JP2021037748A - Laminated sheets and food containers - Google Patents

Laminated sheets and food containers Download PDF

Info

Publication number
JP2021037748A
JP2021037748A JP2020133425A JP2020133425A JP2021037748A JP 2021037748 A JP2021037748 A JP 2021037748A JP 2020133425 A JP2020133425 A JP 2020133425A JP 2020133425 A JP2020133425 A JP 2020133425A JP 2021037748 A JP2021037748 A JP 2021037748A
Authority
JP
Japan
Prior art keywords
heat
base material
laminated sheet
material layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020133425A
Other languages
Japanese (ja)
Inventor
椋太 関口
Ryota Sekiguchi
椋太 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Kagaku Co Ltd
Original Assignee
Chuo Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Kagaku Co Ltd filed Critical Chuo Kagaku Co Ltd
Publication of JP2021037748A publication Critical patent/JP2021037748A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a laminated sheet having a heat resistance and an excellent impact resistance in a frozen environment.SOLUTION: There is provided a laminated sheet 1, comprising: a heat-resistant base material layer 2 composed of a mixture containing block polypropylene in a range of 50 to 80 wt.% and polyethylene in a range of 8 to 32 wt.%; a first surface layer 3 that is formed of a polypropylene-based resin and that is laminated and fixed to one surface of the heat-resistant base material layer 2; and a second surface layer 4 that is formed of a polypropylene-based resin and that is laminated and fixed to other surface of the heat-resistant base material layer 2, and the sheet is used as a material for thermoforming a food container used in a frozen environment, for example.SELECTED DRAWING: Figure 1

Description

本発明は、耐熱性と耐寒性に優れる積層シート及びその積層シートで形成される食品容器に関する。 The present invention relates to a laminated sheet having excellent heat resistance and cold resistance and a food container formed of the laminated sheet.

従来、電子レンジで使用可能な食品容器を熱成型する材料として特許文献1に開示されているような積層シートがある。この積層シートは、フィラーとポリプロピレン系樹脂を含有する組成物からなる基材層の両面にポリオレフィン系樹脂からなる外層を積層したものであり、この積層シートを熱成型して耐熱性、耐油性を有する食品容器が形成される。 Conventionally, there is a laminated sheet as disclosed in Patent Document 1 as a material for thermoforming a food container that can be used in a microwave oven. This laminated sheet is obtained by laminating an outer layer made of a polyolefin resin on both sides of a base material layer made of a composition containing a filler and a polypropylene resin, and the laminated sheet is thermoformed to obtain heat resistance and oil resistance. The food container to have is formed.

更に、特許文献2にも耐熱性を有する同種の積層シートが開示されている。特許文献2の積層シートは、ポリプロピレン系樹脂と高密度ポリエチレンとの重量比率が80:20〜30:70であるポリオレフィン系樹脂92〜82重量%、タルク8〜18重量%とからなる基材層と、ポリプロピレン系樹脂を主成分とするポリオレフィン系樹脂からなる両側の表層で構成される2種3層の積層シートである。そして、例えば特許文献2の表2の実施例12には、基材層のタルクを15重量%とし、残りのポリオレフィン系樹脂85重量%をホモポリプロピレン27.2重量%、ブロックポリプロピレン30.6重量%、高密度ポリエチレン27.2重量%とする積層シートが開示されている。 Further, Patent Document 2 also discloses the same type of laminated sheet having heat resistance. The laminated sheet of Patent Document 2 is a base material layer composed of 92 to 82% by weight of a polyolefin resin and 8 to 18% by weight of talc in which the weight ratio of polypropylene resin and high density polyethylene is 80:20 to 30:70. It is a two-kind, three-layer laminated sheet composed of surface layers on both sides made of a polyolefin-based resin containing a polypropylene-based resin as a main component. Then, for example, in Example 12 of Table 2 of Patent Document 2, the talc of the base material layer was 15% by weight, and the remaining 85% by weight of the polyolefin-based resin was 27.2% by weight of homopolypropylene and 30.6% by weight of block polypropylene. A laminated sheet containing 27.2% by weight of high-density polyethylene is disclosed.

特開2008−207843号公報Japanese Unexamined Patent Publication No. 2008-207843 特許第4565939号公報Japanese Patent No. 4565939

ところで、例えば電子レンジで使用可能な耐熱性を有する食品容器は、食品を収容した状態で冷凍環境下で輸送されて冷凍庫に保管・保存され、必要時に冷凍庫から輸送される場合も多い。このような冷凍環境下での保管・保存や輸送が行なわれる場合、例えばポリオレフィン系シートは冷凍環境下で脆くなるため、冷凍環境下での耐衝撃性に優れる材料で形成された食品容器を用いないと、冷凍環境下での輸送時の輸送振動、落下、衝突等の衝撃で食品容器が破損するリスクが高くなってしまう。そのため、耐熱性を確保できると同時に、冷凍環境下での耐衝撃性に優れる材料が切望されている。 By the way, for example, a food container having heat resistance that can be used in a microwave oven is often transported in a frozen environment with food contained therein, stored and stored in a freezer, and transported from the freezer when necessary. When stored, stored or transported in such a frozen environment, for example, a polyolefin sheet becomes brittle in a frozen environment, so a food container made of a material having excellent impact resistance in a frozen environment is used. Otherwise, there is a high risk that the food container will be damaged due to impacts such as transportation vibration, dropping, and collision during transportation in a frozen environment. Therefore, there is an urgent need for a material that can secure heat resistance and at the same time has excellent impact resistance in a frozen environment.

本発明は上記課題に鑑み提案するものであって、耐熱性を有すると同時に、冷凍環境下での耐衝撃性に優れる積層シート及びその積層シートで形成される食品容器を提供することを目的とする。 The present invention has been proposed in view of the above problems, and an object of the present invention is to provide a laminated sheet having heat resistance and excellent impact resistance in a frozen environment, and a food container formed of the laminated sheet. To do.

本発明の積層シートは、ブロックポリプロピレンを50〜80重量%、ポリエチレンを8〜32重量%の範囲で含有する混合物で構成される耐熱基材層と、ポリプロピレン系樹脂で形成されて前記耐熱基材層の一方の面に積層固着される第1の表層と、ポリプロピレン系樹脂で形成されて前記耐熱基材層の他方の面に積層固着される第2の表層を備えることを特徴とする。
これによれば、ポリエチレンの含有比率を8〜32重量%とした耐熱基材層により、食品容器製造時すなわち積層シートを所望の形状に成型する際のドローダウンを軽減できると共に、積層シートの所要の耐熱性を確保することができる。また、50〜80重量%の高い重量比で耐熱基材層に含有されるブロックポリプロピレンのゴム相により、積層シートの冷凍環境下での耐衝撃性を高めることができる。
The laminated sheet of the present invention is formed of a heat-resistant base material layer composed of a mixture containing block polypropylene in the range of 50 to 80% by weight and polyethylene in the range of 8 to 32% by weight, and the heat-resistant base material formed of a polypropylene resin. It is characterized by including a first surface layer which is laminated and fixed to one surface of the layer, and a second surface layer which is formed of a polypropylene resin and is laminated and fixed to the other surface of the heat-resistant base material layer.
According to this, the heat-resistant base material layer having a polyethylene content of 8 to 32% by weight can reduce drawdown during food container manufacturing, that is, when molding a laminated sheet into a desired shape, and requires a laminated sheet. Heat resistance can be ensured. Further, the rubber phase of block polypropylene contained in the heat-resistant base material layer at a high weight ratio of 50 to 80% by weight can enhance the impact resistance of the laminated sheet in a frozen environment.

本発明の積層シートは、前記耐熱基材層が無機充填材を8〜21重量%の範囲で含有することを特徴とする。
これによれば、耐熱基材層に8重量%以上の無機充填材を含有させることにより、耐熱基材層と積層シートの耐熱性と剛性、強度を確実且つ高い安定性で高めることができる。また、無機充填材の含有比率を21重量%以下に抑え、ブロックポリプロピレン、ポリエチレンの耐熱基材層における含有比率を上げることにより、冷凍環境下での耐衝撃性の向上をより確実に図ることができる。
The laminated sheet of the present invention is characterized in that the heat-resistant base material layer contains an inorganic filler in the range of 8 to 21% by weight.
According to this, by including 8% by weight or more of the inorganic filler in the heat-resistant base material layer, the heat resistance, rigidity, and strength of the heat-resistant base material layer and the laminated sheet can be enhanced with certainty and high stability. In addition, by suppressing the content ratio of the inorganic filler to 21% by weight or less and increasing the content ratio in the heat-resistant base material layer of block polypropylene and polyethylene, it is possible to more reliably improve the impact resistance in a frozen environment. it can.

本発明の積層シートは、前記耐熱基材層がブロックポリプロピレンを58〜76重量%、ポリエチレンを8〜26重量%、無機充填材を11〜21重量%の範囲で含有することを特徴とする。
これによれば、ポリエチレンの含有比率を26重量%以下に抑制した耐熱基材層により、積層シートの所要の耐熱性をより確実に確保できると同時に、58〜76重量%の高い重量比で耐熱基材層に含有されるブロックポリプロピレンのゴム相により、積層シートの冷凍環境下での耐衝撃性を確実に高めることができる。
The laminated sheet of the present invention is characterized in that the heat-resistant base material layer contains block polypropylene in the range of 58 to 76% by weight, polyethylene in the range of 8 to 26% by weight, and an inorganic filler in the range of 11 to 21% by weight.
According to this, the heat-resistant base material layer in which the polyethylene content ratio is suppressed to 26% by weight or less can more reliably secure the required heat resistance of the laminated sheet, and at the same time, heat resistance at a high weight ratio of 58 to 76% by weight. The rubber phase of the block polypropylene contained in the base material layer can surely enhance the impact resistance of the laminated sheet in a frozen environment.

本発明の積層シートは、前記耐熱基材層がポリエチレンを8〜16重量%の範囲で含有することを特徴とする。
これによれば、ポリエチレンの配合比率を抑えることにより、耐熱基材層と積層シートの耐熱性をより確実に高めることができる。
The laminated sheet of the present invention is characterized in that the heat-resistant base material layer contains polyethylene in the range of 8 to 16% by weight.
According to this, the heat resistance of the heat-resistant base material layer and the laminated sheet can be more reliably increased by suppressing the compounding ratio of polyethylene.

本発明の積層シートは、前記耐熱基材層を構成するポリエチレンがバイオマス由来のポリエチレンであることを特徴とする。
これによれば、ポリエチレンとしてバイオマス由来のポリエチレンを用いることにより、化石燃料の使用量を削減し、環境負荷を減らすことができる。
The laminated sheet of the present invention is characterized in that the polyethylene constituting the heat-resistant base material layer is biomass-derived polyethylene.
According to this, by using polyethylene derived from biomass as polyethylene, the amount of fossil fuel used can be reduced and the environmental load can be reduced.

本発明の食品容器は、本発明の積層シートを熱成型して形成されていることを特徴とする。
これによれば、食品容器として必要十分な剛性と強度を有し、本発明の積層シートの効果を有する食品容器を得ることができる。また、冷凍環境下で使用した場合にも食品容器が破損するリスクが極めて低いことから、消費者が食品容器の破片を口にすることをより確実に防止することができる。
The food container of the present invention is characterized in that it is formed by thermoforming the laminated sheet of the present invention.
According to this, it is possible to obtain a food container having the necessary and sufficient rigidity and strength as a food container and having the effect of the laminated sheet of the present invention. In addition, since the risk of damage to the food container is extremely low even when used in a frozen environment, it is possible to more reliably prevent consumers from eating debris from the food container.

本発明によれば、耐熱性を確保できると同時に、冷凍環境下での耐衝撃性に優れる積層シートや食品容器を得ることができる。 According to the present invention, it is possible to obtain a laminated sheet or a food container which can secure heat resistance and at the same time has excellent impact resistance in a frozen environment.

本発明による実施形態の積層シートを示す部分縦断面図。The partial vertical sectional view which shows the laminated sheet of embodiment by this invention. 実施形態の積層シートで形成された食品容器の縦断面図。The vertical sectional view of the food container formed by the laminated sheet of an embodiment. 実施例と比較例の耐衝撃性試験の結果を示すグラフ。The graph which shows the result of the impact resistance test of an Example and a comparative example.

〔実施形態の積層シート及び食品容器〕
本発明による実施形態の積層シート1は、図1に示す合成樹脂製の積層シート1であり、ブロックポリプロピレンとポリエチレンを含有する混合物で構成される耐熱基材層2と、ポリプロピレン系樹脂で形成されて耐熱基材層2の一方の面に積層固着される第1の表層3と、ポリプロピレン系樹脂で形成されて耐熱基材層2の他方の面に積層固着される第2の表層4を備える。積層シート1は、好適には冷凍食品等の食品容器の材料として用いられ、例えば図2のような食品容器10が所定形状の金型を用いて積層シート1を熱成型して形成される。
[Laminated sheet and food container of the embodiment]
The laminated sheet 1 of the embodiment according to the present invention is the laminated sheet 1 made of synthetic resin shown in FIG. 1, and is formed of a heat-resistant base material layer 2 composed of a mixture containing block polypropylene and polyethylene, and a polypropylene-based resin. It is provided with a first surface layer 3 which is laminated and fixed to one surface of the heat-resistant base material layer 2, and a second surface layer 4 which is formed of a polypropylene resin and is laminated and fixed to the other surface of the heat-resistant base material layer 2. .. The laminated sheet 1 is preferably used as a material for food containers such as frozen foods. For example, the food container 10 as shown in FIG. 2 is formed by thermoforming the laminated sheet 1 using a mold having a predetermined shape.

耐熱基材層2は、ブロックポリプロピレンを50〜80重量%、ポリエチレンを8〜32重量%の範囲で含有する混合物で構成され、又、本実施形態の耐熱基材層2はブロックポリプロピレン、高密度ポリエチレン、無機充填材を含有する混合物で構成されている。ブロックポリプロピレンの含有比率はより好ましくは58〜76重量%であり、ポリエチレンの含有比率はより好ましくは8〜26重量%、より一層好ましくは8〜16重量%である。また、無機充填材の含有比率は好ましくは8〜21重量%、より好ましくは11〜21重量%である。 The heat-resistant base material layer 2 is composed of a mixture containing block polypropylene in the range of 50 to 80% by weight and polyethylene in the range of 8 to 32% by weight, and the heat-resistant base material layer 2 of the present embodiment is made of block polypropylene and has a high density. It is composed of a mixture containing polyethylene and an inorganic filler. The content ratio of block polypropylene is more preferably 58 to 76% by weight, and the content ratio of polyethylene is more preferably 8 to 26% by weight, even more preferably 8 to 16% by weight. The content ratio of the inorganic filler is preferably 8 to 21% by weight, more preferably 11 to 21% by weight.

第1の表層3のポリプロピレン系樹脂、第2の表層4のポリプロピレン系樹脂は、例えば耐熱性に優れるホモポリプロピレン樹脂とすると好適であるが、所要の耐熱性を確保できれば、ポリプロピレン重合体、プロピレン−エチレンブロック共重合体、ブロックポリプロピレン、プロピレン−エチレンランダム共重合体等を適宜用いることも可能である。第1の表層3のポリプロピレン系樹脂と第2の表層4のポリプロピレン系樹脂は同種のものを用いて積層シート1を2種3層の積層シートとすると、製造効率向上等の観点から好適であるが、第1の表層3のポリプロピレン系樹脂と第2の表層4のポリプロピレン系樹脂を異種のポリプロピレン系樹脂とすることも可能である。 The polypropylene-based resin of the first surface layer 3 and the polypropylene-based resin of the second surface layer 4 are preferably homopolypropylene resins having excellent heat resistance, for example, but if the required heat resistance can be secured, the polypropylene polymer, propylene- It is also possible to appropriately use an ethylene block copolymer, block polypropylene, a propylene-ethylene random copolymer, or the like. When the polypropylene-based resin of the first surface layer 3 and the polypropylene-based resin of the second surface layer 4 are of the same type and the laminated sheet 1 is a laminated sheet of two types and three layers, it is preferable from the viewpoint of improving production efficiency and the like. However, it is also possible to make the polypropylene-based resin of the first surface layer 3 and the polypropylene-based resin of the second surface layer 4 different types of polypropylene-based resin.

耐熱基材層2を構成するポリエチレンとしては、特に限定されないが、例えば、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等とすると良好であり、汎用性の高い高密度ポリエチレンが特に好ましい。また、ポリエチレンとしてバイオマス由来のポリエチレンを用いると、化石燃料の使用量を削減し、環境負荷を減らすことが出来る。バイオマス由来のポリエチレンとは、例えばサトウキビを原料とするポリエチレンなど、再生可能な生物由来の有機性資源で化石資源を除いたものを原料とするポリエチレンである。 The polyethylene constituting the heat-resistant base material layer 2 is not particularly limited, but for example, low-density polyethylene, high-density polyethylene, linear low-density polyethylene and the like are preferable, and high-density polyethylene having high versatility is particularly preferable. Further, when polyethylene derived from biomass is used as polyethylene, the amount of fossil fuel used can be reduced and the environmental load can be reduced. Biomass-derived polyethylene is polyethylene made from renewable biological organic resources excluding fossil resources, such as polyethylene made from sugar cane.

耐熱基材層2を構成する無機充填材としては、特に限定されないが、例えば、シリカ、アルミナ、炭酸カルシウム、タルク、クレー、マイカ、ガラスバルーン、ガラスビーズ、ケイ酸カルシウム、ガラス繊維、炭素繊維等とすると良好であり、中では、フレーク状および球状のタルクが特に好ましい。これらのフィラーは単独、或いは2種以上を組み合わせて用いて使用できる。また、無機充填材としてタルクを用いる場合、タルクの粒径は、剛性が出やすいので平均粒径が5μm以上の比較的大きめのものが適しているが、大きすぎると層の凹凸が増加するため、平均粒径は1〜20μmが好ましい。 The inorganic filler constituting the heat-resistant base material layer 2 is not particularly limited, but for example, silica, alumina, calcium carbonate, talc, clay, mica, glass balloon, glass beads, calcium silicate, glass fiber, carbon fiber and the like. Of these, flaky and spherical talc are particularly preferred. These fillers can be used alone or in combination of two or more. When talc is used as the inorganic filler, a relatively large particle size of talc having an average particle size of 5 μm or more is suitable because it tends to have rigidity, but if it is too large, the unevenness of the layer increases. The average particle size is preferably 1 to 20 μm.

食品容器用材料として適切な積層シート1の耐熱基材層2の層厚は300〜1000μmとするとよく、より好ましくは300〜750μmであり、さらに好ましくは400〜650μmであり、第1の表層3、第2の表層4の層厚はそれぞれ0.6〜150μmとするとよく、より好ましくは0.8〜100μmであり、さらに好ましくは1〜18μmである。同様に、積層シート1の全体の層厚は300〜1000μmとするとよく、より好ましくは300〜800μmである。また、食品容器用材料として適切な積層シート1の耐熱基材層2と第1の表層3と第2の表層4の体積比は、70:15:15〜99.6:0.2:0.2とすると好ましく、80:10:10〜99:0.5:0.5とするとより好ましい。 The layer thickness of the heat-resistant base material layer 2 of the laminated sheet 1 suitable as a material for food containers is preferably 300 to 1000 μm, more preferably 300 to 750 μm, further preferably 400 to 650 μm, and the first surface layer 3 The layer thickness of the second surface layer 4 is preferably 0.6 to 150 μm, more preferably 0.8 to 100 μm, and further preferably 1 to 18 μm. Similarly, the overall layer thickness of the laminated sheet 1 is preferably 300 to 1000 μm, more preferably 300 to 800 μm. Further, the volume ratio of the heat-resistant base material layer 2 of the laminated sheet 1 suitable as a material for food containers, the first surface layer 3 and the second surface layer 4 is 70: 15: 15-99.6: 0.2: 0. It is preferably .2, and more preferably 80:10: 10 to 99: 0.5: 0.5.

食品容器用材料として適切な積層シート1の引張弾性率(MPa)は1200MPa以上が好ましく、1400MPa以上がより好ましく、1500MPa以上がさらに好ましい。同様に、積層シート1の落下荷重は0.3kg、測定温度は−20℃におけるデュポン衝撃強度(E50(J))は1.5J以上が好ましく、1.7J以上がより好ましく、1.9J以上がさらにこのましい。同様に、積層シート1の密度は0.8〜1.4g/cmが好ましく、1.0〜1.2g/cmがより好ましい。 The tensile elastic modulus (MPa) of the laminated sheet 1 suitable as a material for food containers is preferably 1200 MPa or more, more preferably 1400 MPa or more, and even more preferably 1500 MPa or more. Similarly, the drop load of the laminated sheet 1 is 0.3 kg, and the DuPont impact strength (E50 (J)) at a measurement temperature of −20 ° C. is preferably 1.5 J or more, more preferably 1.7 J or more, and 1.9 J or more. Is even better. Similarly, the density of the laminated sheet 1 is preferably 0.8~1.4g / cm 3, 1.0~1.2g / cm 3 is more preferable.

また、積層シート1で形成される食品容器10の耐熱温度は、140℃以上になるようにすることが好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。 The heat resistant temperature of the food container 10 formed of the laminated sheet 1 is preferably 140 ° C. or higher, more preferably 145 ° C. or higher, and even more preferably 150 ° C. or higher.

積層シート1を製造には、適用可能な範囲で適宜の製法方法を用いることが可能であり、例えばTダイ、フィードブロックを用いた共押出法等で製造すると好適である。また、積層シート1で形成される食品容器10の製造にも、適用可能な範囲で適宜の製法方法を用いることが可能であり、例えば真空成型或いは圧空成型による工程で製造する、間接加熱或いは直接加熱による手法で製造することが可能である。 An appropriate manufacturing method can be used for manufacturing the laminated sheet 1 within an applicable range, and it is preferable to manufacture the laminated sheet 1 by, for example, a coextrusion method using a T-die or a feed block. Further, it is possible to use an appropriate manufacturing method within an applicable range for manufacturing the food container 10 formed of the laminated sheet 1, for example, indirect heating or direct manufacturing by a process of vacuum forming or compressed air forming. It can be manufactured by a heating method.

本実施形態によれば、ポリエチレンの含有比率を8〜32重量%とした耐熱基材層2により、食品容器製造時すなわち積層シートを所望の形状に成型する際のドローダウンを軽減できると共に、積層シート1の所要の耐熱性を確保することができる。また、50〜80重量%の高い重量比で耐熱基材層2に含有されるブロックポリプロピレンのゴム相により、積層シート1の冷凍環境下での耐衝撃性を高めることができる。 According to the present embodiment, the heat-resistant base material layer 2 having a polyethylene content of 8 to 32% by weight can reduce drawdown during manufacturing of food containers, that is, when molding a laminated sheet into a desired shape, and can be laminated. The required heat resistance of the sheet 1 can be ensured. Further, the rubber phase of the block polypropylene contained in the heat-resistant base material layer 2 at a high weight ratio of 50 to 80% by weight can enhance the impact resistance of the laminated sheet 1 in a frozen environment.

また、耐熱基材層2に8重量%以上の無機充填材を含有させることにより、耐熱基材層2と積層シート1の耐熱性と剛性、強度を確実且つ高い安定性で高めることができる。また、無機充填材の含有比率を21重量%以下に抑え、ブロックポリプロピレン、ポリエチレンの耐熱基材層2における含有比率を上げることにより、冷凍環境下での耐衝撃性の向上をより確実に図ることができる。 Further, by incorporating 8% by weight or more of an inorganic filler in the heat-resistant base material layer 2, the heat resistance, rigidity, and strength of the heat-resistant base material layer 2 and the laminated sheet 1 can be enhanced with certainty and high stability. Further, by suppressing the content ratio of the inorganic filler to 21% by weight or less and increasing the content ratio of the block polypropylene and polyethylene in the heat-resistant base material layer 2, the impact resistance in a frozen environment can be improved more reliably. Can be done.

更に、耐熱基材層2がブロックポリプロピレンを58〜76重量%、ポリエチレンを8〜26重量%、無機充填材を11〜21重量%の範囲で含有する構成とする場合には、ポリエチレンの含有比率を26重量%以下に抑制した耐熱基材層2により、積層シート1の所要の耐熱性をより確実に確保できると同時に、58〜76重量%の高い重量比で耐熱基材層2に含有されるブロックポリプロピレンのゴム相により、積層シート1の冷凍環境下での耐衝撃性を確実に高めることができる。更に、耐熱基材層2のポリエチレンの含有比率を8〜16重量%の範囲とし、ポリエチレンの配合比率を抑える場合には、耐熱基材層2と積層シート1の耐熱性をより確実に高めることができる。 Further, when the heat-resistant base material layer 2 contains block polypropylene in the range of 58 to 76% by weight, polyethylene in the range of 8 to 26% by weight, and the inorganic filler in the range of 11 to 21% by weight, the content ratio of polyethylene By the heat-resistant base material layer 2 in which is suppressed to 26% by weight or less, the required heat resistance of the laminated sheet 1 can be more reliably secured, and at the same time, it is contained in the heat-resistant base material layer 2 in a high weight ratio of 58 to 76% by weight. Due to the rubber phase of the block polypropylene, the impact resistance of the laminated sheet 1 in a frozen environment can be surely enhanced. Further, when the polyethylene content ratio of the heat-resistant base material layer 2 is set in the range of 8 to 16% by weight and the polyethylene compounding ratio is suppressed, the heat resistance of the heat-resistant base material layer 2 and the laminated sheet 1 is more reliably increased. Can be done.

また、積層シート1を熱成型して形成される食品容器10は、食品容器として必要十分な剛性と強度を有し、積層シート1に対応する効果を発揮することができる。また、冷凍環境下で使用した場合にも食品容器10が破損するリスクが極めて低いことから、消費者が食品容器10の破片を口にすることをより確実に防止することができる。 Further, the food container 10 formed by thermoforming the laminated sheet 1 has sufficient rigidity and strength as a food container, and can exert an effect corresponding to the laminated sheet 1. In addition, since the risk of damage to the food container 10 is extremely low even when used in a frozen environment, it is possible to more reliably prevent consumers from eating fragments of the food container 10.

〔本明細書開示発明の包含範囲〕
本明細書開示の発明は、発明として列記した各発明、実施形態の他に、適用可能な範囲で、これらの部分的な内容を本明細書開示の他の内容に変更して特定したもの、或いはこれらの内容に本明細書開示の他の内容を付加して特定したもの、或いはこれらの部分的な内容を部分的な作用効果が得られる限度で削除して上位概念化して特定したものを包含する。そして、本明細書開示の発明には下記変形例や追記した内容も含まれる。
[Scope of inclusion of the invention disclosed herein]
The inventions disclosed in the present specification are specified by changing these partial contents to other contents disclosed in the present specification to the extent applicable, in addition to the inventions and embodiments listed as inventions. Alternatively, those specified by adding other contents disclosed in the present specification to these contents, or those specified by deleting these partial contents to the extent that a partial effect can be obtained and making them into a higher concept. Include. The invention disclosed in the present specification also includes the following modifications and additional contents.

例えば積層シート1は、耐熱基材層2と、第1の表層3と、第2の表層4からなる積層シート以外に、第1の表層3の外側に、又は、第2の表層4の外側に、又は第1の表層3の外側と第2の表層4の外側の双方に模様等が施されたラミネートフィルムを積層して接着した積層シートも含まれる。また、積層シート1の耐熱基材層2には、用途など必要に応じて顔料、滑材等の添加剤を加えることも可能である。また、本発明の積層シートの耐熱基材層には、無機充填材としてのタルク以外の原料を含ませて耐熱性を持たせた基材層も含まれる。 For example, the laminated sheet 1 is outside the first surface layer 3 or outside the second surface layer 4, in addition to the laminated sheet composed of the heat-resistant base material layer 2, the first surface layer 3, and the second surface layer 4. Also included is a laminated sheet obtained by laminating and adhering a laminated film having a pattern or the like on both the outside of the first surface layer 3 and the outside of the second surface layer 4. Further, it is also possible to add additives such as pigments and lubricants to the heat-resistant base material layer 2 of the laminated sheet 1 as needed, such as for use. Further, the heat-resistant base material layer of the laminated sheet of the present invention also includes a base material layer which is made heat-resistant by containing a raw material other than talc as an inorganic filler.

〔実施例と比較例の評価〕
次に、本発明による実施例の積層シートと比較例の積層シート、及びこれらの評価結果について説明する。
[Evaluation of Examples and Comparative Examples]
Next, the laminated sheet of Examples and the laminated sheet of Comparative Examples according to the present invention, and their evaluation results will be described.

実施形態の積層シート1と同様の三層構造を有する実施例1〜4の積層シートと比較例1、2の積層シートを形成した(表1参照)。実施例1〜4の積層シートは、耐熱基材層である基材層の一方の面と他方の面にそれぞれホモポリプロピレン(H−PP)100重量%の組成を有する表層が積層された三層構造であり、基材層の層厚は596μmで非発泡であり、一方の面の表層と他方の面の表層の層厚はそれぞれ2μmである。比較例1、2の積層シートは、基材層の一方の面と他方の面にそれぞれホモポリプロピレン(H−PP)100重量%の組成を有する表層が積層された三層構造であり、基材層の層厚は596μmで非発泡であり、一方の面の表層と他方の面の表層の層厚はそれぞれ2μmである。実施例1〜4の積層シートと比較例1、2の積層シートにおける基材層のブロックポリプロピレン(B−PP)、高密度ポリエチレン(HDPE)、無機充填材としてのタルク(talc)の含有比率は表1に示す通りである。 The laminated sheets of Examples 1 to 4 and the laminated sheets of Comparative Examples 1 and 2 having the same three-layer structure as the laminated sheet 1 of the embodiment were formed (see Table 1). The laminated sheets of Examples 1 to 4 are three layers in which a surface layer having a composition of 100% by weight of homopolypropylene (H-PP) is laminated on one surface and the other surface of the base material layer which is a heat-resistant base material layer. It has a structure, and the layer thickness of the base material layer is 596 μm, which is non-foaming, and the layer thickness of the surface layer of one surface and the surface layer of the other surface are 2 μm, respectively. The laminated sheets of Comparative Examples 1 and 2 have a three-layer structure in which surface layers having a composition of 100% by weight of homopolypropylene (H-PP) are laminated on one surface and the other surface of the base material layer, respectively. The layer thickness is 596 μm, which is non-foaming, and the surface layer of one surface and the surface layer of the other surface are each 2 μm. The content ratios of block polypropylene (B-PP), high-density polyethylene (HDPE), and talc as an inorganic filler in the base material layers of the laminated sheets of Examples 1 to 4 and Comparative Examples 1 and 2 are It is as shown in Table 1.

Figure 2021037748
Figure 2021037748

そして、実施例1〜4の積層シートと比較例1、2の積層シートについて、シート物性、積層シートから成形された成型品の物性についての評価を行った。 Then, the physical characteristics of the sheets and the physical characteristics of the molded product formed from the laminated sheets were evaluated for the laminated sheets of Examples 1 to 4 and the laminated sheets of Comparative Examples 1 and 2.

シート物性におけるデュポン衝撃強度は、実施例1〜4の各積層シート及び比較例1、2の各積層シートから、縦100mm×横50mmの試験片をそれぞれ作成し、JIS K7211−1に従い、この試験片についてデュポン衝撃試験機を用いて50%破壊エネルギーE50(J)を測定した。落下荷重は0.3kg、測定温度は−20℃とした。 For the DuPont impact strength in the sheet physical characteristics, a test piece having a length of 100 mm and a width of 50 mm was prepared from each of the laminated sheets of Examples 1 to 4 and each of the laminated sheets of Comparative Examples 1 and 2, and this test was performed according to JIS K7211-1. The 50% fracture energy E50 (J) was measured for each piece using a DuPont impact tester. The drop load was 0.3 kg and the measurement temperature was −20 ° C.

シート物性における引張弾性率(MPa)は、実施例1〜4の各積層シート及び比較例1、2の各積層シートから、縦140mm×横15mmの試験片をそれぞれ作成し、JIS K7161に従い、この試験片について引張試験機を用いて測定温度23℃、チャック間距離100mm、引張速度1mm/minにおける引張弾性率(MPa)を測定した。 For the tensile elastic modulus (MPa) in the physical characteristics of the sheet, a test piece having a length of 140 mm and a width of 15 mm was prepared from each of the laminated sheets of Examples 1 to 4 and each of the laminated sheets of Comparative Examples 1 and 2, respectively, and according to JIS K7161. The tensile elastic modulus (MPa) of the test piece was measured using a tensile tester at a measurement temperature of 23 ° C., a distance between chucks of 100 mm, and a tensile speed of 1 mm / min.

成型品物性における耐熱試験では、実施例1〜4の各積層シート及び比較例1、2の各積層シートを熱成型して食品容器を成形し、この食品容器に対して家庭用品品質表示法の耐熱試験に準じて耐熱性試験を行った。具体的には、10℃毎に温調した恒温恒湿槽に成型した容器(サンプル)を60分入れ、その後の変形を目視確認し、変形が発生した恒温恒湿槽の温度から10℃を引いた値を耐熱温度とした。 In the heat resistance test on the physical properties of the molded product, each laminated sheet of Examples 1 to 4 and each laminated sheet of Comparative Examples 1 and 2 were thermoformed to form a food container, and the food container was subjected to the household product quality labeling method. A heat resistance test was performed according to the heat resistance test. Specifically, a container (sample) molded into a constant temperature and humidity chamber whose temperature is adjusted every 10 ° C. is placed for 60 minutes, and then the deformation is visually confirmed, and the temperature of the constant temperature and humidity chamber where the deformation occurs is set to 10 ° C. The subtracted value was taken as the heat resistant temperature.

成型品物性における耐熱荷重試験では、実施例1〜4の各積層シート及び比較例1、2の各積層シートを熱成型して食品容器を成形し、この食品容器に対して耐熱荷重試験を行った。具体的には、130℃に温調した恒温恒湿槽に成型した容器を開口側を下にして入れ、直後に容器上に鉄板150gを乗せ30分加熱し、その後、変形具合を直尺で計測した。 In the heat-resistant load test on the physical properties of the molded product, each laminated sheet of Examples 1 to 4 and each laminated sheet of Comparative Examples 1 and 2 are thermoformed to form a food container, and the heat-resistant load test is performed on this food container. It was. Specifically, a container molded into a constant temperature and humidity chamber whose temperature has been adjusted to 130 ° C. is placed with the opening side facing down, and immediately after that, 150 g of an iron plate is placed on the container and heated for 30 minutes, and then the degree of deformation is measured with a straightedge. I measured it.

表1の総合評価は、実施例1〜4の積層シート及び比較例1、2の積層シートに対するデュポン衝撃強度、引張強度、耐熱試験、耐熱荷重試験の4つを総合的に比較衡量した積層シートとしての実用的な評価結果であり、◎:非常に優れる、○:良好である、△:使用可能だが制限がある、×:使用困難である、の4段階で評価した。 The comprehensive evaluation in Table 1 is a laminated sheet that comprehensively weighs the four laminated sheets of Examples 1 to 4 and the laminated sheets of Comparative Examples 1 and 2 in terms of Dupont impact strength, tensile strength, heat resistance test, and heat resistant load test. ⊚: Very good, ○: Good, Δ: Usable but limited, ×: Difficult to use.

表1及び図3から分かるように、比較例1、2の積層シートは、−20℃の冷凍環境下におけるデュポン衝撃強度が低く、食品容器に成型した際に冷凍環境下で破損しやすくなるのに対し、実施例1〜4の積層シートは、−20℃の冷凍環境下で1.6Jを超える高いデュポン衝撃強度を有し、食品容器に成型した際にも冷凍環境下で破損するリスクが極めて少なくなることが分かる。 As can be seen from Table 1 and FIG. 3, the laminated sheets of Comparative Examples 1 and 2 have a low Dupont impact strength in a frozen environment of -20 ° C, and are easily damaged in a frozen environment when molded into a food container. On the other hand, the laminated sheets of Examples 1 to 4 have a high dupon impact strength exceeding 1.6 J in a frozen environment of −20 ° C., and there is a risk of damage in the frozen environment even when molded into a food container. It turns out that it will be extremely small.

また、実施例1〜4の積層シートから熱成型された食品容器は、いずれも150℃以上の耐熱温度を有し、実用上十分な高い耐熱性を備えることが分かる。また、実施例1〜4の積層シートから熱成型された食品容器の耐熱荷重試験の変形量は、いずれも実用上食品容器として問題のない範囲の変形量である。 Further, it can be seen that the food containers thermoformed from the laminated sheets of Examples 1 to 4 all have a heat resistance temperature of 150 ° C. or higher, and have sufficiently high heat resistance for practical use. Further, the deformation amount of the heat-resistant load test of the food container heat-molded from the laminated sheets of Examples 1 to 4 is a deformation amount within a range where there is no problem in practical use as a food container.

次いで、基材層に化石燃料由来のポリエチレンを用いた場合と、バイオマス由来のポリエチレンを用いた場合を比較するため、実施形態の積層シート1と同様の三層構造を有する実施例5、6の積層シートと比較例3、4の積層シートを形成した(表2参照)。実施例5、6の積層シートも、耐熱基材層である基材層の一方の面と他方の面にそれぞれホモポリプロピレン(H−PP)100重量%の組成を有する表層が積層された三層構造であり、基材層の層厚は396μmで非発泡であり、一方の面の表層と他方の面の表層の層厚はそれぞれ2μmである。比較例3、4の積層シートも、基材層の一方の面と他方の面にそれぞれホモポリプロピレン(H−PP)100重量%の組成を有する表層が積層された三層構造であり、基材層の層厚は396μmで非発泡であり、一方の面の表層と他方の面の表層の層厚はそれぞれ2μmである。 Next, in order to compare the case where polyethylene derived from fossil fuel is used for the base material layer and the case where polyethylene derived from biomass is used, Examples 5 and 6 having the same three-layer structure as the laminated sheet 1 of the embodiment The laminated sheet and the laminated sheet of Comparative Examples 3 and 4 were formed (see Table 2). The laminated sheets of Examples 5 and 6 are also three layers in which a surface layer having a composition of 100% by weight of homopolypropylene (H-PP) is laminated on one surface and the other surface of the base material layer which is a heat-resistant base material layer. It has a structure, and the layer thickness of the base material layer is 396 μm, which is non-foaming, and the layer thickness of the surface layer of one surface and the surface layer of the other surface are 2 μm, respectively. The laminated sheets of Comparative Examples 3 and 4 also have a three-layer structure in which surface layers having a composition of 100% by weight of homopolypropylene (H-PP) are laminated on one surface and the other surface of the base material layer, respectively. The layer thickness is 396 μm, which is non-foaming, and the layer thickness of the surface layer on one surface and the surface layer on the other surface are 2 μm, respectively.

実施例5、6の積層シートと比較例3、4の積層シートにおける基材層のブロックポリプロピレン(B−PP)、高密度ポリエチレン(HDPE)、無機充填材としてのタルク(talc)の含有比率は表2に示す通りである。実施例5と比較例3には化石燃料由来のポリエチレン(密度0.96g/cm、MFR0.1g/10min(JIS K7120))を用い、実施例6と比較例4にはバイオマス由来のポリエチレン(密度0.96g/cm、MFR0.3g/10min(190℃/荷重2.16kg)(ASTM D1238)を用いた。表2中、HDPE1は化石燃料由来のポリエチレン、HDPE2はバイオマス由来のポリエチレンである。 The content ratios of block polypropylene (B-PP), high-density polyethylene (HDPE), and talc as an inorganic filler in the base material layers of the laminated sheets of Examples 5 and 6 and the laminated sheets of Comparative Examples 3 and 4 are It is as shown in Table 2. Fossil fuel-derived polyethylene (density 0.96 g / cm 3 , MFR 0.1 g / 10 min (JIS K7120)) was used for Example 5 and Comparative Example 3, and biomass-derived polyethylene (density 0.96 g / cm 3, MFR 0.1 g / 10 min (JIS K7120)) was used for Example 6 and Comparative Example 4. A density of 0.96 g / cm 3 and an MFR of 0.3 g / 10 min (190 ° C./load 2.16 kg) (ASTM D1238) were used. In Table 2, HDPE1 is polyethylene derived from fossil fuel and HDPE2 is polyethylene derived from biomass. ..

Figure 2021037748
Figure 2021037748

シート物性におけるデュポン衝撃強度は、実施例5、6の各積層シート及び比較例3、4の各積層シートから、縦100mm×横50mmの試験片をそれぞれ作成し、JIS K7211−1に従い、この試験片についてデュポン衝撃試験機を用いて50%破壊エネルギーE50(J)を測定した。落下荷重は0.3kg、測定温度は−20℃とした。 For the DuPont impact strength in the sheet physical characteristics, a test piece having a length of 100 mm and a width of 50 mm was prepared from each of the laminated sheets of Examples 5 and 6 and each of the laminated sheets of Comparative Examples 3 and 4, and this test was performed according to JIS K7211-1. The 50% fracture energy E50 (J) was measured for each piece using a DuPont impact tester. The drop load was 0.3 kg and the measurement temperature was −20 ° C.

シート物性における引張弾性率(MPa)は、実施例5、6の各積層シート及び比較例3、4の各積層シートから、縦140mm×横15mmの試験片をそれぞれ作成し、JIS K7161に従い、この試験片について引張試験機を用いて測定温度23℃、チャック間距離100mm、引張速度1mm/minにおける引張弾性率(MPa)を測定した。 For the tensile elastic modulus (MPa) in the physical characteristics of the sheet, a test piece having a length of 140 mm and a width of 15 mm was prepared from each of the laminated sheets of Examples 5 and 6 and each of the laminated sheets of Comparative Examples 3 and 4, respectively. The tensile elastic modulus (MPa) of the test piece was measured using a tensile tester at a measurement temperature of 23 ° C., a distance between chucks of 100 mm, and a tensile speed of 1 mm / min.

成型品物性における耐熱試験では、実施例5、6の各積層シート及び比較例3、4の各積層シートを熱成型して食品容器を成形し、この食品容器に対して家庭用品品質表示法の耐熱試験に準じて耐熱性試験を行った。具体的には、10℃毎に温調した恒温恒湿槽に成型した容器(サンプル)を60分入れ、その後の変形を目視確認し、変形が発生した恒温恒湿槽の温度から10℃を引いた値を耐熱温度とした。 In the heat resistance test on the physical properties of the molded product, each laminated sheet of Examples 5 and 6 and each laminated sheet of Comparative Examples 3 and 4 were thermoformed to form a food container, and the food container was subjected to the Household Goods Quality Labeling Method. A heat resistance test was performed according to the heat resistance test. Specifically, a container (sample) molded into a constant temperature and humidity chamber whose temperature is adjusted every 10 ° C. is placed for 60 minutes, and then the deformation is visually confirmed, and the temperature of the constant temperature and humidity chamber where the deformation occurs is set to 10 ° C. The subtracted value was taken as the heat resistant temperature.

表2の総合評価は、実施例5、6の積層シート及び比較例3、4の積層シートに対するデュポン衝撃強度、引張強度、耐熱試験の3つを総合的に比較衡量した積層シートとしての実用的な評価結果であり、◎:非常に優れる、○:良好である、△:使用可能だが制限がある、×:使用困難である、の4段階で評価した。 The comprehensive evaluation in Table 2 is practical as a laminated sheet in which the DuPont impact strength, tensile strength, and heat resistance test for the laminated sheets of Examples 5 and 6 and the laminated sheets of Comparative Examples 3 and 4 are comprehensively weighed. The evaluation results were as follows: ⊚: very excellent, ○: good, Δ: usable but limited, and ×: difficult to use.

実施例5、6の総合評価から、化石燃料由来のポリエチレンとバイオマス由来のポリエチレンのどちらを用いても、ブロックポリプロピレン(B−PP)、ポリエチレン、無機充填材が所定の割合の範囲内とすることにより、耐熱性と冷凍環境下での耐衝撃性に優れた積層シートが得られることが分かる。また、実施例5、6の積層シートから熱成型された食品容器も、いずれも150℃以上の耐熱温度を有し、実用上十分な高い耐熱性を備えることが分かる。 From the comprehensive evaluation of Examples 5 and 6, block polypropylene (B-PP), polyethylene, and inorganic filler should be within a predetermined ratio regardless of whether polyethylene derived from fossil fuel or polyethylene derived from biomass is used. As a result, it can be seen that a laminated sheet having excellent heat resistance and impact resistance in a frozen environment can be obtained. Further, it can be seen that the food containers thermoformed from the laminated sheets of Examples 5 and 6 also have a heat resistance temperature of 150 ° C. or higher, and have a heat resistance sufficiently high for practical use.

これに対して、ブロックポリプロピレンの配合比率が50〜80重量%から外れ、且つ無機充填材のタルクの配合比率が8〜21重量%の範囲から外れる比較例3、4の積層シートは、引張強度や耐熱温度は優れているが、−20℃の冷凍環境下におけるデュポン衝撃強度が低くなった。そのため、食品容器に成型した際に冷凍環境下で破損しやすくなり、使用困難である。この結果は、化石燃料由来のポリエチレンを用いた比較例3でも、バイオマス由来のポリエチレンを用いた比較例4でも同じである。 On the other hand, the laminated sheets of Comparative Examples 3 and 4 in which the compounding ratio of the block polypropylene deviates from 50 to 80% by weight and the compounding ratio of the inorganic filler talc deviates from the range of 8 to 21% by weight have tensile strength. Although the heat-resistant temperature is excellent, the impact strength of polypropylene in a frozen environment of -20 ° C is low. Therefore, when it is molded into a food container, it is easily damaged in a frozen environment, which makes it difficult to use. This result is the same in Comparative Example 3 using polyethylene derived from fossil fuel and Comparative Example 4 using polyethylene derived from biomass.

本発明は、例えば食品を収容する食品容器を形成する際に利用することができる。 The present invention can be used, for example, when forming a food container for containing food.

1…積層シート 2…耐熱基材層 3…第1の表層 4…第2の表層 10…食品容器
1 ... Laminated sheet 2 ... Heat-resistant base material layer 3 ... First surface layer 4 ... Second surface layer 10 ... Food container

Claims (6)

ブロックポリプロピレンを50〜80重量%、ポリエチレンを8〜32重量%の範囲で含有する混合物で構成される耐熱基材層と、
ポリプロピレン系樹脂で形成されて前記耐熱基材層の一方の面に積層固着される第1の表層と、
ポリプロピレン系樹脂で形成されて前記耐熱基材層の他方の面に積層固着される第2の表層を備えることを特徴とする積層シート。
A heat-resistant base material layer composed of a mixture containing block polypropylene in the range of 50 to 80% by weight and polyethylene in the range of 8 to 32% by weight, and
A first surface layer formed of a polypropylene resin and laminated and fixed to one surface of the heat-resistant base material layer,
A laminated sheet provided with a second surface layer formed of a polypropylene-based resin and laminated and fixed to the other surface of the heat-resistant base material layer.
前記耐熱基材層が無機充填材を8〜21重量%の範囲で含有することを特徴とする請求項1記載の積層シート。 The laminated sheet according to claim 1, wherein the heat-resistant base material layer contains an inorganic filler in the range of 8 to 21% by weight. 前記耐熱基材層がブロックポリプロピレンを58〜76重量%、ポリエチレンを8〜26重量%、無機充填材を11〜21重量%の範囲で含有することを特徴とする請求項2記載の積層シート。 The laminated sheet according to claim 2, wherein the heat-resistant base material layer contains block polypropylene in the range of 58 to 76% by weight, polyethylene in the range of 8 to 26% by weight, and an inorganic filler in the range of 11 to 21% by weight. 前記耐熱基材層がポリエチレンを8〜16重量%の範囲で含有することを特徴とする請求項3記載の積層シート。 The laminated sheet according to claim 3, wherein the heat-resistant base material layer contains polyethylene in the range of 8 to 16% by weight. 前記耐熱基材層を構成するポリエチレンがバイオマス由来のポリエチレンであることを特徴とする請求項1〜4のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 4, wherein the polyethylene constituting the heat-resistant base material layer is a polyethylene derived from biomass. 請求項1〜5の何れかに記載の積層シートを熱成型して形成されていることを特徴とする食品容器。
A food container characterized by being formed by thermoforming the laminated sheet according to any one of claims 1 to 5.
JP2020133425A 2019-08-29 2020-08-05 Laminated sheets and food containers Pending JP2021037748A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019157476 2019-08-29
JP2019157476 2019-08-29

Publications (1)

Publication Number Publication Date
JP2021037748A true JP2021037748A (en) 2021-03-11

Family

ID=74847388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133425A Pending JP2021037748A (en) 2019-08-29 2020-08-05 Laminated sheets and food containers

Country Status (1)

Country Link
JP (1) JP2021037748A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152091B1 (en) 2022-05-26 2022-10-12 株式会社Tbm LAMINATED SHEET AND FOOD PACKAGING CONTAINER
JP7152089B1 (en) 2022-05-26 2022-10-12 株式会社Tbm LAMINATED SHEET AND FOOD PACKAGING CONTAINER
WO2022254930A1 (en) 2021-05-31 2022-12-08 株式会社アースクリエイト Laminate, and container package for frozen food
JP7459205B1 (en) 2022-09-29 2024-04-01 株式会社エフピコ Top seal food container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254930A1 (en) 2021-05-31 2022-12-08 株式会社アースクリエイト Laminate, and container package for frozen food
JP7152091B1 (en) 2022-05-26 2022-10-12 株式会社Tbm LAMINATED SHEET AND FOOD PACKAGING CONTAINER
JP7152089B1 (en) 2022-05-26 2022-10-12 株式会社Tbm LAMINATED SHEET AND FOOD PACKAGING CONTAINER
JP2023173424A (en) * 2022-05-26 2023-12-07 株式会社Tbm Laminate sheet, and food packaging container
JP2023173426A (en) * 2022-05-26 2023-12-07 株式会社Tbm Laminate sheet, and food packaging container
JP7459205B1 (en) 2022-09-29 2024-04-01 株式会社エフピコ Top seal food container

Similar Documents

Publication Publication Date Title
JP2021037748A (en) Laminated sheets and food containers
US20090110855A1 (en) Filled Polystyrene Compositions and Uses Thereof
JP2008143919A5 (en)
US20180354241A1 (en) Packaging laminate
JP5782895B2 (en) Foamed laminate, foamed paper, and insulated container
JP2008062524A (en) Film for laminating thermoforming sheet
JP2018012263A (en) Multilayer sheet, tray and package
JP6331348B2 (en) Method for producing foam laminate and foam laminate
JP2013103438A (en) Sheet and container using the same
CN115052744A (en) Multi-layer molded article having excellent adhesion and conductivity, and electronic product conveyed by the same
US10780683B2 (en) Modified polyester sheet having snapability
KR20230098862A (en) polypropylene multilayer sheet
JP5102462B2 (en) Composite sheet
CN116323206A (en) Barrier-enhanced polymer film structures, methods of making, and articles thereof
JP6977944B1 (en) Laminates and containers and packaging for frozen foods
JP2023044123A (en) Resin sheet for thermoforming and molded article
JP2022087445A (en) Resin sheet for thermoforming, and molded article
JP2022152666A (en) Monolayer body, manufacturing method, laminate, and molded body
JP3916500B2 (en) Polypropylene resin foam sheet and container
JP2023138271A (en) Resin sheet for thermoforming and molded article
JP2023138269A (en) Resin sheet for thermoforming and molded article
JP2022049996A (en) Laminated resin foam sheet for thermoforming, formed article, and container
JP2023113593A (en) Polypropylene-based film and lamination film
JP4125083B2 (en) Laminated sheet and molded container using the same
JP2023044122A (en) Resin laminated sheet for thermoforming, and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240418