JP2021038405A - Heat insulating film, heat insulating coating, and optical device - Google Patents

Heat insulating film, heat insulating coating, and optical device Download PDF

Info

Publication number
JP2021038405A
JP2021038405A JP2020192329A JP2020192329A JP2021038405A JP 2021038405 A JP2021038405 A JP 2021038405A JP 2020192329 A JP2020192329 A JP 2020192329A JP 2020192329 A JP2020192329 A JP 2020192329A JP 2021038405 A JP2021038405 A JP 2021038405A
Authority
JP
Japan
Prior art keywords
less
particles
resin
heat shield
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020192329A
Other languages
Japanese (ja)
Other versions
JP7071481B2 (en
Inventor
怜子 久保田
Reiko Kubota
怜子 久保田
利昭 信宮
Toshiaki Nobumiya
利昭 信宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020192329A priority Critical patent/JP7071481B2/en
Publication of JP2021038405A publication Critical patent/JP2021038405A/en
Application granted granted Critical
Publication of JP7071481B2 publication Critical patent/JP7071481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a heat insulating film that, even as a thin film, has high reflectance and resists a temperature rise due to sunlight, and has high thickness accuracy and high wear resistance, a heat insulating coating, and an optical device having such a heat insulating film.SOLUTION: A heat insulating film has a resin selected from urethane resin, acrylic resin, epoxy resin and a combination of them, the resin containing first particles with a d-ray refractive index of 2.5 or more and 3.2 or less, second particles with an average particle size of 5 nm or more and 100 nm or less, and holes of the second particles.SELECTED DRAWING: Figure 3

Description

本発明は、屋外で用いる可能性のある遮熱膜、遮熱塗料およびそのような遮熱膜を有する光学機器に関する。 The present invention relates to a heat shield film, a heat shield paint, and an optical device having such a heat shield film that may be used outdoors.

遮熱膜とは、屋外で使用した際に太陽光による部材の温度上昇を抑制する機能を有する膜である。従来、太陽光による部材の温度上昇を抑制する方法としては、図1に示すように太陽による入射光1を赤外線反射膜4で反射光2として反射する方法が知られている。入射光1に対する反射光2の比率を大きくすることで、透過光3による発熱を抑制することが出来る。その他の遮熱方法としては赤外線反射膜4の替わりに熱伝導率が低い断熱層を設けたり、熱を外部に放出するための放熱層を設けたり、それらを組み合わせたりする方法がある。 The heat shield film is a film having a function of suppressing a temperature rise of a member due to sunlight when used outdoors. Conventionally, as a method of suppressing a temperature rise of a member due to sunlight, a method of reflecting incident light 1 by the sun as reflected light 2 by an infrared reflecting film 4 is known as shown in FIG. By increasing the ratio of the reflected light 2 to the incident light 1, it is possible to suppress heat generation due to the transmitted light 3. As another heat shielding method, there is a method of providing a heat insulating layer having a low thermal conductivity instead of the infrared reflective film 4, providing a heat radiating layer for releasing heat to the outside, or a method of combining them.

一方、遮熱膜は人手に触れる可能性がある部材であるため、温度上昇を抑制する機能に加えて外部からの接触に耐えるための耐摩耗性が必要になる。加えて、光学機器に用いる場合にはピントを調整する必要があるため位置精度が重要となる。例えば、図2に示すように光学機器のレンズ鏡筒はレンズ6およびそのレンズ鏡筒8等から成っており、ピント調整のための摺動する嵌合部分7が設けられている。基材5の表層に遮熱膜9を設けることにより、光学機器が太陽光に暴露されても太陽光による光学機器の温度上昇を抑制し、焦点等の位置精度を保持することが出来る。よって、光学機器等のような精密機器には塗膜の膜厚ばらつきを制御する必要がある。 On the other hand, since the heat-shielding film is a member that may come into contact with human hands, it is necessary to have abrasion resistance to withstand contact from the outside in addition to a function of suppressing a temperature rise. In addition, when used in optical equipment, it is necessary to adjust the focus, so position accuracy is important. For example, as shown in FIG. 2, the lens barrel of an optical instrument is composed of a lens 6 and a lens barrel 8 thereof, and is provided with a sliding fitting portion 7 for focusing adjustment. By providing the heat shield film 9 on the surface layer of the base material 5, even if the optical device is exposed to sunlight, the temperature rise of the optical device due to sunlight can be suppressed, and the position accuracy of the focal point and the like can be maintained. Therefore, it is necessary to control the variation in the film thickness of the coating film for precision equipment such as optical equipment.

特許文献1には、レンズ鏡筒用の遮熱膜において、着色層、赤外線反射層、および断熱層からなる膜が開示されている。特許文献1では、赤外線反射層だけでなく、膜厚が500μmから2000μmの断熱層を設けることにより遮熱効果を高めている。
特許文献2には、合成樹脂エマルジョンに粒径が0.1〜0.4mmのセルベンを加えることで耐摩耗性を向上させた遮熱膜が開示されている。
Patent Document 1 discloses a heat-shielding film for a lens barrel, which is composed of a colored layer, an infrared reflecting layer, and a heat insulating layer. In Patent Document 1, not only the infrared reflective layer but also a heat insulating layer having a film thickness of 500 μm to 2000 μm is provided to enhance the heat shielding effect.
Patent Document 2 discloses a heat-shielding film having improved wear resistance by adding cerben having a particle size of 0.1 to 0.4 mm to a synthetic resin emulsion.

特開2009−139856号公報Japanese Unexamined Patent Publication No. 2009-139856 特開2015−81303号公報Japanese Unexamined Patent Publication No. 2015-81303

しかしながら、特許文献1のように膜厚が500μmから2000μmの断熱層を設けると膜厚が厚くなり、摺動する嵌合部分の位置精度を十分に出すことが困難である。
また、特許文献2のように粒径が大きいセルベンを加えると表面に大きく凹凸が出来るため膜厚精度を出すことが困難である。
However, if a heat insulating layer having a film thickness of 500 μm to 2000 μm is provided as in Patent Document 1, the film thickness becomes thick and it is difficult to sufficiently obtain the positional accuracy of the sliding fitting portion.
Further, when celben having a large particle size is added as in Patent Document 2, it is difficult to obtain film thickness accuracy because large irregularities are formed on the surface.

本発明は、この様な背景技術に鑑みてなされたものであり、薄膜でも反射率が高く太陽光による温度上昇が少なく、膜厚精度が高く、且つ耐摩耗性が高い遮熱膜、遮熱塗料、およびそのような遮熱膜を有する光学機器を提供するものである。 The present invention has been made in view of such a background technique, and is a heat-shielding film and a heat-shielding film having high reflectance even in a thin film, little temperature rise due to sunlight, high film thickness accuracy, and high wear resistance. It is an object of the present invention to provide a coating material and an optical device having such a heat-shielding film.

本発明の光学機器は、レンズと、前記レンズを鏡筒の内部に備えたレンズ鏡筒を有する光学機器であって、
前記レンズ鏡筒の外周表面の少なくとも一部に遮熱膜を有し、
前記遮熱膜は、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、およびこれらの組合せ、の中から選択される樹脂中に、d線屈折率が2.5以上3.2以下である第1の粒子と、平均粒径が5nm以上100nm以下である第2の粒子と、前記第2の粒子による空孔と、を含むことを特徴とする。
本発明の遮熱膜は、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、およびこれらの組合せ、の中から選択される樹脂中に、d線屈折率が2.5以上3.2以下である第1の粒子と、平均粒径が5nm以上100nm以下である第2の粒子と、前記第2の粒子による空孔と、を含むことを特徴とする。
The optical device of the present invention is an optical device having a lens and a lens barrel having the lens inside the lens barrel.
A heat shield film is provided on at least a part of the outer peripheral surface of the lens barrel.
The heat shield film contains first particles having a d-line refractive index of 2.5 or more and 3.2 or less in a resin selected from urethane resin, acrylic resin, epoxy resin, and a combination thereof. It is characterized by including a second particle having an average particle size of 5 nm or more and 100 nm or less, and a pore due to the second particle.
The heat shield film of the present invention is the first one having a d-line refractive index of 2.5 or more and 3.2 or less in a resin selected from urethane resin, acrylic resin, epoxy resin, and a combination thereof. It is characterized by including particles, second particles having an average particle size of 5 nm or more and 100 nm or less, and pores due to the second particles.

本発明の遮熱塗料は、ウレタン樹脂、アクリル樹脂、エポキシ樹脂およびこれらの組合せから選択される樹脂を溶剤に溶解した溶液中に、d線屈折率が2.5以上3.2以下である第1の粒子と、平均粒径が5nm以上100nm以下である第2の粒子と、前記第2の粒子による空孔と、を含むことを特徴とする。 The heat-shielding coating material of the present invention has a d-line refractive index of 2.5 or more and 3.2 or less in a solution in which a urethane resin, an acrylic resin, an epoxy resin, or a resin selected from a combination thereof is dissolved in a solvent. It is characterized by including 1 particle, a second particle having an average particle diameter of 5 nm or more and 100 nm or less, and a pore by the second particle.

本発明によれば、薄膜でも反射率が高く太陽光による温度上昇が少なく、膜厚精度が高く、且つ耐摩耗性が高い遮熱膜、遮熱塗料、そのような遮熱膜を有する光学機器を提供することが出来る。 According to the present invention, a heat shield film, a heat shield coating, and an optical device having such a heat shield film have high reflectance, little temperature rise due to sunlight, high film thickness accuracy, and high wear resistance even in a thin film. Can be provided.

基材の上面に赤外線反射膜を形成した際の太陽光の反射および吸収の状態を示す断面模式図である。It is sectional drawing which shows the state of reflection and absorption of sunlight when the infrared reflection film is formed on the upper surface of a base material. レンズ鏡筒の断面模式図である。It is sectional drawing of the lens barrel. 粒子と樹脂界面の反射を示す断面模式図である。It is sectional drawing which shows the reflection of a particle and a resin interface. 分光光度計による反射率の測定形態模式図である。It is a schematic diagram of the measurement form of the reflectance by a spectrophotometer. 温度の評価方法を示す模式図である。It is a schematic diagram which shows the evaluation method of temperature.

以下、本発明の好適な実施の形態について説明する。
まず、太陽光の反射率向上のメカニズムを説明する。次に、太陽光の反射率を向上するための本発明の遮熱塗料、遮熱膜、およびそのような遮熱膜を有する光学機器について説明する。
本発明の光学機器は、レンズと、前記レンズを鏡筒の内部に備えたレンズ鏡筒を有する光学機器であって、前記レンズ鏡筒の外周表面の少なくとも一部に遮熱膜を有する。
Hereinafter, preferred embodiments of the present invention will be described.
First, the mechanism for improving the reflectance of sunlight will be described. Next, the heat-shielding paint, the heat-shielding film, and the optical device having such a heat-shielding film for improving the reflectance of sunlight will be described.
The optical device of the present invention is an optical device having a lens and a lens barrel having the lens inside the lens barrel, and has a heat shield film on at least a part of the outer peripheral surface of the lens barrel.

なお、本発明において、「樹脂マトリックス」とは、ウレタン樹脂、アクリル樹脂、エポキシ樹脂およびこれらの組合せから選択される樹脂中に平均粒径が100nm以下の空孔含有粒子を含んでなるものを意味し、「空孔含有粒子」とは、中空構造または多孔質構造を含む粒子をいう。「高屈折率粒子」とは、d線屈折率が2.5以上3.2以下の粒子を意味する。 In the present invention, the "resin matrix" means a resin in which pore-containing particles having an average particle size of 100 nm or less are contained in a urethane resin, an acrylic resin, an epoxy resin, or a resin selected from a combination thereof. However, the “pore-containing particles” refer to particles containing a hollow structure or a porous structure. The “high-refractive index particle” means a particle having a d-line refractive index of 2.5 or more and 3.2 or less.

本発明において、「粒径」とは、粒子の体積より換算した直径であり、レーザー回折式粒度分布計により求められる。
また、本発明における「平均粒径」には、メジアン径を用いた。
In the present invention, the "particle size" is a diameter converted from the volume of particles, and is determined by a laser diffraction type particle size distribution meter.
Further, the median diameter was used as the "average particle size" in the present invention.

[太陽光の反射率向上のメカニズム]
太陽光の波長は約0.3μmから約3μmの範囲であり、これらの波長の光が図1に示すように透過光3となると熱エネルギーに変換され、基材5が発熱する。よって、断熱層なしに太陽光による発熱を抑制するためには、入射光1に対する反射光2の比率を出来るだけ上げて内部への光の透過による発熱を抑制する必要がある。
[Mechanism for improving sunlight reflectance]
The wavelength of sunlight is in the range of about 0.3 μm to about 3 μm, and when light of these wavelengths becomes transmitted light 3 as shown in FIG. 1, it is converted into thermal energy and the base material 5 generates heat. Therefore, in order to suppress heat generation due to sunlight without a heat insulating layer, it is necessary to increase the ratio of reflected light 2 to incident light 1 as much as possible to suppress heat generation due to transmission of light to the inside.

太陽光の波長である0.3μmから3μmの範囲は粒径が数μmの粒子に対してはMie散乱の領域であり、Mie散乱の計算を行うと粒径が約1μm付近において、太陽光の反射率が最も高くなる。このため、太陽光の反射粒子の粒径は1μm付近であるのが一般的である。尚、Mie散乱の計算についてはLight Scattering Theory(Department of Mechanical and Aerospace Engineering University of Florida; David W. Hahn)の式を用いた。 The wavelength range of 0.3 μm to 3 μm of sunlight is the region of Mie scattering for particles with a particle size of several μm, and when Mie scattering is calculated, when the particle size is around 1 μm, the sunlight The highest reflectance. Therefore, the particle size of the reflected particles of sunlight is generally around 1 μm. The formula of Light Scattering Theory (Department of Mechanical and Aerospace Engineering University of Florida; David W. Hahn) was used for the calculation of Mie scattering.

本発明者は、反射率を更に向上させるため鋭意検討したところ、粒子の粒径および屈折率並びに樹脂の屈折率を適正な範囲とすることで、大きく反射率を向上させることが出来ることを見出した。 The present inventor has made extensive studies to further improve the reflectance, and found that the reflectance can be greatly improved by setting the particle size and refractive index of the particles and the refractive index of the resin within an appropriate range. It was.

まず、d線屈折率が2.5以上3.2以下で平均粒径が2μm以上の粒子を用いると反射率が高くなることを見出した。この粒径はMie散乱の計算値の最適解である1μmより大きい。一般的なMie散乱の計算は入射光に対して、360°全ての方位の散乱の合計を計算する。しかし、入射光に対して実際に反射して膜外に出る光は後方散乱のみである。よって、粒径が大きい方が遮蔽効果が大きく前方散乱が少ないため、実際に反射率を向上するためには粒径が2μm以上である必要がある。また、平均粒径が5μmを超えると膜の凹凸が大きくなり膜厚精度が悪化する。従って、本願発明における上記粒子の平均粒径は2μm以上5μm以下となる。 First, it was found that the reflectance increases when particles having a d-line refractive index of 2.5 or more and 3.2 or less and an average particle size of 2 μm or more are used. This particle size is larger than 1 μm, which is the optimum solution for the calculated value of Mie scattering. A typical Mie scattering calculation calculates the sum of the scattering in all 360 ° directions with respect to the incident light. However, the only light that is actually reflected from the incident light and goes out of the film is backscattering. Therefore, the larger the particle size, the larger the shielding effect and the smaller the forward scattering. Therefore, in order to actually improve the reflectance, the particle size needs to be 2 μm or more. Further, when the average particle size exceeds 5 μm, the unevenness of the film becomes large and the film thickness accuracy deteriorates. Therefore, the average particle size of the particles in the present invention is 2 μm or more and 5 μm or less.

更に、樹脂マトリックスの屈折率と粒子の屈折率の間には相関があり、粒子のd線屈折率が2.5以上3.2以下に対して樹脂マトリックスのd線屈折率が1.32以上1.42以下で最も反射率が高くなることを見出した。図3に示すように樹脂11の屈折率が高いと中空粒子10との屈折率差が小さくなり入射光1に対する反射光2の量が減少する。しかし、樹脂11の屈折率が低くなりすぎると中空粒子10との屈折率差が広がりすぎて中空粒子10内に入った光が粒子内での反射12を繰り返す。これにより、樹脂11側に出ることが出来ずに光が閉じ込められて逆に反射率が低下すると推測される。よって、粒子のd線屈折率が2.5以上3.2以下に対して樹脂マトリックスの1.32以上1.42以下で反射率を向上させて温度低減効果を高めることが出来る。 Furthermore, there is a correlation between the refractive index of the resin matrix and the refractive index of the particles, and the d-line refractive index of the particles is 2.5 or more and 3.2 or less, whereas the d-line refractive index of the resin matrix is 1.32 or more. It was found that the refractive index was highest at 1.42 or less. As shown in FIG. 3, when the refractive index of the resin 11 is high, the difference in the refractive index from the hollow particles 10 becomes small, and the amount of reflected light 2 with respect to the incident light 1 decreases. However, if the refractive index of the resin 11 becomes too low, the difference in the refractive index from the hollow particles 10 becomes too wide, and the light entering the hollow particles 10 repeats the reflection 12 in the particles. As a result, it is presumed that the light cannot be emitted to the resin 11 side and the light is confined, and the reflectance is conversely lowered. Therefore, the reflectance can be improved and the temperature reduction effect can be enhanced when the d-line refractive index of the particles is 2.5 or more and 3.2 or less and 1.32 or more and 1.42 or less of the resin matrix.

[光学機器用の遮熱塗料]
以下に、本発明の遮熱塗料の材料構成および本発明の遮熱塗料の製造方法について説明する。
[Heat-shielding paint for optical equipment]
Hereinafter, the material composition of the heat-shielding paint of the present invention and the method for producing the heat-shielding paint of the present invention will be described.

《材料構成》
本発明の光学機器用遮熱塗料は、樹脂を溶剤に溶解した溶液中に、平均粒径が100nm以下の空孔含有粒子と、d線屈折率が2.5以上3.2以下の高屈折率粒子を含む。
<< Material composition >>
The thermal barrier coating material for optical instruments of the present invention contains pore-containing particles having an average particle size of 100 nm or less and a high refractive index of 2.5 or more and 3.2 or less in a solution of a resin dissolved in a solvent. Contains rate particles.

(d線屈折率が2.5以上3.2以下の粒子(高屈折率粒子))
まず、本発明におけるd線屈折率が2.5以上3.2以下の高屈折率粒子について説明する。
本発明における高屈折率粒子には、最も好適な材料としてルチル型酸化チタン、アナターゼ型酸化チタンを用いることが出来る。また、色を調整する必要がある場合は、可視光領域に吸収を持つ酸化クロム、チタン、酸化銅、タングステン、白金、酸化鉄、ヘマタイト等の無機顔料やアゾ系の有機顔料を用いることができる。ただし、可視光から赤外領域での消衰係数が低い酸化チタンと比較して、特に可視光領域の消衰係数が高い材料は太陽光の反射率がやや低下する傾向にあるが、本発明の範囲に粒径を調整することでより高い太陽光の反射率を得ることが出来る。高屈折率粒子は1種類を単独で用いても複数を混合してもよい。
(Particles with a d-line refractive index of 2.5 or more and 3.2 or less (high-refractive index particles))
First, high-refractive index particles having a d-line refractive index of 2.5 or more and 3.2 or less in the present invention will be described.
For the high refractive index particles in the present invention, rutile-type titanium oxide and anatase-type titanium oxide can be used as the most suitable materials. When it is necessary to adjust the color, inorganic pigments such as chromium oxide, titanium, copper oxide, tungsten, platinum, iron oxide, and hematite, which absorb in the visible light region, and azo-based organic pigments can be used. .. However, as compared with titanium oxide having a low extinction coefficient in the visible light to infrared region, a material having a high extinction coefficient in the visible light region tends to have a slightly lower reflectance of sunlight. A higher reflectance of sunlight can be obtained by adjusting the particle size within the range of. One type of high-refractive index particles may be used alone, or a plurality of them may be mixed.

本発明における高屈折率粒子は、平均粒径が2μm以上5μm以下である。平均粒径が2μm未満になると太陽光の反射率が低下する。また、平均粒径が5μmを超えると膜の凹凸が大きくなり膜厚精度が悪化する。 The high refractive index particles in the present invention have an average particle size of 2 μm or more and 5 μm or less. When the average particle size is less than 2 μm, the reflectance of sunlight decreases. Further, when the average particle size exceeds 5 μm, the unevenness of the film becomes large and the film thickness accuracy deteriorates.

また、本発明における高屈折率粒子はその粒子の表面が任意の有機材料や無機材料で被覆されていても構わない。また、形状は不定形であっても球形であっても燐片状であっても中空であっても構わないが、より好ましくは表面の凹凸が少ない形状である。 Further, the surface of the high-refractive index particles in the present invention may be coated with an arbitrary organic material or inorganic material. Further, the shape may be irregular, spherical, flaky or hollow, but more preferably the shape has less surface irregularities.

本発明における高屈折率粒子と空孔含有粒子を合わせた全粒子の含有量は、遮熱塗料に対して10重量%以上90重量%以下であることが好ましい。粒子の含有量が10重量%未満になると、基材まで到達する光が増加するため太陽光による反射率が低下する。また、粒子の含有量が90重量%を超えると塗膜の脆性が悪化する。 The content of the total particles including the high refractive index particles and the pore-containing particles in the present invention is preferably 10% by weight or more and 90% by weight or less with respect to the heat-shielding paint. When the content of the particles is less than 10% by weight, the light reaching the base material increases, so that the reflectance due to sunlight decreases. Further, when the content of the particles exceeds 90% by weight, the brittleness of the coating film is deteriorated.

(平均粒径が100nm以下の空孔含有粒子)
次に、本発明における平均粒径が100nm以下の粒子について説明する。
本発明においては、上記したように、樹脂中に平均粒径が100nm以下の空孔含有粒子を含んで樹脂マトリックスを構成する。
(Void-containing particles with an average particle size of 100 nm or less)
Next, particles having an average particle size of 100 nm or less in the present invention will be described.
In the present invention, as described above, the resin matrix is composed of pore-containing particles having an average particle size of 100 nm or less in the resin.

本発明における平均粒径が100nm以下の空孔含有粒子は、樹脂の屈折率を下げる目的で用いられるため屈折率が低い材料が好ましい。一例としては、シリカ、MgF2、有機樹脂を用いることが出来る。好ましくは、中空シリカを用いることが出来る。
本発明における平均粒径が100nm以下の空孔含有粒子の形状は、中空になっていれば、多孔質構造が含まれていても構わない。
本発明における平均粒径が100nm以下の空孔含有粒子は球状であっても不定形であっても、楕円形であっても構わない。
Since the pore-containing particles having an average particle size of 100 nm or less in the present invention are used for the purpose of lowering the refractive index of the resin, a material having a low refractive index is preferable. As an example, silica, MgF2, and an organic resin can be used. Preferably, hollow silica can be used.
The shape of the pore-containing particles having an average particle size of 100 nm or less in the present invention may include a porous structure as long as it is hollow.
The pore-containing particles having an average particle size of 100 nm or less in the present invention may be spherical, amorphous, or elliptical.

中空粒子にはスルーリア(日揮)、シリナックス(日鉄鉱業)のいずれかを用いることができる。 Either Sururia (JGC) or Sirinax (Nittetsu Mining Co., Ltd.) can be used for the hollow particles.

本発明における空孔含有粒子の平均粒径は5nm以上100nm以下であることが好ましい。中空粒子の平均粒径を5nm未満に調整することは技術的に困難である。また、平均粒径が100nmを超えると、樹脂と中空粒子の界面で散乱が発生して反射率が低下する。 The average particle size of the pore-containing particles in the present invention is preferably 5 nm or more and 100 nm or less. It is technically difficult to adjust the average particle size of the hollow particles to less than 5 nm. Further, when the average particle size exceeds 100 nm, scattering occurs at the interface between the resin and the hollow particles, and the reflectance decreases.

本発明における平均粒径が100nm以下の空孔含有粒子と樹脂から成る樹脂マトリックスのd線屈折率は1.32以上1.42以下であることが好ましい。d線屈折率の範囲については前述したとおりであるが、本発明における平均粒径が100nm以下の空孔含有粒子と樹脂から成る樹脂マトリックスのd線屈折率が1.32未満になると樹脂と高屈折率粒子の屈折率差が大きいために反射率が低下する。また、本発明の平均粒径が100nm以下の空孔含有粒子と樹脂から成る樹脂マトリックスのd線屈折率が1.42を超えると樹脂と高屈折率粒子の屈折率差が小さいために反射率が低下する。 The d-line refractive index of the resin matrix composed of the pore-containing particles having an average particle size of 100 nm or less and the resin in the present invention is preferably 1.32 or more and 1.42 or less. The range of the d-line refractive index is as described above, but when the d-line refractive index of the resin matrix composed of the pore-containing particles having an average particle size of 100 nm or less and the resin in the present invention is less than 1.32, the d-line refractive index is high with the resin. Since the difference in the refractive index of the refractive index particles is large, the refractive index decreases. Further, when the d-line refractive index of the resin matrix composed of the pore-containing particles having an average particle diameter of 100 nm or less and the resin exceeds 1.42, the refractive index is small because the difference in refractive index between the resin and the high refractive index particles is small. Decreases.

本発明における平均粒径が100nm以下の空孔含有粒子の空孔率は10体積%以上90体積%以下であることが好ましい。空孔率が10体積%未満になると樹脂マトリックスのd線屈折率を1.42以下に下げることが困難になる。空孔率が90体積%を超えると粒子の強度が低下する。 The pore ratio of the pore-containing particles having an average particle size of 100 nm or less in the present invention is preferably 10% by volume or more and 90% by volume or less. If the porosity is less than 10% by volume, it becomes difficult to reduce the d-line refractive index of the resin matrix to 1.42 or less. When the porosity exceeds 90% by volume, the strength of the particles decreases.

本発明における平均粒径が100nm以下の空孔含有粒子の含有量は溶剤を除く遮熱塗料の全成分に対して、5体積%以上50体積%以下であることが好ましい。含有量が5体積%未満になると塗膜の屈折率を低下させることが困難である。また、含有量が50体積%を超えると塗膜の耐摩耗性が悪化する。 The content of the pore-containing particles having an average particle size of 100 nm or less in the present invention is preferably 5% by volume or more and 50% by volume or less with respect to all the components of the heat-shielding coating material excluding the solvent. When the content is less than 5% by volume, it is difficult to reduce the refractive index of the coating film. Further, if the content exceeds 50% by volume, the abrasion resistance of the coating film deteriorates.

(樹脂)
次に、本発明の樹脂について説明する。
本発明における樹脂としては、アクリル樹脂、ウレタン樹脂、エポキシ樹脂およびこれらの組合せから選択される樹脂であり、好ましくはウレタンアクリレート樹脂が好ましい。
(resin)
Next, the resin of the present invention will be described.
The resin in the present invention is an acrylic resin, a urethane resin, an epoxy resin, or a resin selected from a combination thereof, and a urethane acrylate resin is preferable.

アクリル樹脂としては、アルマテックス784(三井化学)、アルマテックス785-5(三井化学)、アルマテックス748-5M(三井化学)、メタルロック(セメダイン)、ボンコート40-418-EF(DIC)、ボンコートCE-6400(DIC)のいずれかを用いることが出来る。 Acrylic resins include Almatex 784 (Mitsui Chemicals), Almatex 785-5 (Mitsui Chemicals), Almatex 748-5M (Mitsui Chemicals), Metal Lock (Cemedine), Boncoat 40-418-EF (DIC), Boncoat. Any of CE-6400 (DIC) can be used.

ウレタン樹脂としては、アデカポリエーテルBPX-21(ADECA)、アデカポリエーテルEDP-300(アデカ)、アデカニューエースV14-90(ADECA)のいずれかを用いることができる。また、ウレタン樹脂硬化剤としてはタケネートD110N(三井化学)、D160N(三井化学)、D120N(三井化学)、D140N(三井化学)のいずれかを用いることが出来る。ウレタン樹脂と硬化剤としてのイソシアネートは当量比が1:1になるように混合して用いることが出来る。 As the urethane resin, any one of Adeka Polyether BPX-21 (ADECA), Adeka Polyether EDP-300 (Adeka), and Adeka New Ace V14-90 (ADECA) can be used. Further, as the urethane resin curing agent, any one of Takenate D110N (Mitsui Chemicals), D160N (Mitsui Chemicals), D120N (Mitsui Chemicals) and D140N (Mitsui Chemicals) can be used. The urethane resin and isocyanate as a curing agent can be mixed and used so that the equivalent ratio is 1: 1.

エポキシ樹脂としては、jER828(三菱化学)、jER1001(三菱化学)、834X90(三菱化学)、EP-4100(アデカ)、EP-5100-75X(アデカ)のいずれかを用いることが出来る。また、エポキシ樹脂硬化剤としては、アデカハードナーH30(アデカ)、アデカハードナー6019(アデカ)、アデカハードナーEH-551CH(アデカ)のいずれかを用いることが出来る。エポキシ樹脂と硬化剤については当量比が1:1になるように混合して用いることが出来る。 As the epoxy resin, any one of jER828 (Mitsubishi Chemical), jER1001 (Mitsubishi Chemical), 834X90 (Mitsubishi Chemical), EP-4100 (ADEKA), and EP-5100-75X (ADEKA) can be used. Further, as the epoxy resin curing agent, any one of Adeka Hardener H30 (Adeka), Adeka Hardener 6019 (Adeka), and Adeka Hardener EH-551CH (Adeka) can be used. The epoxy resin and the curing agent can be mixed and used so that the equivalent ratio is 1: 1.

ウレタンアクリレート樹脂としては、オレスターQ164(三井化学)、オレスターQ691(三井化学)、オレスターQ723(三井化学)、オレスターQ628(三井化学)、AH-600(共栄社化学)、8965(ユピカ)のいずれかを用いることが出来る。また、ウレタンアクリレート用硬化剤としてはウレタン結合を含むタケネートD110N(三井化学)、D160N(三井化学)、D120N(三井化学)、D140N(三井化学)のいずれかを用いることが出来る。アクリル樹脂と硬化剤は当量比が1:1になるように混合して用いることが出来る。 Urethane acrylate resins include Olestar Q164 (Mitsui Chemicals), Olestar Q691 (Mitsui Chemicals), Olestar Q723 (Mitsui Chemicals), Orestar Q628 (Mitsui Chemicals), AH-600 (Kyoeisha Chemicals), 8965 (Yupika) Any of can be used. Further, as the curing agent for urethane acrylate, any one of Takenate D110N (Mitsui Chemicals), D160N (Mitsui Chemicals), D120N (Mitsui Chemicals), and D140N (Mitsui Chemicals) containing a urethane bond can be used. The acrylic resin and the curing agent can be mixed and used so that the equivalent ratio is 1: 1.

また、樹脂の鉛筆硬度はH以上5H以下であることが好ましく、より好ましくは1H以上3H以下である。鉛筆硬度がH未満になると耐摩耗性が悪化する。また、鉛筆硬度が5Hを超えると熱衝撃に弱くなる。また、本発明の樹脂の含有量は遮熱塗料に対して5重量%以上50重量%以下であることが好ましく、より好ましくは7重量%以上35重量%以下である。本発明における樹脂の含有量が5重量%未満になると基材との密着性が悪化する。また、本発明における樹脂の含有量が50重量%を超えると、太陽光の反射率が悪化する。 The pencil hardness of the resin is preferably H or more and 5H or less, and more preferably 1H or more and 3H or less. When the pencil hardness is less than H, the abrasion resistance deteriorates. Further, when the pencil hardness exceeds 5H, it becomes vulnerable to thermal shock. The content of the resin of the present invention is preferably 5% by weight or more and 50% by weight or less, and more preferably 7% by weight or more and 35% by weight or less with respect to the heat-shielding paint. If the content of the resin in the present invention is less than 5% by weight, the adhesion to the substrate deteriorates. Further, when the content of the resin in the present invention exceeds 50% by weight, the reflectance of sunlight deteriorates.

(溶剤)
次に、溶剤について説明する。
溶剤としては、任意の材料を用いて良い。溶剤の一例としては、水、シンナー、エタノール、イソプロピルアルコール、n-ブチルアルコール、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、トルエン、キシレン、アセトン、セロソルブ類、グリコールエーテル類、エーテル類等が挙げられる。これらの溶媒は、1種類を用いても複数の種類を混合して用いても良い。
(solvent)
Next, the solvent will be described.
Any material may be used as the solvent. Examples of solvents include water, thinner, ethanol, isopropyl alcohol, n-butyl alcohol, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether, toluene, xylene, acetone, cellosolve. , Glycol ethers, ethers and the like. These solvents may be used alone or in admixture of a plurality of types.

遮熱塗料の好ましい粘度は、10mPa・s以上10000mPa・s以下である。遮熱塗料の粘度が10mPa・s未満になると塗布後の遮熱膜の膜厚が薄くなる箇所が生じる場合がある。また、10000mPa・sより大きくなると、遮熱塗料の塗工性が低下する。 The preferable viscosity of the heat-shielding paint is 10 mPa · s or more and 10,000 mPa · s or less. If the viscosity of the heat-shielding paint is less than 10 mPa · s, the film thickness of the heat-shielding film after coating may become thin. Further, when it is larger than 10000 mPa · s, the coatability of the heat-shielding paint is lowered.

(添加剤)
本発明の遮熱塗料は、その他の任意の添加剤を含んでいてもよい。その一例としては、分散剤、硬化剤、硬化触媒、可塑剤、チキソ性付与剤、レベリング剤、赤外線透過型有機着色剤、赤外線透過型無機着色剤、防腐剤、紫外線吸収剤、酸化防止剤、カップリング剤、d線屈折率が2.5以下の無機粒子および有機粒子、d線屈折率が3.2以上の無機粒子等が挙げられる。
分散剤は、DISPERBYK-118(ビックケミージャパン)、DISPERBYK-110(ビックケミージャパン)、DISPERBYK-111(ビックケミージャパン)、DISPERBYK-102(ビックケミージャパン)、DISPERBYK-190(ビックケミージャパン)、DISPERBYK-106(ビックケミージャパン)、DISPERBYK-180(ビックケミージャパン)、DISPERBYK-108(ビックケミージャパン)、デモールEP(花王)の中のいずれかを用いることができる。
(Additive)
The thermal barrier coating material of the present invention may contain any other additive. Examples include dispersants, hardeners, hardeners, plasticizers, thixophilic agents, leveling agents, infrared transmissive organic colorants, infrared transmissive inorganic colorants, preservatives, UV absorbers, antioxidants, etc. Examples thereof include a coupling agent, inorganic particles and organic particles having a d-line refractive index of 2.5 or less, and inorganic particles having a d-line refractive index of 3.2 or more.
Dispersants are DISPERBYK-118 (Big Chemie Japan), DISPERBYK-110 (Big Chemie Japan), DISPERBYK-111 (Big Chemie Japan), DISPERBYK-102 (Big Chemie Japan), DISPERBYK-190 (Big Chemie Japan), DISPERBYK You can use any of -106 (Big Chemie Japan), DISPERBYK-180 (Big Chemie Japan), DISPERBYK-108 (Big Chemie Japan), and Demor EP (Kao).

《遮熱塗料の製造方法》
以下に本発明の遮熱塗料の製造方法について説明する。
本発明の遮熱塗料の製造方法としては本発明のd線屈折率が2.5以上3.2以下の高屈折率粒子および平均粒径が100nm以下の空孔含有粒子を塗料中に分散出来れば任意の方法を用いることが出来る。一例としては、ビーズミル、ボールミル、ジェットミル、三本ローラー、遊星回転装置、ミキサー、超音波分散機等が挙げられる。
<< Manufacturing method of heat-shielding paint >>
The method for producing the thermal barrier coating material of the present invention will be described below.
As a method for producing the heat-shielding coating material of the present invention, high-refractive index particles having a d-line refractive index of 2.5 or more and 3.2 or less and pore-containing particles having an average particle size of 100 nm or less can be dispersed in the coating material. Any method can be used. Examples include bead mills, ball mills, jet mills, three rollers, planetary rotating devices, mixers, ultrasonic dispersers, and the like.

[光学機器用の遮熱膜]
以下に本発明の遮熱膜の材料構成および膜構成について説明する。
《材料構成》
以下に本発明の光学機器用の遮熱膜の材料構成について説明する。
本発明の遮熱膜は、d線屈折率が2.5以上3.2以下の高屈折率粒子と、平均粒径が100nm以下の空孔含有粒子と、樹脂を含む。
[Heat shield film for optical equipment]
The material structure and film structure of the heat shield film of the present invention will be described below.
<< Material composition >>
The material composition of the heat shield film for the optical device of the present invention will be described below.
The heat-shielding film of the present invention contains high-refractive index particles having a d-line refractive index of 2.5 or more and 3.2 or less, pore-containing particles having an average particle size of 100 nm or less, and a resin.

(d線屈折率が2.5以上3.2以下の高屈折率粒子)
上記遮熱塗料を塗布して形成された遮熱膜において、本発明におけるd線屈折率が2.5以上3.2以下の高屈折率粒子の含有量は、遮熱膜に対して20体積%以上60体積%以下の割合であることが好ましい。高屈折率粒子の含有量が20体積%未満になると、基材まで到達する光が増加するため太陽光による反射率が低下する。また、高屈折率粒子の含有量が60体積%を超えると塗膜の脆性が悪化する。
(High-refractive index particles with a d-line refractive index of 2.5 or more and 3.2 or less)
In the heat shield film formed by applying the heat shield paint, the content of high refractive index particles having a d-line refractive index of 2.5 or more and 3.2 or less in the present invention is 20 volumes with respect to the heat shield film. The ratio is preferably% or more and 60% by volume or less. When the content of the high-refractive index particles is less than 20% by volume, the light reaching the base material increases, so that the reflectance due to sunlight decreases. Further, when the content of the high refractive index particles exceeds 60% by volume, the brittleness of the coating film is deteriorated.

(平均粒径が100nm以下の空孔含有粒子)
上記した本発明における平均粒径が100nm以下の空孔含有粒子の遮熱膜に対する含有量は、5体積%以上50体積%以下であることが好ましい。含有量が5体積%未満になると塗膜の屈折率を低下させることが困難である。また、含有量が50体積%を超えると塗膜の耐摩耗性が悪化する。
(Void-containing particles with an average particle size of 100 nm or less)
The content of the pore-containing particles having an average particle size of 100 nm or less in the above-mentioned invention with respect to the heat-shielding film is preferably 5% by volume or more and 50% by volume or less. When the content is less than 5% by volume, it is difficult to reduce the refractive index of the coating film. Further, if the content exceeds 50% by volume, the abrasion resistance of the coating film deteriorates.

(樹脂)
上記樹脂の遮熱膜に対する含有量は10体積%以上75体積%以下であることが好ましく、より好ましくは20体積%以上70体積%以下である。本発明における樹脂の含有量が10体積%未満になると基材との密着性が悪化する。また、本発明における樹脂の含有量が78体積%を超えると、太陽光の反射率が悪化する。
(resin)
The content of the resin with respect to the heat shield film is preferably 10% by volume or more and 75% by volume or less, and more preferably 20% by volume or more and 70% by volume or less. If the content of the resin in the present invention is less than 10% by volume, the adhesion to the substrate deteriorates. Further, when the content of the resin in the present invention exceeds 78% by volume, the reflectance of sunlight deteriorates.

(添加剤)
本発明の遮熱塗料は、樹脂マトリックスのd線屈折率が1.32以上1.42以下の範囲で収まる限り、樹脂マトリックスの一部としてその他の任意の添加剤を含んでいてもよい。その一例としては、分散剤、硬化剤、硬化触媒、可塑剤、チキソ性付与剤、レベリング剤、赤外線透過型有機着色剤、赤外線透過型無機着色剤、防腐剤、紫外線吸収剤、酸化防止剤、カップリング剤、d線屈折率が2.5以下の無機粒子および有機粒子、d線屈折率が3.2以上の無機粒子等が挙げられる。
(Additive)
The thermal barrier coating material of the present invention may contain any other additive as a part of the resin matrix as long as the d-line refractive index of the resin matrix is within the range of 1.32 or more and 1.42 or less. Examples include dispersants, hardeners, hardeners, plasticizers, thixophilic agents, leveling agents, infrared transmissive organic colorants, infrared transmissive inorganic colorants, preservatives, UV absorbers, antioxidants, etc. Examples thereof include a coupling agent, inorganic particles and organic particles having a d-line refractive index of 2.5 or less, and inorganic particles having a d-line refractive index of 3.2 or more.

《膜構成》
本発明の遮熱膜9は少なくとも基材5より外側に形成される。その形態としては、基材5と密着していてもよいし、基材5と遮熱膜9の間に密着性を向上させるプライマー層が設けられていてもよい。
<< Membrane composition >>
The heat shield film 9 of the present invention is formed at least outside the base material 5. As the form thereof, it may be in close contact with the base material 5, or a primer layer for improving the adhesion may be provided between the base material 5 and the heat shield film 9.

(基材)
基材としては、任意の材料を用いることが出来るが、金属やプラスチックが好ましい。金属材料としては、アルミニウム、チタン、ステンレス、マグネシウム合金等が挙げられる。プラスチック材料の一例としては、ポリカーボネート樹脂、アクリル樹脂、ABS樹脂、フッ素樹脂等が挙げられる。
(Base material)
Any material can be used as the base material, but metal and plastic are preferable. Examples of the metal material include aluminum, titanium, stainless steel, magnesium alloy and the like. Examples of plastic materials include polycarbonate resin, acrylic resin, ABS resin, fluororesin and the like.

また、基材の膜厚としては任意の厚みを持つことが出来るが、0.5mm以上5mm以下、より好ましくは0.5mm以上2mm以下であることが好ましい。膜厚が0.5mm未満になるとレンズ鏡筒の形状を保持することが困難である。また、膜厚が5mmを超えると部材のコストが高くなる。 The film thickness of the base material can be any thickness, but is preferably 0.5 mm or more and 5 mm or less, more preferably 0.5 mm or more and 2 mm or less. If the film thickness is less than 0.5 mm, it is difficult to maintain the shape of the lens barrel. Further, if the film thickness exceeds 5 mm, the cost of the member increases.

(プライマー層)
プライマー層には、任意の材料を用いることが出来るが、一例としてはエポキシ樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂等が挙げられる。また、プライマー層には本発明の粒子や本発明以外の粒子、着色剤、分散剤、硬化剤、硬化触媒、可塑剤、チキソ性付与剤、レベリング剤、有機着色剤、無機着色剤、防腐剤、紫外線吸収剤、酸化防止剤、カップリング剤、溶媒の残渣が含まれていても構わない。
(Primer layer)
Any material can be used for the primer layer, and examples thereof include epoxy resin, urethane resin, acrylic resin, silicone resin, and fluororesin. Further, in the primer layer, particles of the present invention or particles other than the present invention, colorants, dispersants, curing agents, curing catalysts, plasticizers, texo-imparting agents, leveling agents, organic colorants, inorganic colorants, preservatives , UV absorbers, antioxidants, coupling agents, solvent residues may be included.

また、プライマー層の膜厚としては2μm以上30μm以下が好ましく、5μm以上20μm以下がより好ましい。膜厚が2μm未満では膜の密着性が低下することがあり、30μmを超えると膜厚精度に悪影響をおよぼすことがある。 The thickness of the primer layer is preferably 2 μm or more and 30 μm or less, and more preferably 5 μm or more and 20 μm or less. If the film thickness is less than 2 μm, the adhesion of the film may decrease, and if it exceeds 30 μm, the film thickness accuracy may be adversely affected.

(本発明の遮熱膜の膜厚)
本発明の遮熱膜の平均膜厚は10μm以上70μm以下であることが好ましい。膜厚が10μm未満になると、基材側に光が透過して太陽光の反射率が悪化する。膜厚が70μmを超えると膜厚精度が悪化する。平均膜厚は、規格値に対して±10μmであることが好ましい。
(Film thickness of the heat shield film of the present invention)
The average film thickness of the heat shield film of the present invention is preferably 10 μm or more and 70 μm or less. When the film thickness is less than 10 μm, light is transmitted to the base material side and the reflectance of sunlight deteriorates. If the film thickness exceeds 70 μm, the film thickness accuracy deteriorates. The average film thickness is preferably ± 10 μm with respect to the standard value.

《本発明の遮熱膜の形成方法》
本発明の遮熱膜は、好ましくは10μm以上70μm以下の平均膜厚となるように本発明の遮熱塗料を均一に塗布出来れば任意の塗布方法および効果方法を用いることが出来る。
<< Method for Forming Heat Shielding Film of the Present Invention >>
As the heat-shielding film of the present invention, any coating method and effect method can be used as long as the heat-shielding coating film of the present invention can be uniformly applied so as to have an average film thickness of preferably 10 μm or more and 70 μm or less.

本発明の光学機器用の遮熱膜の塗布方法の一例としては、ハケ塗り、スプレー塗布、ディップコーティング、転写等が挙げられる。また、遮熱膜は1層塗りであっても、多層塗りであっても構わないし、意匠性を出すためにシボ加工されていても良い。 Examples of the method for applying the heat shield film for the optical device of the present invention include brush coating, spray coating, dip coating, transfer and the like. Further, the heat shield film may be coated in one layer or in multiple layers, and may be textured in order to give a design property.

また、本発明の光学機器用の遮熱膜の硬化方法としては室温放置しても構わないし、任意の熱により硬化を促進しても、紫外線を与えても構わない。熱を与えて硬化させる方法としては、加熱炉、ヒーター、赤外線加熱等が挙げられる。硬化温度としては、室温から400℃が好ましく更に好ましくは、室温から200℃である。 Further, as a method for curing the heat-shielding film for an optical device of the present invention, the film may be left at room temperature, the curing may be promoted by arbitrary heat, or ultraviolet rays may be applied. Examples of the method of applying heat to cure include a heating furnace, a heater, infrared heating and the like. The curing temperature is preferably room temperature to 400 ° C., more preferably room temperature to 200 ° C.

[実施例]
以下に、本発明における好適な実施例について説明する。
実施例1から13における遮熱塗料の調製、遮熱膜の作製、反射率の評価、温度の評価、鉛筆硬度、膜厚精度の評価は下記のように行った。
[Example]
Hereinafter, suitable examples of the present invention will be described.
The preparation of the heat-shielding paint, the preparation of the heat-shielding film, the evaluation of the reflectance, the evaluation of the temperature, the pencil hardness, and the evaluation of the film thickness accuracy in Examples 1 to 13 were carried out as follows.

〈反射率の測定方法〉
反射率は図4に示すように、分光光度計(U-4000;日立ハイテク)を用いて測定した。
測定用のサンプルには30mm角で厚みが1mmの金属板に本発明の遮熱膜を形成して用いた。金属板には、ステンレス、アルミニウム、チタン、マグネシウム合金等の中のいずれかを用いた。また、金属板の表面にスピンコーターで所望の膜厚になるように本発明の遮熱膜を塗布し、焼成した。
<Measurement method of reflectance>
As shown in FIG. 4, the reflectance was measured using a spectrophotometer (U-4000; Hitachi High-Tech).
For the sample for measurement, the heat shield film of the present invention was formed on a metal plate measuring 30 mm square and having a thickness of 1 mm. For the metal plate, any one of stainless steel, aluminum, titanium, magnesium alloy and the like was used. Further, the surface of the metal plate was coated with the heat-shielding film of the present invention so as to have a desired film thickness with a spin coater, and fired.

次に、反射率の測定方法を説明する。図4に示すように積分球13に対して波長400nm〜2600nmの入射光1を入射させた。まず、入射光1に対して入射角を5°傾けた試験片を試験片取り付け部14に100%反射が起こるアルミナ焼結体のブランクを設置し、ベースライン測定を行った。続いて、試験片取り付け部14にブランクの替わりに本発明の遮光膜を形成した試験片を設置し、400nm〜2600nmの光を入射させ、検出器15で検出して反射率を測定した。また、反射率は400nm〜2600nmにおいて1nmおきの平均反射率の値を記載した。反射率は温度の評価結果と相関があり、90%以上で下記の温度評価結果において良好な値を示した。このことより、反射率が90%以上であれば良好な遮熱膜であると言える。 Next, a method of measuring the reflectance will be described. As shown in FIG. 4, incident light 1 having a wavelength of 400 nm to 2600 nm was incident on the integrating sphere 13. First, a test piece whose angle of incidence was tilted by 5 ° with respect to the incident light 1 was placed on a blank of an alumina sintered body in which 100% reflection occurs at the test piece mounting portion 14, and baseline measurement was performed. Subsequently, a test piece having the light-shielding film of the present invention formed was placed on the test piece attachment portion 14 instead of the blank, and light of 400 nm to 2600 nm was incident on the test piece, and the light was detected by the detector 15 to measure the reflectance. Further, as the reflectance, the value of the average reflectance at intervals of 1 nm in the range of 400 nm to 2600 nm is described. The reflectance has a correlation with the temperature evaluation result, and when it is 90% or more, a good value is shown in the following temperature evaluation result. From this, it can be said that a good heat-shielding film has a reflectance of 90% or more.

〈温度低減効果の評価方法〉
図5は温度の評価方法を示す模式図である。図5に示すように、温度測定には、ランプ16、温度測定用治具19および温度評価用の試験片17を用いた。
<Evaluation method of temperature reduction effect>
FIG. 5 is a schematic diagram showing a temperature evaluation method. As shown in FIG. 5, a lamp 16, a temperature measuring jig 19, and a temperature evaluation test piece 17 were used for temperature measurement.

温度評価用の試験片17には、100mm角で厚みが1mmの金属板に本発明の遮熱膜を形成して用いた。金属板には、ステンレス、アルミニウム、チタン、マグネシウム合金等の中のいずれかを用いた。また、金属板の表面にスピンコーターで所望の膜厚になるように本発明の遮熱膜を塗布し、焼成した。温度測定用治具19には、表面が白色で120mm×120mm×120mmの段ボールを用い、温度評価用の試験片17取り付け部分に90mm×90mm角の窓部を設けた。
また、ランプ16にはハイラックスMT150FD6500K(岩崎電気)を用いた。
For the test piece 17 for temperature evaluation, the heat shield film of the present invention was formed on a metal plate measuring 100 mm square and having a thickness of 1 mm. For the metal plate, any one of stainless steel, aluminum, titanium, magnesium alloy and the like was used. Further, the surface of the metal plate was coated with the heat-shielding film of the present invention so as to have a desired film thickness with a spin coater, and fired. The temperature measuring jig 19 was made of corrugated cardboard having a white surface and having a size of 120 mm × 120 mm × 120 mm, and a 90 mm × 90 mm square window portion was provided at the attachment portion of the test piece 17 for temperature evaluation.
Further, Hilux MT150FD6500K (Iwasaki Electric) was used for the lamp 16.

次に、温度測定用治具19に温度評価用の試験片17を取り付け、温度評価用の試験片17の裏面に熱電対を取り付けた。温度評価用の試験片17が取り付けられた温度測定用治具19をランプ16との距離が100mmになるように設置した。次にランプ16を60分間照射し、60分後の温度を測定した。 Next, the temperature evaluation test piece 17 was attached to the temperature measurement jig 19, and the thermocouple was attached to the back surface of the temperature evaluation test piece 17. A temperature measuring jig 19 to which the temperature evaluation test piece 17 was attached was installed so that the distance from the lamp 16 was 100 mm. Next, the lamp 16 was irradiated for 60 minutes, and the temperature after 60 minutes was measured.

温度低減効果は、温度評価用の試験片17の表面に黒色のブランクを形成して温度測定し、実施例の遮熱膜の温度測定結果との差分を計算して温度遮熱効果とした。 The temperature reduction effect was obtained by forming a black blank on the surface of the test piece 17 for temperature evaluation, measuring the temperature, and calculating the difference from the temperature measurement result of the heat shield film of the example to obtain the temperature heat shield effect.

黒色のブランクとしてはカーボンブラック(MA100;三菱化学)20g、エポキシ樹脂(jER828;三菱化学)100g、アミン硬化剤(ST11;三菱化学)70g、シンナー20gを遊星回転装置で混合した塗料を温度評価用の試験片17の表面に塗布し、焼成して作製した。 As a black blank, a paint obtained by mixing 20 g of carbon black (MA100; Mitsubishi Chemical), 100 g of epoxy resin (jER828; Mitsubishi Chemical), 70 g of amine curing agent (ST11; Mitsubishi Chemical), and 20 g of thinner with a planetary rotating device is used for temperature evaluation. Was applied to the surface of the test piece 17 and fired to prepare the test piece 17.

温度低減効果が10℃以上であれば良好(下記表:良)な遮熱膜であると評価した。また、温度低減効果が10℃未満になると、良好な遮熱膜ではない(下記表:不良)。 When the temperature reduction effect was 10 ° C. or higher, it was evaluated as a good heat shield film (table below: good). If the temperature reduction effect is less than 10 ° C, the heat shield film is not good (table below: defective).

〈膜厚精度の評価方法〉
以下に、膜厚精度の評価方法について説明する。光学機器は位置精度が厳しいが、膜厚精度がばらつくと位置精度が悪化する。膜厚精度評価用のサンプルには30mm角で厚みが1mmの金属板に本発明の遮熱膜を所望の膜厚になるようにスプレーで本発明の遮熱膜を塗布し、焼成した。評価用のサンプルは20枚用意し、1枚につきマイクロメーターで5か所の膜厚を測定してその平均値を算出し膜厚とした。また20枚の試験片の膜厚の平均値を算出し、平均値からの最大ズレ量を膜厚ばらつきの値とした。尚、最大ズレ量とは20枚の試験片×5か所で合計100か所についての最大ズレ量とした。
<Evaluation method of film thickness accuracy>
The method for evaluating the film thickness accuracy will be described below. Optical equipment has strict position accuracy, but if the film thickness accuracy varies, the position accuracy deteriorates. For the sample for film thickness accuracy evaluation, the heat shield film of the present invention was applied by spraying to a metal plate having a thickness of 1 mm and a film thickness accuracy of the present invention so as to have a desired film thickness, and the sample was fired. Twenty samples for evaluation were prepared, and the film thickness was measured at five locations with a micrometer for each sample, and the average value was calculated and used as the film thickness. Further, the average value of the film thicknesses of the 20 test pieces was calculated, and the maximum amount of deviation from the average value was used as the value of the film thickness variation. The maximum amount of deviation was defined as the maximum amount of deviation for a total of 100 locations with 20 test pieces x 5 locations.

膜厚ばらつきが±10μm以内の精度であれば良好(下記表:良)な遮熱膜と評価した。膜厚ばらつきが±10μmを超えると、位置精度が悪化するので光学機器として使用することが困難(下記表:不良)になる。 If the film thickness variation was within ± 10 μm, it was evaluated as a good heat shield film (table below: good). If the film thickness variation exceeds ± 10 μm, the position accuracy deteriorates and it becomes difficult to use it as an optical device (table below: defective).

〈鉛筆硬度の評価方法〉
以下に鉛筆硬度の評価方法について説明する。膜厚精度評価用のサンプルには30mm角で厚みが1mmの金属板に本発明の遮熱膜を所望の膜厚になるようにスプレーで塗布し、焼成した。鉛筆硬度についてはH以上あれば良好な遮熱膜と言える。よって、試験用の鉛筆には三菱鉛筆ハイユニHを用い、♯400サンドペーパーで垂直に芯出しを行った。鉛筆の押し当て角度は45°で、10Nの圧力をかけて10mmの距離を移動させた。試験回数は5回とし、全て傷が無い遮熱膜を(下記表:良(鉛筆硬度H以上))とし、傷や剥がれが見られる膜を(下記表:不良(鉛筆硬度H未満))とした。
<Evaluation method of pencil hardness>
The evaluation method of pencil hardness will be described below. For the sample for film thickness accuracy evaluation, the heat shield film of the present invention was applied by spray to a metal plate having a thickness of 30 mm square and a thickness of 1 mm so as to have a desired film thickness, and fired. If the pencil hardness is H or higher, it can be said that it is a good heat shield film. Therefore, Mitsubishi Pencil Hi-Uni H was used as the test pencil, and the centering was performed vertically with # 400 sandpaper. The pressing angle of the pencil was 45 °, and a pressure of 10 N was applied to move the pencil a distance of 10 mm. The number of tests was 5, and the heat-shielding film without any scratches (table below: good (pencil hardness H or higher)) and the film with scratches or peeling (table below: poor (pencil hardness H or lower)). did.

(実施例1)
<遮熱塗料の調製>
実施例1は、以下の方法で遮熱塗料を作製した。酸化チタン(HT0210(東邦チタニウム;平均粒径2μm))210g、アクリル樹脂35g(アルマテックス784(三井化学))、中空シリカ100g(スルーシア(日揮):50%空孔率)、分散剤2.4g(DISPERBYK-180(ビックケミージャパン))、溶剤30g(酢酸ブチル)を秤量し、遊星回転装置(泡取練太郎;シンキー)にて10分間撹拌して、実施例1の遮熱塗料を得た。
(Example 1)
<Preparation of heat shield paint>
In Example 1, a heat-shielding paint was produced by the following method. Titanium oxide (HT0210 (Toho Titanium; average particle size 2 μm)) 210 g, acrylic resin 35 g (Almatex 784 (Mitsui Chemicals)), hollow silica 100 g (Sulsia (Nikki): 50% porosity), dispersant 2.4 g (DISPERBYK-180 (Big Chemie Japan)), 30 g of solvent (butyl acetate) was weighed and stirred with a planetary rotating device (Kentaro Awatori; Shinky) for 10 minutes to obtain the thermal barrier coating material of Example 1. ..

<遮熱膜の作製>
実施例1では、表1に記載される材料および条件の下、以下の方法で遮熱膜を作製した。上記の遮熱塗料を反射率測定用の試験片、温度評価用の試験片17、膜厚精度評価用の試験片に膜厚が40μmになるように塗布し、130℃で1時間硬化させ、実施例1の遮熱膜を得た。
<Making a heat shield film>
In Example 1, a heat shield film was prepared by the following method under the materials and conditions shown in Table 1. The above heat-shielding paint was applied to a test piece for reflectance measurement, a test piece 17 for temperature evaluation, and a test piece for film thickness accuracy evaluation so that the film thickness was 40 μm, and cured at 130 ° C. for 1 hour. The heat shield film of Example 1 was obtained.

(実施例2〜13)
実施例2〜13では、表1〜3の材料および条件にする以外は実施例1と同様にして、遮熱膜を作製した。
酸化チタン、中空シリカ、ウレタンアクリレートについては、全ての実施例および比較例において同一のものを用いた。
(Examples 2 to 13)
In Examples 2 to 13, a heat shield film was prepared in the same manner as in Example 1 except that the materials and conditions shown in Tables 1 to 3 were used.
As for titanium oxide, hollow silica, and urethane acrylate, the same ones were used in all Examples and Comparative Examples.

平均粒径が5μmの酸化チタンについては、粒径が80nmの酸化チタンを、ロータリーキルンで低温で乾燥させた後に、1100℃の温度で2時間焼成、粉砕して作製した。平均粒径が1μmの粒子としてはJR-1000(テイカ)を用いた。 Titanium oxide having an average particle size of 5 μm was prepared by drying titanium oxide having a particle size of 80 nm at a low temperature with a rotary kiln, firing at a temperature of 1100 ° C. for 2 hours, and pulverizing. JR-1000 (Taika) was used as the particles having an average particle size of 1 μm.

Figure 2021038405
Figure 2021038405

Figure 2021038405
Figure 2021038405

Figure 2021038405
Figure 2021038405

〈評価結果〉
上記の方法により、実施例1から13の遮熱膜の反射率および温度低減効果を評価した結果を、表4〜6に記す。
<Evaluation results>
The results of evaluating the reflectance and temperature reducing effect of the heat shield films of Examples 1 to 13 by the above method are shown in Tables 4 to 6.

測定結果としては、遮熱膜の反射率は90%以上であることが好ましい。また、温度低減効果はブランクとの差分が10℃以上あることが好ましい。また、鉛筆硬度はH以上であることが好ましい。また、膜厚精度は±10μm以内であることが好ましい。 As a result of the measurement, the reflectance of the heat shield film is preferably 90% or more. Further, the temperature reduction effect preferably has a difference of 10 ° C. or more from the blank. Moreover, the pencil hardness is preferably H or more. Further, the film thickness accuracy is preferably within ± 10 μm.

実施例1では、平均粒径が2μmの酸化チタンとアクリル樹脂と中空シリカを用い、アクリル樹脂と中空シリカから成る樹脂マトリックスの屈折率が1.41になるように調整した。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表4に示す。反射率の評価結果は、97%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 1, titanium oxide having an average particle size of 2 μm, an acrylic resin, and hollow silica were used, and the refractive index of the resin matrix composed of the acrylic resin and hollow silica was adjusted to 1.41. Table 4 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 97%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例2では、実施例1に対し、ウレタン樹脂(アデカポリエーテルBPX-21(アデカ))を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表4に示す。反射率の評価結果は、97%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 2, a urethane resin (Adeka Polyester BPX-21 (Adeka)) was used with respect to Example 1. Table 4 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 97%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例3では、実施例1に対し、エポキシ樹脂(iER828(三菱化学))を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表4に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 3, an epoxy resin (iER828 (Mitsubishi Chemical Corporation)) was used with respect to Example 1. Table 4 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例4では、実施例1に対し、ウレタンアクリレート(オレスターQ691(三菱化学))を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表4に示す。反射率の評価結果は、98%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 4, urethane acrylate (Olestar Q691 (Mitsubishi Chemical Corporation)) was used with respect to Example 1. Table 4 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 98%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例5では、実施例1に対し、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、更に樹脂マトリックスのd線屈折率を1.32に調整した遮熱膜を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表4に示す。反射率の評価結果は、94%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 5, urethane acrylate (Orestar Q691 (Mitsubishi Chemical Corporation)) was used as compared with Example 1, and a heat-shielding film in which the d-line refractive index of the resin matrix was adjusted to 1.32 was used. Table 4 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 94%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例6では、実施例1に対し、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、更に樹脂マトリックスのd線屈折率を1.30に調整した遮熱膜を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表5に示す。反射率の評価結果は、94%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。ただし、膜厚を200μm以上にして、温度衝撃を加えると膜割れが生じることがあった。 In Example 6, urethane acrylate (Orestar Q691 (Mitsubishi Chemical Corporation)) was used as compared with Example 1, and a heat-shielding film in which the d-line refractive index of the resin matrix was adjusted to 1.30 was used. Table 5 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 94%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good. However, when the film thickness was set to 200 μm or more and a temperature impact was applied, film cracking sometimes occurred.

実施例7では、実施例1に対し、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、更に樹脂マトリックスのd線屈折率を1.48に調整した遮熱膜を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表5に示す。反射率の評価結果は、91%であり若干劣るものの良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 7, urethane acrylate (Orestar Q691 (Mitsubishi Chemical Corporation)) was used as compared with Example 1, and a heat-shielding film in which the d-line refractive index of the resin matrix was adjusted to 1.48 was used. Table 5 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 91%, which was good although it was slightly inferior. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例8では、実施例1に対し、平均粒径が5μmの酸化チタンを用い、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、樹脂マトリックスのd線屈折率を1.39に調整した。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表5に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、表面に多少の凹凸が発生したものの膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 8, titanium oxide having an average particle size of 5 μm was used and urethane acrylate (Orestar Q691 (Mitsubishi Chemical)) was used as compared with Example 1, and the d-line refractive index of the resin matrix was adjusted to 1.39. .. Table 5 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Further, although some irregularities were generated on the surface, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例9では、実施例1に対し、平均粒径が1μmの酸化チタンと平均粒径が2μmの酸化チタンを併用し、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、樹脂マトリックスのd線屈折率を1.39に調整した。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表5に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 9, compared to Example 1, titanium oxide having an average particle size of 1 μm and titanium oxide having an average particle size of 2 μm were used in combination, and urethane acrylate (Olestar Q691 (Mitsubishi Chemical)) was used to form a resin matrix d. The linear refractive index was adjusted to 1.39. Table 5 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例10では、実施例1に対し、平均粒径が2μmの酸化チタンの含有量を22体積%に調整し、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、樹脂マトリックスのd線屈折率を1.39に調整した。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表5に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 10, the content of titanium oxide having an average particle size of 2 μm was adjusted to 22% by volume with respect to Example 1, and urethane acrylate (Orestar Q691 (Mitsubishi Chemical)) was used to refract the d-line of the resin matrix. The rate was adjusted to 1.39. Table 5 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例11では、実施例1に対し、平均粒径が2μmの酸化チタンの含有量を59体積%に調整し、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、樹脂マトリックスのd線屈折率を1.39に調整した。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表6に示す。反射率の評価結果は、98%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 11, the content of titanium oxide having an average particle size of 2 μm was adjusted to 59% by volume with respect to Example 1, and urethane acrylate (Orestar Q691 (Mitsubishi Chemical)) was used to refract the d-line of the resin matrix. The rate was adjusted to 1.39. Table 6 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 98%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例12では、実施例1に対し、平均粒径が2μmの酸化チタンの含有量を20体積%に調整し、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、樹脂マトリックスのd線屈折率を1.39に調整した。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表6に示す。反射率の評価結果は、94%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 12, the content of titanium oxide having an average particle size of 2 μm was adjusted to 20% by volume with respect to Example 1, and urethane acrylate (Orestar Q691 (Mitsubishi Chemical)) was used to refract the d-line of the resin matrix. The rate was adjusted to 1.39. Table 6 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 94%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

実施例13では、実施例1に対し、平均粒径が2μmの酸化チタンの含有量を60体積%に調整し、ウレタンアクリレート(オレスターQ691(三菱化学))を用い、樹脂マトリックスのd線屈折率を1.39に調整した。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表6に示す。反射率の評価結果は、98%であり良好であった。また、温度低減効果は10℃以上あり良好であった。また、鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以下であり、良好であった。ただし、膜厚を200μm以上にして温度衝撃を与えると酸化チタンの無機顔料分が多いため膜割れが生じることがあった。 In Example 13, the content of titanium oxide having an average particle size of 2 μm was adjusted to 60% by volume with respect to Example 1, and urethane acrylate (Orestar Q691 (Mitsubishi Chemical)) was used to refract the d-line of the resin matrix. The rate was adjusted to 1.39. Table 6 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 98%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was ± 10 μm or less, which was good. However, when the film thickness is set to 200 μm or more and a temperature impact is applied, the film may crack due to the large amount of the inorganic pigment of titanium oxide.

Figure 2021038405
Figure 2021038405

Figure 2021038405
Figure 2021038405

Figure 2021038405
Figure 2021038405

[比較例1〜7]
比較のための遮熱塗料の調整、遮熱膜の作製、反射率の評価、温度低減効果の評価、膜厚精度の評価、鉛筆硬度の評価は、前述の実施例1〜13と同様に行った。実施例1〜13と異なる点について以下に示す。
[Comparative Examples 1 to 7]
Adjustment of the heat-shielding paint for comparison, preparation of the heat-shielding film, evaluation of reflectance, evaluation of temperature reduction effect, evaluation of film thickness accuracy, and evaluation of pencil hardness were carried out in the same manner as in Examples 1 to 13 described above. It was. The differences from Examples 1 to 13 are shown below.

フッソ系樹脂としては、Poly(2,2,3,3-tetrafluoropropyl methacrylate)(アルドリッチ)、Poly(2,2,3,3-tetrafluoropropyl acrylate)(アルドリッチ)、Poly(2,2,2-trifluoroethyl methacrylate)(アルドリッチ)、ゼッフル(ダイキン)のいずれかを用いることが出来る。
酸化亜鉛としては、平均粒径が3.8μmの酸化亜鉛粒子♯F(堺化学)を用いた。
シリコン粒子としては、平均粒径が5μmのシリコンSIE23PB(高純度化学)を用いた。
平均粒径が7μmの酸化チタンについては、粒径が80nmの酸化チタンを、ロータリーキルンで低温で乾燥させた後に、1100℃の温度で2時間焼成、粉砕して作製した。
平均粒径が100nm以上の中空粒子としては架橋スチレンアクリル中空粒子(1次粒径300nm;安達新産業)を用いた。
As fluorine-based resins, Poly (2,2,3,3-tetrafluoropropylryl) (Aldrich), Poly (2,2,3,3-tetrafluoropropyl acrylate) (Aldrich), Poly (2,2,2-trifluoroethylcrylic) ) (Aldrich) or Zeffle (Daikin) can be used.
As zinc oxide, zinc oxide particles #F (Sakai Chemical Co., Ltd.) having an average particle size of 3.8 μm were used.
As the silicon particles, silicon SIE23PB (high-purity chemistry) having an average particle size of 5 μm was used.
Titanium oxide having an average particle size of 7 μm was prepared by drying titanium oxide having a particle size of 80 nm with a rotary kiln at a low temperature, firing at a temperature of 1100 ° C. for 2 hours, and pulverizing the mixture.
Crosslinked styrene acrylic hollow particles (primary particle size 300 nm; Adachi Shinsangyo) were used as the hollow particles having an average particle size of 100 nm or more.

表7、8に比較例1〜7の遮熱膜を構成する材料および添加量を示す。
表9、10に比較例1〜7の遮熱膜を用いて評価した結果をそれぞれ示す。
比較例1では、実施例1に対して塗膜硬度の低いフッ素樹脂(ゼッフル(ダイキン))を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表9に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は10℃以上あり良好であった。鉛筆硬度はH未満であり硬度が不足していた。また、膜厚精度の評価結果は±10μm以内であり、良好であった。
Tables 7 and 8 show the materials constituting the heat shield films of Comparative Examples 1 to 7 and the amount of addition.
Tables 9 and 10 show the results of evaluation using the heat shield films of Comparative Examples 1 to 7, respectively.
In Comparative Example 1, a fluororesin (Zefle (Daikin)) having a lower coating film hardness than that of Example 1 was used. Table 9 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Moreover, the temperature reduction effect was good as it was 10 ° C. or higher. The pencil hardness was less than H, and the hardness was insufficient. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

比較例2では、実施例1に対し、平均粒径が1μmと粒径の小さな酸化チタンを用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表9に示す。反射率の評価結果は、83%であり反射率90%に満たなかった。また、温度低減効果は10℃未満であり効果が低かった。鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 2, titanium oxide having an average particle size of 1 μm and a small particle size was used as compared with Example 1. Table 9 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 83%, which was less than the reflectance of 90%. Further, the temperature reduction effect was less than 10 ° C., and the effect was low. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

比較例3では、実施例1に対し、d線屈折率が2と屈折率が低い酸化亜鉛用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表9に示す。反射率の評価結果は、78%であり反射率90%に満たなかった。また、温度低減効果は10℃未満であり効果が低かった。鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 3, zinc oxide having a d-line refractive index of 2 and a low refractive index was used as compared with Example 1. Table 9 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 78%, which was less than the reflectance of 90%. Further, the temperature reduction effect was less than 10 ° C., and the effect was low. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

比較例4では、実施例1に対し、d線屈折率が4と屈折率が高いシリコンを用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表9に示す。反射率の評価結果は、75%であり反射率90%に満たなかった。また、温度低減効果は10℃未満であり効果が低かった。鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 4, silicon having a high refractive index with a d-line refractive index of 4 was used as compared with Example 1. Table 9 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 75%, which was less than the reflectance of 90%. Further, the temperature reduction effect was less than 10 ° C., and the effect was low. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

比較例5では、実施例1に対し、平均粒径が7μmで粒径の大きな酸化チタンを用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表9に示す。反射率の評価結果は、94%であり良好であった。また、温度低減効果は10℃以上であり良好であった。鉛筆硬度はH以上であり良好であった。ただし、膜厚精度の評価結果は±10μmを超えており、悪かった。 In Comparative Example 5, titanium oxide having an average particle size of 7 μm and a large particle size was used as compared with Example 1. Table 9 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 94%, which was good. Moreover, the temperature reduction effect was good at 10 ° C. or higher. The pencil hardness was H or higher, which was good. However, the evaluation result of film thickness accuracy exceeded ± 10 μm, which was bad.

なお、比較例6では、実施例1に対し、平均粒径が100nm以上の中空粒子(架橋スチレンアクリル中空粒子(1次粒径300nm;安達新産業))を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表10に示す。反射率の評価結果は、88%であり反射率90%に満たなかった。また、温度低減効果は10℃未満であり効果が低かった。鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm未満であり、良好であった。 In Comparative Example 6, hollow particles having an average particle size of 100 nm or more (crosslinked styrene acrylic hollow particles (primary particle size 300 nm; Adachi Shinsangyo)) were used as compared with Example 1. Table 10 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 88%, which was less than the reflectance of 90%. Further, the temperature reduction effect was less than 10 ° C., and the effect was low. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was less than ± 10 μm, which was good.

比較例7では、実施例1に対し、平均粒径が100nm以下の粒子として中実粒子を用いた。得られた遮熱膜の反射率と温度低減効果、鉛筆硬度、膜厚精度を評価した結果を表10に示す。反射率の評価結果は、83%であり反射率90%に満たなかった。また、温度低減効果は10℃未満であり効果が低かった。鉛筆硬度はH以上であり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 7, solid particles were used as particles having an average particle size of 100 nm or less as compared with Example 1. Table 10 shows the results of evaluating the reflectance, temperature reduction effect, pencil hardness, and film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 83%, which was less than the reflectance of 90%. Further, the temperature reduction effect was less than 10 ° C., and the effect was low. The pencil hardness was H or higher, which was good. Moreover, the evaluation result of the film thickness accuracy was within ± 10 μm, which was good.

Figure 2021038405
Figure 2021038405

Figure 2021038405
Figure 2021038405

Figure 2021038405
Figure 2021038405

Figure 2021038405
Figure 2021038405

本発明の光学機器用の遮光膜は、屋外で使用される部材や精密機器に利用することができる。 The light-shielding film for optical equipment of the present invention can be used for members and precision equipment used outdoors.

1.入射光
2.反射光
3.透過光
4.赤外線反射膜
5.基材
6.レンズ
7.嵌合部分
8.レンズ鏡筒
9.遮熱膜
10.粒子
11.樹脂
12.粒子内の反射
13.積分球
14.試験片取り付け部
15.検出器
16.ランプ
17.温度評価用の試験片
18.温度測定箇所
19.温度測定用治具
1. 1. Incident light 2. Reflected light 3. Transmitted light 4. Infrared reflective film
5. Base material 6. Lens 7. Fitting part 8. Lens barrel 9. Heat shield film 10. Particles 11. Resin 12. Reflection in particles 13. Integrating sphere 14. Specimen mounting part 15. Detector 16. Lamp 17. Test piece for temperature evaluation 18. Temperature measurement point 19. Temperature measurement jig

Claims (29)

レンズと、前記レンズを鏡筒の内部に備えたレンズ鏡筒を有する光学機器であって、
前記レンズ鏡筒の外周表面の少なくとも一部に遮熱膜を有し、
前記遮熱膜は、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、およびこれらの組合せ、の中から選択される樹脂中に、d線屈折率が2.5以上3.2以下である第1の粒子と、平均粒径が5nm以上100nm以下である第2の粒子と、前記第2の粒子による空孔と、を含むことを特徴とする光学機器。
An optical device having a lens and a lens barrel having the lens inside the lens barrel.
A heat shield film is provided on at least a part of the outer peripheral surface of the lens barrel.
The heat shield film contains first particles having a d-line refractive index of 2.5 or more and 3.2 or less in a resin selected from urethane resin, acrylic resin, epoxy resin, and a combination thereof. An optical instrument comprising a second particle having an average particle diameter of 5 nm or more and 100 nm or less, and a pore due to the second particle.
前記第1の粒子は、平均粒径が2μm以上5μm以下であることを特徴とする請求項1に記載の光学機器。 The optical device according to claim 1, wherein the first particles have an average particle size of 2 μm or more and 5 μm or less. 前記第1の粒子を前記遮熱膜に対して20体積%以上60体積%以下の割合で含む請求項1または2に記載の光学機器。 The optical device according to claim 1 or 2, wherein the first particles are contained in a proportion of 20% by volume or more and 60% by volume or less with respect to the heat shield film. 前記第1の粒子が酸化チタンからなる請求項1〜3のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 3, wherein the first particle is made of titanium oxide. 前記第2の粒子が中空粒子である請求項1〜4のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 4, wherein the second particle is a hollow particle. 前記第2の粒子がシリカである請求項1〜5のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 5, wherein the second particle is silica. 前記第2の粒子が前記遮熱膜に対して5体積%以上50体積%以下の割合で含まれる請求項1〜6のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 6, wherein the second particles are contained in a proportion of 5% by volume or more and 50% by volume or less with respect to the heat shield film. 前記樹脂の鉛筆硬度がH以上5H以下である請求項1〜7のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 7, wherein the pencil hardness of the resin is H or more and 5H or less. 前記遮熱膜が10μm以上70μm以下の平均膜厚を有する請求項1〜8のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 8, wherein the heat shield film has an average film thickness of 10 μm or more and 70 μm or less. ウレタン樹脂、アクリル樹脂、エポキシ樹脂、およびこれらの組合せ、の中から選択される樹脂中に、d線屈折率が2.5以上3.2以下である第1の粒子と、平均粒径が5nm以上100nm以下である第2の粒子と、前記第2の粒子による空孔と、を含むことを特徴とする遮熱膜。 In the resin selected from urethane resin, acrylic resin, epoxy resin, and a combination thereof, first particles having a d-line refractive index of 2.5 or more and 3.2 or less and an average particle size of 5 nm. A heat-shielding film comprising a second particle having a diameter of 100 nm or more and a pore due to the second particle. 前記第1の粒子は、平均粒径が2μm以上5μm以下であることを特徴とする請求項10記載の遮熱膜。 The heat shield film according to claim 10, wherein the first particles have an average particle size of 2 μm or more and 5 μm or less. 前記第1の粒子を前記遮熱膜に対して20体積%以上60体積%以下の割合で含む請求項10または11に記載の遮熱膜。 The heat shield film according to claim 10 or 11, wherein the first particles are contained in a ratio of 20% by volume or more and 60% by volume or less with respect to the heat shield film. 前記第1の粒子が酸化チタンからなる請求項10〜12のいずれか一項に記載の遮熱膜。 The heat-shielding film according to any one of claims 10 to 12, wherein the first particles are made of titanium oxide. 前記第2の粒子が中空粒子である請求項10〜13のいずれか一項に記載の遮熱膜。 The heat shield film according to any one of claims 10 to 13, wherein the second particle is a hollow particle. 前記第2の粒子がシリカである請求項10〜14のいずれか一項に記載の遮熱膜。 The heat-shielding film according to any one of claims 10 to 14, wherein the second particle is silica. 前記第2の粒子が前記遮熱膜に対して5体積%以上50体積%以下の割合で含まれる請求項10〜15のいずれか一項に記載の遮熱膜。 The heat shield film according to any one of claims 10 to 15, wherein the second particles are contained in a ratio of 5% by volume or more and 50% by volume or less with respect to the heat shield film. 前記樹脂の鉛筆硬度がH以上5H以下である請求項10〜16のいずれか一項に記載の遮熱膜。 The heat-shielding film according to any one of claims 10 to 16, wherein the pencil hardness of the resin is H or more and 5H or less. 10μm以上70μm以下の平均膜厚を有する請求項10〜17のいずれか一項に記載の遮熱膜。 The heat shield film according to any one of claims 10 to 17, which has an average film thickness of 10 μm or more and 70 μm or less. ウレタン樹脂、アクリル樹脂、エポキシ樹脂、およびこれらの組合せ、の中から選択される樹脂を溶剤に溶解した溶液中に、d線屈折率が2.5以上3.2以下である第1の粒子と、平均粒径が5nm以上100nm以下である第2の粒子と、前記第2の粒子による空孔と、を含む遮熱塗料。 In a solution prepared by dissolving a resin selected from urethane resin, acrylic resin, epoxy resin, and a combination thereof in a solvent, the first particles having a d-line refractive index of 2.5 or more and 3.2 or less A heat-shielding coating material comprising a second particle having an average particle size of 5 nm or more and 100 nm or less, and pores formed by the second particle. 前記第一の粒子は、平均粒径が2μm以上5μm以下であることを特徴とする請求項19に記載の遮熱塗料。 The heat-shielding coating material according to claim 19, wherein the first particles have an average particle size of 2 μm or more and 5 μm or less. ウレタン樹脂、アクリル樹脂、エポキシ樹脂、およびこれらの組合せ、の中から選択される樹脂を溶剤に溶解した溶液中に、d線屈折率が2.5以上3.2以下である第1の粒子と、平均粒径が5nm以上100nm以下である第2の粒子と、前記第2の粒子による空孔と、を含む遮熱塗料を塗布し遮熱膜を形成する工程を有することを特徴とする光学機器の製造方法。 A first particle having a d-line refractive index of 2.5 or more and 3.2 or less in a solution prepared by dissolving a resin selected from urethane resin, acrylic resin, epoxy resin, and a combination thereof in a solvent. An optical instrument comprising a step of applying a heat-shielding paint containing a second particle having an average particle size of 5 nm or more and 100 nm or less and pores formed by the second particle to form a heat-shielding film. How to manufacture the equipment. 前記第一の粒子は、平均粒径が2μm以上5μm以下であることを特徴とする請求項21に記載の光学機器の製造方法。 The method for manufacturing an optical instrument according to claim 21, wherein the first particles have an average particle size of 2 μm or more and 5 μm or less. 前記第1の粒子を前記遮熱膜に対して20体積%以上60体積%以下の割合で含む請求項21または22に記載の光学機器の製造方法。 The method for manufacturing an optical instrument according to claim 21 or 22, wherein the first particles are contained in a proportion of 20% by volume or more and 60% by volume or less with respect to the heat shield film. 前記第1の粒子が酸化チタンからなる請求項21〜23のいずれか一項に記載の光学機器の製造方法。 The method for manufacturing an optical instrument according to any one of claims 21 to 23, wherein the first particle is made of titanium oxide. 前記第2の粒子が中空粒子である請求項21〜24のいずれか一項に記載の光学機器の製造方法。 The method for manufacturing an optical instrument according to any one of claims 21 to 24, wherein the second particle is a hollow particle. 前記第2の粒子がシリカである請求項21〜25のいずれか一項に記載の光学機器の製造方法。 The method for manufacturing an optical instrument according to any one of claims 21 to 25, wherein the second particle is silica. 前記第2の粒子が前記遮熱膜に対して5体積%以上50体積%以下の割合で含まれる請求項21〜26のいずれか一項に記載の光学機器の製造方法。 The method for manufacturing an optical instrument according to any one of claims 21 to 26, wherein the second particles are contained in a proportion of 5% by volume or more and 50% by volume or less with respect to the heat shield film. 前記樹脂の鉛筆硬度がH以上5H以下である請求項21〜27のいずれか一項に記載の光学機器の製造方法。 The method for manufacturing an optical instrument according to any one of claims 21 to 27, wherein the pencil hardness of the resin is H or more and 5H or less. 前記遮熱膜が10μm以上70μm以下の平均膜厚を有する請求項21〜28のいずれか一項に記載の光学機器の製造方法。 The method for manufacturing an optical device according to any one of claims 21 to 28, wherein the heat shield film has an average film thickness of 10 μm or more and 70 μm or less.
JP2020192329A 2020-11-19 2020-11-19 Heat shield film, heat shield paint, and optical equipment Active JP7071481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020192329A JP7071481B2 (en) 2020-11-19 2020-11-19 Heat shield film, heat shield paint, and optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020192329A JP7071481B2 (en) 2020-11-19 2020-11-19 Heat shield film, heat shield paint, and optical equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016086144A Division JP6797548B2 (en) 2016-04-18 2016-04-22 Heat shield film, heat shield paint, and optical equipment

Publications (2)

Publication Number Publication Date
JP2021038405A true JP2021038405A (en) 2021-03-11
JP7071481B2 JP7071481B2 (en) 2022-05-19

Family

ID=74848309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020192329A Active JP7071481B2 (en) 2020-11-19 2020-11-19 Heat shield film, heat shield paint, and optical equipment

Country Status (1)

Country Link
JP (1) JP7071481B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139856A (en) * 2007-12-10 2009-06-25 Nikon Corp Lens barrel and imaging system
CN103242731A (en) * 2013-05-02 2013-08-14 苏州绿科环保新材料有限公司 Heat insulation coating
JP2014181494A (en) * 2013-03-19 2014-09-29 Nichiha Corp Building board and method of manufacturing building board
JP2015098543A (en) * 2013-11-19 2015-05-28 関西ペイント株式会社 Matting heat-shielding coating composition and coating film formation method using the composition
JP2016086144A (en) * 2014-10-29 2016-05-19 富士電機株式会社 Squeegee printing method and device
JP6797548B2 (en) * 2016-04-22 2020-12-09 キヤノン株式会社 Heat shield film, heat shield paint, and optical equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139856A (en) * 2007-12-10 2009-06-25 Nikon Corp Lens barrel and imaging system
JP2014181494A (en) * 2013-03-19 2014-09-29 Nichiha Corp Building board and method of manufacturing building board
CN103242731A (en) * 2013-05-02 2013-08-14 苏州绿科环保新材料有限公司 Heat insulation coating
JP2015098543A (en) * 2013-11-19 2015-05-28 関西ペイント株式会社 Matting heat-shielding coating composition and coating film formation method using the composition
JP2016086144A (en) * 2014-10-29 2016-05-19 富士電機株式会社 Squeegee printing method and device
JP6797548B2 (en) * 2016-04-22 2020-12-09 キヤノン株式会社 Heat shield film, heat shield paint, and optical equipment

Also Published As

Publication number Publication date
JP7071481B2 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
US11187832B2 (en) Light-shielding film for optical element and optical element having light-shielding film
JP6797548B2 (en) Heat shield film, heat shield paint, and optical equipment
JP4959007B2 (en) Shielding film, shielding paint and optical element for optical element
JP2011186438A5 (en)
KR20220144872A (en) Resin composition for low reflection light blocking layer, and low reflection light blocking layer and low reflection light blocking layer laminate using same
US20240045103A1 (en) Article including film, optical apparatus, coating material, and method for producing article
US11163132B2 (en) Thermal barrier film, thermal barrier paint, and optical instrument
JP6891029B2 (en) Optical equipment, films provided on the surface of optical equipment, and paints used for optical equipment
JP6744751B2 (en) Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them
TWI589652B (en) Light-shielding paint, light-shielding paint set, light-shielding film, optical element, method for producing light-shielding film, and method for producing optical element
JP7071481B2 (en) Heat shield film, heat shield paint, and optical equipment
JP2007276205A (en) Coated base material and its manufacturing method
US20210173123A1 (en) Article including film, coating material, method for producing article
JP6896492B2 (en) Optical equipment, films provided on the surface of optical equipment, and paints used for optical equipment
JP7154921B2 (en) Optical device, lens hood, method for manufacturing optical device, and method for manufacturing lens hood
JP2020062870A (en) Article having membrane, optical device, coating, and manufacturing method of article
US20200386918A1 (en) Article, optical apparatus, and coating material
JP2022095096A (en) Film provided on surface of optical device, optical device, and coating
JP2020199757A (en) Article having film, optical device, coating, and method for producing article
JP2022095097A (en) Article with film, optical device, coating material, and method of manufacturing article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220506

R151 Written notification of patent or utility model registration

Ref document number: 7071481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151