the plate thickness ratio between the mother layer and the surface layer and to set the welding condition when welding the surface layer to a reduced pressure atmosphere (vacuum).

本発明は前記知見に基づいてなされたものであり、その要旨構成は以下のとおりである。
1.母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、C:0.0070%以下、Si:2.5〜5.5%、Al:0.1〜3.0%、Mn:0.1〜3.0%およびP:0.01〜0.10%を含み、かつSi、AlおよびMnの合計が3.0〜6.5%であり、残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、C:0.0070%以下、Si:2.0%以下、Al:2.0%以下、Mn:1.0%以下およびP:0.10%以下を含み、残部がFeおよび不可避不純物の成分組成を有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であることを特徴とする無方向性電磁鋼板。
The present invention has been made based on the above findings, and its gist structure is as follows.
1. 1. A mother layer and surface layers on both surfaces of the mother layer are provided.
The matrix layer is C: 0.0070% or less, Si: 2.5 to 5.5%, Al: 0.1 to 3.0%, Mn: 0.1 to 3.0% and Mn: 0.1 to 3.0% in mass%. P: contains 0.01 to 0.10%, the total of Si, Al and Mn is 3.0 to 6.5%, and the balance has a component composition of Fe and unavoidable impurities.
The surface layer contains C: 0.0070% or less, Si: 2.0% or less, Al: 2.0% or less, Mn: 1.0% or less, and P: 0.10% or less in mass%. The balance has a component composition of Fe and unavoidable impurities,
All the thickness of the base layer and the steel sheet of the combined surface layer of both surfaces: the t 0 [mm], the total thickness of the surface layer of the both surfaces: t 1 [mm] and the thickness ratio of: t 1 / t A non-directional electromagnetic steel sheet characterized in that 0 is 0.040 or less (excluding 0).

2.母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、C:0.0070%以下、Si:2.5〜5.5%、Al:0.1〜3.0%、Mn:0.1〜3.0%およびP:0.01〜0.10%を含み、かつSi、AlおよびMnの合計が3.0〜6.5%であり、残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、C:0.0070%以下、Si:2.0%以下、Al:2.0%以下、Mn:1.0%以下およびP:0.10%以下を含み、残部がFeおよび不可避不純物の成分組成を有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であって、
磁束密度:1.0T、周波数:400Hzにおける鉄損W10/400が以下の式(1)を満たすことを特徴とする無方向性電磁鋼板。
10/400≦9.68+31×t−1.1×[Si]−0.8×[Al]−0.3×[Mn] ・・・(1)
ここで、[Si]、[Al]、[Mn]は上記母層および表層における各成分の平均質量%である。
2. A mother layer and surface layers on both surfaces of the mother layer are provided.
The matrix layer is C: 0.0070% or less, Si: 2.5 to 5.5%, Al: 0.1 to 3.0%, Mn: 0.1 to 3.0% and Mn: 0.1 to 3.0% in mass%. P: contains 0.01 to 0.10%, the total of Si, Al and Mn is 3.0 to 6.5%, and the balance has a component composition of Fe and unavoidable impurities.
The surface layer contains C: 0.0070% or less, Si: 2.0% or less, Al: 2.0% or less, Mn: 1.0% or less, and P: 0.10% or less in mass%. The balance has a component composition of Fe and unavoidable impurities,
The total plate thickness of the steel plate including the mother layer and the surface layers of both surfaces: t 0 [mm] and the total plate thickness of the surface layers of both surfaces: t 1 [mm]: plate thickness ratio: t 1 / t 0 is 0.040 or less (excluding 0),
A non-oriented electrical steel sheet characterized in that iron loss W 10/400 at a magnetic flux density of 1.0 T and a frequency of 400 Hz satisfies the following equation (1).
W 10/400 ≦ 9.68 + 31 × t 0 -1.1 × [Si] -0.8 × [Al] -0.3 × [Mn] ··· (1)
Here, [Si], [Al], and [Mn] are the average mass% of each component in the mother layer and the surface layer.

3.母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、C:0.0070%以下、Si:2.5〜6.0%、Al:0.1〜3.0%、Mn:0.1〜3.0%およびP:0.01〜0.10%を含み、かつSi、AlおよびMnの合計が3.0〜7.5%であり、残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、C:0.0070%以下、Si:2.0%以下、Al:2.0%以下、Mn:1.0%以下およびP:0.10%以下を含み、さらにTi:0.0100%以下、Nb:0.0100%以下およびV:0.0100%以下の内(いずれも0を除く)から選んだ少なくとも1種を含有し、残部がFeおよび不可避不純物の成分組成を有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であることを特徴とする無方向性電磁鋼板。
3. 3. A mother layer and surface layers on both surfaces of the mother layer are provided.
The matrix layer is C: 0.0070% or less, Si: 2.5 to 6.0%, Al: 0.1 to 3.0%, Mn: 0.1 to 3.0% and Mn: 0.1 to 3.0% in mass%. P: contains 0.01 to 0.10%, the total of Si, Al and Mn is 3.0 to 7.5%, and the balance has a component composition of Fe and unavoidable impurities.
The surface layer contains C: 0.0070% or less, Si: 2.0% or less, Al: 2.0% or less, Mn: 1.0% or less, and P: 0.10% or less in mass%. Further, it contains at least one selected from Ti: 0.0100% or less, Nb: 0.0100% or less, and V: 0.0100% or less (all excluding 0), and the balance is Fe and unavoidable impurities. Has an ingredient composition
All the thickness of the base layer and the steel sheet of the combined surface layer of both surfaces: the t 0 [mm], the total thickness of the surface layer of the both surfaces: t 1 [mm] and the thickness ratio of: t 1 / t A non-directional electromagnetic steel sheet characterized in that 0 is 0.040 or less (excluding 0).

4.母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、C:0.0070%以下、Si:2.5〜6.0%、Al:0.1〜3.0%、Mn:0.1〜3.0%およびP:0.01〜0.10%を含み、かつSi、AlおよびMnの合計が3.0〜7.5%であり、残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、C:0.0070%以下、Si:2.0%以下、Al:2.0%以下、Mn:1.0%以下およびP:0.10%以下を含み、残部がFeおよび不可避不純物の成分組成を有し、
上記表層および母層のいずれか一方または両方の成分組成に、質量%で、Ni:1.0%以下(0を除く)をさらに含有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であることを特徴とする無方向性電磁鋼板。
4. A mother layer and surface layers on both surfaces of the mother layer are provided.
The matrix layer is C: 0.0070% or less, Si: 2.5 to 6.0%, Al: 0.1 to 3.0%, Mn: 0.1 to 3.0% and Mn: 0.1 to 3.0% in mass%. P: contains 0.01 to 0.10%, the total of Si, Al and Mn is 3.0 to 7.5%, and the balance has a component composition of Fe and unavoidable impurities.
The surface layer contains C: 0.0070% or less, Si: 2.0% or less, Al: 2.0% or less, Mn: 1.0% or less, and P: 0.10% or less in mass%. The balance has a component composition of Fe and unavoidable impurities,
The component composition of either one or both of the surface layer and the mother layer further contains Ni: 1.0% or less (excluding 0) in mass%.
All the thickness of the base layer and the steel sheet of the combined surface layer of both surfaces: the t 0 [mm], the total thickness of the surface layer of the both surfaces: t 1 [mm] and the thickness ratio of: t 1 / t A non-directional electromagnetic steel sheet characterized in that 0 is 0.040 or less (excluding 0).

5.母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、C:0.0070%以下、Si:2.5〜6.0%、Al:0.1〜3.0%、Mn:0.1〜3.0%およびP:0.01〜0.10%を含み、かつSi、AlおよびMnの合計が3.0〜7.5%であり、残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、C:0.0070%以下、Si:2.0%以下、Al:2.0%以下、Mn:1.0%以下およびP:0.10%以下を含み、さらにTi:0.0100%以下、Nb:0.0100%以下およびV:0.0100%以下の内(いずれも0を除く)から選んだ少なくとも1種を含有し、残部がFeおよび不可避不純物の成分組成を有し、
上記表層および母層のいずれか一方または両方の成分組成に、質量%で、Ni:1.0%以下(0を除く)をさらに含有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であることを特徴とする無方向性電磁鋼板。
5. A mother layer and surface layers on both surfaces of the mother layer are provided.
The matrix layer is C: 0.0070% or less, Si: 2.5 to 6.0%, Al: 0.1 to 3.0%, Mn: 0.1 to 3.0% and Mn: 0.1 to 3.0% in mass%. P: contains 0.01 to 0.10%, the total of Si, Al and Mn is 3.0 to 7.5%, and the balance has a component composition of Fe and unavoidable impurities.
The surface layer contains C: 0.0070% or less, Si: 2.0% or less, Al: 2.0% or less, Mn: 1.0% or less, and P: 0.10% or less in mass%. Further, it contains at least one selected from Ti: 0.0100% or less, Nb: 0.0100% or less, and V: 0.0100% or less (all excluding 0), and the balance is Fe and unavoidable impurities. Has an ingredient composition
The component composition of either one or both of the surface layer and the mother layer further contains Ni: 1.0% or less (excluding 0) in mass%.
All the thickness of the base layer and the steel sheet of the combined surface layer of both surfaces: the t 0 [mm], the total thickness of the surface layer of the both surfaces: t 1 [mm] and the thickness ratio of: t 1 / t A non-directional electromagnetic steel sheet characterized in that 0 is 0.040 or less (excluding 0).

6.前記鋼板が、磁束密度:1.0T、周波数:400Hzにおける鉄損W10/400が以下の式(1)を満たすことを特徴とする前記3〜5の何れか1項に記載の無方向性電磁鋼板。
10/400≦9.68+31×t−1.1×[Si]−0.8×[Al]−0.3×[Mn] ・・・(1)
ここで、[Si]、[Al]、[Mn]は前記母層および表層における各成分の平均質量%である。
6. The non-directionality according to any one of 3 to 5, wherein the iron loss W 10/400 at a magnetic flux density of 1.0 T and a frequency of 400 Hz satisfies the following formula (1). Electromagnetic steel plate.
W 10/400 ≦ 9.68 + 31 × t 0 -1.1 × [Si] -0.8 × [Al] -0.3 × [Mn] ··· (1)
Here, [Si], [Al], and [Mn] are the average mass% of each component in the mother layer and the surface layer.

7.前記母層の成分組成は、質量%で、Sn:0.15%以下およびSb:0.15%以下の内から選んだ少なくとも1種をさらに含有することを特徴とする前記1〜4の何れか1に記載の無方向性電磁鋼板。 7. The component composition of the mother layer is any one of 1 to 4 above, which further contains at least one selected from Sn: 0.15% or less and Sb: 0.15% or less in mass%. The non-oriented electrical steel sheet according to 1.

8.前記母層の成分組成は、質量%で、Cr:5.0%以下をさらに含有することを特徴とする前記1〜5の何れか1に記載の無方向性電磁鋼板。 8. The non-oriented electrical steel sheet according to any one of 1 to 5 above, wherein the component composition of the mother layer further contains Cr: 5.0% or less in mass%.

9. 前記母層の成分組成は、質量%で、Ca:0.005%以下をさらに含有することを特徴とする前記1〜6の何れか1に記載の無方向性電磁鋼板。 9. The non-oriented electrical steel sheet according to any one of 1 to 6 above, wherein the component composition of the mother layer is by mass% and further contains Ca: 0.005% or less.

10.前記表層および母層のいずれか一方または両方の成分組成に、質量%で、Cu:1.0%以下(0を除く)をさらに含有することを特徴とする前記1〜9の何れか1項に記載の無方向性電磁鋼板。 10. Item 1 of any one of 1 to 9 above, wherein the component composition of either one or both of the surface layer and the mother layer further contains Cu: 1.0% or less (excluding 0) in mass%. Non-oriented electrical steel sheet described in.

11. 前記1〜10の何れか1に記載の無方向性電磁鋼板を製造する方法であって、 前記1〜5および10の何れか1に記載の表層の成分組成を有するスラブを、前記1〜10の何れか1に記載の母層の成分組成を有するスラブの両面に、真空度2.5Pa以下で溶接してクラッドスラブとしたのち、該クラッドスラブを熱間圧延する工程を有することを特徴とする無方向性電磁鋼板の製造方法。 11. A slab having the surface component composition according to any one of 1 to 5 and 10 according to the method for producing the non-directional electromagnetic steel plate according to any one of 1 to 10 above. A step of hot-rolling the clad slab after welding the slab having the component composition of the mother layer according to any one of 10 to 10 at a vacuum degree of 2.5 Pa or less to form a clad slab. A characteristic method for manufacturing a non-directional electromagnetic steel plate.

本発明によれば、周波数:400Hzの高周波域であっても低鉄損を有する無方向性電磁鋼板を安定的に製造することができる。 According to the present invention, a non-oriented electrical steel sheet having a low iron loss can be stably produced even in a high frequency range of a frequency of 400 Hz.

熱延焼鈍板の繰り返し曲げ回数と、母層と両表層を合わせた鋼板の全板厚に対する両表層の合計の板厚比との関係を示した図である。It is a figure which showed the relationship between the number of times of repeated bending of a hot-spread annealed sheet, and the total plate thickness ratio of both surface layers with respect to the total sheet thickness of the steel sheet which combined the mother layer and both surface layers. エプスタインサンプルの鉄損と、母層と両表層を合わせた鋼板の全板厚に対する両表層の合計の板厚比との関係を示した図である。It is a figure which showed the relationship between the iron loss of the Epstein sample and the total thickness ratio of both surface layers with respect to the total thickness of the steel plate which combined the mother layer and both surface layers. 試料別の熱延焼鈍板の繰り返し曲げ試験の結果を示した図である。It is a figure which showed the result of the repeated bending test of the hot-spread annealed plate for each sample. 表層の溶接時の真空度と鉄損との関係を示した図である。It is a figure which showed the relationship between the degree of vacuum at the time of welding of a surface layer, and iron loss.

本発明の無方向性電磁鋼板(以下、単に「鋼板」という場合がある)は、内層となる母層と、母層の粗圧延面である両表面に設けられた延性に優れた低Si材の層である表層とを備え、かかる表層は母層よりも、脆化元素であるSiが少ない。また、Siほどではないが脆化元素である、AlおよびMnの含有量も一定量以下としている。また、無方向性電磁鋼板の一方の面に設けられた第1の表層と対向する他方の面に設けられた第2の表層の両者(以下、両表層ともいう)のいずれもが、以下に述べる表層の条件を満たすことが必要である。ただし、かかる第1の表層の成分組成や厚みと第2の表層の成分組成や厚みは同じ方が好ましいが、必ずしも同じ成分組成や厚みである必要はない。 The non-oriented electrical steel sheet of the present invention (hereinafter, may be simply referred to as “steel sheet”) is a low-Si material having excellent ductility provided on both surfaces of a mother layer as an inner layer and a rough-rolled surface of the mother layer. The surface layer is provided with a surface layer which is a layer of the above, and the surface layer contains less Si as an embrittlement element than the mother layer. Further, the contents of Al and Mn, which are embrittlement elements, although not as much as Si, are also set to a certain amount or less. Further, both of the first surface layer provided on one surface of the non-oriented electrical steel sheet and the second surface layer provided on the other surface facing the non-oriented electrical steel sheet (hereinafter, also referred to as both surface layers) are described below. It is necessary to meet the conditions of the surface layer described. However, it is preferable that the component composition and thickness of the first surface layer and the component composition and thickness of the second surface layer are the same, but the component composition and thickness do not necessarily have to be the same.

[成分組成]
まず、本発明における鋼板の、母層と表層の成分組成についてそれぞれ説明する。なお、以下の説明において、各元素の含有量を表す「%」は、特に断らない限り「質量%」を表すものとする。
まず、母層の成分組成について説明する。
[Ingredient composition]
First, the component compositions of the mother layer and the surface layer of the steel sheet in the present invention will be described. In the following description, "%" representing the content of each element shall represent "mass%" unless otherwise specified.
First, the component composition of the mother layer will be described.

母層のC含有量 C:0.0070%以下
Cは、0.0070%を超えると磁気時効の原因となるため、0.0070%以下とする。なお、下限は特に制限されず0%でも良いが、工業的には、0.0005%程度が好ましい。
C content of mother layer C: 0.0070% or less C is 0.0070% or less because it causes magnetic aging if it exceeds 0.0070%. The lower limit is not particularly limited and may be 0%, but industrially, it is preferably about 0.0005%.

母層のSi含有量 Si:2.5〜5.5%
Siは、鋼板の電気抵抗を高め、渦電流損を低減する作用を有する元素である。母層のSi含有量が2.5%未満であると、効果的に渦電流損を低減することができない。そのため、母層のSi含有量は2.5%以上、好ましくは3.0%以上、より好ましくは3.5%超とする。一方、母層のSi含有量が5.5%を超えると、製造性が低下する。そのため、母層のSi量は5.5%以下とする。
Si content of mother layer Si: 2.5-5.5%
Si is an element that has the effect of increasing the electrical resistance of the steel sheet and reducing the eddy current loss. If the Si content of the mother layer is less than 2.5%, the eddy current loss cannot be effectively reduced. Therefore, the Si content of the mother layer is 2.5% or more, preferably 3.0% or more, and more preferably more than 3.5%. On the other hand, if the Si content of the mother layer exceeds 5.5%, the manufacturability is lowered. Therefore, the amount of Si in the mother layer is set to 5.5% or less.

母層のAl含有量 Al:0.1〜3.0%
Alは、Siと同様に鋼板の電気抵抗を高め、渦電流損を低減する作用を有する元素である。よって、本発明では、高周波域の鉄損を低減するため、母層のAl含有量は0.1%以上とする。一方、母層のAl含有量が3.0%を超えると、製造性が低下するだけでなく、磁歪が増加するため、ヒステリシス損が増加し、鉄損を効率的に低減することができない。そのため、母層のAl量は3.0%以下とする。
Al content of mother layer Al: 0.1 to 3.0%
Like Si, Al is an element that has the effect of increasing the electrical resistance of the steel sheet and reducing the eddy current loss. Therefore, in the present invention, the Al content of the mother layer is set to 0.1% or more in order to reduce the iron loss in the high frequency region. On the other hand, if the Al content of the matrix layer exceeds 3.0%, not only the manufacturability is lowered, but also the magnetostriction is increased, so that the hysteresis loss is increased and the iron loss cannot be efficiently reduced. Therefore, the Al content of the mother layer is set to 3.0% or less.

母層のMn含有量 Mn:0.1〜3.0%
Mnは、Si、Alと同様に鋼板の電気抵抗を高め、渦電流損を低減する作用を有する元素であり、高周波域の鉄損を低減する。そのため、母層のMn含有量は0.1%以上とする。一方、母層のMn含有量が3.0%を超えると、磁歪が増加するため、ヒステリシス損が増加し、鉄損を効率的に低減することができない。そのため、母層のMn量は3.0%以下とする。
Mn content of mother layer Mn: 0.1 to 3.0%
Like Si and Al, Mn is an element having an effect of increasing the electric resistance of the steel sheet and reducing the eddy current loss, and reduces the iron loss in the high frequency region. Therefore, the Mn content of the mother layer is set to 0.1% or more. On the other hand, if the Mn content of the matrix layer exceeds 3.0%, magnetostriction increases, so that hysteresis loss increases and iron loss cannot be reduced efficiently. Therefore, the amount of Mn in the mother layer is set to 3.0% or less.

母層のP含有量 P:0.01〜0.10%
Pを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。本発明では、前記効果を得るために母層のP含有量を0.01%以上とする。一方、母層のP含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下を招く。そのため、母層のP含有量は0.10%以下とする。
P content of mother layer P: 0.01-0.10%
By adding P, the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced. In the present invention, the P content of the mother layer is set to 0.01% or more in order to obtain the above effect. On the other hand, when the P content of the mother layer exceeds 0.10%, the effect is saturated and the manufacturability is lowered. Therefore, the P content of the mother layer is set to 0.10% or less.

母層のSi、AlおよびMnの合計が3.0〜6.5%
本発明では、Si、AlおよびMnの合計は、3.0〜6.5%の範囲とする。
Si、AlおよびMnの合計が3.0%に満たないと、固有抵抗が低いため、渦電流損が劣り、鋼板の鉄損が効果的に低減しない。一方、Si、AlおよびMnの合計が6.5%を超えると、脆化するため、ルーパー通過時に破断しやすくなる。
The total of Si, Al and Mn of the mother layer is 3.0 to 6.5%.
In the present invention, the total of Si, Al and Mn is in the range of 3.0 to 6.5%.
If the total of Si, Al and Mn is less than 3.0%, the natural resistance is low, so that the eddy current loss is inferior and the iron loss of the steel sheet is not effectively reduced. On the other hand, if the total of Si, Al and Mn exceeds 6.5%, the material becomes embrittled and easily breaks when passing through the looper.

母層のSn含有量 Sn:0.15%以下
Pと同様に、Snを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。一方、母層のSn含有量が0.15%を超えると効果が飽和することに加えて、製造性の低下を招く。そのため、母層のSn含有量は0.15%以下とする。母層にSnを添加する場合、添加効果を得るためにはSn含有量を0.001%以上とすることが好ましい。
Sn content of mother layer Sn: 0.15% or less Similar to P, by adding Sn, the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced. On the other hand, when the Sn content of the mother layer exceeds 0.15%, the effect is saturated and the manufacturability is lowered. Therefore, the Sn content of the mother layer is set to 0.15% or less. When Sn is added to the mother layer, the Sn content is preferably 0.001% or more in order to obtain the addition effect.

母層のSb含有量 Sb:0.15%以下
P、Snと同様に、Sbを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。一方、母層のSb含有量が0.15%を超えると効果が飽和することに加えて、製造性の低下を招く。そのため、母層のSb含有量は0.15%以下とする。母層にSbを添加する場合、添加効果を得るためにはSb含有量を0.001%以上とすることが好ましい。
Sb content of mother layer Sb: 0.15% or less Similar to P and Sn, by adding Sb, the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced. On the other hand, if the Sb content of the mother layer exceeds 0.15%, the effect is saturated and the manufacturability is lowered. Therefore, the Sb content of the mother layer is set to 0.15% or less. When Sb is added to the mother layer, the Sb content is preferably 0.001% or more in order to obtain the addition effect.

母層のCr含有量 Cr:5.0%以下
Crは、鋼板の電気抵抗を高めるものの固溶強化が小さいため、母層に添加することで、製造性を大きく低下させることなく、さらに鉄損を低減することが可能である。一方、5.0%を超えると脆化により製造性が低下するだけでなく、ヒステリシス損が増加し、鉄損を効率的に低減することができない。そのため、母層のCr含有量は5.0%以下とする。母層にCrを添加する場合、添加効果を得るためにはCr含有量を0.10%以上とすることが好ましい。
Cr content of the mother layer Cr: 5.0% or less Cr increases the electrical resistance of the steel sheet, but the solid solution strengthening is small. Therefore, by adding it to the mother layer, iron loss is further achieved without significantly reducing the manufacturability. Can be reduced. On the other hand, if it exceeds 5.0%, not only the manufacturability is lowered due to embrittlement, but also the hysteresis loss is increased, and the iron loss cannot be reduced efficiently. Therefore, the Cr content of the mother layer is set to 5.0% or less. When Cr is added to the mother layer, the Cr content is preferably 0.10% or more in order to obtain the addition effect.

母層のCa含有量 Ca:0.005%以下
微量のCa添加は、不可避不純物の一つであるSと反応し、CaSとなって粗大な析出物を形成し、MnS等の微細な硫化物の析出を抑制する。そのため、粒成長を改善し、鉄損を低減する効果がある。一方、母層のCa含有量が0.005%を超えるとCaSやCaOの量が増加し、却って粒成長を阻害して鉄損特性が劣化する。そのため、Ca添加の上限は0.005%とする。母層にCaを添加する場合、添加効果を得るためにはCa含有量を0.0005%以上とすることが好ましい。
Ca content of mother layer Ca: 0.005% or less When a small amount of Ca is added, it reacts with S, which is one of the unavoidable impurities, and becomes CaS to form a coarse precipitate, which is a fine sulfide such as MnS. Suppresses precipitation. Therefore, it has the effect of improving grain growth and reducing iron loss. On the other hand, when the Ca content of the mother layer exceeds 0.005%, the amounts of CaS and CaO increase, and on the contrary, the grain growth is inhibited and the iron loss property deteriorates. Therefore, the upper limit of Ca addition is 0.005%. When Ca is added to the mother layer, the Ca content is preferably 0.0005% or more in order to obtain the addition effect.

なお、母層において、上記した成分以外の残部は、Feおよび不可避不純物である。 In the mother layer, the rest other than the above-mentioned components are Fe and unavoidable impurities.

次に、表層の成分組成について説明する。
表層のC含有量 C:0.0070%以下
Cは、0.0070%を超えると延性が低下するだけでなく、磁気時効の原因となるため、表層のC含有量は0.0070%以下とする。なお、下限は特に制限されず0%でも良いが、工業的には、0.0005%程度が好ましい。
Next, the component composition of the surface layer will be described.
C content of the surface layer C: 0.0070% or less When C exceeds 0.0070%, not only the ductility decreases but also it causes magnetic aging, so the C content of the surface layer is 0.0070% or less. To do. The lower limit is not particularly limited and may be 0%, but industrially, it is preferably about 0.0005%.

表層のSi含有量 Si:2.0%以下
Siを添加することにより、延性が低下するため、表層のSi含有量は2.0%以下とする。なお、下限は特に制限されず0%でも良い。
Surface layer Si content Si: 2.0% or less Since the ductility is reduced by adding Si, the surface layer Si content should be 2.0% or less. The lower limit is not particularly limited and may be 0%.

表層のAl含有量 Al:2.0%以下
Alを添加することにより、延性が低下するため、表層のAl含有量は2.0%以下とする。なお、下限は特に制限されず0%でも良い。
Al content of the surface layer Al: 2.0% or less Since the ductility is lowered by adding Al, the Al content of the surface layer is set to 2.0% or less. The lower limit is not particularly limited and may be 0%.

表層のMn含有量 Mn:1.0%以下
Mnを添加することにより、延性が低下するため、表層のMn含有量は1.0%以下とする。なお、下限は特に制限されず0%でも良い。
Mn content of the surface layer Mn: 1.0% or less Since the ductility is lowered by adding Mn, the Mn content of the surface layer is set to 1.0% or less. The lower limit is not particularly limited and may be 0%.

表層のP含有量 P:0.10%以下
Pを添加することにより、延性が低下するため、表層のP含有量は0.10%以下とする。なお、下限は特に制限されないが、工業的には0.005%程度が好ましい。
Surface layer P content P: 0.10% or less Since the ductility is reduced by adding P, the surface layer P content is set to 0.10% or less. The lower limit is not particularly limited, but industrially, it is preferably about 0.005%.

表層において、上記した成分以外の残部は、Feおよび不可避不純物である。なお、表層において、上記した成分以外を添加する必要はないが、製造性や磁気特性の許容範囲内で、不可避不純物を含んでいてもかまわない。 In the surface layer, the rest other than the above-mentioned components are Fe and unavoidable impurities. It is not necessary to add components other than those described above in the surface layer, but unavoidable impurities may be contained within the allowable range of manufacturability and magnetic properties.

以上に説明した無方向性電磁鋼板において、上記した表層に、さらにTi:0.0100%以下、Nb:0.0100%以下、V:0.0100%以下およびNi:1.0%以下並びに、上記した母層に、さらにNi:1.0%以下、の内(何れも0を含まず)から選んだ少なくとも1種を含有することができる。以下に、各成分の添加理由を詳述する。 In the non-oriented electrical steel sheet described above, on the above-mentioned surface layer, Ti: 0.0100% or less, Nb: 0.0100% or less, V: 0.0100% or less, Ni: 1.0% or less, and The mother layer described above may further contain at least one selected from Ni: 1.0% or less (none of which contains 0). The reasons for adding each component will be described in detail below.

表層のTi含有量 Ti:0.0100%以下
TiはCと反応し、炭化物を形成するため、粒成長を抑制し、靭性を向上する。ただし、母層に添加すると、ヒステリシス損が増加し、鉄損が劣化する傾向にあるため、添加する場合は、表層に添加する。なお、上記効果を得るために、本発明では、表層に、Tiを0.0020%以上添加することができる。一方で、表層にTiを多量に添加すると、ヒステリシス損が増加し、鉄損が著しく劣化するため、表層のTi量は0.0100%以下とする。
なお、母層のTi量は、0.0025%程度までは許容される。
Surface Ti content Ti: 0.0100% or less Ti reacts with C to form carbides, which suppresses grain growth and improves toughness. However, when it is added to the mother layer, the hysteresis loss tends to increase and the iron loss tends to deteriorate. Therefore, when it is added, it is added to the surface layer. In order to obtain the above effect, in the present invention, 0.0020% or more of Ti can be added to the surface layer. On the other hand, when a large amount of Ti is added to the surface layer, the hysteresis loss increases and the iron loss deteriorates remarkably. Therefore, the amount of Ti in the surface layer is set to 0.0100% or less.
The amount of Ti in the mother layer is allowed up to about 0.0025%.

表層のNb含有量 Nb:0.0100%以下
NbはCと反応し、炭化物を形成するため、粒成長を抑制し、靭性を向上する。ただし、母層に添加すると、ヒステリシス損が増加し、鉄損が劣化する傾向にあるため、添加する場合は、表層に添加する。なお、上記効果を得るために、本発明では、表層に、Nbを0.0020%以上添加することができる。一方で、表層にNbを多量に添加すると、ヒステリシス損が増加し、鉄損が著しく劣化するため、表層のNb量は0.0100%以下とする。
なお、母層のNb量は、0.0025%程度までは許容される。
Surface layer Nb content Nb: 0.0100% or less Nb reacts with C to form carbides, which suppresses grain growth and improves toughness. However, when it is added to the mother layer, the hysteresis loss tends to increase and the iron loss tends to deteriorate. Therefore, when it is added, it is added to the surface layer. In order to obtain the above effect, in the present invention, 0.0020% or more of Nb can be added to the surface layer. On the other hand, when a large amount of Nb is added to the surface layer, the hysteresis loss increases and the iron loss deteriorates remarkably. Therefore, the amount of Nb in the surface layer is set to 0.0100% or less.
The amount of Nb in the mother layer is allowed up to about 0.0025%.

表層のV含有量 V:0.0100%以下
VはCと反応し、炭化物を形成するため、粒成長を抑制し、靭性を向上する。ただし、母層に添加すると、ヒステリシス損が増加し、鉄損が劣化する傾向にあるため、添加する場合は、表層に添加する。なお、上記効果を得るために、本発明では、表層にVを0.0020%以上添加することができる。一方で、表層にVを多量に添加すると、ヒステリシス損が増加し、鉄損が著しく劣化するため、表層のV量は0.0100%以下とする。
なお、母層のV量は、0.0025%程度までは許容される。
V content of surface layer V: 0.0100% or less V reacts with C to form carbides, which suppresses grain growth and improves toughness. However, when it is added to the mother layer, the hysteresis loss tends to increase and the iron loss tends to deteriorate. Therefore, when it is added, it is added to the surface layer. In order to obtain the above effect, in the present invention, 0.0020% or more of V can be added to the surface layer. On the other hand, when a large amount of V is added to the surface layer, the hysteresis loss increases and the iron loss deteriorates remarkably. Therefore, the V amount of the surface layer is set to 0.0100% or less.
The amount of V in the mother layer is allowed up to about 0.0025%.

表層のNi含有量 Ni:1.0%以下
Niは、Si含有鋼の積層欠陥エネルギーを低下させ、材料の靭性を向上させる元素である。この効果を得るためには、表層にNiを0.01%以上添加する。一方で、Niを過剰に添加すると、Ni添加による靭性向上効果は飽和し、コスト増加の原因となることから、Ni量は、表層で1.0%以下とする。
Ni content of surface layer Ni: 1.0% or less Ni is an element that reduces the stacking defect energy of Si-containing steel and improves the toughness of the material. To obtain this effect, 0.01% or more of Ni is added to the surface layer. On the other hand, if Ni is added excessively, the effect of improving toughness due to the addition of Ni is saturated and causes an increase in cost. Therefore, the amount of Ni is set to 1.0% or less on the surface layer.

母層のNi含有量 Ni:1.0%以下
NiはSi含有鋼の積層欠陥エネルギーを低下させ、材料の靭性を向上させる元素である。この効果を得るために、母層にNiを0.010%以上添加することができる。一方で、Niを過剰に添加すると、Ni添加による靭性向上効果は飽和し、コスト増加の原因となることから、Ni量は、母層に添加する場合、1.0%以下とする。
なお、Niは、母層だけでなく、表層に添加してもよいが、Si量が2.0%以上の場合に、特に靭性向上効果が高くなるため、母層に添加することが好ましい。
すなわち、本発明において、Niを添加する場合、表層および母層のいずれか一方または両方で1.0%以下(0を含まず)添加することができる。
Ni content of base layer Ni: 1.0% or less Ni is an element that reduces the stacking defect energy of Si-containing steel and improves the toughness of the material. In order to obtain this effect, 0.010% or more of Ni can be added to the mother layer. On the other hand, if Ni is added excessively, the effect of improving toughness due to the addition of Ni is saturated and causes an increase in cost. Therefore, the amount of Ni is set to 1.0% or less when added to the mother layer.
Ni may be added not only to the mother layer but also to the surface layer, but it is preferable to add Ni to the mother layer because the toughness improving effect is particularly high when the amount of Si is 2.0% or more.
That is, in the present invention, when Ni is added, 1.0% or less (not including 0) can be added to either or both of the surface layer and the mother layer.

かように、上記した母層にNi:1.0%以下、並びに、上記した表層に、Ti:0.0100%以下、Nb:0.0100%以下、V:0.0100%以下およびNi:1.0%以下、の内(何れも0を含まず)から選んだ少なくとも1種を含有する、鋼板においては、上記のとおり靭性がさらに向上することから、上述したSi量を6.0%まで、およびSi、AlおよびMnの合計量を7.5%まで増加することができる。
すなわち、具体的には以下のとおりである。
As described above, the above-mentioned mother layer has Ni: 1.0% or less, and the above-mentioned surface layer has Ti: 0.0100% or less, Nb: 0.0100% or less, V: 0.0100% or less, and Ni: In the steel sheet containing at least one selected from 1.0% or less (none of which contains 0), the toughness is further improved as described above, and therefore the above-mentioned Si amount is 6.0%. And the total amount of Si, Al and Mn can be increased up to 7.5%.
That is, specifically, it is as follows.

母層のSi含有量 Si:2.5〜6.0%
母層にNi並びに表層にTi,Nb,VおよびNiのいずれかを添加することで鋼板の靭性を改善できるため、母層に添加するSi量を6.0%まで高めることができる。好ましくは5.5%以下である。一方、Si含有量が2.5%未満であると、効果的に渦電流損を低減することができない。そのため、母層のSi含有量は2.5%以上、好ましくは3.0%以上、より好ましくは3.5%超とする。
Si content of mother layer Si: 2.5-6.0%
Since the toughness of the steel sheet can be improved by adding Ni to the mother layer and any of Ti, Nb, V and Ni to the surface layer, the amount of Si added to the mother layer can be increased up to 6.0%. It is preferably 5.5% or less. On the other hand, if the Si content is less than 2.5%, the eddy current loss cannot be effectively reduced. Therefore, the Si content of the mother layer is 2.5% or more, preferably 3.0% or more, and more preferably more than 3.5%.

母層のSi、AlおよびMnの合計が3.0〜7.5%
本発明では、母層にNi並びに表層にTi,Nb,VおよびNiのいずれか一つまたは二つ以上を添加した場合、Si、AlおよびMnの合計は3.0〜7.5%の範囲とする。
Si、AlおよびMnの合計が3.0%に満たないと、固有抵抗が低いため、渦電流損が劣り、鋼板の鉄損が効果的に低減しない。一方、母層にNi並びに表層にTi,Nb,VおよびNiのいずれか一つまたは二つ以上を添加すると鋼板の靭性を改善でき、特にSi、AlおよびMnの合計が6.5〜7.5%の場合は、その効果が顕著になる。よって、Si、AlおよびMnの合計は7.5%まで添加することができる。
The total of Si, Al and Mn of the mother layer is 3.0 to 7.5%.
In the present invention, when Ni is added to the mother layer and any one or more of Ti, Nb, V and Ni are added to the surface layer, the total of Si, Al and Mn is in the range of 3.0 to 7.5%. And.
If the total of Si, Al and Mn is less than 3.0%, the natural resistance is low, so that the eddy current loss is inferior and the iron loss of the steel sheet is not effectively reduced. On the other hand, the toughness of the steel sheet can be improved by adding one or more of Ni to the mother layer and Ti, Nb, V and Ni to the surface layer, and in particular, the total of Si, Al and Mn is 6.5 to 7. In the case of 5%, the effect becomes remarkable. Therefore, the total of Si, Al and Mn can be added up to 7.5%.

なお、本発明では、適宜、Cuを、表層および母層の何れかまたは両方に添加することができる。具体的には以下のとおりである。 In the present invention, Cu can be appropriately added to either or both of the surface layer and the mother layer. Specifically, it is as follows.

表層のCu含有量 Cu:1.0%以下
Cuは、含有させることで各製造工程における鋼板表面の酸化を抑制することができる。かかる効果を得るためには、表層に0.01%以上含有することが好ましい。一方で、Cu量が1.0%を超えると赤熱脆化により、熱間圧延の歩留まりが低下する。したがって、Cu量の上限は、表層に添加する場合、1.0%とすることが好ましい。
Cu content of the surface layer Cu: 1.0% or less By containing Cu, oxidation of the surface of the steel sheet in each manufacturing process can be suppressed. In order to obtain such an effect, it is preferable that the surface layer contains 0.01% or more. On the other hand, if the amount of Cu exceeds 1.0%, the yield of hot rolling decreases due to reddish embrittlement. Therefore, the upper limit of the amount of Cu is preferably 1.0% when added to the surface layer.

母層のCu含有量 Cu:1.0%以下
Cuは、含有させることで各製造工程における鋼板表面の酸化を抑制することができるため、0.01%以上含有することが好ましい。一方で、Cu量が1.0%を超えると赤熱脆化により、熱間圧延の歩留まりが低下する。したがって、Cu量は、母層に添加する場合、1.0%以下とすることが好ましい。
すなわち、本発明において、Cuを添加する場合、表層、母層それぞれで1.0%以下とすることができる。
Cu content of the base layer Cu: 1.0% or less Cu is preferably contained in an amount of 0.01% or more because it is possible to suppress oxidation of the surface of the steel sheet in each manufacturing process. On the other hand, if the amount of Cu exceeds 1.0%, the yield of hot rolling decreases due to reddish embrittlement. Therefore, the amount of Cu is preferably 1.0% or less when added to the mother layer.
That is, in the present invention, when Cu is added, it can be 1.0% or less in each of the surface layer and the mother layer.

[板厚比]
本発明者らは、高周波域で低鉄損を示す無方向性電磁鋼板の開発として、母層の高Si化を検討し、さらに安定的に製造するために、母層の粗圧延面である両表面に圧延性に優れた低Si材を溶接し表層とすることで、磁気特性と製造性に優れた無方向性電磁鋼板の開発を検討した。しかしながら、ただ単に、母層の両表面に固有抵抗の低い低Si材を溶接しただけでは、表皮効果によって渦電流損が増加し、却って鉄損が増加してしまう場合がある。そこで、鉄損増加の抑制が可能な、母層と両表面の表層とをあわせた鋼板の全板厚に対する両表面の表層の合計の板厚比(以下、表層の板厚比、または単に板厚比と記載)の検討を行った。
具体的には、スケールを除去した母層用スラブの両表面に、冷間圧延後の表層の板厚比が0〜0.05となるよう厚みを加工した表層用低Si材を、2Paの真空度とした雰囲気下で、溶接してクラッドスラブを得た。
[Plate thickness ratio]
As a development of non-oriented electrical steel sheets showing low iron loss in the high frequency region, the present inventors have investigated the increase in Si of the parent layer, and in order to manufacture it more stably, the rough-rolled surface of the mother layer. We examined the development of non-oriented electrical steel sheets with excellent magnetic properties and manufacturability by welding low Si materials with excellent rollability to both surfaces to form the surface layer. However, if a low Si material having a low intrinsic resistance is simply welded to both surfaces of the mother layer, the eddy current loss may increase due to the skin effect, and the iron loss may increase on the contrary. Therefore, the total plate thickness ratio of the surface layers of both surfaces to the total plate thickness of the steel plate including the mother layer and the surface layers of both surfaces (hereinafter, the plate thickness ratio of the surface layer, or simply the plate), which can suppress the increase in iron loss. The thickness ratio) was examined.
Specifically, 2 Pa of low Si material for the surface layer is processed so that the plate thickness ratio of the surface layer after cold rolling is 0 to 0.05 on both surfaces of the slab for the mother layer from which the scale has been removed. A clad slab was obtained by welding in a vacuum atmosphere.

ここで、母層用スラブの成分は、C:0.0025%、Si:3.3%、Al:1.2%、Mn:0.4%およびP:0.04%、残部がFeおよび不可避不純物であり、表層となる低Si材の成分はC:0.005%、Si:0.04%、Al:0.1%、Mn:0.1%およびP:0.01%、残部がFeおよび不可避不純物である。なお、板厚比:0の試料は母層のみであり、表層となる低Si材の溶接は施していない。また、両表面の表層(以下、両表層と記載)の成分および板厚は同じとした。すなわち、片面当たりの表層の板厚は、図に記載の板厚比の1/2である。これら母層のみのスラブおよびクラッドスラブを1120℃に再加熱し、最終圧延時の温度が800〜1000℃になるよう熱間圧延を行い、板厚:2.0mmとした。次いで、100%N雰囲気で920℃×30sの条件の熱延板焼鈍を施し、ショット付与後、酸洗を実施し、表層のスケール層を除去した。 Here, the components of the slab for the mother layer are C: 0.0025%, Si: 3.3%, Al: 1.2%, Mn: 0.4% and P: 0.04%, and the balance is Fe and The components of the low Si material that is an unavoidable impurity and is the surface layer are C: 0.005%, Si: 0.04%, Al: 0.1%, Mn: 0.1% and P: 0.01%, and the balance. Are Fe and unavoidable impurities. The sample having a plate thickness ratio of 0 is only the mother layer, and the low Si material as the surface layer is not welded. In addition, the components and plate thickness of the surface layers on both surfaces (hereinafter referred to as both surface layers) were the same. That is, the plate thickness of the surface layer per one side is 1/2 of the plate thickness ratio shown in the figure. The slabs and clad slabs containing only the mother layer were reheated to 1120 ° C. and hot-rolled so that the temperature at the time of final rolling was 800 to 1000 ° C. to obtain a plate thickness of 2.0 mm. Then, 100% N subjected to hot rolled sheet annealing conditions 920 ° C. × 30s with 2 atmosphere, after the shot granted performed pickled to remove surface scale layer.

上記ショット付与条件として、ショット粒に直径:0.3mmの鋼球を用い、投射密度を20kg/mとした。
また、スケール除去後の熱延焼鈍板を、幅:30mm、長さ:100mmに加工し、室温にて曲率半径:15mm、曲げ角度:45°の繰り返し曲げ試験を行い、破断するまでの回数で評価した。熱延焼鈍板の繰り返し曲げ評価結果と冷間圧延時の製造性はよく相関しており、熱延焼鈍板の繰り返し曲げ評価により冷間圧延での製造性を簡易的に評価することができる。繰り返し曲げ回数は、10回以上であることが好ましく、20回以上であることがさらに好ましい。
次に、スケール除去後の熱延焼鈍板に冷間圧延を施し、板厚:0.25mmとし、20vol%H−80vol%N雰囲気で1100℃×10sの保定条件の仕上焼鈍を施した。なお、母層のみの場合は、クラッドスラブと同様の条件で冷間圧延した場合、破断したが、鉄損レベルを確認するために、冷間圧延のかわりに、300℃に加熱してから温間圧延を行い、板厚:0.25mmとした。以降は、クラッドスラブと同様の仕上焼鈍を行った。
この仕上焼鈍で作製した仕上焼鈍板から、幅:30mm、長さ:180mmのエプスタインサンプルを圧延方向および圧延直角方向より切り出し、JIS C2550に記載のエプスタイン法にて磁束密度:1.0T、周波数:400Hzにおける鉄損W10/400測定を行った。
As the shot giving condition, a steel ball having a diameter of 0.3 mm was used as the shot grain, and the projection density was set to 20 kg / m 2 .
In addition, the hot-spread annealed plate after removing the scale is processed to a width of 30 mm and a length of 100 mm, and a repeated bending test with a radius of curvature of 15 mm and a bending angle of 45 ° is performed at room temperature, and the number of times until it breaks. evaluated. The result of repeated bending evaluation of the hot-rolled annealed sheet and the manufacturability during cold rolling are well correlated, and the manufacturability in cold rolling can be easily evaluated by the repeated bending evaluation of the hot-rolled annealed sheet. The number of repeated bends is preferably 10 or more, and more preferably 20 or more.
Next, subjected to cold rolling to hot-rolled annealed sheet after descaling, the thickness: and 0.25 mm, subjected to finish annealing retention conditions 1100 ° C. × 10s with 20vol% H 2 -80vol% N 2 atmosphere .. In the case of only the mother layer, it broke when cold-rolled under the same conditions as the clad slab, but instead of cold-rolling, it was heated to 300 ° C and then warmed to check the iron loss level. Inter-rolling was performed to obtain a plate thickness of 0.25 mm. After that, the same finish annealing as the clad slab was performed.
From the finish annealed plate produced by this finish annealing, an Epstein sample having a width of 30 mm and a length of 180 mm was cut out from the rolling direction and the direction perpendicular to the rolling, and the magnetic flux density: 1.0 T, frequency: Iron loss W 10/400 measurement at 400 Hz was performed.

図1に熱延焼鈍板の繰り返し曲げ回数と表層の板厚比の関係を示す。同図から、表層の板厚比に関わらず、低Si材の表層の存在により、繰り返し曲げ回数の大幅な向上、すなわち、冷間圧延での製造性の大幅な向上が認められる。
また、図2に鉄損と表層の板厚比の関係を示す。なお、板厚比0.000は、母層のみの試料であり、冷間圧延では割れが発生したため、上述したとおり温間圧延して試料を得た。同図から、表層の板厚比が0.040を超えると鉄損の大幅な増加が認められる。
したがって、本発明では、磁気特性に優れた無方向性電磁鋼板を安定的に製造するために、上記母層と上記両表層とを合わせた鋼板の全板厚:tに対する低Si材の上記両表層の厚みの合計:tの板厚比:t1/tを0.040以下(0を除く)とする。一方、冷間圧延後に母層に低Si材の表層が存在すれば、かかる表層の板厚比の下限に制限はないが、工業的な観点からの下限としては、片面当たりの表層の板厚比は、0.002程度、すなわち、両表層合計では0.004程度とするのが好ましい。
FIG. 1 shows the relationship between the number of repeated bendings of the hot-spread annealed plate and the plate thickness ratio of the surface layer. From the figure, regardless of the plate thickness ratio of the surface layer, the presence of the surface layer of the low Si material significantly improves the number of repeated bends, that is, the manufacturability in cold rolling.
Further, FIG. 2 shows the relationship between the iron loss and the plate thickness ratio of the surface layer. The plate thickness ratio of 0.000 was a sample of only the mother layer, and cracks were generated in the cold rolling. Therefore, the sample was obtained by warm rolling as described above. From the figure, when the plate thickness ratio of the surface layer exceeds 0.040, a significant increase in iron loss is observed.
Therefore, in the present invention, in order to stably produce a non-oriented electrical steel sheet having excellent magnetic characteristics, the above-mentioned low Si material with respect to the total thickness of the steel sheet including the mother layer and both surface layers: t 0. The total thickness of both surface layers: t 1 plate thickness ratio: t 1 / t 0 shall be 0.040 or less (excluding 0). On the other hand, if a surface layer of low Si material is present in the mother layer after cold rolling, there is no limit to the lower limit of the plate thickness ratio of the surface layer, but the lower limit from an industrial point of view is the plate thickness of the surface layer per side. The ratio is preferably about 0.002, that is, about 0.004 in total for both surface layers.

以上のように低Si材の表層を存在させることにより、脆化効果が大きいSi、Al、Mn量が高い母層を用いた場合でも、高製造性と低鉄損を両立することが可能となる。なお、鉄損はSi、Al、Mn量や板厚により、レベルがかわるが、磁束密度:1.0T、周波数:400Hzにおける鉄損W10/400が以下の式(1)を満たす場合を好適な低鉄損範囲とした。この関係式(1)は、Si、Al、Mnおよび板厚を変更した材料の鉄損を調査し、各要因の鉄損への寄与率を算出し、成分および板厚から期待される好適な低鉄損の範囲を決定した式である。
10/400≦9.68+31×t−1.1×[Si]−0.8×[Al]−0.3×[Mn] ・・・(1)
ここで、[Si]、[Al]、[Mn]は上記母層および表層(すなわち鋼板全体)における各成分の平均質量%である。
By allowing the surface layer of the low Si material to exist as described above, it is possible to achieve both high manufacturability and low iron loss even when a mother layer having a large amount of Si, Al, and Mn having a large embrittlement effect is used. Become. The level of iron loss varies depending on the amount of Si, Al, Mn and the plate thickness, but it is preferable that the iron loss W 10/400 at a magnetic flux density of 1.0 T and a frequency of 400 Hz satisfies the following equation (1). The low iron loss range was set. In this relational expression (1), the iron loss of Si, Al, Mn and the material whose plate thickness is changed is investigated, the contribution ratio of each factor to the iron loss is calculated, and it is suitable to be expected from the components and the plate thickness. This is an equation that determines the range of low iron loss.
W 10/400 ≦ 9.68 + 31 × t 0 -1.1 × [Si] -0.8 × [Al] -0.3 × [Mn] ··· (1)
Here, [Si], [Al], and [Mn] are the average mass% of each component in the mother layer and the surface layer (that is, the entire steel sheet).

[製造方法]
母層の両表面に所期した表層が形成されていれば、製造方法は特に限定するものではないが、スケールを除去した母層スラブの両表面に、冷間圧延後に所望の板厚比になるように厚みを調整した低Si材を溶接してクラッドスラブを作製する方法が好適な方法としてあげられる。ただし、大気中で溶接した場合、鉄損や製造性にばらつきが発生することがわかった。鉄損や製造性が劣っている試験材の母層と表層の界面近傍を観察したところ、介在物が生じていることが確認された。このような場合には、ヒステリシス損が増加し、効率的に鉄損を低減することができない。また、介在物が起点となったクラックが発生した場合は圧延時やルーパー通過時に破断しやすくなり、製造性が低下する。
このような問題を回避し、鉄損や製造性のばらつきを低減する溶接方法を検討し、以下の結果を得た。
すなわち、接合面を研磨し、界面のスケール等を除去した後、速やかに溶接することが好ましい。なお、この時の研磨方法は、機械的な研磨もしくは化学的な研磨のどちらか一方で良いが、その両方を併せて実施しても良い。また、界面のスケール等の除去後、溶接までの時間は、0〜48時間以内が好ましい。
[Production method]
As long as the intended surface layers are formed on both surfaces of the mother layer, the manufacturing method is not particularly limited, but the desired plate thickness ratio after cold rolling is obtained on both surfaces of the mother layer slab from which the scale has been removed. A preferred method is to weld a low Si material whose thickness has been adjusted so as to produce a clad slab. However, it was found that when welded in the atmosphere, iron loss and variations in manufacturability occur. When the vicinity of the interface between the base layer and the surface layer of the test material having iron loss and poor manufacturability was observed, it was confirmed that inclusions were generated. In such a case, the hysteresis loss increases, and the iron loss cannot be reduced efficiently. Further, when cracks originating from inclusions occur, they are likely to break during rolling or passing through a looper, and the manufacturability is lowered.
We examined a welding method that avoids such problems and reduces iron loss and variations in manufacturability, and obtained the following results.
That is, it is preferable to polish the joint surface to remove scale and the like at the interface, and then quickly weld. The polishing method at this time may be either mechanical polishing or chemical polishing, but both may be performed together. Further, the time from removal of the scale of the interface to welding is preferably within 0 to 48 hours.

また、溶接時の接合面から介在物増加の原因となるOやNを減少させることでさらなる低鉄損化が図れると考え、本発明者らは、溶接する際に減圧環境で行う好適条件を見出した。この好適条件を見出した実験について以下に記載する。
具体的には、スケールを除去した母層用スラブの両表面に、冷間圧延後の表層の板厚比が0.036となるよう厚みを加工した表層用低Si材を、真空度:0.01〜20Paの範囲および大気中の各条件でスケールの除去後10時間以内に溶接し、クラッドスラブを作製した。
ここで、母層用スラブの成分は、C:0.0034%、Si:3.5%、Al:1.2%、Mn:0.8%およびP:0.02%、残部がFeおよび不可避不純物であり、表層となる低Si材の成分はC:0.0032%、Si:0.02%、Al:0.01%、Mn:0.05%およびP:0.01%、残部がFeおよび不可避不純物である。
なお、母層のみの試料は、表層となる低Si材の溶接は施していない。また、表層の成分および板厚は両表層で同じとした。これら母層のみのスラブおよびクラッドスラブを、1150℃に再加熱し、最終圧延時の温度が900〜1100℃の範囲になるよう熱間圧延を行い、板厚:2.0mmの熱延板とした。次いで、かかる熱延板に、100vol%N雰囲気で980℃×30sの均熱条件の熱延板焼鈍を施し、ショット付与後、酸洗を実施し、表層の表面スケール層を除去した。
Further, it is considered that further reduction of iron loss can be achieved by reducing O 2 and N 2 which cause an increase in inclusions from the joint surface during welding, and the present inventors preferably perform welding in a reduced pressure environment. I found the condition. The experiments in which this suitable condition was found are described below.
Specifically, a low-Si material for the surface layer, which is processed so that the plate thickness ratio of the surface layer after cold rolling is 0.036, is applied to both surfaces of the slab for the mother layer from which the scale has been removed, and the degree of vacuum is 0. Clad slabs were prepared by welding within 10 hours after removal of the scale in the range of 0.01 to 20 Pa and under each condition in the air.
Here, the components of the slab for the mother layer are C: 0.0034%, Si: 3.5%, Al: 1.2%, Mn: 0.8% and P: 0.02%, and the balance is Fe and The components of the low Si material that is an unavoidable impurity and is the surface layer are C: 0.0032%, Si: 0.02%, Al: 0.01%, Mn: 0.05% and P: 0.01%, and the balance. Are Fe and unavoidable impurities.
The sample containing only the mother layer was not welded with the low Si material as the surface layer. The surface layer components and plate thickness were the same for both surface layers. The slabs and clad slabs containing only the mother layer were reheated to 1150 ° C. and hot-rolled so that the temperature at the time of final rolling was in the range of 900 to 1100 ° C. did. Then, to this hot-rolled sheet was subjected to hot rolled sheet annealing soaking conditions 980 ° C. × 30s at 100 vol% N 2 atmosphere, after the shot impart, conduct pickling to remove the surface layer of the surface scale layer.

ここで、ショット粒としては直径:0.3mmの鋼球を用い、投射密度を30kg/mで投射した。このスケール除去後の熱延焼鈍板を幅:30mm、長さ:100mmに加工し、室温にて曲率半径:15mm、曲げ角度:45°の条件の繰り返し曲げ試験を行い、破断するまでの回数を調査した。
また、前記スケール除去後の熱延焼鈍板に冷間圧延を施し、板厚:0.25mmとし、20vol%H−80vol%N雰囲気で1050℃×10sの保定条件の仕上焼鈍を施した。なお母層のみの場合は、クラッドスラブと同様の冷間圧延を行った際に破断してしまったため、試料を300℃に加熱して温間圧延を行い、板厚:0.25mmとした。以降は、クラッドスラブと同様の処理を行った。
この仕上焼鈍後の仕上焼鈍板から、幅:30mm、長さ:180mmのエプスタインサンプルを圧延方向および圧延直角方向より切り出し、エプスタイン法にて鉄損を測定した磁気測定を行った。
Here, a steel ball having a diameter of 0.3 mm was used as the shot grain, and the projection density was 30 kg / m 2 . After removing the scale, the hot-spread annealed plate is processed to a width of 30 mm and a length of 100 mm, and a repeated bending test is performed at room temperature under the conditions of a radius of curvature of 15 mm and a bending angle of 45 °. investigated.
Moreover, subjected to cold rolling to hot-rolled annealed sheet after the descaling, the thickness: and 0.25 mm, subjected to finish annealing retention conditions 1050 ° C. × 10s with 20vol% H 2 -80vol% N 2 atmosphere .. In the case of only the mother layer, it broke when the same cold rolling as the clad slab was performed, so the sample was heated to 300 ° C. and warm rolled to obtain a plate thickness of 0.25 mm. After that, the same treatment as that for the clad slab was performed.
An Epstein sample having a width of 30 mm and a length of 180 mm was cut out from the finished annealed plate after the finish annealing from the rolling direction and the direction perpendicular to the rolling, and magnetic measurement was performed by measuring the iron loss by the Epstein method.

図3に、母層のみで溶接なし、低Si材を大気溶接、低Si材を真空度1.0Paで溶接の場合の熱延焼鈍板の繰り返し曲げ試験の結果を示す。同図より、母層のみの試料の曲げ回数が3回であるのに対し、低Si材を大気中で溶接した試料の曲げ回数は12回となっていて、大幅な曲げ回数の増加が認められる。また、低Si材を真空度1.0Paで溶接した試料の曲げ回数は31回と、大気中で溶接した試料と比較して、一段と曲げ回数が増加している。これは、大気中に比べ、真空中で溶接することで、接合面の酸化物や窒化物の発生が効果的に抑制され、曲げ試験時のクラックの発生等が低減されたためであると考えられる。 FIG. 3 shows the results of a repeated bending test of a hot-spread annealed plate when only the mother layer is welded without welding, the low-Si material is welded to the atmosphere, and the low-Si material is welded at a vacuum degree of 1.0 Pa. From the figure, the number of times of bending of the sample of only the mother layer is 3 times, while the number of times of bending of the sample obtained by welding the low Si material in the atmosphere is 12 times, and a significant increase in the number of times of bending is observed. Be done. Further, the number of times of bending of the sample obtained by welding the low Si material at a vacuum degree of 1.0 Pa is 31 times, which is further increased as compared with the sample welded in the atmosphere. It is considered that this is because the generation of oxides and nitrides on the joint surface was effectively suppressed and the generation of cracks during the bending test was reduced by welding in vacuum as compared with the atmosphere. ..

上記熱延焼鈍板の繰り返し曲げ試験時の曲げ回数は、10回以上が好ましく、20回以上がさらに好ましい。回数が少ないほど冷間圧延の難易度が高まり、鋼板の圧延時やルーパー通過時に破断してしまう場合があるからである。 The number of times of bending of the hot-spread annealed plate in the repeated bending test is preferably 10 times or more, and more preferably 20 times or more. This is because the smaller the number of times, the more difficult the cold rolling becomes, and the steel sheet may be broken when it is rolled or when it passes through the looper.

図4に溶接時の真空度と鉄損の関係を示すが、大気中で溶接した試料の鉄損と比較して、真空中、特に2.5Pa以下で溶接した試料の鉄損が低いことがわかる。これは真空度が高い場合に、溶接面の酸化物、窒化物の発生が抑制されたためであると考えられる。したがって、鉄損増加を抑制するため、溶接時の真空度は2.5Pa以下とすることが好ましい。なお、真空度の下限に特に制限はないが、真空ポンプの性能等工業的な面から0.001Pa程度が好ましい。 Fig. 4 shows the relationship between the degree of vacuum during welding and iron loss. Compared to the iron loss of a sample welded in the atmosphere, the iron loss of a sample welded in vacuum, especially at 2.5 Pa or less, is low. Understand. It is considered that this is because the generation of oxides and nitrides on the welded surface was suppressed when the degree of vacuum was high. Therefore, in order to suppress an increase in iron loss, the degree of vacuum during welding is preferably 2.5 Pa or less. The lower limit of the degree of vacuum is not particularly limited, but is preferably about 0.001 Pa from the industrial viewpoint such as the performance of the vacuum pump.

前記表層の成分を有するスラブを、前記母層の成分を有するスラブの両面に溶接するに際し、該母層の成分を有するスラブに該表層の成分を有するスラブの4周囲を溶接することが好ましい。スラブの表面状態によっては、不純物ガス(NやOなど)が接合面に残留し、溶接後の接合面に酸化物、窒化物が析出して製造性や、鉄損を劣化する場合があり、これを防止するためである。 When welding the slab having the component of the surface layer to both sides of the slab having the component of the mother layer, it is preferable to weld the four circumferences of the slab having the component of the surface layer to the slab having the component of the mother layer. The surface condition of the slab, the impurity gas (such as N 2 and O 2) may remain on the bonding surface, the oxide on the bonding surface after welding, and manufacturing property nitride is deposited, it may degrade the iron loss Yes, to prevent this.

本発明の無方向性電磁鋼板に対し、上述した条件の他は、適宜、公知の製造方法および製造条件を用いることができる。また、無方向性電磁鋼板に通常施される処理、例えば、各種絶縁被膜処理を施すことができる。 For the non-oriented electrical steel sheet of the present invention, in addition to the above-mentioned conditions, known production methods and production conditions can be appropriately used. In addition, treatments usually applied to non-oriented electrical steel sheets, for example, various insulating coating treatments can be applied.

[実施例1]
表面の酸化スケールを除去した表1に示す成分を有する母層スラブに、同表に示した冷間圧延後の板厚比になるよう粗圧延を施したのち、同表に示した成分を有し表面のスケールを除去した低Si材を表層として母層の両面にそれぞれ、スケールの除去後5時間以内に4周囲を溶接し、クラッドスラブを作製した。ここで、溶接時の真空度は表1に示した条件で実施した。なお、比較のために作製した表層を形成しない母層のみの場合は、溶接は行わなかった。
上記クラッドスラブを、1100℃に再加熱し、最終圧延時の温度が800〜1000℃の範囲になるよう板温を調節して熱間圧延を行い、板厚:2.0mmとした。次いで100%N雰囲気で920℃×30sの条件の熱延板焼鈍を施し、ショット付与後、酸洗を実施し、表層のスケール層を除去した。ここで、ショット粒は直径:0.3mmの鋼球を用い、投射密度を30kg/mで投射した。
スケール除去後の熱延焼鈍板を、幅:30mm、長さ:100mmに加工し、室温にて曲率半径:15mm、曲げ角度:45°の繰り返し曲げ試験を行い、破断するまでの回数で評価した。
スケール除去後の熱延焼鈍板に冷間圧延を施し、板厚:0.25mmとし、20%H−80%N雰囲気で表1に示した条件の仕上焼鈍を施した。
かくして得られた仕上焼鈍板から、幅:30mm、長さ:180mmのエプスタインサンプルを圧延方向および圧延直角方向から切り出し、エプスタイン法にて鉄損測定を行った。
[Example 1]
The mother layer slab having the components shown in Table 1 from which the oxidation scale on the surface has been removed is roughly rolled so as to have the plate thickness ratio after cold rolling shown in the same table, and then has the components shown in the same table. A clad slab was prepared by welding four circumferences of a low-Si material from which the scale on the surface had been removed as a surface layer on both sides of the mother layer within 5 hours after the scale was removed. Here, the degree of vacuum during welding was carried out under the conditions shown in Table 1. In the case of only the mother layer that does not form the surface layer prepared for comparison, welding was not performed.
The clad slab was reheated to 1100 ° C., and hot rolling was performed by adjusting the plate temperature so that the temperature at the time of final rolling was in the range of 800 to 1000 ° C. to obtain a plate thickness of 2.0 mm. Then subjected to hot rolled sheet annealing conditions 920 ° C. × 30s with 100% N 2 atmosphere, after the shot granted performed pickled to remove surface scale layer. Here, the shot grains were projected using a steel ball having a diameter of 0.3 mm and a projection density of 30 kg / m 2 .
The hot-spread annealed plate after removing the scale was processed to a width of 30 mm and a length of 100 mm, and a repeated bending test with a radius of curvature of 15 mm and a bending angle of 45 ° was performed at room temperature, and the number of times until fracture was evaluated. ..
Subjected to cold rolling to hot-rolled annealed sheet after descaling, the thickness: and 0.25 mm, subjected to finish annealing conditions shown in Table 1 with 20% H 2 -80% N 2 atmosphere.
From the finished annealed plate thus obtained, an Epstein sample having a width of 30 mm and a length of 180 mm was cut out from the rolling direction and the direction perpendicular to the rolling, and iron loss was measured by the Epstein method.

Figure 2021038458
Figure 2021038458

表1に示した結果から分かるように、本発明の条件を満足している場合は、いずれも優れた特性を示す無方向性電磁鋼板が得られた。なお、実施例12、15、16、23、24、30、32および39は、熱延焼鈍板時の繰り返し曲げ試験結果が20回未満であり、冷延時、もしくはルーパー通過時に、評価サンプルが破断したため、その後の鉄損評価が行えなかった。 As can be seen from the results shown in Table 1, when the conditions of the present invention were satisfied, non-oriented electrical steel sheets showing excellent characteristics were obtained. In Examples 12, 15, 16, 23, 24, 30, 32 and 39, the result of the repeated bending test at the time of hot-spread annealing was less than 20 times, and the evaluation sample was broken at the time of cold-rolling or passing through the looper. Therefore, the subsequent iron loss evaluation could not be performed.

[実施例2]
表2に示す成分を有する母層スラブと表層スラブに、板厚比が0.030となるよう粗圧延を施し、それぞれスケールを除去した後、スケール除去後5時間以内に4周囲を表2に記載の真空度で溶接し、クラッドスラブを作製した。
上記クラッドスラブを1100℃に再加熱し、最終圧延時の温度が800〜1000℃の範囲になるよう板温を調節して熱間圧延を行い、板厚:2.0mmとした。次いで、100%Nの雰囲気で920℃×30sの条件の熱延板焼鈍を施し、ショット付与後、酸洗を実施し、表層スケール層を除去した。ここで、ショット粒は直径:0.3mmの鋼球を用い、投射密度を30kg/mで投射した。
スケール除去後の熱延焼鈍板を、幅:30mm、長さ:100mmに加工し、室温にて曲率半径:15mm、曲げ角度:45°の繰り返し曲げ試験を行い、破断するまでの回数で評価した。
スケール除去後の熱延焼鈍板に冷間圧延を施し、板厚:0.25mmとして、20%H−80%N雰囲気で表2に記載の仕上焼鈍を施した。
かくして得られた仕上焼鈍板から幅:30mm、長さ:180mmのエプスタインサンプルを圧延方向および圧延直角方向から切り出し、エプスタイン方にて鉄損測定を行った。
[Example 2]
The mother layer slab and the surface layer slab having the components shown in Table 2 were roughly rolled so that the plate thickness ratio was 0.030, and after removing the scales, the four circumferences were shown in Table 2 within 5 hours after the scales were removed. A clad slab was prepared by welding at the described degree of vacuum.
The clad slab was reheated to 1100 ° C., and hot rolling was performed by adjusting the plate temperature so that the temperature at the time of final rolling was in the range of 800 to 1000 ° C. to obtain a plate thickness of 2.0 mm. Next, hot-rolled sheet was annealed in an atmosphere of 100% N 2 under the conditions of 920 ° C. × 30 s, and after shots were applied, pickling was carried out to remove the surface scale layer. Here, the shot grains were projected using a steel ball having a diameter of 0.3 mm and a projection density of 30 kg / m 2 .
The hot-spread annealed plate after removing the scale was processed to a width of 30 mm and a length of 100 mm, and a repeated bending test with a radius of curvature of 15 mm and a bending angle of 45 ° was performed at room temperature, and the number of times until fracture was evaluated. ..
Subjected to cold rolling to hot-rolled annealed sheet after descaling, thickness: as 0.25 mm, subjected to finish annealing according to Table 2 with 20% H 2 -80% N 2 atmosphere.
From the finished annealed plate thus obtained, an Epstein sample having a width of 30 mm and a length of 180 mm was cut out from the rolling direction and the direction perpendicular to the rolling, and the iron loss was measured by the Epstein method.

Figure 2021038458
Figure 2021038458

表2に示したとおり、本発明の条件を満たすように、母層にNi並びに表層にTi,Nb,VおよびNiのうちから選んだ少なくとも1つの成分を、母層および/または表層に添加した場合は、母層成分のSiが5.5%以上の場合であっても、繰り返し曲げ回数が20回以上であり、優れた加工特性を示す無方向性電磁鋼板が得られていることがわかる。
As shown in Table 2, Ni was added to the mother layer and at least one component selected from Ti, Nb, V and Ni was added to the mother layer and / or the surface layer so as to satisfy the conditions of the present invention. In this case, it can be seen that even when the Si of the matrix component is 5.5% or more, the number of repeated bends is 20 or more, and a non-oriented electrical steel sheet showing excellent processing characteristics is obtained. ..

Claims (11)

母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、
C:0.0070%以下、
Si:2.5〜5.5%、
Al:0.1〜3.0%、
Mn:0.1〜3.0%および
P:0.01〜0.10%
を含み、かつSi、AlおよびMnの合計が3.0〜6.5%であり、
残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、
C:0.0070%以下、
Si:2.0%以下、
Al:2.0%以下、
Mn:1.0%以下および
P:0.10%以下
を含み、残部がFeおよび不可避不純物の成分組成を有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であることを特徴とする無方向性電磁鋼板。
A mother layer and surface layers on both surfaces of the mother layer are provided.
The mother layer is by mass%
C: 0.0070% or less,
Si: 2.5-5.5%,
Al: 0.1 to 3.0%,
Mn: 0.1 to 3.0% and P: 0.01 to 0.10%
And the total of Si, Al and Mn is 3.0-6.5%.
The balance has a component composition of Fe and unavoidable impurities,
The surface layer is by mass%
C: 0.0070% or less,
Si: 2.0% or less,
Al: 2.0% or less,
It contains Mn: 1.0% or less and P: 0.10% or less, and the balance has a component composition of Fe and unavoidable impurities.
All the thickness of the base layer and the steel sheet of the combined surface layer of both surfaces: the t 0 [mm], the total thickness of the surface layer of the both surfaces: t 1 [mm] and the thickness ratio of: t 1 / t A non-directional electromagnetic steel sheet characterized in that 0 is 0.040 or less (excluding 0).
母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、
C:0.0070%以下、
Si:2.5〜5.5%、
Al:0.1〜3.0%、
Mn:0.1〜3.0%および
P:0.01〜0.10%
を含み、かつSi、AlおよびMnの合計が3.0〜6.5%であり、
残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、
C:0.0070%以下、
Si:2.0%以下、
Al:2.0%以下、
Mn:1.0%以下および
P:0.10%以下
を含み、残部がFeおよび不可避不純物の成分組成を有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であって、
磁束密度:1.0T、周波数:400Hzにおける鉄損W10/400が以下の式(1)を満たすことを特徴とする無方向性電磁鋼板。
10/400≦9.68+31×t−1.1×[Si]−0.8×[Al]−0.3×[Mn] ・・・(1)
ここで、[Si]、[Al]、[Mn]は上記母層および表層における各成分の平均質量%である。
A mother layer and surface layers on both surfaces of the mother layer are provided.
The mother layer is by mass%
C: 0.0070% or less,
Si: 2.5-5.5%,
Al: 0.1 to 3.0%,
Mn: 0.1 to 3.0% and P: 0.01 to 0.10%
And the total of Si, Al and Mn is 3.0-6.5%.
The balance has a component composition of Fe and unavoidable impurities,
The surface layer is by mass%
C: 0.0070% or less,
Si: 2.0% or less,
Al: 2.0% or less,
It contains Mn: 1.0% or less and P: 0.10% or less, and the balance has a component composition of Fe and unavoidable impurities.
The total plate thickness of the steel plate including the mother layer and the surface layers of both surfaces: t 0 [mm] and the total plate thickness of the surface layers of both surfaces: t 1 [mm]: plate thickness ratio: t 1 / t 0 is 0.040 or less (excluding 0),
A non-oriented electrical steel sheet characterized in that iron loss W 10/400 at a magnetic flux density of 1.0 T and a frequency of 400 Hz satisfies the following equation (1).
W 10/400 ≦ 9.68 + 31 × t 0 -1.1 × [Si] -0.8 × [Al] -0.3 × [Mn] ··· (1)
Here, [Si], [Al], and [Mn] are the average mass% of each component in the mother layer and the surface layer.
母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、
C:0.0070%以下、
Si:2.5〜6.0%、
Al:0.1〜3.0%、
Mn:0.1〜3.0%および
P:0.01〜0.10%
を含み、かつSi、AlおよびMnの合計が3.0〜7.5%であり、
残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、
C:0.0070%以下、
Si:2.0%以下、
Al:2.0%以下、
Mn:1.0%以下および
P:0.10%以下
を含み、さらに
Ti:0.0100%以下、
Nb:0.0100%以下および
V:0.0100%以下
の内(いずれも0を除く)から選んだ少なくとも1種を含有し、残部がFeおよび不可避不純物の成分組成を有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であることを特徴とする無方向性電磁鋼板。
A mother layer and surface layers on both surfaces of the mother layer are provided.
The mother layer is by mass%
C: 0.0070% or less,
Si: 2.5-6.0%,
Al: 0.1 to 3.0%,
Mn: 0.1 to 3.0% and P: 0.01 to 0.10%
And the total of Si, Al and Mn is 3.0-7.5%.
The balance has a component composition of Fe and unavoidable impurities,
The surface layer is by mass%
C: 0.0070% or less,
Si: 2.0% or less,
Al: 2.0% or less,
Mn: 1.0% or less, P: 0.10% or less, and Ti: 0.0100% or less,
It contains at least one selected from Nb: 0.0100% or less and V: 0.0100% or less (all excluding 0), and the balance has a component composition of Fe and unavoidable impurities.
All the thickness of the base layer and the steel sheet of the combined surface layer of both surfaces: the t 0 [mm], the total thickness of the surface layer of the both surfaces: t 1 [mm] and the thickness ratio of: t 1 / t A non-directional electromagnetic steel sheet characterized in that 0 is 0.040 or less (excluding 0).
母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、
C:0.0070%以下、
Si:2.5〜6.0%、
Al:0.1〜3.0%、
Mn:0.1〜3.0%および
P:0.01〜0.10%
を含み、かつSi、AlおよびMnの合計が3.0〜7.5%であり、
残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、
C:0.0070%以下、
Si:2.0%以下、
Al:2.0%以下、
Mn:1.0%以下および
P:0.10%以下
を含み、残部がFeおよび不可避不純物の成分組成を有し、
上記表層および母層のいずれか一方または両方の成分組成に、質量%で、Ni:1.0%以下(0を除く)をさらに含有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であることを特徴とする無方向性電磁鋼板。
A mother layer and surface layers on both surfaces of the mother layer are provided.
The mother layer is by mass%
C: 0.0070% or less,
Si: 2.5-6.0%,
Al: 0.1 to 3.0%,
Mn: 0.1 to 3.0% and P: 0.01 to 0.10%
And the total of Si, Al and Mn is 3.0-7.5%.
The balance has a component composition of Fe and unavoidable impurities,
The surface layer is by mass%
C: 0.0070% or less,
Si: 2.0% or less,
Al: 2.0% or less,
It contains Mn: 1.0% or less and P: 0.10% or less, and the balance has a component composition of Fe and unavoidable impurities.
The component composition of either one or both of the surface layer and the mother layer further contains Ni: 1.0% or less (excluding 0) in mass%.
All the thickness of the base layer and the steel sheet of the combined surface layer of both surfaces: the t 0 [mm], the total thickness of the surface layer of the both surfaces: t 1 [mm] and the thickness ratio of: t 1 / t A non-directional electromagnetic steel sheet characterized in that 0 is 0.040 or less (excluding 0).
母層と、該母層の両表面に表層とを備え、
上記母層は、質量%で、
C:0.0070%以下、
Si:2.5〜6.0%、
Al:0.1〜3.0%、
Mn:0.1〜3.0%および
P:0.01〜0.10%
を含み、かつSi、AlおよびMnの合計が3.0〜7.5%であり、
残部がFeおよび不可避不純物の成分組成を有し、
上記表層は、質量%で、
C:0.0070%以下、
Si:2.0%以下、
Al:2.0%以下、
Mn:1.0%以下および
P:0.10%以下
を含み、さらに
Ti:0.0100%以下、
Nb:0.0100%以下および
V:0.0100%以下
の内(いずれも0を除く)から選んだ少なくとも1種を含有し、残部がFeおよび不可避不純物の成分組成を有し、
上記表層および母層のいずれか一方または両方の成分組成に、質量%で、Ni:1.0%以下(0を除く)をさらに含有し、
上記母層および上記両表面の表層を合わせた鋼板の全板厚:t[mm]と、該両表面の表層の合計板厚:t[mm]との板厚比:t1/tが0.040以下(0を除く)であることを特徴とする無方向性電磁鋼板。
A mother layer and surface layers on both surfaces of the mother layer are provided.
The mother layer is by mass%
C: 0.0070% or less,
Si: 2.5-6.0%,
Al: 0.1 to 3.0%,
Mn: 0.1 to 3.0% and P: 0.01 to 0.10%
And the total of Si, Al and Mn is 3.0-7.5%.
The balance has a component composition of Fe and unavoidable impurities,
The surface layer is by mass%
C: 0.0070% or less,
Si: 2.0% or less,
Al: 2.0% or less,
Mn: 1.0% or less, P: 0.10% or less, and Ti: 0.0100% or less,
It contains at least one selected from Nb: 0.0100% or less and V: 0.0100% or less (all excluding 0), and the balance has a component composition of Fe and unavoidable impurities.
The component composition of either one or both of the surface layer and the mother layer further contains Ni: 1.0% or less (excluding 0) in mass%.
All the thickness of the base layer and the steel sheet of the combined surface layer of both surfaces: the t 0 [mm], the total thickness of the surface layer of the both surfaces: t 1 [mm] and the thickness ratio of: t 1 / t A non-directional electromagnetic steel sheet characterized in that 0 is 0.040 or less (excluding 0).
前記鋼板が、磁束密度:1.0T、周波数:400Hzにおける鉄損W10/400が以下の式(1)を満たすことを特徴とする請求項3〜5の何れか1項に記載の無方向性電磁鋼板。
10/400≦9.68+31×t−1.1×[Si]−0.8×[Al]−0.3×[Mn] ・・・(1)
ここで、[Si]、[Al]、[Mn]は前記母層および表層における各成分の平均質量%である。
The non-directional according to any one of claims 3 to 5, wherein the steel sheet satisfies the iron loss W 10/400 at a magnetic flux density of 1.0 T and a frequency of 400 Hz according to the following formula (1). Electrical steel sheet.
W 10/400 ≦ 9.68 + 31 × t 0 -1.1 × [Si] -0.8 × [Al] -0.3 × [Mn] ··· (1)
Here, [Si], [Al], and [Mn] are the average mass% of each component in the mother layer and the surface layer.
前記母層の成分組成は、質量%で、
Sn:0.15%以下および
Sb:0.15%以下
の内から選んだ少なくとも1種をさらに含有することを特徴とする請求項1〜6の何れか1項に記載の無方向性電磁鋼板。
The component composition of the mother layer is mass%.
The non-oriented electrical steel sheet according to any one of claims 1 to 6, further containing at least one selected from Sn: 0.15% or less and Sb: 0.15% or less. ..
前記母層の成分組成は、質量%で、
Cr:5.0%以下
をさらに含有することを特徴とする請求項1〜7の何れか1項に記載の無方向性電磁鋼板。
The component composition of the mother layer is mass%.
The non-oriented electrical steel sheet according to any one of claims 1 to 7, further containing Cr: 5.0% or less.
前記母層の成分組成は、質量%で、
Ca:0.005%以下
をさらに含有することを特徴とする請求項1〜8の何れか1項に記載の無方向性電磁鋼板。
The component composition of the mother layer is mass%.
The non-oriented electrical steel sheet according to any one of claims 1 to 8, further comprising Ca: 0.005% or less.
前記表層および母層のいずれか一方または両方の成分組成に、質量%で、Cu:1.0%以下(0を除く)をさらに含有することを特徴とする請求項1〜9の何れか1項に記載の無方向性電磁鋼板。 Any one of claims 1 to 9, wherein the component composition of either one or both of the surface layer and the mother layer further contains Cu: 1.0% or less (excluding 0) in mass%. The non-oriented electrical steel sheet described in the section. 請求項1〜10の何れか1項に記載の無方向性電磁鋼板を製造する方法であって、
請求項1〜5および10の何れか1項に記載の表層の成分組成を有するスラブを、請求項1〜10の何れか1項に記載の母層の成分組成を有するスラブの両面に、真空度2.5Pa以下で溶接してクラッドスラブとしたのち、該クラッドスラブを熱間圧延する工程を有することを特徴とする無方向性電磁鋼板の製造方法。

The method for manufacturing a non-oriented electrical steel sheet according to any one of claims 1 to 10.
Vacuum the slab having the component composition of the surface layer according to any one of claims 1 to 5 and 10 on both sides of the slab having the component composition of the mother layer according to any one of claims 1 to 10. A method for producing a non-directional electromagnetic steel plate, which comprises a step of hot-rolling the clad slab after welding at a degree of 2.5 Pa or less to obtain a clad slab.

JP2020145065A 2019-08-30 2020-08-28 Non-oriented electrical steel sheet and its manufacturing method Active JP7056699B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019158686 2019-08-30
JP2019158686 2019-08-30

Publications (2)

Publication Number Publication Date
JP2021038458A true JP2021038458A (en) 2021-03-11
JP7056699B2 JP7056699B2 (en) 2022-04-19

Family

ID=74848993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020145065A Active JP7056699B2 (en) 2019-08-30 2020-08-28 Non-oriented electrical steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7056699B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121293A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same
WO2023121308A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet, manufacturing method therefor, and motor core comprising same
WO2023121294A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and motor core comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171281A (en) * 1991-12-17 1993-07-09 Sumitomo Metal Ind Ltd Production of high silicon steel sheet
JP2008031490A (en) * 2006-07-26 2008-02-14 Jfe Steel Kk Non-oriented electrical steel sheet
JP2011119298A (en) * 2009-11-30 2011-06-16 Jfe Steel Corp Low-carbon steel plate and method of manufacturing the same
JP2011214065A (en) * 2010-03-31 2011-10-27 Hitachi Metals Ltd Method for manufacturing silicon steel sheet
WO2017018509A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot rolling
WO2019117089A1 (en) * 2017-12-12 2019-06-20 Jfeスチール株式会社 Multilayer electromagnetic steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171281A (en) * 1991-12-17 1993-07-09 Sumitomo Metal Ind Ltd Production of high silicon steel sheet
JP2008031490A (en) * 2006-07-26 2008-02-14 Jfe Steel Kk Non-oriented electrical steel sheet
JP2011119298A (en) * 2009-11-30 2011-06-16 Jfe Steel Corp Low-carbon steel plate and method of manufacturing the same
JP2011214065A (en) * 2010-03-31 2011-10-27 Hitachi Metals Ltd Method for manufacturing silicon steel sheet
WO2017018509A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot rolling
WO2019117089A1 (en) * 2017-12-12 2019-06-20 Jfeスチール株式会社 Multilayer electromagnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121293A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same
WO2023121308A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet, manufacturing method therefor, and motor core comprising same
WO2023121294A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and motor core comprising same

Also Published As

Publication number Publication date
JP7056699B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
JP7056699B2 (en) Non-oriented electrical steel sheet and its manufacturing method
TWI312371B (en)
JP5793459B2 (en) Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
TWI665313B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
JP7165202B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP6870687B2 (en) Non-oriented electrical steel sheet
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
JPWO2015105046A1 (en) Ferritic stainless steel and manufacturing method thereof
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
EP1577413B1 (en) Fe-Cr-Si NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
JP6809513B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP2018178196A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP6515323B2 (en) Non-oriented electrical steel sheet
JP3142427B2 (en) Ferritic stainless steel sheet excellent in secondary work brittleness resistance and method for producing the same
JP3870616B2 (en) Fe-Cr-Si alloy and method for producing the same
JP6950748B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP3352904B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP4258163B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP7328597B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3758425B2 (en) Method for producing Fe-Cr-Si electrical steel sheet
JP7028148B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3314847B2 (en) Manufacturing method of ferritic stainless steel sheet with good workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R150 Certificate of patent or registration of utility model

Ref document number: 7056699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150