JP2021036228A - Micro biosensor and measuring method thereof - Google Patents

Micro biosensor and measuring method thereof Download PDF

Info

Publication number
JP2021036228A
JP2021036228A JP2020131753A JP2020131753A JP2021036228A JP 2021036228 A JP2021036228 A JP 2021036228A JP 2020131753 A JP2020131753 A JP 2020131753A JP 2020131753 A JP2020131753 A JP 2020131753A JP 2021036228 A JP2021036228 A JP 2021036228A
Authority
JP
Japan
Prior art keywords
replenishment
amount
electrode
counter electrode
silver halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020131753A
Other languages
Japanese (ja)
Other versions
JP7162642B2 (en
Inventor
フアン,チュン−ム
Chun-Mu Huang
チェン,チー−シン
Chieh-Hsing Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bionime Corp
Original Assignee
Bionime Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bionime Corp filed Critical Bionime Corp
Publication of JP2021036228A publication Critical patent/JP2021036228A/en
Application granted granted Critical
Publication of JP7162642B2 publication Critical patent/JP7162642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • A61B5/14735Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter comprising an immobilised reagent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/686Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • A61B2560/0468Built-in electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0215Silver or silver chloride containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0217Electrolyte containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0295Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism

Abstract

To provide a measuring method for prolonging a usage lifetime of a micro biosensor to measure a physiological signal associated with an analyte.SOLUTION: A micro biosensor includes a working electrode, a counter electrode including silver and a silver halide having an initial amount, and an auxiliary electrode. The method includes cyclic steps of: applying a measurement voltage to drive the working electrode and measure a physiological signal to obtain a physiological parameter, where the silver halide is consumed by a specific amount; stopping applying the measurement voltage; and whenever the physiological parameter is obtained, applying a replenishment voltage between the counter electrode and the auxiliary electrode to drive the counter electrode, thereby an oxidation reaction being caused and the silver halide of a replenishment amount being replenished to the counter electrode. A guarding value of a sum of the replenishment amount and the initial amount subtracting the consumption amount is controlled within a range of the initial amount plus or minus a specific value.SELECTED DRAWING: Figure 10

Description

関連出願と優先権主張の相互参照
この出願は、2019年8月2日に提出された米国仮特許出願番号62/882,162及び2020年3月12日に提出された米国仮特許出願番号62/988,549の出願日の利益を主張し、これらの開示は、それらの全体が本明細書中に参考として援用される。
Cross-reference between related application and priority claim <br /> This application is a US provisional patent application filed on August 2, 2019, US provisional patent application number 62 / 882,162 and a US provisional patent application filed on March 12, 2020. Claiming the interests of filing date No. 62 / 988,549, these disclosures are incorporated herein by reference in their entirety.

本発明は、マイクロバイオセンサー及びその測定方法に関し、特に、マイクロバイオセンサーの使用寿命を延ばすためのマイクロバイオセンサー及びその測定方法に関する。 The present invention relates to a microbiosensor and a measuring method thereof, and more particularly to a microbiosensor for extending the service life of the microbiosensor and a measuring method thereof.

糖尿病患者の人口は急速に増加しており、人体のグルコースの変化を監視する必要性がますます強調されている。そのため、毎日繰り返される採血と検出による患者の不便を解消するために、多くの研究は、人体に埋め込むことができる持続血糖モニタリング(CGM)システムの開発を始めている。 The population of diabetics is growing rapidly, and the need to monitor changes in glucose in the human body is increasingly emphasized. Therefore, in order to eliminate the inconvenience of patients due to repeated blood sampling and detection every day, many studies have begun to develop a continuous blood glucose monitoring (CGM) system that can be implanted in the human body.

CGMシステムの酵素ベースのバイオセンサーの分野において、分析物の濃度に依存する生化学反応信号が、光学的又は電気化学的信号などの測定可能な物理信号に変換される。グルコースの測定の場合、電気化学反応が起こり、グルコースオキシダーゼ(GOx)がグルコースを触媒して反応し、グルコノラクトンと還元酵素を生成する。次に、還元酵素が電子を生体内の生体液中の酸素に移動させて生成物の過酸化水素(H)を生成し、生成物のH2O2を酸化することによってグルコースの濃度を定量化する。
反応は次のとおりである。
グルコース+GOx(FAD)→GOx(FADH2)+グルコノラクトン
GOx(FADH2)+O→GOx(FAD)+H
ここで、FAD(フラビンアデニンジヌクレオチド)は、GOxの活性中心である。
In the field of enzyme-based biosensors of CGM systems, biochemical reaction signals that depend on the concentration of the analyte are converted into measurable physical signals such as optical or electrochemical signals. In the case of glucose measurement, an electrochemical reaction occurs and glucose oxidase (GOx) catalyzes glucose to react to produce gluconolactone and reductase. Next, the reductase transfers electrons to oxygen in the biofluid in the living body to generate hydrogen peroxide (H 2 O 2 ), which is a product, and oxidizes the product H 2 O 2 to quantify the concentration of glucose. To become.
The reaction is as follows.
Glucose + GOx (FAD) → GOx (FADH2) + Gluconolactone GOx (FADH2) + O 2 → GOx (FAD) + H 2 O 2
Here, FAD (flavin adenine dinucleotide) is the active center of GOx.

ユーザは通常、CGMシステムを長期間(たとえば少なくとも14日間)着用するため、そのサイズの小型化は必要な開発である。CGMシステムの基本構造は、(a)人体のグルコース濃度に対応する生理信号を測定するバイオセンサー、(b)これらの生理信号を送信するための送信機を備える。バイオセンサーは、二電極システム又は三電極システムであり得る。三電極システムを備えたバイオセンサーは、作用電極(WE)、対電極(CE)及び参照電極(RE)を含む。二電極システムを備えたバイオセンサーは、作用電極(WE)と対電極(CE)を含み、対電極は参照電極としても機能し、従って、参照電極/対電極(R/C)と呼ばれることもある。三電極システムのバイオセンサーの参照電極、及び二電極システムのバイオセンサーの参照電極としても機能する対電極の場合、グルコース濃度の安定した測定に適用できる適切な材料が銀と塩化銀(Ag/AgCl)である。しかし、バイオセンサーが生体に埋め込まれた後、作用電極で酸化反応が起こり、グルコースの濃度が測定されると、対応する参照電極(R)又は参照電極/対電極(R/C)で還元反応が起こし、AgClをAgに還元し、AgClを消耗する。更に、生体に埋め込まれたバイオセンサーが二電極又は三電極システムのバイオセンサーである場合、塩化銀が体液において解離するため、参照電極からの塩化銀を消耗し、参照電極に対するドリフト問題を引き起こす。ただし、二電極システムの参照電極/対電極(R/C)の反応により、塩化銀の消耗量は三電極システムの消耗量よりも更に高くなる。したがって、バイオセンサーの使用寿命は、対電極及び/又は参照電極上の塩化銀の含有量によって制限される。 Since users usually wear a CGM system for a long period of time (for example, at least 14 days), reducing its size is a necessary development. The basic structure of the CGM system includes (a) a biosensor that measures physiological signals corresponding to the glucose concentration of the human body, and (b) a transmitter for transmitting these physiological signals. The biosensor can be a two-electrode system or a three-electrode system. A biosensor equipped with a three-electrode system includes a working electrode (WE), a counter electrode (CE) and a reference electrode (RE). A biosensor with a two-electrode system includes a working electrode (WE) and a counter electrode (CE), which also functions as a reference electrode and is therefore also referred to as a reference electrode / counter electrode (R / C). is there. For the reference electrode of the biosensor of the three-electrode system and the counter electrode that also functions as the reference electrode of the biosensor of the two-electrode system, the appropriate materials applicable for stable measurement of glucose concentration are silver and silver chloride (Ag / AgCl). ). However, after the biosensor is implanted in the living body, an oxidation reaction occurs at the working electrode, and when the glucose concentration is measured, a reduction reaction occurs at the corresponding reference electrode (R) or reference electrode / counter electrode (R / C). Causes, reduces AgCl to Ag, and consumes AgCl. Furthermore, when the biosensor embedded in the living body is a biosensor of a two-electrode or three-electrode system, silver chloride dissociates in the body fluid, which consumes silver chloride from the reference electrode and causes a drift problem with respect to the reference electrode. However, due to the reaction of the reference electrode / counter electrode (R / C) of the two-electrode system, the consumption of silver chloride is even higher than that of the three-electrode system. Therefore, the useful life of the biosensor is limited by the silver chloride content on the counter electrode and / or the reference electrode.

この問題に対処するために提案された多くの発明もある。二電極システムを備えたバイオセンサーを一例として、対電極での消耗量は、20ナノアンペア(nA)の平均検出電流で1日あたり約1.73ミリクーロン(mC)である。対電極の長さ、幅及び高さをそれぞれ3.3mm、0.25mm、0.01mmとし、当初設計された電極容量を6mCとすると、バイオセンサーが提供できる安定の測定は、最大で約1日維持できる。しかし、皮下に埋め込まれたバイオセンサーは16日間の持続血糖モニタリングをサポートできるように、バイオセンサーの使用寿命を更に延長する必要がある場合、対電極の容量は少なくとも27.68mCである必要がある。対電極の幅と厚さを変更せずに、従来技術の対電極の長さは、最大15.2mmである必要がある。したがって、バイオセンサーの対電極の長さは、従来技術では10mmより大きくなるように延長される。しかしながら、そのような種類のバイオセンサーが皮下組織に深く埋め込まれることを回避するために、バイオセンサーは斜めの角度で埋め込まれる必要がある。そのため、埋め込み創傷が大きくなり、患者に感染するリスクが高くなるなどの問題が発生し、埋め込み長さが長いため、埋め込む時の痛みも大きくなる。 There are also many inventions proposed to address this issue. Taking a biosensor equipped with a two-electrode system as an example, the consumption at the counter electrode is about 1.73 millicoulombs (mC) per day with an average detection current of 20 nanoamperes (nA). Assuming that the length, width and height of the counter electrode are 3.3 mm, 0.25 mm and 0.01 mm, respectively, and the initially designed electrode capacitance is 6 mC, the maximum stability measurement that the biosensor can provide is about 1. Can be maintained for a day. However, the counterelectrode volume should be at least 27.68 mC if the biosensor's useful life needs to be further extended so that the subcutaneously implanted biosensor can support 16 days of continuous blood glucose monitoring. .. Without changing the width and thickness of the counter electrode, the length of the counter electrode of the prior art should be up to 15.2 mm. Therefore, the length of the counter electrode of the biosensor is extended to be greater than 10 mm in the prior art. However, to avoid deep implantation of such types of biosensors in the subcutaneous tissue, the biosensors need to be implanted at an oblique angle. Therefore, problems such as an increase in the size of the implanted wound and an increased risk of infecting the patient occur, and since the implantation length is long, the pain during implantation also increases.

米国特許第8,620,398号は、主に三電極システムを備えたバイオセンサーを記載している。参照電極は、基本的に化学反応に関与しないが、塩化銀は生体内の環境で自然に徐々に消耗され、消耗速度は二電極システムの対電極よりも遅くなる。その明細書は、AgClがほぼ完全に消耗されると、AgClが再生することを開示している。つまり、測定信号が不安定になるまで、又は測定信号がすべてノイズになるまで、補充プロセスを作動させ、AgClが複数の測定を実行するのに十分な量に回復する。その後、次にノイズが発生するまで、AgClを再度補充する必要がある。米国特許第8,620,398号は、バイオセンサーが故障した場合、AgClが測定及びAgClの補充の時に消耗されると考えているが、故障時の測定値はもはや信頼できないことが理解できる。正しい測定値を取得するために、バイオセンサーがAgCl補充プロセスを完了するのを待つか、血液サンプルを採取して一時的に測定を実行するか、この測定を直接スキップする必要がある。この問題は、患者や現在の血糖値を知る必要がある人にとっては常に厄介である。更に、バイオセンサーは、連続した複数の測定又は数日間にわたる複数の測定を処理する必要があるため、より多くのAgCl容量を準備する必要がある。しかしながら、それは必然的にバイオセンサーのより長い埋め込み長さの問題をもたらすであろう。米国特許第8,620,398号は、中断のない測定、及びバイオセンサーのより短い埋め込み長さ及びより長い使用寿命を提供することができる適時のAgCl補充方法について何も提案していない。 U.S. Pat. No. 8,620,398 primarily describes biosensors with a three-electrode system. The reference electrode is basically not involved in the chemical reaction, but silver chloride is naturally and gradually consumed in the in vivo environment, and the consumption rate is slower than that of the counter electrode of the two-electrode system. The specification discloses that AgCl regenerates when it is almost completely depleted. That is, the replenishment process is run until the measurement signal becomes unstable, or until the measurement signal is all noisy, and AgCl recovers to a sufficient amount to perform multiple measurements. Then, AgCl needs to be replenished again until the next noise is generated. U.S. Pat. No. 8,620,398 believes that if a biosensor fails, AgCl will be depleted during measurement and replenishment of AgCl, but it is understandable that the measurements at failure are no longer reliable. In order to obtain the correct reading, it is necessary to wait for the biosensor to complete the AgCl replacement process, take a blood sample and perform the measurement temporarily, or skip this measurement directly. This problem is always troublesome for patients and those who need to know their current blood glucose levels. In addition, the biosensor needs to process multiple measurements in a row or multiple measurements over several days, so more AgCl volumes need to be prepared. However, it will inevitably lead to the problem of longer implantation lengths of biosensors. U.S. Pat. No. 8,620,398 does not propose any timely AgCl replenishment method that can provide uninterrupted measurements and shorter implantation lengths and longer service lives of biosensors.

US9,351,677は、分析物を測定するためのセンサーを提案し、センサーは主に二電極システムを使用する。参照電極/対電極(R/C)は化学反応に関与するため、塩化銀は電気化学反応によって消耗される。この特許は、AgCl容量が増加する分析物センサーを開示している。センサーはH2O2を使用して、参照電極上にAgClを再生する。しかし、H2O2はH2Oに還元されたり、O2に酸化されたりしやすいため、人体に安定して存在することは容易ではない。したがって、再生/補充期間中、人体のH2O2濃度は、十分な量のAgClを安定して補充するのに十分ではない可能性があり、バイオセンサーには、より大きなAgCl電極サイズを装備する必要があり、埋め込み端も最大12mmの長さである。 US9,351,677 proposes a sensor for measuring the analyte, which mainly uses a two-electrode system. Since the reference electrode / counter electrode (R / C) is involved in the chemical reaction, silver chloride is consumed by the electrochemical reaction. This patent discloses an analyte sensor with increased AgCl volume. The sensor uses H2O2 to regenerate AgCl on the reference electrode. However, since H2O2 is easily reduced to H2O or oxidized to O2, it is not easy to stably exist in the human body. Therefore, during the regeneration / replenishment period, the H2O2 concentration in the human body may not be sufficient to stably replenish a sufficient amount of AgCl, and the biosensor needs to be equipped with a larger AgCl electrode size. Yes, the embedded end has a maximum length of 12 mm.

したがって、本開示は、測定後にAgClを補充することにより、中断のない測定を提供すること、AgClを安定して補充し、バイオセンサーの使用寿命を延ばすこと、及びバイオセンサーの埋め込み端をコンパクトなサイズに小型化し、製品の製造コストを削減することという効果を達成することができるバイオセンサーを提供する。これらの効果は、従来技術が克服できないと認めた前述の問題を解決できる。 Therefore, the present disclosure provides uninterrupted measurement by replenishing AgCl after measurement, stably replenishes AgCl, prolongs the life of the biosensor, and compacts the embedded end of the biosensor. It provides a biosensor that can achieve the effect of reducing the size and manufacturing cost of the product. These effects can solve the above-mentioned problems that the prior art has found insurmountable.

上記を考慮して、先行技術の欠陥のため、本発明者らは、先行技術の不利な点を効果的に克服するために本発明を提供する。本発明の説明は以下の通りである。 In view of the above, due to the deficiencies of the prior art, we provide the present invention to effectively overcome the disadvantages of the prior art. The description of the present invention is as follows.

本発明の補充技術により、本発明のマイクロバイオセンサーは、使用寿命が長く、マイクロバイオセンサーの対電極の信号感知部のサイズを小さくすることができ、生物毒性を低減することができる。更に、電極のサイズの縮小は、具体的には、センサーの埋め込み端の短縮された長さを指し、これは、埋め込み中の使用者の痛みを軽減するであろう。 According to the replenishment technique of the present invention, the microbiosensor of the present invention has a long service life, the size of the signal sensing portion of the counter electrode of the microbiosensor can be reduced, and the biotoxicity can be reduced. In addition, reducing the size of the electrodes specifically refers to the shortened length of the embedded end of the sensor, which will reduce user pain during implantation.

本開示の別の態様によれば、生体液中の分析物に関連する生理パラメータを表す生理信号を測定するように皮下に埋め込まれるバイオセンサーであって、前記バイオセンサーの使用寿命を延長するために前記バイオセンサーを使用して前記分析物を測定する方法が開示される。前記バイオセンサーは、作用電極、対電極及び補助電極を含み、前記作用電極は、前記分析物と反応するように化学試薬によって少なくとも部分的に覆われ、前記対電極は、銀及びハロゲン化銀を有する。前記方法は、(a)測定を実行する測定ステップであって、i、前記化学試薬及び前記分析物との電気化学反応を有する前記作用電極で第一酸化反応を起こさせて現在の生理信号を出力するために、前記作用電極が測定期間中に前記対電極の電圧レベルよりも高い電圧レベルを有するように、前記作用電極と前記対電極との間に測定電位差を印加するステップであって、前記対電極の前記ハロゲン化銀は前記現在の生理信号に対応する現在の消耗量を有するサブステップと、ii、前記測定電位差を除去して前記測定ステップを停止し、前記現在の生理信号を演算して現在の生理パラメータを出力するサブステップと、を含む前記測定ステップと、(b)補充を実行する補充ステップであって、i、前記対電極が前記補助電極の前記電圧レベルよりも高い電圧レベルを有するように、補充期間中に前記対電極と前記補助電極の間に補充電位差を印加して、前記対電極上の前記銀に第二酸化反応を引き起こし、その結果、前記ハライド銀は前記消耗量に対応する補充量を獲得し、前記対電極の前記ハロゲン化銀は安全な貯蔵範囲に維持された量を有し、次の測定ステップで得られる次の生理信号及び次の生理パラメータが特定の相関関係に保つサブステップと、ii、前記補充電位差を除去して、前記補充ステップを停止するサブステップと、を含む前記補充ステップと、(c)ステップ(a)と同じサブステップを含む次の測定ステップを実行するステップと、(d)ステップ(b)と同じサブステップを含む次の補充ステップを実行するステップと、を含む。 According to another aspect of the present disclosure, a biosensor implanted subcutaneously to measure a physiological signal representing a physiological parameter associated with an analyte in a biofluid, for extending the useful life of the biosensor. Discloses a method of measuring the analyte using the biosensor. The biosensor includes a working electrode, a counter electrode and an auxiliary electrode, the working electrode is at least partially covered with a chemical reagent to react with the analyte, and the counter electrode is silver and silver halide. Have. The method is (a) a measurement step of carrying out the measurement, i, causing a first oxidation reaction at the working electrode having an electrochemical reaction with the chemical reagent and the analysis product to obtain the current physiological signal. In order to output, a step of applying a measurement potential difference between the working electrode and the counter electrode so that the working electrode has a voltage level higher than the voltage level of the counter electrode during the measurement period. The silver halide of the counter electrode has a sub-step having a current consumption amount corresponding to the current physiological signal, and ii, the measurement potential difference is removed to stop the measurement step, and the current physiological signal is calculated. In the measurement step including the sub-step for outputting the current physiological parameters, and (b) the replenishment step for executing the replenishment, i, the voltage at which the counter electrode is higher than the voltage level of the auxiliary electrode. A replenishment potential difference is applied between the counter electrode and the auxiliary electrode during the replenishment period to cause a carbon dioxide reaction on the silver on the counter electrode so that the halide silver is depleted. Obtaining a replenishment amount corresponding to the amount, the silver halide of the counter electrode has an amount maintained in a safe storage range, and the next physiological signal and the next physiological parameter obtained in the next measurement step are specified. The replenishment step including the sub-step that keeps the correlation of ii, the sub-step that removes the replenishment potential difference and stops the replenishment step, and (c) the next including the same sub-step as step (a). Includes a step of executing the measurement step of (d) and a step of executing the next replenishment step including the same substep as step (b).

本開示のもう一つの態様によれば、生体液中の分析物に関連する生理パラメータを表す生理信号を測定するように皮下に埋め込まれるバイオセンサーであって、前記バイオセンサーの使用寿命を延長するために前記バイオセンサーを使用して前記分析物を測定する方法が開示される。前記バイオセンサー、作用電極、対電極及び補助電極を含み、前記作用電極は、化学試薬によって少なくとも部分的に覆われ、前記対電極は、銀及びハロゲン化銀を含み、初期量有する。前記方法は、測定電圧を印加して前記作用電極を駆動し、前記生理信号を測定することにより、前記生理パラメータを取得し、前記ハロゲン化銀を消耗量で消耗するステップと、前記測定電圧の印加を停止するステップと、前記生理パラメータを取得するたびに、前記対電極と前記補助電極との間に補充電圧を印加して前記対電極を駆動し、酸化反応を引き起こすことによって補充量の前記ハロゲン化銀を前記対電極に補充するステップと、を含み、前記補充量と前記初期量の合計から、前記消耗量を差し引いたガード値は、前記初期量から特定値を増減した範囲内で制御される。 According to another aspect of the present disclosure, a biosensor implanted subcutaneously to measure a physiological signal representing a physiological parameter associated with an analyte in a biofluid, extending the useful life of the biosensor. Therefore, a method of measuring the analysis product using the biosensor is disclosed. It comprises the biosensor, working electrode, counter electrode and auxiliary electrode, the working electrode is at least partially covered with a chemical reagent, and the counter electrode contains silver and silver halide and has an initial amount. In the method, a measuring voltage is applied to drive the working electrode, and the physiological signal is measured to acquire the physiological parameters, and the silver halide is consumed by the consumption amount, and the measured voltage is measured. The step of stopping the application and each time the physiological parameter is acquired, a replenishment voltage is applied between the counter electrode and the auxiliary electrode to drive the counter electrode and cause an oxidation reaction to cause the replenishment amount. The guard value obtained by subtracting the consumable amount from the sum of the replenishment amount and the initial amount, including the step of replenishing the counter electrode with silver halide, is controlled within a range in which a specific value is increased or decreased from the initial amount. Will be done.

本開示のもう一つの態様によれば、生体内の分析物に関連する生理信号を表す生理パラメータを測定するための皮下埋め込み用のマイクロバイオセンサーを提出する。前記マイクロバイオセンサーは、基板と、化学試薬と、前記基板に配置され、少なくとも部分的に前記化学試薬で覆われ、測定期間内に第一酸化反応のために駆動されて、前記生理信号を測定して前記生理パラメータを取得する作用電極と、前記基板に配置され、銀とハロゲン化銀を含む対電極であって、前記ハロゲン化銀が初期量を有し、前記測定期間内に特定の消耗量で消耗される前記対電極と、基板上に配置される補助電極であって、それぞれの前記生理パラメータを取得するたびに、補充期間内に第二酸化反応のために前記対電極及び前記補助電極が駆動されて、補充量の前記ハロゲン化銀が前記対電極に補充される前記補助電極と、を含み、前記補充量と前記初期量の合計から、前記消耗量を差し引いたガード値は、前記初期量から特定値を増減させた範囲内で制御される。 According to another aspect of the present disclosure, a microbiosensor for subcutaneous implantation is provided for measuring physiological parameters representing physiological signals associated with an in vivo analyte. The microbiosensor is placed on the substrate, the chemical reagent, and the substrate, at least partially covered with the chemical reagent, and driven for the first oxidation reaction within the measurement period to measure the physiological signal. A working electrode for acquiring the physiological parameters and a counter electrode arranged on the substrate and containing silver and silver halide, wherein the silver halide has an initial amount and is consumed within the measurement period. The counter electrode that is consumed by the amount and the auxiliary electrode that is arranged on the substrate, and each time the physiological parameters are acquired, the counter electrode and the auxiliary electrode are subjected to the carbon dioxide reaction within the replenishment period. The guard value obtained by subtracting the consumable amount from the sum of the replenishment amount and the initial amount is the guard value including the auxiliary electrode in which the replenishment amount of the silver halide is replenished to the counter electrode. It is controlled within the range in which a specific value is increased or decreased from the initial amount.

本発明の上記の実施形態及び利点は、以下の詳細な説明及び添付の図面を検討した後に、当業者にはより容易に明らかになるであろう。
本発明の生理信号測定装置の概略図を示す。 本発明のマイクロバイオセンサーの第一実施形態の正面概略図を示す。 本発明のマイクロバイオセンサーの第一実施形態の背面概略図を示す。 図2Aの断面線A〜A ’に沿ったマイクロバイオセンサーの断面概略図を示す。 本発明のマイクロバイオセンサーの第二実施形態の断面概略図を示す。 本発明のマイクロバイオセンサーの第三実施形態の断面概略図を示す。 本発明のマイクロバイオセンサーの第四実施形態の断面概略図を示す。 本発明のマイクロバイオセンサーの第五実施形態の断面概略図を示す。 本発明のマイクロバイオセンサーの第六実施形態の断面概略図を示す。 本発明のマイクロバイオセンサーの第七実施形態の断面概略図を示す。 本発明のマイクロバイオセンサーの第八実施形態の断面概略図を示す。 本発明における測定モードでの定電圧回路を示す。 本発明における補充モードの定電圧回路を示す。 第一方法で交互に測定モード及び補充モードで動作する定電圧回路の電流の概略図を示す。 第二方法で交互に測定モード及び補充モードで動作する定電圧回路の電流の概略図を示す。 第三方法で交互に測定モード及び補充モードで動作する定電圧回路の電流の概略図を示す。 第四方法で交互に測定モード及び補充モードで動作する定電圧回路の電流の概略図を示す。 第五方法で交互に測定モード及び補充モードで動作する定電圧回路の電流の概略図を示す。 第六方法で交互に測定モード及び補充モードで動作する定電圧回路の電流の概略図を示す。 本発明における測定モードでのセグメント定電流回路を示す。 本発明における補充モードのセグメント定電流回路を示す。 本発明における測定モードでの連続可変定電流回路を示す。 本発明における補充モードの連続可変定電流回路を示す。 第一方法で交互に測定モード及び補充モードで動作する定電流回路の電圧概略図を示す。 第二方法で交互に測定モード及び補充モードで動作する定電流回路の電圧概略図を示す。 第三方法で交互に測定モード及び補充モードで動作する定電流回路の電圧概略図を示す。 第三方法で交互に測定モード及び補充モードで動作する定電流回路の概略図を示す。 本発明の一実施形態に係る分析物を測定する方法を示す。 本発明の別の実施形態に係る分析物を測定する方法を示す。
The above embodiments and advantages of the present invention will become more apparent to those skilled in the art after reviewing the following detailed description and accompanying drawings.
The schematic diagram of the physiological signal measuring apparatus of this invention is shown. The front schematic view of the 1st Embodiment of the microbiosensor of this invention is shown. The back schematic of the 1st Embodiment of the microbiosensor of this invention is shown. A schematic cross-sectional view of the microbiosensor along the cross-sectional lines A to A'of FIG. 2A is shown. A schematic cross-sectional view of the second embodiment of the microbiosensor of the present invention is shown. A schematic cross-sectional view of a third embodiment of the microbiosensor of the present invention is shown. A schematic cross-sectional view of a fourth embodiment of the microbiosensor of the present invention is shown. A schematic cross-sectional view of a fifth embodiment of the microbiosensor of the present invention is shown. A schematic cross-sectional view of the sixth embodiment of the microbiosensor of the present invention is shown. A schematic cross-sectional view of a seventh embodiment of the microbiosensor of the present invention is shown. A schematic cross-sectional view of the eighth embodiment of the microbiosensor of the present invention is shown. The constant voltage circuit in the measurement mode in this invention is shown. The constant voltage circuit of the replenishment mode in this invention is shown. The schematic diagram of the current of the constant voltage circuit which operates in the measurement mode and the replenishment mode alternately by the 1st method is shown. The schematic diagram of the current of the constant voltage circuit which operates in the measurement mode and the replenishment mode alternately by the 2nd method is shown. The schematic diagram of the current of the constant voltage circuit which operates in the measurement mode and the replenishment mode alternately by the 3rd method is shown. The schematic diagram of the current of the constant voltage circuit which operates in the measurement mode and the replenishment mode alternately by the 4th method is shown. The schematic diagram of the current of the constant voltage circuit which operates in the measurement mode and the replenishment mode alternately by the 5th method is shown. The schematic diagram of the current of the constant voltage circuit which operates in the measurement mode and the replenishment mode alternately by the 6th method is shown. The segment constant current circuit in the measurement mode in this invention is shown. The segment constant current circuit of the replenishment mode in this invention is shown. The continuously variable constant current circuit in the measurement mode in this invention is shown. The continuously variable constant current circuit of the replenishment mode in this invention is shown. The voltage schematic diagram of the constant current circuit which operates in the measurement mode and the replenishment mode alternately by the 1st method is shown. The voltage schematic diagram of the constant current circuit which operates in the measurement mode and the replenishment mode alternately by the 2nd method is shown. The voltage schematic diagram of the constant current circuit which operates in the measurement mode and the replenishment mode alternately by the 3rd method is shown. The schematic diagram of the constant current circuit which operates in the measurement mode and the replenishment mode alternately by the 3rd method is shown. A method for measuring an analytical object according to an embodiment of the present invention is shown. A method for measuring an analyzer according to another embodiment of the present invention is shown.

以下の詳細な説明を読むときは、本発明のすべての図を参照する。本発明のすべての図は、例を示すことによって本発明の異なる実施形態を示し、当業者が本発明を実施する方法を理解するのに役立つ。本実施例は、本発明の精神を実証するのに十分な実施形態を提供し、各実施形態は他の実施形態と矛盾せず、新しい実施形態は、それらの任意の組み合わせを通じて実施することができる。すなわち、本発明は、本明細書に開示された実施形態に限定されない。 All figures of the present invention are referred to when reading the detailed description below. All figures of the invention show different embodiments of the invention by illustration to help one of ordinary skill in the art to understand how to practice the invention. The present embodiment provides sufficient embodiments to demonstrate the spirit of the present invention, each embodiment is consistent with other embodiments, and new embodiments may be implemented through any combination thereof. it can. That is, the present invention is not limited to the embodiments disclosed herein.

特定の例で定義されている他の制限がない限り、以下の定義が明細書全体で使用される用語に適用される。 Unless otherwise restricted as defined in a particular example, the following definitions apply to terms used throughout the specification.

「量」という用語は、対電極上のハロゲン化銀(AgX)又は塩化銀(AgCl)の容量を指し、好ましくは、マイクロクーロン(μC)、ミリクーロン(mC)又はクーロン(C)の単位で表す。ただし、重量パーセント(wt%)、モル数、モル濃度などによる濃度に限定されない。 The term "amount" refers to the volume of silver halide (AgX) or silver chloride (AgCl) on the counter electrode, preferably in units of microcoulomb (μC), millicoulomb (mC) or coulomb (C). Represent. However, the concentration is not limited to the weight percentage (wt%), the number of moles, the molar concentration, and the like.

図1を参照し、図1は、本発明の生理信号測定装置の概略図である。本発明の生理信号測定装置10は、生体液中の分析物に関連する生理学的パラメータを表す生理信号を測定するために皮下に埋め込まれ得る。
本発明の生理信号測定装置10は、マイクロバイオセンサー300及び送信機200を含み、送信機200は、マイクロバイオセンサー300に電気的に接続され、プロセッサ210、電源220、回路スイッチングユニット230、温度感知ユニット240及び通信ユニット250を含む。電源220は、生理信号を測定するために、回路スイッチングユニット230を介してマイクロバイオセンサー300に電圧を提供する。温度感知ユニット240は、生体の体温を測定して、マイクロバイオセンサー300によって測定された温度測定信号及び生理信号を、プロセッサ210に送信する。プロセッサ210は、測定された生理信号を生理パラメータに対して演算する。通信ユニット250は、有線又は無線伝送によってユーザ装置20と通信することができる。
With reference to FIG. 1, FIG. 1 is a schematic view of the physiological signal measuring device of the present invention. The physiological signal measuring device 10 of the present invention can be implanted subcutaneously to measure a physiological signal representing a physiological parameter associated with an analyte in a biological fluid.
The physiological signal measuring device 10 of the present invention includes a microbiosensor 300 and a transmitter 200, and the transmitter 200 is electrically connected to the microbiosensor 300 and has a processor 210, a power supply 220, a circuit switching unit 230, and a temperature sensing device. Includes unit 240 and communication unit 250. The power supply 220 provides a voltage to the microbiosensor 300 via the circuit switching unit 230 to measure the physiological signal. The temperature sensing unit 240 measures the body temperature of the living body and transmits the temperature measurement signal and the physiological signal measured by the microbiosensor 300 to the processor 210. The processor 210 calculates the measured physiological signal with respect to the physiological parameter. The communication unit 250 can communicate with the user device 20 by wire or wireless transmission.

図2Aと図2Bを参照し、図2Aと図2Bは、それぞれ本発明のマイクロバイオセンサーの第一実施形態の前面と背面の概略図である。本発明のマイクロバイオセンサー300は、基板310と、作用電極320と、基板310上に配置される対電極330と、作用電極320、対電極330及び補助電極340を覆う化学試薬350(図2Cに示す)と、を含む。基板310の材料は、電極基板での使用に適し、柔軟性と絶縁特性を有することが知られている任意の材料であり得、好ましくは、ポリエステル及びポリイミドなどのポリマー材料などであるがこれらに限定されない。前述のポリマー材料は、単独で又は組み合わせて使用することができる。基板310は、表面311(すなわち、第一表面)、表面311と反対側の表面312(すなわち、第二表面)、第一端部313、及び第二端部314を含む。基板310は、それぞれ第一端部313の近くに配置される信号出力領域315、第二端部314の近くに配置される感知領域316、及び信号出力領域315と感知領域316との間に配置される接続領域317との三つの領域に分離される。作用電極320は、基板310の表面311上に配置され、基板310の第一端部313から第二端部314まで延びる。作用電極320は、基板310の信号出力領域315に配置される信号出力部分321と、基板310の感知領域316に配置される信号感知部分322とを含む。 With reference to FIGS. 2A and 2B, FIGS. 2A and 2B are schematic front and back views of a first embodiment of the microbiosensor of the present invention, respectively. The microbiosensor 300 of the present invention includes a substrate 310, a working electrode 320, a counter electrode 330 arranged on the substrate 310, and a chemical reagent 350 covering the working electrode 320, the counter electrode 330, and the auxiliary electrode 340 (see FIG. 2C). Show) and includes. The material of the substrate 310 can be any material that is suitable for use in electrode substrates and is known to have flexibility and insulating properties, preferably polymer materials such as polyester and polyimide. Not limited. The above-mentioned polymer materials can be used alone or in combination. The substrate 310 includes a surface 311 (ie, the first surface), a surface 312 opposite the surface 311 (ie, the second surface), a first end 313, and a second end 314. The substrate 310 is arranged between the signal output region 315 arranged near the first end portion 313, the sensing region 316 arranged near the second end portion 314, and the signal output region 315 and the sensing region 316, respectively. It is separated into three areas with the connection area 317 to be formed. The working electrode 320 is arranged on the surface 311 of the substrate 310 and extends from the first end 313 to the second end 314 of the substrate 310. The working electrode 320 includes a signal output portion 321 arranged in the signal output region 315 of the substrate 310 and a signal sensing portion 322 arranged in the sensing region 316 of the substrate 310.

対電極330及び補助電極340は、基板310の反対側の表面312上に配置され、基板310の第一端部313から第二端部314まで延びる。対電極330は、基板310の感知領域316に配置される信号感知部分332を含み、補助電極340は、基板310の感知領域316に配置される信号感知部分342を含む。マイクロバイオセンサー300の感知領域316は、皮下に埋め込まれて、信号感知部分322に生体液中の分析物の生理信号を測定させることができる。生理信号は、生理パラメータを得るために、信号出力部分321を介してプロセッサ210に送信される。更に、送信機200とは別に、生理パラメータも有線/無線通信を介してユーザ装置20から取得することができる。一般的なユーザ装置20は、スマートフォン、生理信号受信機、又は血糖計であり得る。 The counter electrode 330 and the auxiliary electrode 340 are arranged on the surface 312 on the opposite side of the substrate 310 and extend from the first end 313 to the second end 314 of the substrate 310. The counter electrode 330 includes a signal sensing portion 332 arranged in the sensing region 316 of the substrate 310, and the auxiliary electrode 340 includes a signal sensing portion 342 arranged in the sensing region 316 of the substrate 310. The sensing region 316 of the microbiosensor 300 can be implanted subcutaneously so that the signal sensing portion 322 can measure the physiological signal of the analyte in the biological fluid. The physiological signal is transmitted to the processor 210 via the signal output portion 321 in order to obtain the physiological parameters. Further, apart from the transmitter 200, physiological parameters can also be acquired from the user device 20 via wired / wireless communication. The general user device 20 can be a smartphone, a physiological signal receiver, or a glucose meter.

対電極330の表面の材料は、銀及びハロゲン化銀、好ましくは塩化銀又はヨウ化銀を含む。本発明の対電極330の電極材料は、銀及びハロゲン化銀(Ag/AgX)を含むので、本発明の対電極330は、当技術分野で周知の対電極及び参照電極の機能を含む。具体的には、本発明の対電極330は、(1)作用電極320と電子回路を形成して、対電極330と作用電極320との間の電流を伝導させて、作用電極320で酸化反応が確実に起こるようにすることができる、(2)基準電位として安定した相対電位を提供する。したがって、本発明の作用電極320及び対電極330は、二電極システムを形成する。本発明のバイオセンサーのコストを更に削減し、生体適合性を改善するために、Ag/AgXをカーボンと共に使用することができ、例えば、Ag/AgXをカーボンペーストに混合し、ハロゲン化銀の含有量は、対電極330が測定ステップを安定して実行できる量である。対向電極330の表面は、ハロゲン化銀が解離するのを防ぎ、対電極330を保護するために、導電性材料によって部分的に覆われ得る。ここで、導電性材料は、作用電極の測定結果に影響を及ぼさない材料から選択され、例えば、導電性材料は炭素である。 The surface material of the counter electrode 330 contains silver and silver halide, preferably silver chloride or silver iodide. Since the electrode material of the counter electrode 330 of the present invention contains silver and silver halide (Ag / AgX), the counter electrode 330 of the present invention includes the functions of the counter electrode and the reference electrode well known in the art. Specifically, the counter electrode 330 of the present invention (1) forms an electronic circuit with the working electrode 320, conducts a current between the counter electrode 330 and the working electrode 320, and causes an oxidation reaction at the working electrode 320. Can be ensured that (2) provides a stable relative potential as a reference potential. Therefore, the working electrode 320 and the counter electrode 330 of the present invention form a two-electrode system. Ag / AgX can be used with carbon to further reduce the cost of the biosensor of the invention and improve biocompatibility, eg, Ag / AgX is mixed with a carbon paste and contains silver halide. The amount is an amount at which the counter electrode 330 can stably perform the measurement step. The surface of the counter electrode 330 may be partially covered with a conductive material to prevent the silver halide from dissociating and to protect the counter electrode 330. Here, the conductive material is selected from materials that do not affect the measurement result of the working electrode, for example, the conductive material is carbon.

別の実施形態において、バイオセンサーは、ワイヤータイプ又はスタックタイプの電極構造に限定されない。 In another embodiment, the biosensor is not limited to a wire type or stack type electrode structure.

本開示の別の実施形態によれば、ハロゲン化銀の初期量は、バイオセンサーが販売のために工場から出荷される準備ができる前にゼロであり得る。この場合、バイオセンサーの対電極330はハロゲン化銀を持たない。バイオセンサーが患者に皮下移植された後、及び、最初の測定前の最初の補充期間中に、対電極330にコーティングされた銀を酸化することによってハロゲン化銀の初期量を補充することができる。 According to another embodiment of the disclosure, the initial amount of silver halide can be zero before the biosensor is ready to be shipped from the factory for sale. In this case, the counter electrode 330 of the biosensor does not have silver halide. The initial amount of silver halide can be replenished by oxidizing the silver coated on the counter electrode 330 after the biosensor has been subcutaneously implanted in the patient and during the first replenishment period prior to the first measurement. ..

補助電極340は、補充ステップにおいて対電極330と電子回路を形成し、対電極330と補助電極340との間の電流を伝導させて、対電極330上で酸化反応が確実に起こるようにする。補助電極340の電極材料は、作用電極320の電極材料と同じであってもよく、或いは、炭素などの過酸化水素に対する感度が作用電極320のそれよりも低くてもよい。 The auxiliary electrode 340 forms an electronic circuit with the counter electrode 330 in the replenishment step and conducts an electric current between the counter electrode 330 and the auxiliary electrode 340 to ensure that an oxidation reaction occurs on the counter electrode 330. The electrode material of the auxiliary electrode 340 may be the same as the electrode material of the working electrode 320, or the sensitivity to hydrogen peroxide such as carbon may be lower than that of the working electrode 320.

化学試薬350は、各電極の信号感知部分322、332、342の少なくとも部分的な表面を覆う。別の実施形態において、化学試薬350は、作用電極320の信号感知部分322の少なくとも部分的な表面を覆う(図示されていない)。具体的には、対電極330は、化学試薬350によって覆われていない。マイクロバイオセンサー300の感知領域316は、皮下に埋め込まれて、作用電極320の信号感知部分322に、生体液中の分析物の生理信号を測定させることができる。生理信号は、作用電極320の信号出力部分321を介してプロセッサ210に送信され、生理パラメータを取得する。更に、送信機200とは別に、生理パラメータも有線/無線通信を介してユーザ装置20から取得することができる。 The chemical reagent 350 covers at least a partial surface of the signal sensing portions 322, 332, 342 of each electrode. In another embodiment, the chemical reagent 350 covers at least a partial surface of the signal sensing portion 322 of the working electrode 320 (not shown). Specifically, the counter electrode 330 is not covered by the chemical reagent 350. The sensing region 316 of the microbiosensor 300 is implanted subcutaneously so that the signal sensing portion 322 of the working electrode 320 can measure the physiological signal of the analyte in the biological fluid. The physiological signal is transmitted to the processor 210 via the signal output portion 321 of the working electrode 320 to acquire the physiological parameters. Further, apart from the transmitter 200, physiological parameters can also be acquired from the user device 20 via wired / wireless communication.

図2Cを参照し、図2Cは、図2Aの断面線A〜A ’に沿ったマイクロバイオセンサーの断面概略図である。図2Cにおいて、線A〜A ’は、マイクロバイオセンサー300の感知領域316の断面線である。
図2Cにおいて、作用電極320は、基板310の表面311上に配置され、対電極330及び補助電極340は、基板310の反対側の表面312上に配置され、作用電極320、対電極330及び補助電極340の表面は、化学試薬350によって覆われている。基本的に、化学試薬350は、少なくとも作用電極320の部分的な表面を覆う。本発明のマイクロバイオセンサー300は、測定期間中に測定ステップを実行し、補充期間中に補充ステップを実行する。測定ステップを実行すると、作用電極320の電圧レベルが対電極330の電圧レベルよりも高くなり、作用電極320から対電極330に電流が流れ、その結果、化学試薬350及び分析物との電気化学反応を有する作用電極320上で酸化反応が起こり、生理信号が測定され、対電極330上で還元反応が起こり、その結果、対電極330におけるハロゲン化銀(AgX)が消耗され、銀(Ag)とハロゲンイオン(X−)に解離される。対電極330内のハロゲン化銀が消耗されるので、次の測定ステップを実行するために、ハロゲン化銀を対電極330内に補充する必要がある。補充ステップを実行すると、対電極330の電圧レベルが補助電極340の電圧レベルよりも高くなり、対電極330から補助電極340に電流が流れ、その結果、対電極330で酸化反応が起こり、銀を生体内のハロゲンイオンと結合させてハロゲン化銀を補充する。詳細な測定ステップ及び詳細な補充ステップが図9に示されている。
With reference to FIG. 2C, FIG. 2C is a schematic cross-sectional view of the microbiosensor along the cross-sectional lines A to A'of FIG. 2A. In FIG. 2C, lines A to A'are cross-sectional lines of the sensing region 316 of the microbiosensor 300.
In FIG. 2C, the working electrode 320 is placed on the surface 311 of the substrate 310, the counter electrode 330 and the auxiliary electrode 340 are placed on the surface 312 opposite the substrate 310, the working electrode 320, the counter electrode 330 and the auxiliary. The surface of the electrode 340 is covered with the chemical reagent 350. Basically, the chemical reagent 350 covers at least a partial surface of the working electrode 320. The microbiosensor 300 of the present invention performs the measurement step during the measurement period and performs the replenishment step during the replenishment period. When the measurement step is performed, the voltage level of the working electrode 320 becomes higher than the voltage level of the counter electrode 330, and a current flows from the working electrode 320 to the counter electrode 330, resulting in an electrochemical reaction with the chemical reagent 350 and the analyte. An oxidation reaction occurs on the working electrode 320, the physiological signal is measured, and a reduction reaction occurs on the counter electrode 330, and as a result, the silver halide (AgX) in the counter electrode 330 is consumed and becomes silver (Ag). It is dissociated into a halogen ion (X-). Since the silver halide in the counter electrode 330 is consumed, it is necessary to replenish the silver halide in the counter electrode 330 in order to carry out the next measurement step. When the replenishment step is performed, the voltage level of the counter electrode 330 becomes higher than the voltage level of the auxiliary electrode 340, and a current flows from the counter electrode 330 to the auxiliary electrode 340, resulting in an oxidation reaction at the counter electrode 330 and silver. It replenishes silver halide by binding with halogen ions in the living body. A detailed measurement step and a detailed replenishment step are shown in FIG.

図3Aを参照し、図3Aは、本発明のマイクロバイオセンサーの第二実施形態の断面概略図である。図3Aにおいて、作用電極320及び補助電極340は、基板310の表面311上に配置されてもよく、対電極330は、基板310の反対側の表面312上に配置され、作用電極320、対電極330及び補助電極340の表面は、化学試薬350によって覆われている。この実施形態において、測定ステップを実行すると、電流が作用電極320から対電極330に流れ、その結果、酸化反応が作用電極320上で起こり、生理信号が測定され、対電極330におけるハロゲン化銀(AgX)が消耗され、銀(Ag)とハロゲンイオン(X)に解離される。補充ステップを実行すると、対電極330から補助電極340に電流が流れ、対電極330上で酸化反応が起こり、銀イオンとハロゲンイオンとの組み合わせでハロゲン化銀を補充する。 With reference to FIG. 3A, FIG. 3A is a schematic cross-sectional view of a second embodiment of the microbiosensor of the present invention. In FIG. 3A, the working electrode 320 and the auxiliary electrode 340 may be arranged on the surface 311 of the substrate 310, the counter electrode 330 is arranged on the surface 312 opposite the substrate 310, and the working electrode 320, the counter electrode. The surfaces of 330 and the auxiliary electrode 340 are covered with the chemical reagent 350. In this embodiment, when the measurement step is performed, a current flows from the working electrode 320 to the counter electrode 330, resulting in an oxidation reaction occurring on the working electrode 320, the physiological signal being measured and the silver halide at the counter electrode 330. AgX) is consumed, silver (Ag) and silver ions (X - is dissociated). When the replenishment step is executed, a current flows from the counter electrode 330 to the auxiliary electrode 340, an oxidation reaction occurs on the counter electrode 330, and silver halide is replenished by a combination of silver ions and halogen ions.

図3Bを参照し、図3Bは、本発明のマイクロバイオセンサーの第三実施形態の断面概略図である。この実施形態において、マイクロバイオセンサー300は、それぞれ第一作用電極323及び第二作用電極324である二つの作用電極を有する。ここで、補助電極は、第二作用電極324によって置き換えられている。図3Bにおいてに、第一作用電極323及び第二作用電極324は、基板310の表面311上に配置され、対電極330は、基板310の反対側の表面312上に配置され、第一作用電極323、第二作用電極324及び対電極330の表面は、化学試薬350によって覆われている。第一作用電極323及び第二作用電極324のうちの一つは、測定ステップにおいて生理信号を測定するために選択され、第一作用電極323又は第二作用電極324は、補充ステップにおいてハロゲン化銀を対電極330に補充するために、対電極330と電子回路を形成する。したがって、この実施形態において、測定ステップを実行すると、電流が第一作用電極323又は第二作用電極324から対電極330に流れる。その結果、酸化反応が第一作用電極323又は第二作用電極324で起こり、生理信号が測定され、対電極330におけるハロゲン化銀(AgX)が消耗され、銀(Ag)及びハロゲンイオン(X)に解離される。補充ステップを実行すると、電流が対電極330から第一作用電極323又は第二作用電極324に流れる。その結果、酸化反応が対電極330上で起こり、銀とハロゲンイオンとの組み合わせでハロゲン化銀を補充する。 With reference to FIG. 3B, FIG. 3B is a schematic cross-sectional view of a third embodiment of the microbiosensor of the present invention. In this embodiment, the microbiosensor 300 has two working electrodes, a first working electrode 323 and a second working electrode 324, respectively. Here, the auxiliary electrode is replaced by a second working electrode 324. In FIG. 3B, the first working electrode 323 and the second working electrode 324 are arranged on the surface 311 of the substrate 310, and the counter electrode 330 is arranged on the surface 312 opposite the substrate 310, the first working electrode. The surfaces of 323, the second working electrode 324 and the counter electrode 330 are covered with the chemical reagent 350. One of the first working electrode 323 and the second working electrode 324 was selected to measure the physiological signal in the measurement step, and the first working electrode 323 or the second working electrode 324 was silver halide in the replenishment step. To replenish the counter electrode 330, an electronic circuit is formed with the counter electrode 330. Therefore, in this embodiment, when the measurement step is performed, a current flows from the first working electrode 323 or the second working electrode 324 to the counter electrode 330. As a result, an oxidation reaction occurs at the first working electrode 323 or the second working electrode 324, the physiological signal is measured, the silver halide in the counter electrode 330 (AgX) is consumed, silver (Ag) and silver ions (X - ) Is dissociated. When the replenishment step is performed, a current flows from the counter electrode 330 to the first working electrode 323 or the second working electrode 324. As a result, an oxidation reaction occurs on the counter electrode 330 to replenish silver halide with a combination of silver and halogen ions.

図3Cを参照し、図3Cは、本発明のマイクロバイオセンサーの第四実施形態の断面概略図である。この実施形態において、マイクロバイオセンサー300は、それぞれ第一作用電極323及び第二作用電極324である二つの作用電極を有する。ここで、補助電極は、第二作用電極324によって置き換えられている。図3Cにおいて、第一作用電極323は、基板310の表面311上に配置され、対電極330及び第二作用電極324は、基板310の反対側の表面312上に配置され、第一作用電極323、第二作用電極324及び対電極330の表面は、化学試薬350によって覆われている。この実施形態において、測定ステップを実行するために、第一作用電極323の表面積を増加させることができ、補充ステップを実行してハロゲン化銀を対電極330に補充するために、第二作用電極324の表面積を減少させることができる。したがって、この実施形態において、測定ステップを実行すると、電流が第一作用電極323から対電極330に流れる。その結果、酸化反応が第一作用電極323で起こり、生理信号が測定され、対電極330におけるハロゲン化銀(AgX)が消耗され、銀(Ag)とハロゲンイオン(X)に解離される。補充ステップを実行すると、電流が対電極330から第二作用電極324に流れる。その結果、酸化反応が対電極330上で起こり、銀とハロゲンイオンとの組み合わせでハロゲン化銀を補充する。 With reference to FIG. 3C, FIG. 3C is a schematic cross-sectional view of a fourth embodiment of the microbiosensor of the present invention. In this embodiment, the microbiosensor 300 has two working electrodes, a first working electrode 323 and a second working electrode 324, respectively. Here, the auxiliary electrode is replaced by a second working electrode 324. In FIG. 3C, the first working electrode 323 is placed on the surface 311 of the substrate 310, the counter electrode 330 and the second working electrode 324 are placed on the surface 312 opposite the substrate 310, and the first working electrode 323. The surfaces of the second working electrode 324 and the counter electrode 330 are covered with the chemical reagent 350. In this embodiment, the surface area of the first working electrode 323 can be increased to perform the measurement step and the second working electrode to perform the replenishment step to replenish the counter electrode 330 with silver halide. The surface area of 324 can be reduced. Therefore, in this embodiment, when the measurement step is performed, a current flows from the first working electrode 323 to the counter electrode 330. As a result, an oxidation reaction occurs at the first working electrode 323, the physiological signal is measured, the silver halide (AgX) is consumed in the counter electrode 330, silver (Ag) and silver ions - are dissociated into (X). When the replenishment step is performed, a current flows from the counter electrode 330 to the second working electrode 324. As a result, an oxidation reaction occurs on the counter electrode 330 to replenish silver halide with a combination of silver and halogen ions.

図3Dを参照し、図3Dは、本発明のマイクロバイオセンサーの第五実施形態の断面概略図である。第五実施形態は、第一実施形態における別の作用電極の追加である。具体的には、マイクロバイオセンサー300は、二つの作用電極をそれぞれ有し、第一作用電極323及び第二作用電極324、一つの対電極330及び一つの補助電極340である。図3Dにおいて、第一作用電極323及び第二作用電極324は、基板310の表面311上に配置され、対電極330及び補助電極340は、基板310の反対側の表面312上に配置される。第一作用電極323、第二作用電極324、対電極330及び補助電極340の表面は、化学試薬350によって覆われている。測定ステップにおいて、第一作用電極323及び第二作用電極324のうちの一つは、生理信号を測定するために選択され、補充ステップにおいて、補助電極340は、対電極330と電子回路を形成して、ハロゲン化銀を対電極330に補充する。したがって、この実施形態において、測定ステップを実行すると、電流が第一作用電極323又は第二作用電極324から対電極330に流れる。その結果、酸化反応が第一作用電極323又は第二作用電極324で起こり、生理信号が測定され、対電極330におけるハロゲン化銀(AgX)が消耗され、銀(Ag)とハロゲンイオン(X)に解離される。補充ステップを実行すると、電流が対電極330から補助電極340に流れる。その結果、酸化反応が対電極330上で起こり、銀とハロゲンイオンとの組み合わせでハロゲン化銀を補充する。 With reference to FIG. 3D, FIG. 3D is a schematic cross-sectional view of a fifth embodiment of the microbiosensor of the present invention. The fifth embodiment is the addition of another working electrode in the first embodiment. Specifically, the microbiosensor 300 has two working electrodes, respectively, a first working electrode 323 and a second working electrode 324, one counter electrode 330 and one auxiliary electrode 340. In FIG. 3D, the first working electrode 323 and the second working electrode 324 are arranged on the surface 311 of the substrate 310, and the counter electrode 330 and the auxiliary electrode 340 are arranged on the surface 312 on the opposite side of the substrate 310. The surfaces of the first working electrode 323, the second working electrode 324, the counter electrode 330 and the auxiliary electrode 340 are covered with the chemical reagent 350. In the measurement step, one of the first working electrode 323 and the second working electrode 324 is selected to measure the physiological signal, and in the replenishment step, the auxiliary electrode 340 forms an electronic circuit with the counter electrode 330. Then, silver halide is replenished to the counter electrode 330. Therefore, in this embodiment, when the measurement step is performed, a current flows from the first working electrode 323 or the second working electrode 324 to the counter electrode 330. As a result, an oxidation reaction occurs at the first working electrode 323 or the second working electrode 324, the physiological signal is measured, the silver halide (AgX) is consumed in the counter electrode 330, silver (Ag) and silver ions (X - ) Is dissociated. When the replenishment step is performed, a current flows from the counter electrode 330 to the auxiliary electrode 340. As a result, an oxidation reaction occurs on the counter electrode 330 to replenish silver halide with a combination of silver and halogen ions.

図3Eを参照し、図3Eは、本発明のマイクロバイオセンサーの第六実施形態の断面概略図である。この実施形態において、マイクロバイオセンサー300は、三つの作用電極を有し、これらの作用電極はそれぞれ、第一作用電極323、第二作用電極324及び第三作用電極325であり、ここで、補助電極は第三作用電極325によって置き換えられる。図3Eにおいて、第一作用電極323及び第二作用電極324は、基板310の表面311上に配置され、対電極330及び第三作用電極325は、基板310の反対側の表面312上に配置され、第一作用電極323、第二作用電極324、第三作用電極325及び対電極330の表面は、化学試薬350によって覆われている。第一作用電極323、第二作用電極324及び第三作用電極325のうちの一つは、測定ステップにおいて生理信号を測定するために選択され、第一作用電極323、第二作用電極324又は第三作用電極325は、補充ステップにおいて対電極330にハロゲン化銀を補充するために対電極330と電子回路を形成する。したがって、この実施形態において、測定ステップを実行すると、電流は、第一作用電極323、第二作用電極324又は第三作用電極325から対電極330に流れる。その結果、酸化反応が第一作用電極323、第二作用電極324又は第三作用電極325で起こり、生理信号が測定され、対電極330におけるハロゲン化銀(AgX)が消耗され、銀(Ag)とハロゲンイオン(X)に解離される。補充ステップを実行すると、電流は、対電極330から第一作用電極323、第二作用電極324又は第三作用電極325に流れる。その結果、酸化反応が対電極330上で起こり、銀とハロゲンイオンとの組み合わせでハロゲン化銀を補充する。 With reference to FIG. 3E, FIG. 3E is a schematic cross-sectional view of a sixth embodiment of the microbiosensor of the present invention. In this embodiment, the microbiosensor 300 has three working electrodes, the working electrodes 323, the second working electrode 324 and the third working electrode 325, respectively, which are auxiliary. The electrode is replaced by a third working electrode 325. In FIG. 3E, the first working electrode 323 and the second working electrode 324 are arranged on the surface 311 of the substrate 310, and the counter electrode 330 and the third working electrode 325 are arranged on the opposite surface 312 of the substrate 310. The surfaces of the first working electrode 323, the second working electrode 324, the third working electrode 325 and the counter electrode 330 are covered with the chemical reagent 350. One of the first working electrode 323, the second working electrode 324 and the third working electrode 325 is selected for measuring the physiological signal in the measuring step, the first working electrode 323, the second working electrode 324 or the first working electrode. The working electrode 325 forms an electronic circuit with the counter electrode 330 to replenish the counter electrode 330 with silver halide in the replenishment step. Therefore, in this embodiment, when the measurement step is performed, current flows from the first working electrode 323, the second working electrode 324 or the third working electrode 325 to the counter electrode 330. As a result, an oxidation reaction occurs at the first working electrode 323, the second working electrode 324 or the third working electrode 325, the physiological signal is measured, the silver halide (AgX) at the counter electrode 330 is consumed, and the silver (Ag) is consumed. Is dissociated into a halogen ion (X −). When the replenishment step is performed, current flows from the counter electrode 330 to the first working electrode 323, the second working electrode 324 or the third working electrode 325. As a result, an oxidation reaction occurs on the counter electrode 330 to replenish silver halide with a combination of silver and halogen ions.

図3Fを参照し、図3Fは、本発明のマイクロバイオセンサーの第七実施形態の断面概略図である。第七実施形態は、第六実施形態の電極構成の変形例である。この実施形態において、図3Fに示すように、第一作用電極323、第二作用電極324及び第三作用電極325は、基板310の表面311上に配置され、対電極330は、基板310の反対側の表面312上に配置される。第一作用電極323、第二作用電極324、第三作用電極325及び対電極330の表面は、化学試薬350によって覆われている。第一作用電極323、第二作用電極324及び第三作用電極325のうちの一つは、測定ステップにおいて生理信号を測定するために選択され、第一作用電極323、第二作用電極324又は第三作用電極325は、補充ステップにおいて対電極330にハロゲン化銀を補充するために対電極330と電子回路を形成する。したがって、この実施形態において、測定ステップを実行すると、電流は、第一作用電極323、第二作用電極324又は第三作用電極325から対電極330に流れる。その結果、酸化反応が第一作用電極323、第二作用電極324又は第三作用電極325で起こり、生理信号が測定され、対電極330におけるハロゲン化銀(AgX)が消耗され、銀(Ag)とハロゲンイオン(X)に解離される。補充ステップを実行すると、電流は、対電極330から第一作用電極323、第二作用電極324又は第三作用電極325に流れる。その結果、酸化反応が対電極330上で起こり、銀とハロゲンイオンとの組み合わせでハロゲン化銀を補充する。 With reference to FIG. 3F, FIG. 3F is a schematic cross-sectional view of a seventh embodiment of the microbiosensor of the present invention. The seventh embodiment is a modification of the electrode configuration of the sixth embodiment. In this embodiment, as shown in FIG. 3F, the first working electrode 323, the second working electrode 324 and the third working electrode 325 are arranged on the surface 311 of the substrate 310, and the counter electrode 330 is the opposite of the substrate 310. It is placed on the side surface 312. The surfaces of the first working electrode 323, the second working electrode 324, the third working electrode 325 and the counter electrode 330 are covered with the chemical reagent 350. One of the first working electrode 323, the second working electrode 324 and the third working electrode 325 is selected for measuring the physiological signal in the measuring step, the first working electrode 323, the second working electrode 324 or the first working electrode. The working electrode 325 forms an electronic circuit with the counter electrode 330 to replenish the counter electrode 330 with silver halide in the replenishment step. Therefore, in this embodiment, when the measurement step is performed, current flows from the first working electrode 323, the second working electrode 324 or the third working electrode 325 to the counter electrode 330. As a result, an oxidation reaction occurs at the first working electrode 323, the second working electrode 324 or the third working electrode 325, the physiological signal is measured, the silver halide (AgX) at the counter electrode 330 is consumed, and the silver (Ag) is consumed. Is dissociated into a halogen ion (X −). When the replenishment step is performed, current flows from the counter electrode 330 to the first working electrode 323, the second working electrode 324 or the third working electrode 325. As a result, an oxidation reaction occurs on the counter electrode 330 to replenish silver halide with a combination of silver and halogen ions.

図3Gを参照し、図3Gは、本発明のマイクロバイオセンサーの第八実施形態の断面概略図である。図3Dと比較すると、違いは、図3Gの第二作用電極324はU字型である。第八実施形態において、第一作用電極323及び第二作用電極324は、基板310の表面311上に構成され、第二作用電極324は、第一作用電極323に隣接してその周囲にあり、対電極330及び補助電極340は、基板310の反対側の表面312上に配置されている。したがって、この実施形態において、測定ステップを実行すると、電流は、第一作用電極323から対電極330に流れる。その結果、酸化反応が第一作用電極323で起こり、生理信号が測定され、対電極330におけるハロゲン化銀(AgX)が消耗され、銀(Ag)とハロゲンイオン(X)に解離される。補充ステップを実行すると、電流は、対電極330から補助電極340又は第二作用電極324に流れる。その結果、酸化反応が対電極330上で起こり、銀とハロゲンイオンとの組み合わせでハロゲン化銀を補充する。 With reference to FIG. 3G, FIG. 3G is a schematic cross-sectional view of an eighth embodiment of the microbiosensor of the present invention. Compared with FIG. 3D, the difference is that the second working electrode 324 of FIG. 3G is U-shaped. In the eighth embodiment, the first working electrode 323 and the second working electrode 324 are configured on the surface 311 of the substrate 310, and the second working electrode 324 is adjacent to and around the first working electrode 323. The counter electrode 330 and the auxiliary electrode 340 are arranged on the surface 312 on the opposite side of the substrate 310. Therefore, in this embodiment, when the measurement step is performed, current flows from the first working electrode 323 to the counter electrode 330. As a result, an oxidation reaction occurs at the first working electrode 323, the physiological signal is measured, the silver halide (AgX) is consumed in the counter electrode 330, silver (Ag) and silver ions - are dissociated into (X). When the replenishment step is performed, current flows from the counter electrode 330 to the auxiliary electrode 340 or the second working electrode 324. As a result, an oxidation reaction occurs on the counter electrode 330 to replenish silver halide with a combination of silver and halogen ions.

図2C〜3Gの詳細な電極スタックは省略され、電極位置のみが示されている。 The detailed electrode stacks of FIGS. 2C-3G are omitted and only the electrode positions are shown.

上記の任意の実施形態において、本発明の基板310は、絶縁体である。本発明の作用電極320及び第一作用電極323の電極材料には、炭素、白金、アルミニウム、ガリウム、金、インジウム、イリジウム、鉄、鉛、マグネシウム、ニッケル、マンガン、モリブデン、オスミウム、パラジウム、ロジウム、銀、スズ、チタン、亜鉛、シリコン、ジルコニウム、それらの混合物、又はそれらの誘導体(合金、酸化物又は金属化合物など)が含まれるが、これらに限定されない。好ましくは、作用電極320及び第一作用電極323の材料は、貴金属、貴金属誘導体、又はそれらの組み合わせである。より好ましくは、作用電極及び第一作用電極323は、白金含有材料で製造される。第二作用電極324及び第三作用電極325の材料も、上記の作用電極320及び第一作用電極323について例示されるような要素又はそれらの誘導体を使用することができる。別の実施形態において、第二作用電極324及び第三作用電極325の電極材料は、炭素などの第一作用電極323の感度よりも過酸化水素に対する感度が低い材料であり得る。 In any of the above embodiments, the substrate 310 of the present invention is an insulator. The electrode materials of the working electrode 320 and the first working electrode 323 of the present invention include carbon, platinum, aluminum, gallium, gold, indium, iridium, iron, lead, magnesium, nickel, manganese, molybdenum, osmium, palladium, rhodium, and the like. Includes, but is not limited to, silver, tin, titanium, zinc, silicon, zirconium, mixtures thereof, or derivatives thereof (such as alloys, oxides or metal compounds). Preferably, the material of the working electrode 320 and the first working electrode 323 is a noble metal, a noble metal derivative, or a combination thereof. More preferably, the working electrode and the first working electrode 323 are made of a platinum-containing material. As the material of the second working electrode 324 and the third working electrode 325, the elements as exemplified for the above working electrode 320 and the first working electrode 323 or derivatives thereof can be used. In another embodiment, the electrode material of the second working electrode 324 and the third working electrode 325 may be a material that is less sensitive to hydrogen peroxide than the sensitivity of the first working electrode 323, such as carbon.

本発明の対極330の電極材料は、銀とハロゲン化銀(Ag/AgX)を含むので、本発明の対電極330は、当技術分野で周知の対電極及び参照電極の機能を含む。具体的には、本発明の対電極330は、(1)作用電極320と電子回路を形成して、対電極330と作用電極320との間の電流を伝導させて、作用電極320で電気化学反応が確実に起こるようにすることができる、(2)補助電極340と電子回路を形成して、対電極330と補助電極340との間の電流を伝導させて、電気化学反応が対電極330上で確実に発生するようにする、(3)基準電位として安定した相対電位を提供する。したがって、本発明の作用電極320、対電極330及び補助電極340は、従来の三電極システムと異なる三電極システムを形成する。 Since the electrode material of the counter electrode 330 of the present invention contains silver and silver halide (Ag / AgX), the counter electrode 330 of the present invention includes the functions of the counter electrode and the reference electrode well known in the art. Specifically, the counter electrode 330 of the present invention (1) forms an electronic circuit with the working electrode 320, conducts a current between the counter electrode 330 and the working electrode 320, and is electrochemical at the working electrode 320. The reaction can be ensured. (2) An electronic circuit is formed with the auxiliary electrode 340 to conduct a current between the counter electrode 330 and the auxiliary electrode 340, so that the electrochemical reaction is carried out on the counter electrode 330. Provide a stable relative potential as a reference potential (3) to ensure that it occurs above. Therefore, the working electrode 320, the counter electrode 330, and the auxiliary electrode 340 of the present invention form a three-electrode system different from the conventional three-electrode system.

本発明の補助電極340の電極材料が白金で覆われている場合、補助電極340も生理信号を測定するための電極として使用することができる。 When the electrode material of the auxiliary electrode 340 of the present invention is covered with platinum, the auxiliary electrode 340 can also be used as an electrode for measuring a physiological signal.

上記の任意の実施形態において、銀電極材料が過剰塩素化によって破損するのを防ぐために、基板310の反対側の表面312と対電極330の銀との間に、炭素などの導電性材料の層を更に配置することができる。しかしながら、対電極330の最下層が炭素である場合、スイッチ位置での抵抗は高すぎる。銀などの導電層は、炭素導電性材料と基板310の反対側の表面312との間に更に配置することができる。したがって、本発明の対電極330の材料は、基板310の反対側の表面312から、順次に、導電層、炭素層、銀/ハロゲン化銀層である。 In any of the above embodiments, a layer of conductive material, such as carbon, is placed between the surface 312 on the opposite side of the substrate 310 and the silver of the counter electrode 330 to prevent the silver electrode material from being damaged by excessive chlorination. Can be further placed. However, if the bottom layer of the counter electrode 330 is carbon, the resistance at the switch position is too high. A conductive layer such as silver can be further placed between the carbon conductive material and the surface 312 on the opposite side of the substrate 310. Therefore, the material of the counter electrode 330 of the present invention is a conductive layer, a carbon layer, and a silver / silver halide layer in this order from the surface 312 on the opposite side of the substrate 310.

定電圧回路の切り替え応用
図4A〜Bと図5A〜Dを参照し、図4Aと図4Bは、それぞれ、本発明における測定モード及び補充モードでの定電圧回路を示し、 図5A〜Dは、それぞれ、異なる方法で交互に測定モード及び補充モードで動作する定電圧回路の電流の概略図を順番に示す。測定モードは、測定電位差V1を印加し、測定電位差V1を除去することで開始及び停止でき、対応する電流はIaで表す。測定モードにおいて、測定期間T1の間に作用電極Wと対電極R/Cの間に測定電位差V1を印加するため、作用電極Wの電圧は対電極R/Cの電圧よりも高くなる。測定モード中、図4Aに示されるように、スイッチS1とS4は閉回路状態にあり、スイッチS2とS3は開回路状態にあり、作用電極Wは+ V1であり、補助電極Auxは開回路状態にあり、対電極R/Cは接地されている。その結果、作用電極Wで酸化反応が起こり、作用電極Wは化学試薬及び分析物と電気化学的に反応して生理信号Iaを出力する。対極R/C中のAgClは、生理信号Iaに対応する消耗量を有する。図5A〜5Dに示すように、複数の測定期間T1のうちの任意の二つの間は、測定を実行しない期間T2である。いくつかの好ましい実施形態において、T2は一定値である。
Switching application of constant voltage circuit With reference to FIGS. 4A to 4B and 5A to 5D, FIGS. 4A and 4B show the constant voltage circuit in the measurement mode and the replenishment mode in the present invention, respectively. ~ D show in order a schematic diagram of the current of the constant voltage circuit which operates in the measurement mode and the replenishment mode alternately by different methods, respectively. The measurement mode can be started and stopped by applying the measurement potential difference V1 and removing the measurement potential difference V1, and the corresponding current is represented by Ia. In the measurement mode, since the measurement potential difference V1 is applied between the working electrode W and the counter electrode R / C during the measurement period T1, the voltage of the working electrode W becomes higher than the voltage of the counter electrode R / C. In the measurement mode, as shown in FIG. 4A, the switches S1 and S4 are in the closed circuit state, the switches S2 and S3 are in the open circuit state, the working electrode W is + V1, and the auxiliary electrode Aux is in the open circuit state. The counter electrode R / C is grounded. As a result, an oxidation reaction occurs at the working electrode W, and the working electrode W electrochemically reacts with the chemical reagent and the analyte to output the physiological signal Ia. AgCl in the counter electrode R / C has a consumable amount corresponding to the physiological signal Ia. As shown in FIGS. 5A-5D, between any two of the plurality of measurement periods T1 is a period T2 in which no measurement is performed. In some preferred embodiments, T2 is constant.

補充モードは、補充電位差V2を印加し、補充電位差V2を除去することによってそれぞれ開始及び停止することができ、対応する電流はIbで表す。V2は、0.1V〜0.8Vの範囲であり、好ましくは0.2V〜0.5Vの範囲にある一定値である。補充モードにおいて、補充期間t2(t2が0〜T2の範囲にある)の間に、補充電位差V2が補助電極Auxと対電極R/Cの間に印加されて、対電極R/Cの電圧が補助電極Auxの電圧よりも高くなる。補充モードの間、図4Bに示されるように、スイッチS1とS4は開回路状態にあり、スイッチS2とS3は閉回路状態にあり、作用電極Wは開回路状態にあり、補助電極Auxは接地されており、対電極R/Cは、+V2である。その結果、対電極R/CでAgの酸化反応が起こり、対電極R/Cに補充量だけAgClが補充される。定電圧回路において、補充電位差V2は定電圧であり、測定された出力電流はIbである。本発明では、AgClの容量の量又は値(単位は「クーロン」であり、記号「C」で表す)は、電流曲線の下の面積を計算することによって定義される。したがって、測定モードでのAgClの消耗量はIa*T1であり、補充モードでのAgClの補充量はIb*t2である。このような場合、電位差V2が印加される期間t2を調整することにより、AgClの補充量を制御することができる。換言すれば、対電極R/C上のAgClが安全な貯蔵範囲内に保たれていることを前提として、補充量は、消耗量に等しいか、又は等しくない(ほぼ同様、より大きい、又はより小さいを含む)。 The replenishment mode can be started and stopped by applying the replenishment potential difference V2 and removing the replenishment potential difference V2, respectively, and the corresponding currents are represented by Ib. V2 is in the range of 0.1V to 0.8V, preferably a constant value in the range of 0.2V to 0.5V. In the replenishment mode, during the replenishment period t2 (t2 is in the range of 0 to T2), the replenishment potential difference V2 is applied between the auxiliary electrode Aux and the counter electrode R / C, and the voltage of the counter electrode R / C is increased. It becomes higher than the voltage of the auxiliary electrode Aux. During the replenishment mode, as shown in FIG. 4B, the switches S1 and S4 are in the open circuit state, the switches S2 and S3 are in the closed circuit state, the working electrode W is in the open circuit state, and the auxiliary electrode Aux is grounded. The counter electrode R / C is + V2. As a result, an oxidation reaction of Ag occurs at the counter electrode R / C, and AgCl is replenished to the counter electrode R / C by the replenishment amount. In the constant voltage circuit, the replenishment potential difference V2 is a constant voltage and the measured output current is Ib. In the present invention, the amount or value of the volume of AgCl (unit: "Couron", represented by the symbol "C") is defined by calculating the area under the current curve. Therefore, the amount of AgCl consumed in the measurement mode is Ia * T1, and the amount of AgCl replenished in the replenishment mode is Ib * t2. In such a case, the replenishment amount of AgCl can be controlled by adjusting the period t2 in which the potential difference V2 is applied. In other words, the replenishment amount is equal to or not equal to the consumable amount (almost as well as greater or more), assuming that AgCl on the counter electrode R / C is kept within a safe storage range. Including small).

図5A〜5Dにおいて、横軸は時間を表し、V1の曲線は、測定電位差V1の印加及び除去を表し、V2の曲線は、補充電位差V2の印加及び除去を表す。図5Aを参照する。好ましい実施形態において、V2とT2の両方が一定値であり、V2が印加される期間t2(すなわち、補充期間)は可変値である。補充期間t2は、測定モード及び測定期間T1の間に測定された生理信号Iaに従って、0からT2の範囲で動的に調整される。図5Aに示すように、t2は、t2’、t2’ ’、又はt2’ ’ ’…のいずれかである。つまり、AgClの消耗量に応じて補充期間t2を変更することができる。AgClの消耗量が多い状態では、対電極R/CのAgClを安全な貯蔵範囲内に保つために、対電極R/Cを長時間補充することができる。たとえば、t2’ ’の間に補充されるAgClの量は、t2’の間に補充されるAgClの量よりも多くなる。 In FIGS. 5A-5D, the horizontal axis represents time, the curve of V1 represents the application and removal of the measured potential difference V1, and the curve of V2 represents the application and removal of the supplementary potential difference V2. See FIG. 5A. In a preferred embodiment, both V2 and T2 are constant values, and the period t2 (ie, replenishment period) to which V2 is applied is a variable value. The replenishment period t2 is dynamically adjusted in the range of 0 to T2 according to the physiological signal Ia measured during the measurement mode and the measurement period T1. As shown in FIG. 5A, t2 is either t2 ′, t2 ″, or t2 ″ ″…. That is, the replenishment period t2 can be changed according to the amount of AgCl consumed. When the amount of AgCl consumed is large, the counter electrode R / C can be replenished for a long time in order to keep the AgCl of the counter electrode R / C within a safe storage range. For example, the amount of AgCl replenished during t2 ″ is greater than the amount of AgCl replenished during t2 ″.

図5Bを参照し、別の好ましい実施形態において、V2、T2及びt2はすべて一定値であり、ここで、t2 = T2である。つまり、測定モードと補充モードがシームレスに切り替わり、測定が行われない期間が補充期間となる。図5Cと図5Dを参照し、いくつかの好ましい実施形態において、V2、T2及びt2は一定値であり、ここで、t2は、0より大きく、T2より小さい定数値であり、たとえば、t2=1/2 T2、2/5 T2、3/5 T2などである。図5Cと図5Dとの違いは、図5Cにおいて、各測定モードの後、補充モードが開始する前に、緩衝時間(緩衝時間=T2−t2)が経過し、図5Dにおいて、各測定モードの後、補充モードは緩衝時間なしで直ちに開始し、各補充モードの終了と次の測定モードの開始との間に期間がある。いくつかの好ましい実施形態において、t2はT2よりも小さく、t2はT2中の任意の期間であり得る。 With reference to FIG. 5B, in another preferred embodiment, V2, T2 and t2 are all constant values, where t2 = T2. That is, the measurement mode and the replenishment mode are seamlessly switched, and the period during which the measurement is not performed is the replenishment period. With reference to FIGS. 5C and 5D, in some preferred embodiments, V2, T2 and t2 are constant values, where t2 is a constant value greater than 0 and less than T2, eg, t2 =. 1/2 T2, 2/5 T2, 3/5 T2, and the like. The difference between FIG. 5C and FIG. 5D is that in FIG. 5C, after each measurement mode, before the replenishment mode starts, a buffer time (buffer time = T2-t2) elapses, and in FIG. 5D, each measurement mode After that, the replenishment mode starts immediately without buffering time, and there is a period between the end of each replenishment mode and the start of the next measurement mode. In some preferred embodiments, t2 is smaller than T2 and t2 can be any period in T2.

図5Eと5Fを参照し、図5Eと5Fは、異なる方法で交互に測定モード及び補充モードで動作する定電圧回路の電流-時間概略図を示す。図5Eと5Fにおいて、横軸は時間を表し、縦軸は電流を表し、曲線は、測定された生理信号Iaから演算された生理パラメータ曲線を表す。二つの実施形態において、図5Aと同様であり、V2とT2は一定値であり、補充期間t2は可変値である。図5Eと5Fにおいて、曲線下の白い領域は、測定モードでのAgCl消耗量(Ia * T1)を表し、斜めの領域は、補充モードでのAgCl補充量(Ib * t2)を表す。この図から見れば、Ib * t2を、Ia * T1に近づける、又はIa * T1の特定の範囲内にするために、測定された生理信号Iaと測定期間T1に従って、補充期間t2が0からT2の範囲で動的に調整されることがわかる。必要に応じて、測定モードを実行しない期間(T2)の前部(図5Eに示す)又は後部(図5Fに示す)を選択して、補充モードを実行することができる。 With reference to FIGS. 5E and 5F, FIGS. 5E and 5F show schematic current-time diagrams of constant voltage circuits operating alternately in measurement and replenishment modes in different ways. In FIGS. 5E and 5F, the horizontal axis represents time, the vertical axis represents current, and the curve represents a physiological parameter curve calculated from the measured physiological signal Ia. In the two embodiments, as in FIG. 5A, V2 and T2 are constant values and the replenishment period t2 is a variable value. In FIGS. 5E and 5F, the white area below the curve represents the AgCl consumption amount (Ia * T1) in the measurement mode, and the diagonal area represents the AgCl replenishment amount (Ib * t2) in the replenishment mode. Seen from this figure, the replenishment period t2 is from 0 to T2 according to the measured physiological signal Ia and the measurement period T1 in order to bring Ib * t2 closer to Ia * T1 or within a specific range of Ia * T1. It can be seen that it is dynamically adjusted within the range of. If necessary, the replenishment mode can be executed by selecting the front part (shown in FIG. 5E) or the rear part (shown in FIG. 5F) of the period (T2) in which the measurement mode is not executed.

セグメント定電流回路の切り替え応用
図6A〜6B及び図8A〜8Cを参照し、 図6Aと図6Bは、それぞれ、本発明に係る測定モード及び補充モードにおけるセグメント定電流回路を示し、図8A〜8Cは、それぞれ、異なる方法で交互に測定モード及び補充モードで動作する定電流回路の電圧概略図を示す。測定モードは、測定電位差V1を印加し、測定電位差V1を除去することで、それぞれ開始及び停止でき、対応する電流はIaで表す。測定モードでは、測定電位差V1が、測定期間T1の間に作用電極Wと対電極R/Cの間に印加される。測定モード中、図6Aに示すように、スイッチS1とS4は閉回路状態にあり、残りのスイッチは開回路状態にあり、作用電極Wは+V1であり、補助電極Auxは開回路状態にあり、対電極R/Cが接地されている。その結果、作用電極Wで酸化反応が起こり、作用電極Wは化学試薬及び分析物と電気化学的に反応して生理信号Iaを出力する。対電極R/C中のAgClは、生理信号Iaに対応する消耗量を有する。図8A〜8Cに示されるように、複数の測定期間T1のうちの任意の二つの間は、測定を実行しない期間T2である。いくつかの好ましい実施形態において、T2は一定値である。
Switching application of segment constant current circuit With reference to FIGS. 6A-6B and 8A-8C, FIGS. 6A and 6B show the segment constant current circuit in the measurement mode and the replenishment mode according to the present invention, respectively. 8A-8C show schematic voltage diagrams of constant current circuits operating in measurement mode and replenishment mode alternately in different ways, respectively. The measurement mode can be started and stopped by applying the measurement potential difference V1 and removing the measurement potential difference V1, respectively, and the corresponding current is represented by Ia. In the measurement mode, the measurement potential difference V1 is applied between the working electrode W and the counter electrode R / C during the measurement period T1. In the measurement mode, as shown in FIG. 6A, the switches S1 and S4 are in the closed circuit state, the remaining switches are in the open circuit state, the working electrode W is + V1, and the auxiliary electrode Aux is in the open circuit state. The counter electrode R / C is grounded. As a result, an oxidation reaction occurs at the working electrode W, and the working electrode W electrochemically reacts with the chemical reagent and the analyte to output the physiological signal Ia. AgCl in the counter electrode R / C has a consumption amount corresponding to the physiological signal Ia. As shown in FIGS. 8A-8C, between any two of the plurality of measurement periods T1 is a period T2 in which no measurement is performed. In some preferred embodiments, T2 is constant.

補充モードは、それぞれ可変値である補充電位差V2を印加し、補充電位差V2を除去することにより開始及び停止することができ、対応する電流はIbで表す。補充モードでは、補充期間t2(t2は0からT2の範囲)の間に、補充電位差V2が補助電極Auxと対電極R/Cの間に印加される。補充モードの間、図6Bに示すように、スイッチS1とS4は開回路状態にあり、スイッチS2とI_F1〜I_Fnに対応するスイッチの少なくとも一つは閉回路状態にある(図6Bにおいて、I_F1及びI_F3に対応するスイッチが閉回路状態)、作用電極Wは開回路状態にあり、補助電極Auxは接地されており、対電極R/Cは+V2であり、その結果、対電極R/C上で、Agの酸化反応が起こり、対電極R/CにAgClが補充される。補充モードでは、生理信号Iaの大きさ及び測定期間T1に応じて、I_F1からI_Fnに対応するスイッチの少なくとも一つをオンにして定電流Ibを出力するように選択することができ、 AgClの補充量は、電位差V2が印加される期間t2を調整することで制御できる。すなわち、対電極R/C上のAgClが安全な貯蔵範囲内に保たれていることを前提として、補充量は、消耗量に等しいか、又は等しくない(ほぼ同様、より大きい、又はより小さいを含む)。 The replenishment mode can be started and stopped by applying a replenishment potential difference V2, which is a variable value, and removing the replenishment potential difference V2, and the corresponding current is represented by Ib. In the replenishment mode, the replenishment potential difference V2 is applied between the auxiliary electrode Aux and the counter electrode R / C during the replenishment period t2 (t2 is in the range of 0 to T2). During the replenishment mode, as shown in FIG. 6B, the switches S1 and S4 are in the open circuit state, and at least one of the switches corresponding to the switches S2 and I_F1 to I_Fn is in the closed circuit state (in FIG. 6B, I_F1 and I_Fn). The switch corresponding to I_F3 is in the closed circuit state), the working electrode W is in the open circuit state, the auxiliary electrode Aux is grounded, and the counter electrode R / C is + V2, and as a result, on the counter electrode R / C. , Ag oxidation reaction occurs, and AgCl is replenished to the counter electrode R / C. In the replenishment mode, depending on the magnitude of the physiological signal Ia and the measurement period T1, at least one of the switches corresponding to I_F1 to I_Fn can be turned on to output a constant current Ib, and AgCl can be replenished. The amount can be controlled by adjusting the period t2 in which the potential difference V2 is applied. That is, assuming that AgCl on the counter electrode R / C is kept within a safe storage range, the replenishment amount is equal to or not equal to the consumable amount (almost the same, larger or smaller). Including).

連続可変定電流回路の切り替え応用
図7A〜7B及び図7A〜7Bを参照し、図7Aと図7Bは、本発明に係る、それぞれ測定モード及び補充モードでの連続可変定電流回路を示す。この実施形態における測定モード及び補充モードは、図6A〜6Bと同様であるので、ここでは繰り返し説明しない。この実施形態は、図6Aと図6Bの実施形態の補充モードの場合のみと異なり、生理信号Iaに基づいて、定電流Ibは、デジタル−アナログ変換器(DAC)の制御によって出力することができ、AgClの補充量は、電位差V2が印加される期間t2を調整することで制御できる。すなわち、対電極R/C上のAgClが安全な貯蔵範囲内に保たれていることを前提として、補充量は、消耗量に等しいか、又は等しくない(ほぼ同様、より大きい、又はより小さいを含む)。
Switching application of continuously variable constant current circuit With reference to FIGS. 7A to 7B and 7A to 7B, FIGS. 7A and 7B are continuously variable constant current circuits according to the present invention in the measurement mode and the replenishment mode, respectively. Is shown. Since the measurement mode and the replenishment mode in this embodiment are the same as those in FIGS. 6A to 6B, they will not be described repeatedly here. This embodiment is different only in the replenishment mode of the embodiments of FIGS. 6A and 6B, and the constant current Ib can be output under the control of a digital-to-analog converter (DAC) based on the physiological signal Ia. The amount of AgCl replenished can be controlled by adjusting the period t2 in which the potential difference V2 is applied. That is, assuming that AgCl on the counter electrode R / C is kept within a safe storage range, the replenishment amount is equal to or not equal to the consumable amount (almost the same, larger or smaller). Including).

図8A〜8Cにおいて、横軸は時間を表し、縦軸は電流を表し、V1の曲線は、測定電位差V1の印加及び除去を表し、V2の曲線は、補充電位差V2の印加及び除去を表す。図8Aに示すように、好ましい実施形態において、T2は一定値であり、V2が印加される期間t2(すなわち、補充期間)は可変値である。補充期間t2は、測定期間T1及び測定モードで測定された生理信号Iaに応じて、0からT2の範囲で動的に調整される。図8Aに示すように、t2は、t2’、t2’’、又はt2’’’…のいずれかである。つまり、AgClの消耗量に応じて補充期間t2を変更することができる。AgClの消耗量が多い状態では、対電極R/CのAgClを安全な貯蔵範囲内に保つために、対電極R/Cを長時間補充することができる。 In FIGS. 8A-8C, the horizontal axis represents time, the vertical axis represents current, the curve of V1 represents the application and removal of the measured potential difference V1, and the curve of V2 represents the application and removal of the supplementary potential difference V2. As shown in FIG. 8A, in a preferred embodiment, T2 is a constant value and the period t2 (ie, the replenishment period) to which V2 is applied is a variable value. The replenishment period t2 is dynamically adjusted in the range of 0 to T2 according to the measurement period T1 and the physiological signal Ia measured in the measurement mode. As shown in FIG. 8A, t2 is either t2 ″, t2 ″, or t2 ″ ″. That is, the replenishment period t2 can be changed according to the amount of AgCl consumed. When the amount of AgCl consumed is large, the counter electrode R / C can be replenished for a long time in order to keep the AgCl of the counter electrode R / C within a safe storage range.

図8Bを参照し、別の好ましい実施形態において、V2は可変値であり、T2及びt2は一定値であり、ここで、t2は、0より大きくT2より小さい一定値である。例えば、t2は、1/2 T2、2/5 T2、3/5 T2などであり得る。この実施形態において、V2は、生理学的信号を測定するステップにおいて、AgClの消耗量に従って動的に調整される(即ち、測定モード)。動的調整方法の一例を以下に示す。例えば、セグメント定電流回路が使用される。この回路にはn個の定電流電源とn個のスイッチが含まれており、各定電流電源はスイッチに対応している。補充モードでは、AgClの消耗量に応じて、n個のスイッチの少なくとも一つがオンになり(閉回路状態)、定電流値を出力する。補充期間t2が一定値である場合、異なる定電流出力を選択することにより、AgClの補充量を制御できる。 With reference to FIG. 8B, in another preferred embodiment, V2 is a variable value, T2 and t2 are constant values, where t2 is a constant value greater than 0 and less than T2. For example, t2 can be 1/2 T2, 2/5 T2, 3/5 T2, and so on. In this embodiment, V2 is dynamically adjusted according to the amount of AgCl consumed (ie, measurement mode) in the step of measuring the physiological signal. An example of the dynamic adjustment method is shown below. For example, a segment constant current circuit is used. This circuit includes n constant current power supplies and n switches, and each constant current power supply corresponds to a switch. In the replenishment mode, at least one of the n switches is turned on (closed circuit state) according to the amount of AgCl consumed, and a constant current value is output. When the replenishment period t2 is a constant value, the replenishment amount of AgCl can be controlled by selecting a different constant current output.

図8Cを参照し、別の好ましい実施形態において、V2は可変値であり、T2及びt2は一定値であり、ここで、t2=T2である。つまり、測定モードと補充モードがシームレスに切り替わり、測定を実行しない期間が補充期間となる。 With reference to FIG. 8C, in another preferred embodiment, V2 is a variable value, T2 and t2 are constant values, where t2 = T2. That is, the measurement mode and the replenishment mode are seamlessly switched, and the period during which the measurement is not executed is the replenishment period.

連続可変定電流回路と比較して、セグメント定電流回路では、複数のスイッチで複数の電流経路を制御できるため、必要な電流量に応じてマルチセグメントで補充でき、従って、マルチセグメント定電流は、電力を節約し、コストを削減することができる。更に、定電圧回路であろうと定電流回路であろうと、電位差は、DC電源又はAC電源、好ましくはDC電源から生じることができる。 Compared to a continuously variable constant current circuit, a segment constant current circuit can control multiple current paths with multiple switches, so it can be replenished in multiple segments according to the amount of current required. It can save power and reduce costs. Further, whether it is a constant voltage circuit or a constant current circuit, the potential difference can be generated from a DC power source or an AC power source, preferably a DC power source.

図5A〜図8Cの実施形態は、すべて、測定ステップと補充ステップを交互に繰り返す操作方法に関与する。これは、任意の二つの測定ステップの間にAgCl補充ステップがあることを意味する。このような方法により、AgClが安全な貯蔵範囲内に維持することがより確実になる。しかしながら、いくつかの好ましい実施形態において、AgClの累積補充量を依然として安全な貯蔵範囲内に保つことができるように、Y回のAgCl補充をN測定中に任意に実行することができ、ここでY≦Nである。測定ステップと補充ステップは、必ずしも交互のサイクルで実行する必要がない。補充ステップは、いくつかの測定ステップの後、又は所定の測定時間後に実行することもできる。例えば、補充ステップは、10回の測定ステップの後、又は累積測定時間が1時間に達した後に実行できる。 The embodiments of FIGS. 5A-8C all relate to an operation method in which a measurement step and a replenishment step are alternately repeated. This means that there is an AgCl replenishment step between any two measurement steps. Such a method makes it more certain that AgCl is kept within a safe storage range. However, in some preferred embodiments, Y rounds of AgCl replenishment can be optionally performed during the N measurement so that the cumulative amount of AgCl replenishment can still be kept within a safe storage range, where. Y ≦ N. The measurement and replenishment steps do not necessarily have to be performed in alternating cycles. The replenishment step can also be performed after several measurement steps or after a predetermined measurement time. For example, the replenishment step can be performed after 10 measurement steps or after the cumulative measurement time reaches 1 hour.

図8Dを参照し、図8Dは、図8Cと同様の方法で交互に測定モード及び補充モードで動作する定電流回路の電流−時間概略図を示す。図8Dにおいて、曲線は、測定された生理信号Iaから演算された生理パラメータ曲線を表し、T2及びt2は両方とも一定値であり、V2は可変値である条件は、図8Cの条件と同様である。図8Dにおいて、曲線の下の白い領域は、測定モード(Ia * T1)でのAgClの消耗量を表し、斜めの領域は、補充モード(Ib * t2)でのAgClの補充量を表す。この図から見れば、Ib * t2を、Ia * T1に近づける、又はIa * T1の特定の範囲内にするために、AgClの消耗量に応じて補充電位差V2が動的に調整されることがわかる。 With reference to FIG. 8D, FIG. 8D shows a schematic current-time diagram of a constant current circuit operating alternately in measurement mode and replenishment mode in a manner similar to FIG. 8C. In FIG. 8D, the curve represents a physiological parameter curve calculated from the measured physiological signal Ia, and the conditions in which T2 and t2 are both constant values and V2 is a variable value are the same as those in FIG. 8C. is there. In FIG. 8D, the white area below the curve represents the amount of AgCl consumed in the measurement mode (Ia * T1), and the diagonal area represents the amount of AgCl replenished in the replenishment mode (Ib * t2). From this figure, the replenishment potential difference V2 may be dynamically adjusted according to the amount of AgCl consumed in order to bring Ib * t2 closer to Ia * T1 or within a specific range of Ia * T1. Understand.

更に、図5E、5F及び8Dは、生理信号を測定するための各測定ステップを実行した後の各生理パラメータ値の出力タイミングを示さないが、生理パラメータ値が出力され得る、これに限定されない。測定が完了したとき、又は補充期間中に、すべての生理パラメータが出力された後、又は生理信号を取得した後に、AgCl補充ステップを実行することができるが、これに限定されない。 Further, FIGS. 5E, 5F and 8D do not show the output timing of each physiological parameter value after executing each measurement step for measuring the physiological signal, but the physiological parameter value can be output, and the present invention is not limited thereto. The AgCl replenishment step can be performed, but not limited to, when the measurement is complete, or during the replenishment period, after all physiological parameters have been output, or after the physiological signal has been obtained.

作用電極Wと対電極R/Cを含む二電極システムでは、作用電極Wは、酸化反応の実行と還元反応の実行との間で連続的に切り替わる必要がある。電極の化学反応環境では、酸化反応と還元反応の切り替えは、数秒や数分などの安定化期間を経る必要がある。対照的に、作用電極W、対電極R/C及び補助電極Auxを含む三電極システムでは、作用電極W及び対電極R/Cを含むループを測定ステップに使用することができ、 補助電極Auxと対電極R/Cを含むループは、補充ステップに使用できる。したがって、作用電極Wが安定化期間を必要とするという欠点が回避される。すなわち、補充ステップは、測定ステップの直後に実行することができる。 In a two-electrode system that includes a working electrode W and a counter electrode R / C, the working electrode W needs to switch continuously between the execution of the oxidation reaction and the execution of the reduction reaction. In the chemical reaction environment of the electrode, switching between the oxidation reaction and the reduction reaction requires a stabilization period such as several seconds or several minutes. In contrast, in a three-electrode system containing a working electrode W, a counter electrode R / C and an auxiliary electrode Aux, a loop containing the working electrode W and the counter electrode R / C can be used in the measurement step with the auxiliary electrode Aux. The loop containing the counter electrode R / C can be used for the replenishment step. Therefore, the drawback that the working electrode W requires a stabilization period is avoided. That is, the replenishment step can be performed immediately after the measurement step.

図9を参照し、図9は、本発明に係る分析物を測定する方法を示す。マイクロバイオセンサーの使用寿命は、この方法によって延長することができる。マイクロバイオセンサーは、例えば、図2Aから図3に示すマイクロバイオセンサーであって、生体液(組織液など)中の分析物に関連する生理パラメータを表す生理信号を測定するために皮下に埋め込まれるために使用される。図9の実施形態において、分析物は組織液中のグルコースであってもよく、生理パラメータは人体のグルコースレベルであり、生理信号は微生物センサーによって測定された電流値である。この実施形態において、分析物を測定するための方法は、測定ステップ(S901)及び補充ステップ(S902)を繰り返し実行することを含む。測定ステップ(S901)は、前述の定電圧回路又は定電流回路を使用して、測定期間T1の間に前述の測定モードを実行して生理信号(すなわち、電流値)を出力し、同時に対電極におけるAgClは電流値に対応する消耗量を有することを含む。測定ステップ(S901)も、測定モードを停止することによって測定ステップを停止することを含み、電流値は、生理パラメータ(すなわち、グルコースレベル)を出力するために演算される。 With reference to FIG. 9, FIG. 9 shows a method of measuring an analyte according to the present invention. The service life of the microbiosensor can be extended by this method. The microbiosensor is, for example, the microbiosensor shown in FIGS. 2A to 3 and is to be implanted subcutaneously to measure a physiological signal representing a physiological parameter related to an analyte in a biological fluid (such as tissue fluid). Used for. In the embodiment of FIG. 9, the analyte may be glucose in tissue fluid, the physiological parameter is the glucose level of the human body, and the physiological signal is the current value measured by the microbial sensor. In this embodiment, the method for measuring the analyte comprises repeatedly performing the measurement step (S901) and the replenishment step (S902). In the measurement step (S901), the above-mentioned constant voltage circuit or the above-mentioned constant current circuit is used to execute the above-mentioned measurement mode during the measurement period T1 to output a physiological signal (that is, a current value), and at the same time, the counter electrode. AgCl in the above includes having a consumable amount corresponding to the current value. The measurement step (S901) also includes stopping the measurement step by stopping the measurement mode, and the current value is calculated to output a physiological parameter (ie, glucose level).

測定ステップ(S901)における化学反応式は以下のとおりである。
以下の酸化反応が作用電極320で起こる。
以下の還元反応が対電極330で起こる。
The chemical reaction formula in the measurement step (S901) is as follows.
The following oxidation reaction occurs at the working electrode 320.
The following reduction reaction occurs at the counter electrode 330.

補充ステップ(S902)は、前述の定電圧回路又は定電流回路を使用して、補充期間中に前述の補充モードを実行することを含み、その結果、対電極上のAgClは、消耗量に対応する補充量を有し、したがって、AgClは、 対電極の量は安全な貯蔵範囲内で管理されている。その結果、作用電極と対電極間の電位差を安定に保つことができるため、得られた電流値はグルコース値との安定した相関関係を維持できる(検出された物質が他の分析物である場合、相関関係は比例する又は逆相関の可能性がある)。言い換えれば、次の測定ステップで得られる次の電流値と次のグルコース値との間の安定した相関関係を維持することが可能である。補充ステップ(S902)は、前述の補充モードを停止することにより補充ステップを停止するステップも含む。補充ステップ(S902)が終了した後、N個の測定ステップ(S901)及びN個の補充ステップ(S902)を実行するまで、方法は測定ステップ(S901)に戻る。 The replenishment step (S902) includes performing the replenishment mode described above during the replenishment period using the constant voltage circuit or constant current circuit described above, so that AgCl on the counter electrode corresponds to the amount consumed. AgCl has a replenishment amount to allow, and therefore the amount of counter electrode is controlled within a safe storage range. As a result, the potential difference between the working electrode and the counter electrode can be kept stable, so that the obtained current value can maintain a stable correlation with the glucose value (when the detected substance is another analyte). , The correlation can be proportional or inversely correlated). In other words, it is possible to maintain a stable correlation between the next current value and the next glucose value obtained in the next measurement step. The replenishment step (S902) also includes a step of stopping the replenishment step by stopping the replenishment mode described above. After the replenishment step (S902) is completed, the method returns to the measurement step (S901) until the N measurement steps (S901) and the N replenishment steps (S902) are executed.

補充ステップ(S902)における化学反応式は以下のとおりである。 以下の還元反応が補助電極で起こる。
対電極330の正電位は、対電極330で発生する以下の酸化反応を引き起こす。
対電極上のAgは、Ag+に酸化され、体内のCl-又はAgClの酸化(又は解離)からCl-と結合してAgClを形成して、測定期間T1の間に消耗されたAgClの一部又は全部が対電極に補充される。
The chemical reaction formula in the replenishment step (S902) is as follows. The following reduction reaction occurs at the auxiliary electrode.
The positive potential of the counter electrode 330 causes the following oxidation reaction that occurs in the counter electrode 330.
Ag on the counter electrode is oxidized to Ag +, the body of a Cl - or from the oxidation of AgCl (or dissociation) Cl - bonded to form a AgCl with and, of AgCl was depleted during the measurement period T1 one Part or all is replenished to the counter electrode.

人間はヨウ素をドープした塩を通して塩化物イオンとヨウ化物イオンを摂取することができる。利用可能なハロゲンイオンには、対電極にハロゲン化銀を補充するための少なくとも塩化物イオン及びヨウ化物イオンが含まれる。 Humans can ingest chloride and iodide ions through iodine-doped salts. Available halogen ions include at least chloride and iodide ions to replenish the counter electrode with silver halide.

以下の実施形態は、N個の測定ステップ(S901)及びN個の補充ステップ(S902)のサイクルに関する。言及される生理パラメータは、好ましくはグルコース値であり、言及される生理信号は、好ましくは電流値である。いくつかの好ましい実施形態によれば、各測定電位差V1は、測定期間T1の間に印加される。各補充電位差V2は、補充期間t2の間に印加される。測定期間T1は一定値であり、3秒、5秒、10秒、15秒、30秒、1分、2.5分、5分又は10分以内の値にすることができる。いくつかの好ましい実施形態によれば、一定値は、30秒以内の値であってもよい。測定期間T1は一定値であり、2.5秒、5秒、15秒、30秒、1分、2.5分、5分、10分、又は30分、好ましくは30秒である。いくつかの好ましい実施形態によれば、各測定期間T1プラス各補充期間t2は一定値である。 いくつかの好ましい実施形態によれば、各補充電位差V2は一定の電圧値を有し、各補充期間t2は、(図5Aに示すように)AgClの各消耗量に従って動的に調整される。いくつかの好ましい実施形態によれば、各出力の生理パラメータは、各測定期間T1における単一の測定時点での生理信号の演算を通じて得られる。いくつかの好ましい実施形態によれば、各出力の生理パラメータは、各測定期間T1における複数の測定時点での複数の生理信号の数学演算値を通じて得られる。前述の数学演算値は、例えば、累積値、平均値、中央値、中央値の平均値などである。いくつかの好ましい実施形態によれば、対電極上のAgClの補充量は、各補充量が各消耗量に等しいか等しくない(ほぼ同様、より大きい、又はより小さいを含む)ように制御することによって、安全な保管範囲内に制御される。結果として、次の測定ステップ中に得られる次の生理信号は、次の生理パラメータとの安定した比例相関を維持する。いくつかの好ましい実施形態によれば、各測定電位差V1を除去するステップは、作用電極と対電極を接続する回路を切断するか、又は各測定電位差V1をゼロに設定することである。つまり、電源を切って測定回路を開回路状態にすることができ、或いは、作用電極と対電極の間にゼロボルトの電圧を印加することができ、ここで、二つの動作のいずれかの動作時間は、0.01〜0.5秒である。測定電位差V1を除去するステップにより、Λ型の生理信号の生成を回避できる。いくつかの好ましい実施形態によれば、各補充電位差V2を除去するステップは、補助電極と対電極を接続するように構成された回路を切断するか、又は各補充電位差V2をゼロに設定することである。 The following embodiments relate to a cycle of N measurement steps (S901) and N replenishment steps (S902). The physiological parameter referred to is preferably a glucose value and the physiological signal referred to is preferably a current value. According to some preferred embodiments, each measurement potential difference V1 is applied during the measurement period T1. Each replenishment potential difference V2 is applied during the replenishment period t2. The measurement period T1 is a constant value and can be a value within 3 seconds, 5 seconds, 10 seconds, 15 seconds, 30 seconds, 1 minute, 2.5 minutes, 5 minutes or 10 minutes. According to some preferred embodiments, the constant value may be a value within 30 seconds. The measurement period T1 is a constant value, and is 2.5 seconds, 5 seconds, 15 seconds, 30 seconds, 1 minute, 2.5 minutes, 5 minutes, 10 minutes, or 30 minutes, preferably 30 seconds. According to some preferred embodiments, each measurement period T1 plus each replenishment period t2 is a constant value. According to some preferred embodiments, each replenishment potential difference V2 has a constant voltage value and each replenishment period t2 is dynamically adjusted according to each consumption of AgCl (as shown in FIG. 5A). According to some preferred embodiments, the physiological parameters of each output are obtained through the calculation of physiological signals at a single measurement time point in each measurement period T1. According to some preferred embodiments, the physiological parameters of each output are obtained through mathematically calculated values of the plurality of physiological signals at the plurality of measurement points in each measurement period T1. The above-mentioned mathematically calculated values are, for example, a cumulative value, an average value, a median value, an average value of medians, and the like. According to some preferred embodiments, the replenishment amount of AgCl on the counter electrode is controlled so that each replenishment amount is equal to or not equal to each consumption amount (including almost the same, larger or smaller). Is controlled within a safe storage range. As a result, the next physiological signal obtained during the next measurement step maintains a stable proportional correlation with the next physiological parameter. According to some preferred embodiments, the step of removing each measured potential difference V1 is to disconnect the circuit connecting the working electrode and the counter electrode or set each measured potential difference V1 to zero. That is, the power can be turned off to open the measurement circuit, or a zero volt voltage can be applied between the working electrode and the counter electrode, where the operating time of either of the two operations Is 0.01 to 0.5 seconds. By removing the measurement potential difference V1, the generation of the Λ-type physiological signal can be avoided. According to some preferred embodiments, the step of removing each replenishment potential difference V2 is to either disconnect the circuit configured to connect the auxiliary electrode to the counter electrode or set each replenishment potential difference V2 to zero. Is.

いくつかの好ましい実施形態によれば、バイオセンサーが人体に埋め込まれた後、バイオセンサーが体内で平衡及び安定の状態にあり、分析物濃度と正に相関する生理信号を安定して呈するために、ウォームアップ時間が必要である。したがって、測定ステップ(S901)において、測定電圧は、測定期間T1の終わりまで継続的に印加され、測定期間T1は、分析物の生理信号及び生理パラメータが安定した比例相関を有するように制御される。この目的のために、測定期間T1は、可変値、又は可変値と一定値の組み合わせであり得る(例えば、可変値+一定値であり、可変値は、1時間、2時間、3時間、6時間、12時間又は24時間であり、一定値は、例えば、30秒であり得る)。 According to some preferred embodiments, after the biosensor is implanted in the human body, the biosensor is in equilibrium and stability in the body to stably present a physiological signal that is positively correlated with the concentration of the analyte. , Need warm-up time. Therefore, in the measurement step (S901), the measurement voltage is continuously applied until the end of the measurement period T1, and the measurement period T1 is controlled so that the physiological signal and the physiological parameter of the analyte have a stable proportional correlation. .. For this purpose, the measurement period T1 can be a variable value, or a combination of variable and constant values (eg, variable + constant, where the variable values are 1 hour, 2 hours, 3 hours, 6). Hours, 12 hours or 24 hours, with constant values being, for example, 30 seconds).

図5A〜5F、図8A〜8D及び図9を参照し、本発明は、ある期間中に対電極R/Cに印加される電圧を使用して対電極の合成電流を測定し、AgClの初期容量は、期間中の合成電流を数学的に計算することによって得られる。例えば、AgClの初期容量は、合成電流の曲線下の面積を計算することによって定義される。AgClの初期容量は、初期量又は初期クーロン量(Cinitial)とも呼ばれ、以下はすべて量で表される。対電極R/CにはAgとAgClが含まれている。AgClの量(X%AgCl)がわかっている場合、Agの量を計算できる(Y%Ag=100%〜X%AgCl)。各測定ステップ(S901)において、AgClの消耗量(Cconsumeで示す)は、作用電極Wの電流曲線下の面積を計算することによって定義される。対電極R/CのAgClは、生理信号Iaに対応する消耗量(Cconsume)を有する、すなわち、Cconsume=Ia *T1である。各補充ステップ(S902)において、AgClの各補充量(Creplenishで示す)は、対電極R/Cの電流曲線下の面積を計算することによって定義される。すなわち、Creplenish= Ib * t2、ここで、t2は、0〜T2の範囲にある。 With reference to FIGS. 5A-5F, 8A-8D and 9, the present invention measures the combined current of the counter electrode using the voltage applied to the counter electrode R / C during a period of time to determine the initial AgCl. The capacitance is obtained by mathematically calculating the combined current during the period. For example, the initial capacitance of AgCl is defined by calculating the area under the curve of the combined current. The initial volume of AgCl is also referred to as the initial amount or the initial amount of Coulomb (Cinitial), and the following are all expressed as amounts. The counter electrode R / C contains Ag and AgCl. If the amount of AgCl (X% AgCl) is known, the amount of Ag can be calculated (Y% Ag = 100% to X% AgCl). In each measurement step (S901), the amount of AgCl consumed ( indicated by C consume ) is defined by calculating the area of the working electrode W under the current curve. AgCl of the counter electrode R / C has a consumed amount (C consume ) corresponding to the physiological signal Ia, that is, C consume = Ia * T1. In each replenishment step (S902), each replenishment amount of AgCl ( indicated by Creplenish ) is defined by calculating the area of the counter electrode R / C under the current curve. That, C replenish = Ib * t2, where, t2 is in the range of 0~T2.

AgClの安全貯蔵管量の計算方法を以下に示す。いくつかの好ましい実施形態では、安全な貯蔵範囲は、Ag対AgClの比によって表される。本発明は、対電極で測定されたクーロン量(C)を使用して、Ag対AgClの比を反映する。いくつかの好ましい実施形態では、Ag対AgClの比は、99.9%:0.1%、99%:1%、95%:5%、90%:10%、70%:30%、50%:50%、40%:60%又は30:70%であり、これにより、対電極上に一定量のAgClが使い尽くされることなく保証されるため、生理信号を測定するための各測定ステップを安定して実行できる。AgClの残存量は、補充量と初期量の合計から消耗量を差し引いたものである。いくつかの好ましい実施形態では、AgClの残存量は範囲内で変化する、すなわち、AgClの残存量は、初期量から特定値(X値)を増減させた範囲内で制御される。つまり、(Creplenish+Cinitial)−Cconsume =Cinitial±X、ここで0<X<100%Cinitial、10%Cinitial<X≦90%Cinitial、又は0.5%Cinitial<X≦50%Cinitialである。いくつかの好ましい実施形態では、AgClの残存量は、範囲内で、徐々に減少する、徐々に増加する、着実に変化する、又は任意に変化するが、それでも範囲内にあることができる。 The calculation method of the safe storage tube amount of AgCl is shown below. In some preferred embodiments, the safe storage range is represented by the Ag to AgCl ratio. The present invention uses the amount of Coulomb (C) measured at the counter electrode to reflect the Ag to AgCl ratio. In some preferred embodiments, the Ag to AgCl ratios are 99.9%: 0.1%, 99%: 1%, 95%: 5%, 90%: 10%, 70%: 30%, 50. %: 50%, 40%: 60% or 30: 70%, which guarantees that a certain amount of AgCl is not exhausted on the counter electrode, so that each measurement step for measuring the physiological signal. Can be executed stably. The residual amount of AgCl is the sum of the replenishment amount and the initial amount minus the consumption amount. In some preferred embodiments, the residual amount of AgCl varies within a range, i.e., the residual amount of AgCl is controlled within a range in which a specific value (X value) is increased or decreased from the initial amount. That is, ( Creplenish + Cinitial ) -C context = Cinitial ± X, where 0 <X <100% Cinitial , 10% Cinitial < X≤90 % Cinitial, or 0.5% Cinitial <X≤ It is 50% Clinical . In some preferred embodiments, the residual amount of AgCl can be in the range, gradually decreasing, gradually increasing, steadily changing, or optionally changing, but still within the range.

図10を参照し、図10は、本発明の別の実施形態に係る分析物を測定するための方法を示す。この方法により、マイクロバイオセンサーの使用寿命を延ばすことができ、対電極の銀及びハロゲン化銀材料の量を減らすことができる。マイクロバイオセンサーは、例えば、図2A〜図3に示すマイクロバイオセンサーであり、生体液(組織液など)中の分析物に関連する生理パラメータを表す生理信号を測定するために皮下に埋め込まれるために使用される。マイクロバイオセンサーの対電極の電極材料は、銀及びハロゲン化銀を含む。図10の実施形態において、分析物は組織液中のグルコースであり、生理パラメータは人体のグルコース値であり、生理信号はマイクロバイオセンサーによって測定された電流値である。この実施形態の一つのサイクルのみを以下に説明する。この実施形態の方法は、測定電圧を印加して作用電極を駆動し、生理パラメータを得るための生理信号を測定するステップから始まり、ここで、特定量のハロゲン化銀が消耗される(以下、「消耗量」という)(S1001)。 With reference to FIG. 10, FIG. 10 shows a method for measuring an analyte according to another embodiment of the present invention. By this method, the service life of the microbiosensor can be extended, and the amount of silver and silver halide materials of the counter electrode can be reduced. The microbiosensor is, for example, the microbiosensor shown in FIGS. 2A to 3 for being implanted subcutaneously to measure a physiological signal representing a physiological parameter associated with an analyte in a biological fluid (such as tissue fluid). used. The electrode material of the counter electrode of the microbiosensor contains silver and silver halide. In the embodiment of FIG. 10, the analyte is glucose in tissue fluid, the physiological parameter is the glucose level of the human body, and the physiological signal is the current value measured by a microbiosensor. Only one cycle of this embodiment will be described below. The method of this embodiment begins with the step of applying a measuring voltage to drive a working electrode and measuring a physiological signal to obtain physiological parameters, where a specific amount of silver halide is consumed (hereinafter,). "Consumable amount") (S1001).

次に、測定電圧を印加するステップを停止し(S1002)、得られた生理信号を使用して生理パラメータを取得する(S1003)。生理パラメータを取得した後、ハロゲン化銀を補充量によって補充するように、補充電圧を対電極及び補助電極の間に印加して対電極を駆動する(S1004)。ここで、補充量と初期量の合計から消耗量を引いた値(すなわち、前述の「残存量」)は、初期量から特定値を増減させた範囲内で制御される。上記の制御ステップは、ハロゲン化銀の量を安全な保管範囲内に維持するために、補充量を消耗量に等しいか等しくない(ほぼ同じ、多い、又は少ないを含む)ように制御することによって達成する。化学反応式によれば、ハロゲン化銀のモル数の増加又は減少は、銀のモル数の増加又は減少に対応している。したがって、説明を簡単にするために、ハロゲン化銀の消耗量は、シミュレートされた銀の増加量に対応している。いくつかの好ましい実施形態では、残りの量の値は、ハロゲン化銀の量と銀の量の合計に対するハロゲン化銀の量の比(AgCl/Ag+AgCl)がゼロより大きく、1より小さいように制御される(つまり、 対電極には一定量のハロゲン化銀が含まれている必要がある)。前記比は、好ましくは、0.01〜0.99、0.1〜0.9、0.2〜0.8、0.3〜0.7又は0.4〜0.6の間にある。補充量に達すると、補充電圧を印加するステップを停止する(S1005)。次に、方法はステップS1001に戻り、次のループを実行する。 Next, the step of applying the measurement voltage is stopped (S1002), and the obtained physiological signal is used to acquire the physiological parameters (S1003). After acquiring the physiological parameters, a replenishment voltage is applied between the counter electrode and the auxiliary electrode to drive the counter electrode so that silver halide is replenished by the replenishment amount (S1004). Here, the value obtained by subtracting the consumable amount from the sum of the replenishment amount and the initial amount (that is, the above-mentioned "residual amount") is controlled within a range in which a specific value is increased or decreased from the initial amount. The above control step is by controlling the replenishment amount to be equal to or not equal to the consumable amount (including approximately the same, more, or less) in order to keep the amount of silver halide within a safe storage range. Achieve. According to the chemical reaction formula, an increase or decrease in the number of moles of silver halide corresponds to an increase or decrease in the number of moles of silver. Therefore, for simplicity of explanation, the amount of silver halide consumed corresponds to the simulated increase in silver. In some preferred embodiments, the value of the remaining amount is controlled so that the ratio of the amount of silver halide to the sum of the amount of silver halide and the amount of silver (AgCl / Ag + AgCl) is greater than zero and less than one. (That is, the counter electrode must contain a certain amount of silver halide). The ratio is preferably between 0.01 and 0.99, 0.1 to 0.9, 0.2 to 0.8, 0.3 to 0.7 or 0.4 to 0.6. .. When the replenishment amount is reached, the step of applying the replenishment voltage is stopped (S1005). Next, the method returns to step S1001 and executes the next loop.

本発明の特定の実施形態を以下に説明する。例として、バイオセンサーの使用寿命は16日に達する必要がある。この目的のために、電極の信号感知部分上のAg/AgCl材料の必要なサイズを計算する方法を以下に説明する。例えば、各測定の分析対象物の測定電流の平均は30nA、測定期間(T1)は30秒、補充期間(t2)は30秒である。AgClの1日あたりの消耗量(Cconsume/day)=1.3mC/日である。バイオセンサーの使用寿命の要求が16日であると仮定すると、16日を使用するために必要なAgClの消耗量は1.3x16=20.8mCである。 Specific embodiments of the present invention will be described below. As an example, the useful life of a biosensor needs to reach 16 days. For this purpose, a method of calculating the required size of Ag / AgCl material on the signal sensing portion of the electrode will be described below. For example, the average measurement current of the analysis target of each measurement is 30 nA, the measurement period (T1) is 30 seconds, and the replenishment period (t2) is 30 seconds. The daily consumption of AgCl (Cconse / day) = 1.3 mC / day. Assuming that the biosensor service life requirement is 16 days, the amount of AgCl consumed to use 16 days is 1.3x16 = 20.8 mC.

例えば、対電極の長さは2.5mmであり、AgClの初期量Cinitial=10mCに相当する。
(1)AgClの補充を実行しない状態で、センサーの使用寿命が16日間の場合、対電極の必要な長さは少なくとも次のとおりである。
16day/Cconsume/day=20.8mC/1.3mg/ day=16mm。
(2)したがって、本出願におけるハロゲン化銀の補充方法を実施しない場合、センサーの使用寿命を16日とするためには、対電極の長さが16mmを超える必要がある。
For example, the length of the counter electrode is 2.5 mm, which corresponds to the initial amount of AgCl, Clinical = 10 mC.
(1) When the service life of the sensor is 16 days without replenishing AgCl, the required length of the counter electrode is at least as follows.
C 16 day / C context / day = 20.8 mC / 1.3 mg / day = 16 mm.
(2) Therefore, if the silver halide replenishment method in the present application is not carried out, the length of the counter electrode needs to exceed 16 mm in order to make the service life of the sensor 16 days.

この実施形態において、本発明のハロゲン化銀の補充技術を使用しないという条件で、対電極の信号検知部は、16日の使用寿命を達成するために、比較的大きなサイズのAg/AgCl材料で構成する必要がある。本発明におけるハロゲン化銀の補充方法により、ハロゲン化銀の補充ステップは、二つの測定ステップの間に実行する。ハロゲン化銀サイクルの消耗と補充が短時間で繰り返される(使用時に補充される)ため、センサー内のAg/AgCl材料の量を減らすことができ、これによってセンサーが小型化される。したがって、電極の信号感知部分の材料に16日間のAgCl容量を用意して消耗する必要がある。たとえば、AgClの容量を約1〜2日間準備すると、センサーの使用時間は16日間になる。したがって、本発明は、センサーの使用寿命を延ばす効果を有する。1〜2日間のAgClの容量は、工場出荷前又は最初の測定を実行する前の対電極内のAgClの初期量も指す。AgClの初期量は、例えば、約1.3から2.6mCの間であり得るが、他のより小さな範囲又はより大きな範囲であり得る。他の実施形態において、1〜5日、1〜3日、6〜24時間、及び6〜12時間の異なるAgCl容量も調製することができる。対電極の信号検知部分の大きさは、対電極がグルコースの各測定ステップを安定して実行し、測定電流と体内のグルコース濃度との正の相関を可能にする容量を有するように構成することができる。 In this embodiment, provided that the silver halide replenishment technique of the present invention is not used, the counter electrode signal detector is made of a relatively large size Ag / AgCl material in order to achieve a service life of 16 days. Need to be configured. According to the silver halide replenishment method in the present invention, the silver halide replenishment step is performed between the two measurement steps. Since the silver halide cycle is consumed and replenished in a short time (replenished at the time of use), the amount of Ag / AgCl material in the sensor can be reduced, which makes the sensor smaller. Therefore, it is necessary to prepare a 16-day AgCl capacity for the material of the signal sensing portion of the electrode and consume it. For example, if the AgCl volume is prepared for about 1-2 days, the sensor usage time will be 16 days. Therefore, the present invention has the effect of extending the service life of the sensor. The volume of AgCl for 1-2 days also refers to the initial amount of AgCl in the counter electrode before factory shipment or before performing the first measurement. The initial amount of AgCl can be, for example, between about 1.3 and 2.6 mC, but can be in other smaller or larger ranges. In other embodiments, different AgCl volumes of 1-5 days, 1-3 days, 6-24 hours, and 6-12 hours can also be prepared. The size of the signal detection portion of the counter electrode should be configured so that the counter electrode has a capacity that allows each measurement step of glucose to be performed stably and a positive correlation between the measured current and the glucose concentration in the body. Can be done.

従来技術は、本発明の塩化銀補充技術を使用せずに、センサーが必要な測定日に到達するように電極の長さ/面積を増加させる。例えば、従来技術の埋め込み端の長さは約12mmである。従来技術の埋め込み長さが長いため、埋め込み端が皮下組織に深く移植されて大きな埋め込み創傷を引き起こすことを回避するために、埋め込み端を斜めの角度で皮下に埋め込む必要がある。別の例として、1〜2日間のAgClの容量は約1.3〜2.6mC、1〜2日間の対電極の長さは、2.5〜5mmに換算する。したがって、本発明のハロゲン化銀の補充方法を使用しない場合、対電極の長さは16mmを必要とする。上記の例と比較して、本発明が対電極のサイズを短くすることに対してより重要な効果を有することは明らかである。本発明の塩化銀補充ステップによれば、本発明の埋め込み端は、例えば、10mm以下に短縮することができる。図2A〜2Cを参照し、本発明のマイクロバイオセンサー300の第二端部314への接続領域317の下半部分は、図2A〜2Bに示されるように、短い埋め込み端318を形成する。短い埋め込み端318の埋め込み深さは、少なくとも、組織液中のグルコース濃度を測定できる真皮までの深さである。本発明の塩化銀補充ステップによれば、短い埋め込み端318の最も長い側の長さは6mm以下であり、その結果、マイクロバイオセンサー300の短い埋め込み端318は、生体表皮の下に垂直に埋め込むことができる。好ましくは、短い埋め込み端318の最も長い辺の長さは、5mm、4.5mm、3.5mm、又は2.5mm以下である。本発明の短い埋め込み端318は、対電極330の信号感知部分332を含み、対電極330の信号感知部分332の最長辺の長さは、6mm以下、好ましくは2〜6mm、2〜5mm、2〜4.5mm、2〜3.5mm、0.5〜2mm、又は0.2〜1mmである。 The prior art increases the length / area of the electrodes so that the sensor reaches the required measurement date without using the silver chloride replenishment technique of the present invention. For example, the length of the embedded end of the prior art is about 12 mm. Due to the long implant length of the prior art, the implant must be implanted subcutaneously at an oblique angle to prevent the implant from being deeply implanted in the subcutaneous tissue and causing a large implant wound. As another example, the volume of AgCl for 1-2 days is converted to about 1.3-2.6 mC, and the length of the counter electrode for 1-2 days is converted to 2.5-5 mm. Therefore, if the silver halide replenishment method of the present invention is not used, the length of the counter electrode is required to be 16 mm. Compared to the above example, it is clear that the present invention has a more important effect on reducing the size of the counter electrode. According to the silver chloride replenishment step of the present invention, the embedded end of the present invention can be shortened to, for example, 10 mm or less. With reference to FIGS. 2A-2C, the lower half of the connection region 317 to the second end 314 of the microbiosensor 300 of the present invention forms a short embedded end 318 as shown in FIGS. 2A-2B. The embedding depth of the short embedding end 318 is at least the depth to the dermis where the glucose concentration in the tissue fluid can be measured. According to the silver chloride replenishment step of the present invention, the length of the longest side of the short embedding end 318 is 6 mm or less, so that the short embedding end 318 of the microbiosensor 300 is vertically embedded under the biological epidermis. be able to. Preferably, the length of the longest side of the short embedded end 318 is 5 mm, 4.5 mm, 3.5 mm, or 2.5 mm or less. The short embedded end 318 of the present invention includes the signal sensing portion 332 of the counter electrode 330, and the length of the longest side of the signal sensing portion 332 of the counter electrode 330 is 6 mm or less, preferably 2 to 6 mm, 2 to 5 mm, 2 It is ~ 4.5 mm, 2 to 3.5 mm, 0.5 to 2 mm, or 0.2 to 1 mm.

したがって、本発明のハロゲン化銀補充技術を使用しない場合と比べて、本発明のハロゲン化銀補充方法は、マイクロセンサーの使用寿命を効果的に延ばすことができ、対電極上にあるAg/AgCl材料の使用を大幅に減らすことができ、対電極の信号検知部のサイズが小さくなる。対電極でのAg/AgCl材料の使用を減らすため、センサーを小型化し、生物毒性を低減できる。更に、電極のサイズの縮小は、具体的には、センサーの埋め込み端の短縮された長さを指し、これは、埋め込み中のユーザーの痛みを軽減するであろう。 Therefore, as compared with the case where the silver halide replenishment technique of the present invention is not used, the silver halide replenishment method of the present invention can effectively extend the service life of the microsensor and Ag / AgCl on the counter electrode. The use of material can be significantly reduced and the size of the counter electrode signal detector is reduced. By reducing the use of Ag / AgCl material in the counter electrode, the sensor can be miniaturized and biotoxicity can be reduced. In addition, reducing the size of the electrodes specifically refers to the shortened length of the embedded end of the sensor, which will reduce the user's pain during implantation.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加え得ることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. It is clear from the description of the claims that such modified or improved forms may also be included in the technical scope of the present invention.

生理信号測定装置10
ユーザ装置20
送信機200
プロセッサ210
電源220
回路スイッチングユニット230
温度感知ユニット240
通信ユニット250
マイクロバイオセンサー300
基板310
表面311
表面312
第一端部313
第二端部314
信号出力領域315
感知領域316
接続領域317
埋め込み端318
作用電極320、W
信号出力部分321
信号感知部分322、332、342
第一作用電極323
第二作用電極324
第三作用電極325
対電極330、R/C
補助電極340、Aux
化学試薬350
生理信号Ia、Ib
スイッチS1、S2、S3、S4、I_F1〜I_Fn
測定期間T1
測定電位差V1
補充電位差V2
補充期間t2
Physiological signal measuring device 10
User device 20
Transmitter 200
Processor 210
Power supply 220
Circuit switching unit 230
Temperature sensing unit 240
Communication unit 250
Microbiosensor 300
Board 310
Surface 311
Surface 312
First end part 313
Second end 314
Signal output area 315
Sensing area 316
Contiguous zone 317
Embedded end 318
Working electrode 320, W
Signal output part 321
Signal sensing part 322, 332, 342
First working electrode 323
Second working electrode 324
Third working electrode 325
Counter electrode 330, R / C
Auxiliary electrode 340, Aux
Chemical reagent 350
Physiological signals Ia, Ib
Switches S1, S2, S3, S4, I_F1 to I_Fn
Measurement period T1
Measurement potential difference V1
Replenishment potential difference V2
Replenishment period t2

Claims (20)

生体液中の分析物に関連する生理パラメータを表す生理信号を測定するように皮下に埋め込まれるバイオセンサーであって、作用電極、対電極及び補助電極を備え、前記作用電極は、前記分析物と反応するように化学試薬によって少なくとも部分的に覆われ、前記対電極は、銀及びハロゲン化銀を有する前記バイオセンサーの使用寿命を延長するために前記バイオセンサーを使用して前記分析物を測定する方法であって、
(a)測定を実行する測定ステップであって、
i、前記化学試薬及び前記分析物との電気化学反応を有する前記作用電極で第一酸化反応を起こさせて現在の生理信号を出力するために、前記作用電極が測定期間中に前記対電極の電圧レベルよりも高い電圧レベルを有するように、前記作用電極と前記対電極との間に測定電位差を印加するステップであって、前記対電極の前記ハロゲン化銀は前記現在の生理信号に対応する現在の消耗量を有するサブステップと、
ii、前記測定電位差を除去して前記測定ステップを停止し、前記現在の生理信号を演算して現在の生理パラメータを出力するサブステップと、を含む前記測定ステップと、
(b)補充を実行する補充ステップであって、
i、前記対電極が前記補助電極の前記電圧レベルよりも高い電圧レベルを有するように、補充期間中に前記対電極と前記補助電極の間に補充電位差を印加して、前記対電極上の前記銀に第二酸化反応を引き起こし、その結果、前記ハライド銀は前記消耗量に対応する補充量を獲得し、前記対電極の前記ハロゲン化銀は安全な貯蔵範囲に維持された量を有し、次の測定ステップで得られる次の生理信号及び次の生理パラメータが特定の相関関係に保つサブステップと、
ii、前記補充電位差を除去して、前記補充ステップを停止するサブステップと、を含む前記補充ステップと、
(c)ステップ(a)と同じサブステップを含む次の測定ステップを実行するステップと、
(d)ステップ(b)と同じサブステップを含む次の補充ステップを実行するステップと、を備える、ことを特徴とする方法。
A biosensor implanted subcutaneously to measure a physiological signal representing a physiological parameter associated with an analyte in a biofluid, comprising a working electrode, a counter electrode and an auxiliary electrode, wherein the working electrode is the same as the analyte. The counterelectrode is at least partially covered with a chemical reagent to react and the counterelectrode is measured using the biosensor to extend the life of the biosensor with silver and silver halide. It ’s a method,
(A) A measurement step in which a measurement is performed.
i, In order to cause a first oxidation reaction at the working electrode having an electrochemical reaction with the chemical reagent and the analysis substance and output the current physiological signal, the working electrode of the counter electrode during the measurement period In the step of applying a measured potential difference between the working electrode and the counter electrode so as to have a voltage level higher than the voltage level, the silver halide of the counter electrode corresponds to the current physiological signal. Substeps with current consumption and
ii, the measurement step including the sub-step of removing the measurement potential difference, stopping the measurement step, calculating the current physiological signal and outputting the current physiological parameter.
(B) A replenishment step for executing replenishment.
i, the replenishment potential difference between the counter electrode and the auxiliary electrode is applied during the replenishment period so that the counter electrode has a voltage level higher than the voltage level of the auxiliary electrode. The silver dioxide causes a dioxide reaction in the silver, so that the halide silver obtains a replenishment amount corresponding to the consumable amount, the halogenated silver of the counter electrode has an amount maintained in a safe storage range, and then The sub-step that keeps the next physiological signal and the next physiological parameter obtained in the measurement step in a specific correlation, and
ii, the replenishment step including a sub-step that removes the replenishment potential difference and stops the replenishment step.
(C) A step of executing the next measurement step including the same substep as step (a), and
(D) A method comprising: (d) a step of executing the next replenishment step including the same sub-step as step (b).
前記測定電位差と前記補充電位差は、それぞれ測定期間と補充期間に印加され、
前記測定期間は、一定の測定期間値及び可変の測定期間値のいずれかである時間値を有する、ことを特徴とする請求項1に記載の方法。
The measured potential difference and the replenishment potential difference are applied to the measurement period and the replenishment period, respectively.
The method according to claim 1, wherein the measurement period has a time value that is either a constant measurement period value or a variable measurement period value.
前記測定期間と前記補充期間の合計期間は定数である、ことを特徴とする請求項2に記載の方法。 The method according to claim 2, wherein the total period of the measurement period and the replenishment period is a constant. 前記補充電位差は、一定の電圧値を有し、
前記補充期間は、前記ハロゲン化銀の前記消耗量に基づいて動的に調整される、ことを特徴とする請求項2に記載の方法。
The replenishment potential difference has a constant voltage value and
The method according to claim 2, wherein the replenishment period is dynamically adjusted based on the consumption amount of the silver halide.
前記補充期間は、一定の期間値を有し、
前記補充電位差は、前記ハロゲン化銀の前記消耗量に基づいて動的に調整される値を有する、ことを特徴とする請求項2に記載の方法。
The replenishment period has a constant period value and
The method according to claim 2, wherein the replenishment potential difference has a value that is dynamically adjusted based on the consumption amount of the silver halide.
前記一定の測定期間値は、3秒、5秒、10秒、15秒、30秒、1分、2分、5分、10分からなる群から選択された時間値以下である、ことを特徴とする請求項2に記載の方法。 The constant measurement period value is not more than or equal to the time value selected from the group consisting of 3 seconds, 5 seconds, 10 seconds, 15 seconds, 30 seconds, 1 minute, 2 minutes, 5 minutes, and 10 minutes. The method according to claim 2. 前記安全な貯蔵範囲内の前記対電極の前記ハロゲン化銀の量は、前記補充量を前記消耗量に近いか等しいように制御することによって維持される、ことを特徴とする請求項1に記載の方法。 The first aspect of the present invention is characterized in that the amount of the silver halide of the counter electrode within the safe storage range is maintained by controlling the replenishment amount to be close to or equal to the consumption amount. the method of. 前記安全な貯蔵範囲内の前記対電極の前記ハロゲン化銀の量は、前記補充量を前記消耗量よりも大きくなるように制御することによって維持される、ことを特徴とする請求項1に記載の方法。 The first aspect of the present invention is characterized in that the amount of the silver halide of the counter electrode within the safe storage range is maintained by controlling the replenishment amount to be larger than the consumption amount. the method of. 前記安全な貯蔵範囲内の前記対電極の前記ハロゲン化銀の量は、前記補充量を前記消耗量より少なくなるように制御することにより維持される、ことを特徴とする請求項1に記載の方法。 The first aspect of the present invention, wherein the amount of the silver halide of the counter electrode within the safe storage range is maintained by controlling the replenishment amount to be less than the consumption amount. Method. 前記安全な貯蔵範囲内の前記対電極の前記ハロゲン化銀の量は、前記補充量を前記消耗量と等しくないように制御することによって維持される、ことを特徴とする請求項1に記載の方法。 The first aspect of the present invention, wherein the amount of the silver halide of the counter electrode within the safe storage range is maintained by controlling the replenishment amount so as not to be equal to the consumption amount. Method. 生体液中の分析物に関連する生理パラメータを表す生理信号を測定するように皮下に埋め込まれるバイオセンサーであって、作用電極、対電極及び補助電極を備え、前記作用電極は、化学試薬によって少なくとも部分的に覆われ、前記対電極は、銀及びハロゲン化銀を含み、初期量有する前記バイオセンサーの使用寿命を延長するために前記バイオセンサーを使用して前記分析物を測定する方法であって、
測定電圧を印加して前記作用電極を駆動し、前記生理信号を測定することにより、前記生理パラメータを取得し、前記ハロゲン化銀を消耗量で消耗するステップと、
前記測定電圧の印加を停止するステップと、
前記生理パラメータを取得するたびに、前記対電極と前記補助電極との間に補充電圧を印加して前記対電極を駆動し、酸化反応を引き起こすことによって補充量の前記ハロゲン化銀を前記対電極に補充するステップと、を備え、
前記補充量と前記初期量の合計から、前記消耗量を差し引いたガード値は、前記初期量から特定値を増減させた範囲内で制御される、ことを特徴とする方法。
A biosensor implanted subcutaneously to measure a physiological signal representing a physiological parameter associated with an analyte in a biofluid, comprising an working electrode, a counter electrode and an auxiliary electrode, wherein the working electrode is at least by a chemical reagent. Partially covered, the counterelectrode is a method of measuring the analyte using the biosensor to extend the useful life of the biosensor, which contains silver and silver halide and has an initial amount. ,
A step of acquiring the physiological parameter by applying a measuring voltage to drive the working electrode and measuring the physiological signal, and a step of consuming the silver halide by the amount of consumption.
The step of stopping the application of the measurement voltage and
Each time the physiological parameter is acquired, a replenishment voltage is applied between the counter electrode and the auxiliary electrode to drive the counter electrode and cause an oxidation reaction to bring a replenished amount of the silver halide to the counter electrode. With steps to replenish,
A method characterized in that a guard value obtained by subtracting the consumable amount from the total of the replenishment amount and the initial amount is controlled within a range in which a specific value is increased or decreased from the initial amount.
前記測定電圧は、測定期間に印加され、
前記補充電圧は、補充期間に印加され、
前記測定期間は、一定の測定期間値及び可変の測定期間値のいずれかである時間値を有する、ことを特徴とする請求項11に記載の方法。
The measured voltage is applied during the measurement period and
The replenishment voltage is applied during the replenishment period and
11. The method of claim 11, wherein the measurement period has a time value that is either a constant measurement period value or a variable measurement period value.
前記補充電圧は、一定の電圧値を有し、
前記補充期間は、前記ハロゲン化銀の前記消耗量に基づいて動的に調整される、ことを特徴とする請求項12に記載の方法。
The supplementary voltage has a constant voltage value and has a constant voltage value.
12. The method of claim 12, wherein the replenishment period is dynamically adjusted based on the consumable amount of the silver halide.
前記補充期間は、一定の期間値を有し、
前記補充電圧は、前記ハロゲン化銀の前記消耗量に基づいて動的に調整される値を有する、ことを特徴とする請求項12に記載の方法。
The replenishment period has a constant period value and
12. The method of claim 12, wherein the replenishment voltage has a value that is dynamically adjusted based on the amount of consumption of the silver halide.
前記ハロゲン化銀の量を安全な貯蔵範囲に維持するために、前記ハロゲン化銀の前記補充量を、前記ハロゲン化銀の前記消耗量に近い、等しい、大きい、小さい、等しくない群から選択されたものに制御することにより、ガード値を確保する、ことを特徴とする請求項11に記載の方法。 In order to keep the amount of silver halide in a safe storage range, the replenishment amount of the silver halide is selected from the group close to, equal, large, small, unequal to the consumable amount of the silver halide. The method according to claim 11, wherein a guard value is secured by controlling the amount of silver halide. 前記特定値はXであり、
Xは、0<X <100%の前記初期量という条件を満たす、ことを特徴とする請求項11に記載の方法。
The specific value is X
The method according to claim 11, wherein X satisfies the condition of 0 <X <100% of the initial amount.
生体内の分析物に関連する生理信号を表す生理パラメータを測定するための皮下埋め込み用のマイクロバイオセンサーであって、
基板と、
化学試薬と、
前記基板に配置され、少なくとも部分的に前記化学試薬で覆われ、測定期間内に第一酸化反応のために駆動されて、前記生理信号を測定して前記生理パラメータを取得する作用電極と、
前記基板に配置され、銀とハロゲン化銀を含む対電極であって、前記ハロゲン化銀が初期量を有し、前記測定期間内に特定の消耗量で消耗される前記対電極と、
基板上に配置される補助電極であって、それぞれの前記生理パラメータを取得するたびに、補充期間内に第二酸化反応のために前記対電極及び前記補助電極が駆動されて、補充量の前記ハロゲン化銀が前記対電極に補充される前記補助電極と、を備え、
前記補充量と前記初期量の合計から、前記消耗量を差し引いたガード値は、前記初期量から特定値を増減させた範囲内で制御される、ことを特徴とするマイクロバイオセンサー。
A microbiosensor for subcutaneous implantation for measuring physiological parameters that represent physiological signals associated with an in vivo analyte.
With the board
With chemical reagents
A working electrode placed on the substrate, at least partially covered with the chemical reagent, driven for a first oxidation reaction within the measurement period, to measure the physiological signal and obtain the physiological parameters.
A pair electrode arranged on the substrate and containing silver and silver halide, wherein the silver halide has an initial amount and is consumed at a specific consumption amount within the measurement period.
Auxiliary electrodes arranged on a substrate, each time the physiological parameters are acquired, the counter electrode and the auxiliary electrode are driven for the carbon dioxide reaction within the replenishment period, and the replenishment amount of the halogen The auxiliary electrode, in which silver chemicals are replenished to the counter electrode, is provided.
A microbiosensor characterized in that a guard value obtained by subtracting the consumable amount from the total of the replenishment amount and the initial amount is controlled within a range in which a specific value is increased or decreased from the initial amount.
前記ガード値は、ハロゲン化銀の量と、銀の量及びハロゲン化銀の量の合計との比率がゼロより大きく1より小さくなるように制御される、ことを特徴とする請求項17に記載のマイクロバイオセンサー。 The guard value according to claim 17, wherein the ratio of the amount of silver halide to the sum of the amount of silver and the amount of silver halide is controlled to be larger than zero and smaller than 1. Microbiosensor. 6mm以下の長さを有する短い埋め込み端を更に含む、ことを特徴とする請求項17に記載のマイクロバイオセンサー。 The microbiosensor according to claim 17, further comprising a short embedded end having a length of 6 mm or less. 前記対電極が前記化学試薬によって少なくとも部分的に覆われ、前記補助電極が白金を含む、ことを特徴とする請求項17に記載のマイクロバイオセンサー。 The microbiosensor according to claim 17, wherein the counter electrode is at least partially covered with the chemical reagent, and the auxiliary electrode contains platinum.
JP2020131753A 2019-08-02 2020-08-03 Micro biosensor and its measurement method Active JP7162642B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962882162P 2019-08-02 2019-08-02
US62/882,162 2019-08-02
US202062988549P 2020-03-12 2020-03-12
US62/988,549 2020-03-12

Publications (2)

Publication Number Publication Date
JP2021036228A true JP2021036228A (en) 2021-03-04
JP7162642B2 JP7162642B2 (en) 2022-10-28

Family

ID=71943924

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2020131579A Active JP7104109B2 (en) 2019-08-02 2020-08-03 Microbiosensors and methods for using them to reduce measurement interference
JP2020131642A Active JP7089559B2 (en) 2019-08-02 2020-08-03 Methods for reducing measurement interference with microbiosensors
JP2020131741A Active JP7198243B2 (en) 2019-08-02 2020-08-03 IMPLANTABLE MICRO-BIOSENSOR AND METHOD OF OPERATION THEREOF
JP2020131753A Active JP7162642B2 (en) 2019-08-02 2020-08-03 Micro biosensor and its measurement method
JP2020131742A Active JP7143373B2 (en) 2019-08-02 2020-08-03 implantable micro biosensor
JP2022109556A Pending JP2022167894A (en) 2019-08-02 2022-07-07 Micro biosensor and method for reducing measurement interference by using the same

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2020131579A Active JP7104109B2 (en) 2019-08-02 2020-08-03 Microbiosensors and methods for using them to reduce measurement interference
JP2020131642A Active JP7089559B2 (en) 2019-08-02 2020-08-03 Methods for reducing measurement interference with microbiosensors
JP2020131741A Active JP7198243B2 (en) 2019-08-02 2020-08-03 IMPLANTABLE MICRO-BIOSENSOR AND METHOD OF OPERATION THEREOF

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020131742A Active JP7143373B2 (en) 2019-08-02 2020-08-03 implantable micro biosensor
JP2022109556A Pending JP2022167894A (en) 2019-08-02 2022-07-07 Micro biosensor and method for reducing measurement interference by using the same

Country Status (9)

Country Link
US (9) US20210030331A1 (en)
EP (10) EP3771410A1 (en)
JP (6) JP7104109B2 (en)
KR (5) KR102506277B1 (en)
CN (9) CN112305040B (en)
AU (5) AU2020210303B2 (en)
CA (5) CA3088599C (en)
TW (11) TWI755803B (en)
WO (4) WO2021024132A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191006A1 (en) 2021-03-08 2022-09-15 株式会社神戸製鋼所 Method for manufacturing steel sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210030331A1 (en) * 2019-08-02 2021-02-04 Bionime Corporation Implantable micro-biosensor
TWI770871B (en) * 2020-03-12 2022-07-11 華廣生技股份有限公司 Method for recovering biological sensor and device using same
EP3928697A1 (en) 2020-06-23 2021-12-29 Roche Diabetes Care GmbH Analyte sensor and a method for producing an analyte sensor
CO2021005504A1 (en) * 2021-04-27 2022-10-31 Pontificia Univ Javeriana Device for electronic and electrochemical measurement of analyte concentrations in biological samples
KR20240035602A (en) * 2021-07-22 2024-03-15 바이오나임 코포레이션 Micro biosensor and its sensing structure
CN114748208B (en) * 2022-04-15 2024-01-12 柔脉医疗(深圳)有限公司 Tissue engineering scaffold capable of in-situ detecting multiple chemical and biological components
WO2024023000A1 (en) * 2022-07-26 2024-02-01 F. Hoffmann-La Roche Ag A method and an analyte sensor system for detecting at least one analyte
CN116421191A (en) * 2023-03-08 2023-07-14 宁波康麦隆医疗器械有限公司 Flexible integrated bioelectric signal sensor, detection method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537841A (en) * 2004-05-20 2007-12-27 デジタル エンジェル コーポレイション Implantable biosensor system
US20130053667A1 (en) * 2008-06-02 2013-02-28 Abbott Diabetes Care Inc. Reference Electrodes Having an Extended Lifetime for use in Long Term Amperometric Sensors

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
AUPN363995A0 (en) * 1995-06-19 1995-07-13 Memtec Limited Electrochemical cell
US6002954A (en) * 1995-11-22 1999-12-14 The Regents Of The University Of California Detection of biological molecules using boronate-based chemical amplification and optical sensors
DE19605739C1 (en) 1996-02-16 1997-09-04 Wolfgang Dr Fleckenstein Brain pO2 measuring device
US20050033132A1 (en) * 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
JP2002505008A (en) * 1997-06-16 2002-02-12 エラン コーポレーション ピーエルシー Methods for calibrating and testing sensors for in vivo measurement of analytes and devices for use in such methods
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6587705B1 (en) * 1998-03-13 2003-07-01 Lynn Kim Biosensor, iontophoretic sampling system, and methods of use thereof
US8688188B2 (en) * 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) * 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
EP1192269A2 (en) * 1999-06-18 2002-04-03 Therasense, Inc. MASS TRANSPORT LIMITED i IN VIVO /i ANALYTE SENSOR
US6682649B1 (en) * 1999-10-01 2004-01-27 Sophion Bioscience A/S Substrate and a method for determining and/or monitoring electrophysiological properties of ion channels
WO2001088534A2 (en) * 2000-05-16 2001-11-22 Cygnus, Inc. Methods for improving performance and reliability of biosensors
US6872297B2 (en) * 2001-05-31 2005-03-29 Instrumentation Laboratory Company Analytical instruments, biosensors and methods thereof
TWI244550B (en) * 2001-06-21 2005-12-01 Hmd Biomedical Inc Electrochemistry test unit, biological sensor, the manufacturing method, and the detector
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6964871B2 (en) * 2002-04-25 2005-11-15 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US7736309B2 (en) * 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
CN100516857C (en) * 2002-10-31 2009-07-22 松下电器产业株式会社 Determination method for automatically identifying analyte liquid kind
US9763609B2 (en) * 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7074307B2 (en) 2003-07-25 2006-07-11 Dexcom, Inc. Electrode systems for electrochemical sensors
CN1867826B (en) * 2003-08-21 2010-12-08 埃葛梅崔克斯股份有限公司 Method and apparatus for assay of electrochemical properties
US20050067277A1 (en) * 2003-09-30 2005-03-31 Pierce Robin D. Low volume electrochemical biosensor
CN1875114A (en) * 2003-10-29 2006-12-06 新加坡科技研究局 Biosensor
CA2543957C (en) * 2003-10-31 2013-01-22 Lifescan Scotland Limited Method of reducing the effect of direct interference current in an electrochemical test strip
US11633133B2 (en) * 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
EP1711790B1 (en) * 2003-12-05 2010-09-08 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US20080135408A1 (en) * 2004-08-20 2008-06-12 Novo Nordisk A/S Manufacturing Process For Producing Narrow Sensors
KR100698961B1 (en) * 2005-02-04 2007-03-26 주식회사 아이센스 Electrochemical Biosensor
DE602005002344T2 (en) * 2005-03-03 2008-06-12 Apex Biotechnology Corporation Method for reducing the measurement deviation of amperometric biosensors
US7695600B2 (en) * 2005-06-03 2010-04-13 Hypoguard Limited Test system
AR054851A1 (en) 2005-07-20 2007-07-18 Bayer Healthcare Llc REGULATED AMPEROMETRY
US7846311B2 (en) 2005-09-27 2010-12-07 Abbott Diabetes Care Inc. In vitro analyte sensor and methods of use
EP1962668B1 (en) 2005-12-19 2009-06-17 F. Hoffmann-La Roche AG Sandwich sensor for the determination of an analyte concentration
JP4394654B2 (en) * 2006-02-24 2010-01-06 三菱重工環境・化学エンジニアリング株式会社 Pyrolysis gas treatment method and apparatus for high water content organic carbonization system
US7887682B2 (en) * 2006-03-29 2011-02-15 Abbott Diabetes Care Inc. Analyte sensors and methods of use
EP2008088B1 (en) * 2006-04-10 2011-06-29 Bayer HealthCare LLC Correction of oxygen effect in test sensor using reagents
CN101437443B (en) * 2006-05-08 2011-11-30 拜尔健康护理有限责任公司 abnormal output detection system for a biosensor
US20070299617A1 (en) * 2006-06-27 2007-12-27 Willis John P Biofouling self-compensating biosensor
EP2083674B1 (en) * 2006-10-24 2018-03-07 Ascensia Diabetes Care Holdings AG Transient decay amperometry
US20080214912A1 (en) * 2007-01-10 2008-09-04 Glucose Sensing Technologies, Llc Blood Glucose Monitoring System And Method
US8808515B2 (en) * 2007-01-31 2014-08-19 Abbott Diabetes Care Inc. Heterocyclic nitrogen containing polymers coated analyte monitoring device and methods of use
US20200037874A1 (en) * 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
AU2008279274B2 (en) * 2007-07-23 2013-05-02 Agamatrix, Inc. Electrochemical test strip
CN101520428B (en) * 2008-02-25 2013-05-01 华广生技股份有限公司 Electrochemical formula sensing method and test piece
US8583204B2 (en) * 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20090247856A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8155722B2 (en) * 2008-06-02 2012-04-10 Abbott Diabetes Care Inc. Reference electrodes having an extended lifetime for use in long term amperometric sensors
US8620398B2 (en) * 2008-06-02 2013-12-31 Abbott Diabetes Care Inc. Reference electrodes having an extended lifetime for use in long term amperometric sensors
US8700114B2 (en) 2008-07-31 2014-04-15 Medtronic Minmed, Inc. Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them
JP5228891B2 (en) * 2008-11-21 2013-07-03 株式会社リコー Sensor device
WO2010093803A2 (en) * 2009-02-12 2010-08-19 Keimar, Inc. Physiological parameter sensors
CN104825171B (en) * 2009-02-26 2017-08-04 雅培糖尿病护理公司 Improved analyte sensor and production and preparation method thereof
EP4252639A3 (en) * 2009-02-26 2024-01-03 Abbott Diabetes Care Inc. Method of calibrating an analyte sensor
US20100219085A1 (en) * 2009-02-27 2010-09-02 Edwards Lifesciences Corporation Analyte Sensor Offset Normalization
GR1007310B (en) * 2009-03-09 2011-06-10 Αχιλλεας Τσουκαλης Implantable biosensor with automatic calibration
US8359081B2 (en) * 2009-04-28 2013-01-22 Abbott Diabetes Care Inc. Service-detectable analyte sensors and methods of using and making same
US9351677B2 (en) 2009-07-02 2016-05-31 Dexcom, Inc. Analyte sensor with increased reference capacity
US9034172B2 (en) * 2009-09-08 2015-05-19 Bayer Healthcare Llc Electrochemical test sensor
US8500979B2 (en) * 2009-12-31 2013-08-06 Intel Corporation Nanogap chemical and biochemical sensors
US10448872B2 (en) * 2010-03-16 2019-10-22 Medtronic Minimed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
LT3766408T (en) * 2010-03-24 2022-07-11 Abbott Diabetes Care, Inc. Medical device inserters
JP5753720B2 (en) * 2010-04-22 2015-07-22 アークレイ株式会社 Biosensor
US8476079B2 (en) * 2010-04-30 2013-07-02 Abbott Point Of Care Inc. Reagents for reducing leukocyte interference in immunoassays
JP2012026910A (en) * 2010-07-26 2012-02-09 Arkray Inc Biosensor unit and biosensor system
EP3954781B1 (en) * 2010-12-09 2024-02-21 Abbott Diabetes Care, Inc. Analyte sensors with a sensing surface having small sensing spots
CN102782485A (en) * 2011-02-25 2012-11-14 松下电器产业株式会社 Method for quantitative determination of chemical substance by conversion stripping method and sensor chip used for this purpose
US8399262B2 (en) * 2011-03-23 2013-03-19 Darrel A. Mazzari Biosensor
WO2013052092A1 (en) * 2011-10-03 2013-04-11 Cpfilms Inc. Method of activation of noble metal for measurement of glucose and associated biosensor electrode
US9493807B2 (en) * 2012-05-25 2016-11-15 Medtronic Minimed, Inc. Foldover sensors and methods for making and using them
KR101466222B1 (en) * 2012-06-01 2014-12-01 주식회사 아이센스 Electrochemical biosensor with improved accuracy
US9357958B2 (en) * 2012-06-08 2016-06-07 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10598627B2 (en) * 2012-06-29 2020-03-24 Dexcom, Inc. Devices, systems, and methods to compensate for effects of temperature on implantable sensors
US10881339B2 (en) * 2012-06-29 2021-01-05 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
US9201038B2 (en) * 2012-07-24 2015-12-01 Lifescan Scotland Limited System and methods to account for interferents in a glucose biosensor
US9588076B2 (en) * 2012-09-19 2017-03-07 Panasonic Healthcare Holdings Co., Ltd. Biosensor and method for manufacturing biosensor
US8965478B2 (en) * 2012-10-12 2015-02-24 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
US9265455B2 (en) * 2012-11-13 2016-02-23 Medtronic Minimed, Inc. Methods and systems for optimizing sensor function by the application of voltage
US20140275903A1 (en) * 2013-03-14 2014-09-18 Lifescan Scotland Limited System and method for quick-access physiological measurement history
CN103462615B (en) * 2013-09-13 2015-12-16 上海移宇科技有限公司 Micrometer-scale glucose sensor microelectrode
WO2015079635A1 (en) * 2013-11-27 2015-06-04 パナソニックヘルスケアホールディングス株式会社 Method of measuring blood component amount
US9861747B2 (en) * 2013-12-05 2018-01-09 Lifescan, Inc. Method and system for management of diabetes with a glucose monitor and infusion pump to provide feedback on bolus dosing
US9649059B2 (en) * 2013-12-16 2017-05-16 Medtronic Minimed, Inc. Methods and systems for improving the reliability of orthogonally redundant sensors
US20150196224A1 (en) * 2014-01-16 2015-07-16 Dermal Therapy (Barbados) Inc. Implantable Sensor and Method for Such Sensor
DK3128902T3 (en) * 2014-04-10 2023-12-04 Dexcom Inc SENSOR FOR CONTINUOUS ANALYTE MONITORING
AU2015271133B2 (en) * 2014-06-06 2018-07-05 Dexcom, Inc. Fault discrimination and responsive processing based on data and context
CN105445339B (en) * 2014-07-31 2018-07-06 天津大学 A kind of flexibility differential type array electrochemical glucose sensor and application method
WO2016033204A2 (en) * 2014-08-26 2016-03-03 Echo Therapeutics, Inc. Differential biosensor system
KR101703948B1 (en) * 2014-10-27 2017-02-07 광운대학교 산학협력단 Implantable flexible biosensor and method of manufacturing the same
WO2016090189A1 (en) * 2014-12-03 2016-06-09 The Regents Of The University Of California Non-invasive and wearable chemical sensors and biosensors
JP6410308B2 (en) * 2014-12-12 2018-10-24 国立大学法人東北大学 Sensor chip, detection system, and detection method
CN104535627B (en) 2014-12-17 2017-01-04 浙江大学 glucose sensing system
US20160235347A1 (en) * 2015-02-13 2016-08-18 Maarij Baig Artificial sensors and methods of manufacture thereof
US10575767B2 (en) * 2015-05-29 2020-03-03 Medtronic Minimed, Inc. Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus
GB2539224A (en) * 2015-06-09 2016-12-14 Giuseppe Occhipinti Luigi Method of forming a chemical sensor device and device
EP3308152B1 (en) * 2015-06-15 2019-07-24 Roche Diagnostics GmbH Method for electrochemically detecting at least one analyte in a sample of a body fluid
GB201510765D0 (en) * 2015-06-18 2015-08-05 Inside Biometrics Ltd Method, apparatus and electrochemical test device
CN105445345B (en) * 2015-11-12 2018-06-05 三诺生物传感股份有限公司 A kind of preparation method of flexibility implant electrode
US20170185733A1 (en) * 2015-12-28 2017-06-29 Medtronic Minimed, Inc. Retrospective sensor systems, devices, and methods
EP3397397B1 (en) * 2015-12-30 2021-02-17 DexCom, Inc. Enzyme immobilized adhesive layer for analyte sensors
SI3220137T1 (en) * 2016-03-14 2019-05-31 F. Hoffmann-La Roche Ag Method for detecting an interferent contribution in a biosensor
JP2017173014A (en) * 2016-03-22 2017-09-28 大日本印刷株式会社 Method for manufacturing electrode structure, method for manufacturing electrochemical sensor, electrode structure and electrochemical sensor
TWM528727U (en) * 2016-03-25 2016-09-21 Hong Yue Technology Corp Wearable physiological measuring instrument
CN105891297B (en) * 2016-05-09 2018-07-06 三诺生物传感股份有限公司 A kind of electrochemical measuring method
US11298059B2 (en) * 2016-05-13 2022-04-12 PercuSense, Inc. Analyte sensor
EP3263712A1 (en) * 2016-06-29 2018-01-03 Roche Diabetes Care GmbH Galvanically functionalized sensors
JP2018019826A (en) * 2016-08-02 2018-02-08 セイコーエプソン株式会社 Detection element, measurement device, agent feeding device, and manufacturing method for detection element
TWI589869B (en) * 2016-08-08 2017-07-01 友達光電股份有限公司 Sensing Device and Electrode Strip thereof
CN106290530B (en) * 2016-08-31 2018-10-30 微泰医疗器械(杭州)有限公司 It is a kind of can self-correction interference signal electrochemical analyte sensor-based system and method
CN107817337B (en) * 2016-09-13 2020-09-22 华广生技股份有限公司 Analyte measuring module
US20190231236A1 (en) * 2016-09-21 2019-08-01 University Of Cincinnati Accurate enzymatic sensing of sweat analytes
TWI631330B (en) * 2016-10-03 2018-08-01 國立清華大學 Non-enzymatic glucose biosensor and manufacturing method thereof and manufacturing method of nanometal catalyst
WO2018080637A1 (en) * 2016-10-24 2018-05-03 Roche Diabetes Care, Inc. Methods of correcting for uncompensated resistances in the conductive elements of biosensors, as well as devices and systems
CN106725470B (en) * 2016-11-22 2023-12-19 南通九诺医疗科技有限公司 Continuous or discontinuous physiological parameter analysis system
EP3570748B1 (en) * 2017-01-19 2024-01-17 Dexcom, Inc. Flexible analyte sensors
US20180217079A1 (en) * 2017-01-31 2018-08-02 Cilag Gmbh International Determining an analyte concentration of a physiological fluid having an interferent
CN107122703B (en) * 2017-03-15 2019-12-17 深圳信炜科技有限公司 Biological information sensing device, electronic apparatus, and common mode interference detection method
WO2018187237A1 (en) * 2017-04-03 2018-10-11 Presidio Medical, Inc. Systems and methods for direct current nerve conduction block
US20180306744A1 (en) * 2017-04-20 2018-10-25 Lifescan Scotland Limited Analyte measurement system and method
CN107064261A (en) * 2017-05-01 2017-08-18 台州亿联健医疗科技有限公司 A kind of biology sensor and detection method based on glucose dehydrogenase
TW201903404A (en) * 2017-06-03 2019-01-16 暐世生物科技股份有限公司 Strip with metal electrode and manufacturing method of the same including an insulating substrate, metal electrodes, an insulating pad high sheet and an upper cover sheet
CN107064266A (en) * 2017-06-07 2017-08-18 杭州暖芯迦电子科技有限公司 A kind of many working electrode glucose sensors and its manufacture method
KR101979257B1 (en) * 2017-06-29 2019-05-16 주식회사 아이센스 A method of replenishing level of AgCl on a reference electrode of a electrochemical sensor
US11344235B2 (en) * 2017-09-13 2022-05-31 Medtronic Minimed, Inc. Methods, systems, and devices for calibration and optimization of glucose sensors and sensor output
CN109920922B (en) * 2017-12-12 2020-07-17 京东方科技集团股份有限公司 Organic light-emitting device, preparation method thereof, display substrate and display driving method
EP3747364A4 (en) * 2018-01-29 2021-11-10 PHC Holdings Corporation Protective film material for biosensor probe
EP3749198A1 (en) * 2018-02-05 2020-12-16 Abbott Diabetes Care Inc. Notes and event log information associated with analyte sensors
US11583213B2 (en) 2018-02-08 2023-02-21 Medtronic Minimed, Inc. Glucose sensor electrode design
US11284816B2 (en) * 2018-02-13 2022-03-29 PercuSense, Inc. Multi-analyte continuous glucose monitoring
CN109283234A (en) 2018-08-15 2019-01-29 浙江大学 One kind going interference paper base electrochemical sensor and its test method
CN109298032A (en) * 2018-08-15 2019-02-01 浙江大学 It is a kind of that interference electrochemistry paper base test piece and its test method are gone based on interdigital structure
US11638543B2 (en) * 2019-07-16 2023-05-02 Dexcom, Inc. Analyte sensor electrode arrangements
US20210030331A1 (en) * 2019-08-02 2021-02-04 Bionime Corporation Implantable micro-biosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537841A (en) * 2004-05-20 2007-12-27 デジタル エンジェル コーポレイション Implantable biosensor system
US20130053667A1 (en) * 2008-06-02 2013-02-28 Abbott Diabetes Care Inc. Reference Electrodes Having an Extended Lifetime for use in Long Term Amperometric Sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191006A1 (en) 2021-03-08 2022-09-15 株式会社神戸製鋼所 Method for manufacturing steel sheet

Also Published As

Publication number Publication date
EP3771430A1 (en) 2021-02-03
JP2021047172A (en) 2021-03-25
CA3088599A1 (en) 2021-02-02
KR20210016292A (en) 2021-02-15
TWI788274B (en) 2022-12-21
US20210033560A1 (en) 2021-02-04
TW202248636A (en) 2022-12-16
TW202106246A (en) 2021-02-16
EP3771420B1 (en) 2024-04-24
CN112305040B (en) 2023-10-31
JP7198243B2 (en) 2022-12-28
AU2020210301A1 (en) 2021-02-18
AU2020327164A1 (en) 2021-07-15
CA3127420C (en) 2024-01-02
KR102532761B1 (en) 2023-05-16
US20210030341A1 (en) 2021-02-04
JP2021041143A (en) 2021-03-18
TW202107078A (en) 2021-02-16
CA3088582A1 (en) 2021-02-02
TW202300910A (en) 2023-01-01
WO2021024136A1 (en) 2021-02-11
JP2021037272A (en) 2021-03-11
CN112294323A (en) 2021-02-02
KR20210016311A (en) 2021-02-15
US11950902B2 (en) 2024-04-09
JP7162642B2 (en) 2022-10-28
EP4186423A1 (en) 2023-05-31
KR102506277B1 (en) 2023-03-07
CN112294310A (en) 2021-02-02
AU2020210303B2 (en) 2021-09-23
CA3104900A1 (en) 2021-02-02
EP3771416A1 (en) 2021-02-03
TWI799725B (en) 2023-04-21
CN112294325A (en) 2021-02-02
US20210032671A1 (en) 2021-02-04
KR20210016291A (en) 2021-02-15
JP7143373B2 (en) 2022-09-28
EP3771421B1 (en) 2024-04-24
WO2021023153A1 (en) 2021-02-11
US20210030340A1 (en) 2021-02-04
TWI755803B (en) 2022-02-21
CA3088599C (en) 2023-01-10
CA3088582C (en) 2023-10-31
TW202107089A (en) 2021-02-16
AU2020324193B2 (en) 2022-04-21
WO2021023125A1 (en) 2021-02-11
US20210030338A1 (en) 2021-02-04
EP3771415A1 (en) 2021-02-03
AU2020294358A1 (en) 2021-02-18
EP3771421A1 (en) 2021-02-03
CN112294322A (en) 2021-02-02
EP3771414A1 (en) 2021-02-03
EP3771419B1 (en) 2024-04-10
TWI805938B (en) 2023-06-21
EP3771410A1 (en) 2021-02-03
JP7104109B2 (en) 2022-07-20
CA3127420A1 (en) 2021-02-11
KR102417943B1 (en) 2022-07-06
AU2020327164B2 (en) 2023-02-23
US11506627B2 (en) 2022-11-22
EP3771420A1 (en) 2021-02-03
US20210030329A1 (en) 2021-02-04
AU2020324193A1 (en) 2021-05-06
AU2020210303A1 (en) 2021-03-04
CN112294318A (en) 2021-02-02
TWI757811B (en) 2022-03-11
AU2020294358B2 (en) 2022-06-16
US11766193B2 (en) 2023-09-26
KR20210016314A (en) 2021-02-15
TWI783250B (en) 2022-11-11
US11319570B2 (en) 2022-05-03
KR102446995B1 (en) 2022-09-23
TW202107090A (en) 2021-02-16
WO2021024132A1 (en) 2021-02-11
EP3771419A1 (en) 2021-02-03
KR102497046B1 (en) 2023-02-09
TWI755802B (en) 2022-02-21
CN112305040A (en) 2021-02-02
JP2022167894A (en) 2022-11-04
US20210030342A1 (en) 2021-02-04
JP7089559B2 (en) 2022-06-22
US20210030324A1 (en) 2021-02-04
JP2021023816A (en) 2021-02-22
AU2020210301B2 (en) 2021-12-16
EP3771411A1 (en) 2021-02-03
CA3104769A1 (en) 2021-02-02
TWI770571B (en) 2022-07-11
TW202106247A (en) 2021-02-16
TW202109040A (en) 2021-03-01
CN112294324A (en) 2021-02-02
KR20210016290A (en) 2021-02-15
TW202107088A (en) 2021-02-16
TWI736383B (en) 2021-08-11
TW202107086A (en) 2021-02-16
TWI783249B (en) 2022-11-11
CN112294320A (en) 2021-02-02
TW202107087A (en) 2021-02-16
EP3771415B1 (en) 2022-11-23
CN112294321A (en) 2021-02-02
TWI784921B (en) 2022-11-21
US20210030331A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP2021036228A (en) Micro biosensor and measuring method thereof
KR20180072386A (en) Continuous glucose monitoring apparatus, continuous glucose monitoring system comprising said apparatus and method using said system
KR20150013209A (en) Improved analyte measurement technique and system
TWI770871B (en) Method for recovering biological sensor and device using same
US20230190155A1 (en) Analyte sensor and a method for producing an analyte sensor
US20200155044A1 (en) Miniaturized analyte sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150