JP2021036082A - Heat molded body and method of manufacturing the same - Google Patents

Heat molded body and method of manufacturing the same Download PDF

Info

Publication number
JP2021036082A
JP2021036082A JP2019157501A JP2019157501A JP2021036082A JP 2021036082 A JP2021036082 A JP 2021036082A JP 2019157501 A JP2019157501 A JP 2019157501A JP 2019157501 A JP2019157501 A JP 2019157501A JP 2021036082 A JP2021036082 A JP 2021036082A
Authority
JP
Japan
Prior art keywords
component
heat
core
sheath
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019157501A
Other languages
Japanese (ja)
Other versions
JP7474461B2 (en
Inventor
こゆ 田代
Koyu Tashiro
こゆ 田代
浩紀 室谷
Hironori Murotani
浩紀 室谷
弘平 池田
Kohei Ikeda
弘平 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2019157501A priority Critical patent/JP7474461B2/en
Publication of JP2021036082A publication Critical patent/JP2021036082A/en
Application granted granted Critical
Publication of JP7474461B2 publication Critical patent/JP7474461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Woven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Knitting Of Fabric (AREA)
  • Multicomponent Fibers (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)

Abstract

To provide a heat molded body which is obtained by heat-treating textile product made of thermally bonded fibers, and which has sufficient adequate flame retardant performance without post-processing of the textile product.SOLUTION: A fiber product is composed of a thermally bonded fiber with a composite structure that exhibits a core-sheath structure in a transverse section, and a plurality of core components are thermally bonded to each other by melting and re-solidifying a sheath component of the thermally bonded fiber in the fiber product. The thermally bonded fiber is formed by a copolymer whose core component contains ethylene glycol and terephthalic acid. The sheath component is formed from a copolymer containing terephthalic acid, ethylene glycol, 1,4-butanediol, and diethylene glycol. A melting point of the sheath component is 50 degrees Celsius to 120 degrees Celsius lower than that of the core component. At least one of the core and sheath components contains a phosphorus compound. The content of phosphorus atoms in a composite fiber ranges from 500 to 7000 ppm.SELECTED DRAWING: None

Description

本発明は熱成形体およびその製造方法に関する。 The present invention relates to a thermoformed product and a method for producing the same.

土木・建築工事用のメッシュシートとして、芯鞘型複合繊維によって構成されるメッシュシート、すなわち、芯成分がポリエチレンテレフタレートであり、鞘成分がポリエチレンテレフタレートよりも融点の低いポリエステル共重合体である複合繊維を用いてなるメッシュシートが知られている(たとえば、特許文献1参照)。特許文献1のメッシュシートは、かかる芯鞘型複合繊維よるなるマルチフィラメント糸を経糸および緯糸に用いて粗目の織物を製織し、熱処理により経糸および緯糸の交点を熱接着させたものである。経糸および緯糸の交点を熱接着させるのは、メッシュシートの目ずれを防止するためである。さらに、このようなメッシュシートに難燃性能を付与する場合には、織物を熱処理する前に難燃剤液中に浸漬することが行われている。 As a mesh sheet for civil engineering and construction work, a mesh sheet composed of core-sheath type composite fibers, that is, a composite fiber in which the core component is polyethylene terephthalate and the sheath component is a polyester copolymer having a lower melting point than polyethylene terephthalate. Is known (see, for example, Patent Document 1). The mesh sheet of Patent Document 1 is obtained by weaving a coarse woven fabric using a multifilament yarn made of such a core-sheath type composite fiber as a warp and a weft, and heat-adhering the intersections of the warp and the weft by heat treatment. The reason why the intersections of the warp and the weft are heat-bonded is to prevent the mesh sheet from being misaligned. Further, in order to impart flame retardant performance to such a mesh sheet, the woven fabric is immersed in a flame retardant liquid before being heat-treated.

特開2001−271270号公報Japanese Unexamined Patent Publication No. 2001-271270

しかし、上述のようにメッシュシートを構成したのちに後加工で難燃性能を付与する場合は、製造工程が複雑になるとともに、経済的にも不利となる。また、製品が摩耗した場合には、それに伴って難燃剤が剥がれる可能性がある。 However, when flame-retardant performance is imparted by post-processing after the mesh sheet is formed as described above, the manufacturing process becomes complicated and it is economically disadvantageous. In addition, when the product is worn, the flame retardant may be peeled off accordingly.

そこで本発明は、熱接着繊維を用いた繊維製品を熱処理することによって得られる熱成形体であって、繊維製品に後加工を施すことなく、十分な難燃性能を有する熱成形体を提供することを目的とする。 Therefore, the present invention provides a thermoformed body obtained by heat-treating a fiber product using a heat-bonded fiber and having sufficient flame retardancy without post-processing the fiber product. The purpose is.

この目的を達成するため本発明の熱成形体は、
横断面において芯鞘構造を呈する複合構造の熱接着性繊維にて繊維製品が構成され、この繊維製品における前記熱接着性繊維の鞘成分の溶融再固化によって複数の芯成分どうしが互いに熱接着されたものであり、
前記熱接着繊維は、芯成分がエチレングリコールとテレフタル酸とを含む共重合体により形成され、鞘成分がテレフタル酸とエチレングリコールと1,4−ブタンジオールとジエチレングリコールとを含む共重合体より形成され、鞘成分の融点が芯成分の融点よりも50℃〜120℃低く、芯成分と鞘成分との少なくともいずれかにリン化合物を含有し、複合繊維におけるリン原子の含有率が500〜7000ppmであることを特徴とする。
In order to achieve this object, the thermoformed body of the present invention
A textile product is composed of a heat-adhesive fiber having a composite structure that exhibits a core-sheath structure in a cross section, and a plurality of core components are heat-bonded to each other by melt-resolidification of the sheath component of the heat-adhesive fiber in this fiber product. And
The heat-bonded fiber is formed of a copolymer containing ethylene glycol and terephthalic acid as a core component, and a copolymer containing terephthalic acid, ethylene glycol, 1,4-butanediol and diethylene glycol as a sheath component. , The melting point of the sheath component is 50 ° C. to 120 ° C. lower than the melting point of the core component, a phosphorus compound is contained in at least one of the core component and the sheath component, and the content of phosphorus atom in the composite fiber is 500 to 7000 ppm. It is characterized by that.

本発明の熱成形体においては、上記芯成分と鞘成分の質量比が1:4〜4:1であることが好適である。また鞘成分がさらにε−カプロラクトンを含有することが好適である。さらに、繊維製品が、編織物、網地、紐、ロープおよび撚糸よりなる群から選ばれたものであることが好適である。 In the thermoformed product of the present invention, it is preferable that the mass ratio of the core component and the sheath component is 1: 4 to 4: 1. Further, it is preferable that the sheath component further contains ε-caprolactone. Further, it is preferable that the textile product is selected from the group consisting of knitted fabrics, nets, strings, ropes and plyed yarns.

本発明の熱成形体の製造方法は、横断面において芯鞘構造を呈する複合繊維によって構成され、芯成分がエチレングリコールとテレフタル酸とを含む共重合体により形成され、鞘成分がテレフタル酸とエチレングリコールと1,4−ブタンジオールとジエチレングリコールとを含む共重合体より形成され、鞘成分の融点が芯成分の融点よりも50℃〜120℃低く、芯成分と鞘成分との少なくともいずれかにリン化合物を含有し、複合繊維におけるリン原子の含有率が500〜7000ppmである熱接着性繊維にて繊維製品を製造し、この繊維製品を鞘成分の融点以上かつ芯成分の融点以下の温度条件で熱処理することによって、鞘成分を熱溶融させかつその後に冷却固化させて芯成分同士を熱接着させることを特徴とする。 The method for producing a thermoformed body of the present invention is composed of composite fibers having a core-sheath structure in a cross section, the core component is formed of a copolymer containing ethylene glycol and terephthalic acid, and the sheath component is terephthalic acid and ethylene. It is formed from a copolymer containing glycol, 1,4-butanediol, and diethylene glycol, and the melting point of the sheath component is 50 ° C to 120 ° C lower than the melting point of the core component, and phosphorus is added to at least one of the core component and the sheath component. A fiber product is produced from a heat-adhesive fiber containing a compound and having a phosphorus atom content of 500 to 7000 ppm in the composite fiber, and the fiber product is prepared under temperature conditions above the melting point of the sheath component and below the melting point of the core component. It is characterized in that the sheath component is thermally melted by heat treatment and then cooled and solidified to thermally bond the core components to each other.

本発明によれば、熱成形体を構成する複合構造の熱接着性繊維の芯成分と鞘成分との少なくともいずれかにリン化合物を含有し、複合繊維におけるリン原子の含有率が500〜7000ppmであるため、繊維製品に浸漬処理などの後加工を施すことなく難燃性能を有する熱成形体を得ることができる。しかも、本発明の熱成形体によると、理由は明らかではないが、熱成形工程を経ないものに比べて、より良好な難燃性能を有するものとすることができる。 According to the present invention, at least one of the core component and the sheath component of the thermoforming fiber having a composite structure constituting the thermoformed body contains a phosphorus compound, and the phosphorus atom content in the composite fiber is 500 to 7000 ppm. Therefore, it is possible to obtain a thermoformed body having flame-retardant performance without subjecting the textile product to post-processing such as dipping treatment. Moreover, according to the thermoformed body of the present invention, although the reason is not clear, it can be made to have better flame retardant performance as compared with the thermoformed body which does not undergo the thermoforming step.

本発明の熱接着性繊維は、芯成分と鞘成分とを有する。芯成分を構成する共重合体は、エチレングリコールをジオール成分とし、テレフタル酸をジカルボン酸成分として得られるポリエチレンテレフタレートである。なお、ジカルボン酸成分として、ごく少量のイソフタル酸等の他のジカルボン酸成分が混合されていてもよい。芯成分の融点は概ね260℃程度である。 The heat-adhesive fiber of the present invention has a core component and a sheath component. The copolymer constituting the core component is polyethylene terephthalate obtained by using ethylene glycol as a diol component and terephthalic acid as a dicarboxylic acid component. As the dicarboxylic acid component, a very small amount of another dicarboxylic acid component such as isophthalic acid may be mixed. The melting point of the core component is about 260 ° C.

鞘成分を構成する共重合体は、エチレングリコールと1,4−ブタンジオールとジエチレングリコールとをジオール成分とし、テレフタル酸をジカルボン酸成分として得られる共重合ポリエステルである。ジエチレングリコールが共重合成分として所定量存在すると、熱成形体の耐候性を向上させることができるうえに、融点の調整性や融着した鞘成分の耐摩耗性を向上させることができる。1,4−ブタンジオールを共重合成分とすることで、ポリマーの結晶化速度およびじん性を上げるという技術的効果が得られる。 The copolymer constituting the sheath component is a copolymerized polyester obtained by containing ethylene glycol, 1,4-butanediol and diethylene glycol as a diol component and terephthalic acid as a dicarboxylic acid component. When a predetermined amount of diethylene glycol is present as a copolymerization component, the weather resistance of the thermoformed body can be improved, and the melting point adjustability and the abrasion resistance of the fused sheath component can be improved. By using 1,4-butanediol as a copolymerization component, a technical effect of increasing the crystallization rate and toughness of the polymer can be obtained.

各共重合成分の割合は、共重合単位のモル比として、酸成分であるテレフタル酸は95.0〜80.0モル%、ジオール成分であるエチレングリコールは8.0〜79.5モル%、1,4−ブタンジオールは20.0〜90.0モル、ジエチレングリコールは0.5〜2.0モルであることが好ましい。この共重合モル比を上記範囲とすることにより、芯成分であるポリエチレンテレフタレートとの融点差を約50〜80℃低く設定することができる。すなわち、鞘成分を構成する共重合体の融点を約180〜210℃に設定できる。 The ratio of each copolymerization component is 95.0 to 80.0 mol% for terephthalic acid, which is an acid component, and 8.0 to 79.5 mol% for ethylene glycol, which is a diol component, as the molar ratio of copolymerization units. It is preferable that 1,4-butanediol is 20.0 to 90.0 mol and diethylene glycol is 0.5 to 2.0 mol. By setting this copolymerization molar ratio in the above range, the melting point difference from polyethylene terephthalate, which is a core component, can be set to be about 50 to 80 ° C. lower. That is, the melting point of the copolymer constituting the sheath component can be set to about 180 to 210 ° C.

鞘成分を構成する共重合体は、さらにε−カプロラクトンを含有することができる。ε−カプロラクトンを共重合成分とすることで、共重合体の結晶性を維持しながら、融点の調整性や融着した鞘成分の耐摩耗性を向上させることができる。この観点から、ε−カプロラクトンの成分比率は、共重合単位のモル比として、5.0〜20.0モル%であることが好ましい。ε−カプロラクトンを共重合することにより、鞘成分の融点は、芯成分の融点よりも約60℃〜120℃低く設定することができ、概ね140℃〜200℃となる。 The copolymer constituting the sheath component can further contain ε-caprolactone. By using ε-caprolactone as a copolymerization component, it is possible to improve the controllability of the melting point and the wear resistance of the fused sheath component while maintaining the crystallinity of the copolymer. From this viewpoint, the component ratio of ε-caprolactone is preferably 5.0 to 20.0 mol% as the molar ratio of the copolymerization unit. By copolymerizing ε-caprolactone, the melting point of the sheath component can be set to be about 60 ° C. to 120 ° C. lower than the melting point of the core component, and is approximately 140 ° C. to 200 ° C.

芯成分と鞘成分の融点差が50℃未満であると、鞘成分が溶融する温度に加熱した場合、芯成分が熱による影響を受けて劣化するおそれがある。これにより、加熱処理により得られた熱成形体の物性が低下するおそれがある。また、芯成分と鞘成分の融点差が120℃を超えると、芯成分と鞘成分との融点差が大きくなりすぎて、熱接着繊維を公知の複合溶融紡糸法で得られにくくなる。 If the melting point difference between the core component and the sheath component is less than 50 ° C., the core component may be affected by heat and deteriorate when heated to a temperature at which the sheath component melts. As a result, the physical characteristics of the thermoformed body obtained by the heat treatment may deteriorate. Further, if the melting point difference between the core component and the sheath component exceeds 120 ° C., the melting point difference between the core component and the sheath component becomes too large, and it becomes difficult to obtain the heat-bonded fiber by a known composite melt spinning method.

芯成分と鞘成分の質量割合は、芯成分:鞘成分=1:4〜4:1であることが好ましい。芯成分の質量割合が低すぎると、加熱処理後に得られた熱成形体の形態保持性(強度や剛性)が低下する傾向となりやすい。熱接着性成分である鞘成分が溶融して融着しても芯成分は当初の繊維形態を維持しているが、かかる芯成分の質量割合が低いと、熱成形体の強度や剛性が低下する。また、熱接着性成分である鞘成分の質量割合が低すぎると、加熱処理後に得られた熱成形体の表面に毛羽立ちが生じやすくなる。芯成分と鞘成分は、同心に配置されていてもよいし、偏心して配置されていてもよい。しかしながら、偏心に配置されていると、加熱処理時に収縮が生じやすくなるため、同心に配置されている方がより好ましい。 The mass ratio of the core component to the sheath component is preferably core component: sheath component = 1: 4 to 4: 1. If the mass ratio of the core component is too low, the morphological retention (strength and rigidity) of the thermoformed body obtained after the heat treatment tends to decrease. Even if the sheath component, which is a heat-adhesive component, melts and fuses, the core component maintains its original fiber morphology, but if the mass ratio of the core component is low, the strength and rigidity of the thermoformed body decrease. To do. Further, if the mass ratio of the sheath component, which is a heat-adhesive component, is too low, fluffing tends to occur on the surface of the thermoformed body obtained after the heat treatment. The core component and the sheath component may be arranged concentrically or eccentrically. However, if they are arranged eccentrically, shrinkage is likely to occur during heat treatment, so that they are more preferably arranged concentrically.

熱成形体を構成する熱接着性繊維は、同熱成形体に難燃性を付与するために、芯成分となるポリエチレンテレフタレートと、鞘成分となる共重合ポリエステルとの少なくともいずれかに、難燃成分としてリン化合物を含有している。リン化合物は、複合構造の熱接着性繊維の全体の質量に対して、リン原子が500〜7000ppm含有されている。中でも1500〜4000ppm含有されていることが好ましい。リン原子の含有率が500ppmよりも低いと難燃性が不十分となり、一方、7000ppmよりも高くなり過ぎると、繊維の機械的特性が損なわれ、製糸性も劣り、含有率が高いにも関わらず効果的に難燃性が発揮しにくくなりコスト面でも不利となる。さらには、少なくとも芯成分にリン化合物を含有させると、その理由は明らかではないが、より効果的に難燃性を発揮するため、より好ましい。 The thermoforming fibers constituting the thermoformed body are flame-retardant to at least one of polyethylene terephthalate as a core component and a copolymerized polyester as a sheath component in order to impart flame retardancy to the thermoformed body. It contains a phosphorus compound as an ingredient. The phosphorus compound contains 500 to 7000 ppm of phosphorus atoms with respect to the total mass of the heat-adhesive fiber having a composite structure. Above all, it is preferably contained at 1500 to 4000 ppm. If the phosphorus atom content is lower than 500 ppm, the flame retardancy becomes insufficient, while if it is higher than 7000 ppm, the mechanical properties of the fiber are impaired, the silk-reeling property is poor, and the content is high. However, it becomes difficult to effectively exhibit flame retardancy, which is disadvantageous in terms of cost. Furthermore, it is more preferable to include a phosphorus compound in at least the core component because, although the reason is not clear, it exhibits flame retardancy more effectively.

リン化合物は、常法によって、芯成分および/または鞘成分のポリマーに含有させることができる。すなわち、リン化合物を共重合する場合において、芯成分および/または鞘成分のポリマーを製造する際に、エステル化またはエステル交換反応時と、重縮合反応の初期までとにおける任意の段階で、リン化合物を添加すればよい。リン化合物は、芯成分および/または鞘成分のポリマーに必ずしも共重合されていなくてもよく、その場合は、ポリエステルを製造する際または製造後の任意の段階で、リン化合物を添加すればよい。また、リン化合物を共重合したポリマーにさらに任意の段階でリン化合物を添加してもよい。もしくは、ポリエステルにリン化合物を溶融添加したマスターバッチを用いてもよい。 The phosphorus compound can be contained in the polymer of the core component and / or the sheath component by a conventional method. That is, in the case of copolymerizing a phosphorus compound, when producing a polymer having a core component and / or a sheath component, the phosphorus compound can be obtained at any stage between the esterification or transesterification reaction and the initial stage of the polycondensation reaction. Should be added. The phosphorus compound does not necessarily have to be copolymerized with the polymer of the core component and / or the sheath component, in which case the phosphorus compound may be added at the time of producing the polyester or at any stage after the production. Further, the phosphorus compound may be further added to the polymer obtained by copolymerizing the phosphorus compound at an arbitrary stage. Alternatively, a masterbatch in which a phosphorus compound is melt-added to polyester may be used.

熱接着性繊維の繊度は、1〜20デシテックスであることが好ましい。熱接着性繊維は、短繊維であっても長繊維であってもよい。長繊維の場合は、複数本の長繊維を集束して熱接着マルチフィラメント糸とするのが好ましい。 The fineness of the heat-adhesive fiber is preferably 1 to 20 decitex. The heat-adhesive fiber may be a short fiber or a long fiber. In the case of long fibers, it is preferable to bundle a plurality of long fibers into a heat-bonded multifilament yarn.

熱接着性繊維は、芯成分となるポリエチレンテレフタレートと、鞘成分となる共重合ポリエステルとの少なくともいずれかに難燃成分としてリン化合物を含有させたものを、複合紡糸孔を持つ紡糸装置に供給して、複合溶融紡糸するという、公知の方法で得ることができる。 As the heat-adhesive fiber, at least one of polyethylene terephthalate as a core component and copolymerized polyester as a sheath component containing a phosphorus compound as a flame-retardant component is supplied to a spinning apparatus having a composite spinning hole. It can be obtained by a known method of composite melt spinning.

さらに、熱接着性繊維すなわち上述の熱接着マルチフィラメント糸を用いて、製織、製編、製網または編組して、織物、編物、網地、ロープ、撚糸または紐等の繊維製品とする。詳細には、たとえば、熱接着マルチフィラメント糸を経糸および緯糸として製織し織物を得てもよいし、熱接着マルチフィラメント糸を経編機や緯編機に掛けて編物を得てもよい。また、熱接着マルチフィラメント糸を組網機に掛けて、結節網地や無結節網地を得てもよい。さらに、熱接着マルチフィラメント糸を複数本組んで紐を得てもよい。繊維製品を得る際、熱接着マルチフィラメント糸1本を用いてもよいし、複数本の熱接着マルチフィラメント糸を引き揃え、所望により撚りを施した糸条を用いてもよい。なお、繊維製品を得る際に、本発明の効果を阻害しない範囲で、熱接着繊維以外の他の繊維を併用してもよい。例えば、ポリエチレンテレフタレートからなるマルチフィラメント糸を併用して、得られる熱成形体の機械的強度を向上させることが挙げられる。併用する方法としては、熱接着マルチフィラメント糸と他の繊維であるポリエチレンテレフタレートからなるマルチフィラメント糸とを引き揃えた糸や混撚した糸を用いて繊維製品を得る方法や、繊維製品を製造する際に部分的に他の繊維であるポリエチレンテレフタレートからなるマルチフィラメント糸を配して繊維製品を得る方法が挙げられる。 Further, using heat-adhesive fibers, that is, the above-mentioned heat-bonded multifilament yarns, weaving, knitting, netting or braiding are used to obtain textile products such as textiles, knitted fabrics, netted fabrics, ropes, twisted yarns or strings. Specifically, for example, a heat-bonded multifilament yarn may be woven as warp yarns and weft yarns to obtain a woven fabric, or a heat-bonded multifilament yarn may be hung on a warp knitting machine or a weft knitting machine to obtain a knitted fabric. Further, the heat-bonded multifilament yarn may be hung on a braiding machine to obtain a knotted net or a knotless net. Further, a string may be obtained by assembling a plurality of heat-bonded multifilament threads. When obtaining a textile product, one heat-bonded multifilament yarn may be used, or a plurality of heat-bonded multifilament yarns may be aligned and twisted as desired. When obtaining a textile product, fibers other than the heat-bonded fiber may be used in combination as long as the effects of the present invention are not impaired. For example, a multifilament yarn made of polyethylene terephthalate may be used in combination to improve the mechanical strength of the obtained thermoformed product. As a method of using in combination, a method of obtaining a textile product by using a yarn in which a heat-bonded multifilament yarn and a multifilament yarn made of polyethylene terephthalate, which is another fiber, are aligned or a mixed yarn is used, or when manufacturing a textile product. There is a method of obtaining a textile product by partially arranging a multifilament yarn made of polyethylene terephthalate which is another fiber.

次に得られた繊維製品を加熱し、熱成形体を得る。加熱温度は、熱接着性成分である鞘成分の融点以上かつ芯成分の融点未満とする。芯成分が融点約260℃のポリエチレンテレフタレートであるため、熱処理温度の上限は210℃が好適である。また、加熱処理時または加熱処理後に、所望の形状となるように加圧してもよい。この加熱により、鞘成分の共重合ポリエステルが溶融するとともに、芯成分は当初の繊維形態を維持した状態で、複合繊維相互間が融着して、熱成形体が得られる。たとえば、繊維製品として粗目の編織物または網地を採用し、この編織物または網地を加熱して共重合ポリエステルを溶融させると、編織物または網地の交点で強固に融着した熱成形体が得られる。なお、編織物または網地の交点とは、たとえば、織物の場合は経糸および緯糸の交差点であり、編物や網地の場合は結節点のことである。また、交点以外の部位(たとえば網地であれば網脚)における鞘成分である共重合ポリエステルも溶融させ、全体を融着させて、高剛性の熱成形体を得てもよい。 Next, the obtained textile product is heated to obtain a thermoformed product. The heating temperature is equal to or higher than the melting point of the sheath component, which is a heat-adhesive component, and lower than the melting point of the core component. Since the core component is polyethylene terephthalate having a melting point of about 260 ° C., the upper limit of the heat treatment temperature is preferably 210 ° C. Further, it may be pressurized so as to have a desired shape during or after the heat treatment. By this heating, the copolymerized polyester of the sheath component is melted, and the core component is fused between the composite fibers while maintaining the original fiber morphology to obtain a thermoformed body. For example, when a coarse knitted fabric or net fabric is adopted as a textile product and the knitted fabric or net fabric is heated to melt the copolymerized polyester, a heat-formed body is firmly fused at the intersection of the knitted fabric or the net fabric. Is obtained. The intersection of the knitted fabric or the net is, for example, the intersection of the warp and the weft in the case of the woven fabric, and the node in the case of the knitted fabric or the net. Further, the copolymerized polyester which is a sheath component at a portion other than the intersection (for example, a net leg in the case of a net) may be melted and fused as a whole to obtain a highly rigid thermoformed body.

このような高剛性の熱成形体としては、たとえば、メッシュシート、安全ネット、防音シート、建築工事用垂直ネット、剥落防止ネット、養生ネット等の土木・建築資材や、天井材、トランクマット、吸音材、シート用資材、タフテッド基布、トノカバー、ドアトリム、ツールボックス、ハーネス等の自動車用資材や、ロープ、縫い糸などが挙げられる。 Examples of such a highly rigid thermoformed body include civil engineering / building materials such as mesh sheets, safety nets, soundproof sheets, vertical nets for construction work, peeling prevention nets, and curing nets, ceiling materials, trunk mats, and sound absorbing bodies. Examples include materials for automobiles such as materials, seat materials, tufted base fabrics, trunk covers, door trims, tool boxes, harnesses, ropes, sewing threads, and the like.

熱接着性繊維には、必要に応じて、芯成分のポリエチレンテレフタレートおよび/または鞘成分の共重合ポリエステルに、熱安定剤、結晶核剤、艶消剤、顔料、耐光剤、耐候剤、滑剤、酸化防止剤、抗菌剤、香料、可塑剤、染料、界面活性剤、表面改質剤、各種無機または有機電解質などの添加剤が含有されていてもよい。 For heat-adhesive fibers, if necessary, polyethylene terephthalate as a core component and / or a copolymerized polyester as a sheath component, a heat stabilizer, a crystal nucleating agent, a matting agent, a pigment, a light-resistant agent, a weather-resistant agent, a lubricant, Additives such as antioxidants, antibacterial agents, fragrances, plasticizers, dyes, surfactants, surface modifiers, and various inorganic or organic electrolytes may be included.

以下の実施例、比較例における性能の評価は、次の方法によって行った。 The performance in the following examples and comparative examples was evaluated by the following method.

(a)強伸度
JIS L−1013 8.5 引張強さ及び伸び率の記載に準じて、定速伸長形引張試験機(島津製作所社製オートグラフAG−I)を用い、つかみ間隔25cm、引張速度30cm/分の条件で測定した。
(A) Strong Elongation According to the description of JIS L-1013 8.5 Tensile Strength and Elongation Rate, a constant speed extension type tensile tester (Autograph AG-I manufactured by Shimadzu Corporation) was used, and the grip interval was 25 cm. The measurement was performed under the condition of a tensile speed of 30 cm / min.

(b)難燃性
JIS L−1091D法(接炎試験)に従って測定した。なお、接炎回数の数値が大きいほど難燃性が高いことを示す。
(B) Flame retardant Measured according to JIS L-1091D method (flame contact test). The larger the number of flame contact, the higher the flame retardancy.

(実施例1)
芯成分として、ポリエチレンテレフタレート(融点260℃)と、ポリエチレンテレフタレートにリン化合物((2,5−ジヒドロキシフェニル)ジフェニルホスフィンオキシドのエチレンオキシド付加物)が共重合した共重合ポリエステル(リン原子4200ppmを含有)とを用い、両者の質量比が1.04:1となるようにドライブレンドしたもの(リン原子2060ppmを含有)を用いた。
(Example 1)
As a core component, polyethylene terephthalate (melting point 260 ° C.) and a copolymerized polyester (containing 4200 ppm of phosphorus atom) obtained by copolymerizing polyethylene terephthalate with a phosphorus compound (ethylene oxide adduct of (2,5-dihydroxyphenyl) diphenylphosphine oxide). Was used, and a dry blend (containing 2060 ppm of phosphorus atom) was used so that the mass ratio of the two was 1.04: 1.

鞘成分は、共重合単位のモル比が、テレフタル酸86.8モル%、ε−カプロラクトン13.2モル%、エチレングリコール50.0モル%、1,4−ブタンジオール49.2モル%、ジエチレングリコール0.8モル%である、融点160℃の共重合ポリエステルを用いた。 The sheath component has a molar ratio of copolymerization units of 86.8 mol% of terephthalic acid, 13.2 mol% of ε-caprolactone, 50.0 mol% of ethylene glycol, 49.2 mol% of 1,4-butanediol, and diethylene glycol. A copolymerized polyester having a melting point of 160 ° C., which was 0.8 mol%, was used.

そして、芯鞘質量比を芯:鞘=2.7:1として複合紡糸することにより、芯鞘複合繊維の全体としてリン原子を1500ppm含む熱接着性繊維からなるマルチフィラメント糸(1100デシテックス、96フィラメント)を得た。 Then, by performing composite spinning with the core-sheath mass ratio as core: sheath = 2.7: 1, a multifilament yarn (1100 decitex, 96 filaments) made of a heat-adhesive fiber containing 1500 ppm of phosphorus atoms as a whole of the core-sheath composite fiber. ) Was obtained.

このマルチフィラメント糸を1g/10cmとなるように製紐し、すなわち内層に8本組紐を入れ、外層を8本引揃×8本組紐とした組紐とし、60℃で30分湯洗いし、風乾した。その後に170℃で2分間熱処理して、少なくとも表面が溶融固化してなる棒状の熱成形体を得た。これを実施例1の熱成形体とした。 This multifilament yarn is woven so as to be 1 g / 10 cm, that is, 8 braids are put in the inner layer, and the outer layer is made into a braid with 8 pulls x 8 braids, washed with hot water at 60 ° C for 30 minutes, and air-dried. did. Then, it was heat-treated at 170 ° C. for 2 minutes to obtain a rod-shaped thermoformed body having at least a surface melted and solidified. This was used as the thermoformed body of Example 1.

(実施例2)
芯成分として、ポリエチレンテレフタレートに実施例1で用いたのと同じリン化合物が共重合した共重合ポリエステル(リン原子4200ppmを含有)を用いた。
(Example 2)
As the core component, a copolymerized polyester (containing 4200 ppm of phosphorus atom) obtained by copolymerizing polyethylene terephthalate with the same phosphorus compound used in Example 1 was used.

鞘成分として、実施例1のものと同じである融点160℃の共重合ポリエステルを用いた。 As the sheath component, a copolymerized polyester having a melting point of 160 ° C., which is the same as that of Example 1, was used.

そして、芯鞘質量比を芯:鞘=2.7:1として複合紡糸することにより、リン原子を3060ppm含む熱接着性繊維からなるマルチフィラメント糸(1100デシテックス、96フィラメント)を得た。 Then, the core-sheath mass ratio was set to core: sheath = 2.7: 1 and composite spinning was performed to obtain a multifilament yarn (1100 decitex, 96 filaments) composed of heat-adhesive fibers containing 3060 ppm of phosphorus atoms.

このマルチフィラメント糸を1g/10cmとなるように製紐し、すなわち内層に8本組紐を入れ、外層を8本引揃×8本組紐とした組紐とし、60℃で30分湯洗いし、風乾し、170℃で2分間熱処理して、少なくとも表面が溶融固化してなる棒状の熱成形体を得た。これを実施例2の熱成形体とした。 This multifilament yarn is woven so as to be 1 g / 10 cm, that is, 8 braids are put in the inner layer, and the outer layer is made into a braid with 8 pulls x 8 braids, washed with hot water at 60 ° C for 30 minutes, and air-dried. Then, it was heat-treated at 170 ° C. for 2 minutes to obtain a rod-shaped thermoformed body in which at least the surface was melted and solidified. This was used as the thermoformed body of Example 2.

(実施例3)
芯成分として、ポリエチレンテレフタレートに実施例1で用いたのと同じリン化合物が共重合した共重合ポリエステル(リン原子4200ppmを含有)と、ポリエチレンテレフタレート中にリン化合物(ジエチルホスフィン酸アルミニウム塩)を練り込んだマスターバッチ(リン原子4万ppmを含有)との質量比が、リン化合物含有ポリエステル:リン化合物練り込みポリエチレンテレフタレート=22.3:1となるようにドライブレンドしたもの(リン原子5760ppmを含有)を用いた。
(Example 3)
As a core component, a copolymerized polyester (containing 4200 ppm of phosphorus atom) obtained by copolymerizing polyethylene terephthalate with the same phosphorus compound used in Example 1 and a phosphorus compound (diethylphosphinic acid aluminum salt) are kneaded into polyethylene terephthalate. A dry blend (containing 5760 ppm of phosphorus atom) so that the mass ratio with the master batch (containing 40,000 ppm of phosphorus atom) is phosphorus compound-containing polyester: phosphorus compound kneaded polyethylene terephthalate = 22.3: 1. Was used.

鞘成分として、実施例1のものと同じである融点160℃の共重合ポリエステルを用いた。 As the sheath component, a copolymerized polyester having a melting point of 160 ° C., which is the same as that of Example 1, was used.

そして、芯鞘質量比を芯:鞘=2.7:1として複合紡糸することにより、リン原子を4200ppm含む熱接着性繊維からなるマルチフィラメント糸(1100デシテックス、96フィラメント)を得た。 Then, the core-sheath mass ratio was set to core: sheath = 2.7: 1 and composite spinning was performed to obtain a multifilament yarn (1100 decitex, 96 filaments) composed of heat-adhesive fibers containing 4200 ppm of phosphorus atoms.

このマルチフィラメント糸を1g/10cmとなるように製紐し、すなわち内層に8本組紐を入れ、外層を8本引揃×8本組紐とした組紐とし、60℃で30分湯洗いし、風乾し、170℃で2分間熱処理して、少なくとも表面が溶融固化してなる棒状の熱成形体を得た。これを実施例3の熱成形体とした。 This multifilament yarn is woven so as to be 1 g / 10 cm, that is, 8 braids are put in the inner layer, and the outer layer is made into a braid with 8 pulls x 8 braids, washed with hot water at 60 ° C for 30 minutes, and air-dried. Then, it was heat-treated at 170 ° C. for 2 minutes to obtain a rod-shaped thermoformed body in which at least the surface was melted and solidified. This was used as the thermoformed body of Example 3.

(実施例4)
芯成分として、ポリエチレンテレフタレート(融点260℃)を用いた。
(Example 4)
Polyethylene terephthalate (melting point 260 ° C.) was used as the core component.

鞘成分は、実施例1で用いたのと同じ融点160℃の共重合ポリエステルと、この共重合ポリエステル中にリン化合物(ジエチルホスフィン酸アルミニウム塩)を練り込んだマスターバッチ(リン原子4万ppmを含有)との質量比が、共重合ポリエステル:マスターバッチ=6.2:1となるようにドライブレンドしたもの(リン原子5560ppmを含有)を用いた。 The sheath component was a copolyester having a melting point of 160 ° C., which was the same as that used in Example 1, and a masterbatch (phosphorous acid 40,000 ppm) in which a phosphorus compound (diethylphosphinic acid aluminum salt) was kneaded into the copolyester. A dry blend (containing 5560 ppm of phosphorus atom) was used so that the mass ratio with (containing) was copolymerized polyester: masterbatch = 6.2: 1.

そして、芯鞘質量比を芯:鞘=2.7:1として複合紡糸することにより、リン原子を1500ppm含む熱接着性繊維からなるマルチフィラメント糸(1100デシテックス、96フィラメント)を得た。 Then, the core-sheath mass ratio was set to core: sheath = 2.7: 1 and composite spinning was performed to obtain a multifilament yarn (1100 decitex, 96 filaments) composed of heat-adhesive fibers containing 1500 ppm of phosphorus atoms.

このマルチフィラメント糸を1g/10cmとなるように製紐し、すなわち内層に8本組紐を入れ、外層を8本引揃×8本組紐とした組紐とし、60℃で30分湯洗いし、風乾し、170℃で2分間熱処理して、少なくとも表面が溶融固化してなる棒状の熱成形体を得た。これを実施例4の熱成形体とした。 This multifilament yarn is woven so as to be 1 g / 10 cm, that is, 8 braids are put in the inner layer, and the outer layer is made into a braid with 8 pulls x 8 braids, washed with hot water at 60 ° C for 30 minutes, and air-dried. Then, it was heat-treated at 170 ° C. for 2 minutes to obtain a rod-shaped thermoformed body in which at least the surface was melted and solidified. This was used as the thermoformed body of Example 4.

(実施例5)
芯成分として、ポリエチレンテレフタレートを用いた。
(Example 5)
Polyethylene terephthalate was used as the core component.

鞘成分は、実施例1で用いたのと同じ融点160℃の共重合ポリエステルと、この共重合ポリエステル中に実施例4で用いたのと同じリン化合物を練り込んだマスターバッチ(リン原子4万ppmを含有)との質量比が、共重合ポリエステル:マスターバッチ=1.57:1となるようにドライブレンドしたもの(リン原子15560ppmを含有)を用いた。 The sheath component was a masterbatch (40,000 phosphorus atoms) in which the same copolymerized polyester having a melting point of 160 ° C. used in Example 1 and the same phosphorus compound used in Example 4 were kneaded into the copolymerized polyester. A dry blend (containing 15560 ppm of phosphorus atom) was used so that the mass ratio with (containing ppm) was copolymerized polyester: masterbatch = 1.57: 1.

そして、芯鞘質量比を芯:鞘=2.7:1として複合紡糸することにより、リン原子を4200ppm含む熱接着性繊維からなるマルチフィラメント糸(1100デシテックス、96フィラメント)を得た。 Then, the core-sheath mass ratio was set to core: sheath = 2.7: 1 and composite spinning was performed to obtain a multifilament yarn (1100 decitex, 96 filaments) composed of heat-adhesive fibers containing 4200 ppm of phosphorus atoms.

このマルチフィラメント糸を1g/10cmとなるように製紐し、すなわち内層に8本組紐を入れ、外層を8本引揃×8本組紐とした組紐とし、60℃で30分湯洗いし、風乾し、170℃で2分間熱処理して、少なくとも表面が溶融固化してなる棒状の熱成形体を得た。これを実施例5の熱成形体とした。 This multifilament yarn is woven so as to be 1 g / 10 cm, that is, 8 braids are put in the inner layer, and the outer layer is made into a braid with 8 pulls x 8 braids, washed with hot water at 60 ° C for 30 minutes, and air-dried. Then, it was heat-treated at 170 ° C. for 2 minutes to obtain a rod-shaped thermoformed body in which at least the surface was melted and solidified. This was used as the thermoformed body of Example 5.

(実施例6)
芯成分として、ポリエチレンテレフタレート(融点260℃)に実施例1で用いたのと同じリン化合物が共重合した共重合ポリエステル(リン原子4200ppmを含有)を用いた。
(Example 6)
As the core component, a copolymerized polyester (containing 4200 ppm of phosphorus atom) obtained by copolymerizing polyethylene terephthalate (melting point 260 ° C.) with the same phosphorus compound used in Example 1 was used.

鞘成分は、実施例1で用いたのと同じ融点160℃の共重合ポリエステルと、この共重合ポリエステル中に実施例4で用いたのと同じリン化合物を練り込んだマスターバッチ(リン原子4万ppmを含有)との質量比が、共重合ポリエステル:マスターバッチ=8.5:1となるようにドライブレンドしたもの(リン原子4210ppmを含有)を用いた。 The sheath component was a masterbatch (40,000 phosphorus atoms) in which the same copolymerized polyester having a melting point of 160 ° C. used in Example 1 and the same phosphorus compound used in Example 4 were kneaded into the copolymerized polyester. A dry blend (containing 4210 ppm of phosphorus atom) was used so that the mass ratio with (containing ppm) was copolymerized polyester: masterbatch = 8.5: 1.

そして、芯鞘質量比を芯:鞘=2.7:1として複合紡糸することにより、リン原子を4200ppm含む熱接着性繊維からなるマルチフィラメント糸(1100デシテックス、96フィラメント)を得た。 Then, the core-sheath mass ratio was set to core: sheath = 2.7: 1 and composite spinning was performed to obtain a multifilament yarn (1100 decitex, 96 filaments) composed of heat-adhesive fibers containing 4200 ppm of phosphorus atoms.

このマルチフィラメント糸を1g/10cmとなるように製紐し、すなわち内層に8本組紐を入れ、外層を8本引揃×8本組紐とした組紐とし、60℃で30分湯洗いし、風乾し、170℃で2分間熱処理して、少なくとも表面が溶融固化してなる棒状の熱成形体を得た。これを実施例6の熱成形体とした。 This multifilament yarn is woven so as to be 1 g / 10 cm, that is, 8 braids are put in the inner layer, and the outer layer is made into a braid with 8 pulls x 8 braids, washed with hot water at 60 ° C for 30 minutes, and air-dried. Then, it was heat-treated at 170 ° C. for 2 minutes to obtain a rod-shaped thermoformed body in which at least the surface was melted and solidified. This was used as the thermoformed body of Example 6.

(比較例1)
芯成分としてポリエチレンテレフタレート(融点260℃)を用いた。鞘成分は、実施例1で用いたのと同じ融点160℃の共重合ポリエステルを用いた。芯成分、鞘成分ともリン化合物は含有させなかった。
(Comparative Example 1)
Polyethylene terephthalate (melting point 260 ° C.) was used as the core component. As the sheath component, a copolymerized polyester having a melting point of 160 ° C., which was the same as that used in Example 1, was used. Neither the core component nor the sheath component contained a phosphorus compound.

そして、芯鞘質量比を芯:鞘=3:1として複合紡糸することにより、熱接着性繊維からなるマルチフィラメント糸(1100デシテックス、96フィラメント)を得た。 Then, by performing composite spinning with the core-sheath mass ratio as core: sheath = 3: 1, a multifilament yarn (1100 decitex, 96 filaments) made of heat-adhesive fibers was obtained.

このマルチフィラメント糸を1g/10cmとなるように製紐し、すなわち内層に8本組紐を入れ、外層に8本引揃×8本組紐とした組紐とし、60℃で30分湯洗いし、風乾した。熱処理はしなかった。これを比較例1の成形体とした。 This multifilament yarn is woven so as to be 1 g / 10 cm, that is, 8 braids are put in the inner layer, and 8 braids x 8 braids are made in the outer layer, washed with hot water at 60 ° C for 30 minutes, and air-dried. did. No heat treatment was performed. This was used as the molded product of Comparative Example 1.

(比較例2)
比較例1の組紐を170℃で2分熱処理した。これを比較例2の熱成形体とした。
(Comparative Example 2)
The braid of Comparative Example 1 was heat-treated at 170 ° C. for 2 minutes. This was used as the thermoformed body of Comparative Example 2.

(比較例3)
実施例4において、風乾後の組紐を熱処理しないものとした。これを比較例3の成形体とした。
(Comparative Example 3)
In Example 4, the braid after air drying was not heat-treated. This was used as a molded product of Comparative Example 3.

(比較例4)
実施例5において、風乾後の組紐を熱処理しないものとした。これを比較例4の成形体とした。
(Comparative Example 4)
In Example 5, the braid after air drying was not heat-treated. This was used as the molded product of Comparative Example 4.

実施例1〜6、比較例1〜4の成形体を構成する熱接着性繊維のリン原子含有量と、同熱接着性繊維からなるマルチフィラメント糸の原糸物性と、成形体の難燃性との評価結果を表1に示す。 The phosphorus atom content of the heat-adhesive fibers constituting the molded products of Examples 1 to 6 and Comparative Examples 1 to 4, the physical characteristics of the multifilament yarn made of the heat-adhesive fibers, and the flame retardancy of the molded product. The evaluation results are shown in Table 1.

Figure 2021036082
Figure 2021036082

表1から明らかなように、本発明の構成要件を満たす実施例1〜6の複合構造の熱接着性繊維を使用した熱成形体は、難燃性能に優れたものであった。実施例1と実施例4、および実施例3と実施例5は、繊維中のリン原子含有量が同じであるが、芯成分にリン化合物を含有した実施例1と実施例3の方が、鞘成分にリン化合物を含有した実施例4と実施例5に比べて、難燃性能がより優れる結果となった。 As is clear from Table 1, the thermoformed bodies using the heat-adhesive fibers having the composite structure of Examples 1 to 6 satisfying the constituent requirements of the present invention were excellent in flame retardancy. Examples 1 and 4, and Examples 3 and 5 have the same phosphorus atom content in the fiber, but Examples 1 and 3 containing a phosphorus compound in the core component have the same phosphorus atom content. Compared with Examples 4 and 5 in which the phosphorus compound was contained in the sheath component, the flame retardant performance was more excellent.

一方、比較例1は難燃性に劣るものではないが、比較例1を熱処理して得られた比較例2は難燃性に劣るものとなった。 On the other hand, Comparative Example 1 was not inferior in flame retardancy, but Comparative Example 2 obtained by heat-treating Comparative Example 1 was inferior in flame retardancy.

反対に、実施例4と比較例3、および実施例5と比較例4は、繊維中のリン原子含有量が同じであり、またいずれも鞘成分にリン化合物を含有したものであったが、熱処理して得られた実施例4、実施例5の方が、熱処理しなかった比較例3、比較例4に比べて、難燃性能に優れるものであった。 On the contrary, in Example 4 and Comparative Example 3, and in Example 5 and Comparative Example 4, the phosphorus atom content in the fiber was the same, and all of them contained a phosphorus compound in the sheath component. Examples 4 and 5 obtained by heat treatment were superior in flame retardancy to Comparative Examples 3 and 4 which were not heat-treated.

Claims (5)

熱成形体であって、横断面において芯鞘構造を呈する複合構造の熱接着性繊維にて繊維製品が構成され、この繊維製品における前記熱接着性繊維の鞘成分の溶融再固化によって複数の芯成分どうしが互いに熱接着されたものであり、
前記熱接着繊維は、芯成分がエチレングリコールとテレフタル酸とを含む共重合体により形成され、鞘成分がテレフタル酸とエチレングリコールと1,4−ブタンジオールとジエチレングリコールとを含む共重合体より形成され、鞘成分の融点が芯成分の融点よりも50℃〜120℃低く、芯成分と鞘成分との少なくともいずれかにリン化合物を含有し、複合繊維におけるリン原子の含有率が500〜7000ppmであることを特徴とする熱成形体。
A fiber product is composed of heat-adhesive fibers having a composite structure that is a thermoformed body and exhibits a core-sheath structure in a cross section, and a plurality of cores are obtained by melt-resolidification of the sheath component of the heat-adhesive fibers in this fiber product. The ingredients are heat-bonded to each other,
The heat-bonded fiber is formed of a copolymer containing ethylene glycol and terephthalic acid as a core component, and a copolymer containing terephthalic acid, ethylene glycol, 1,4-butanediol and diethylene glycol as a sheath component. , The melting point of the sheath component is 50 ° C. to 120 ° C. lower than the melting point of the core component, a phosphorus compound is contained in at least one of the core component and the sheath component, and the content of phosphorus atom in the composite fiber is 500 to 7000 ppm. A heat-molded body characterized by that.
芯成分と鞘成分の質量比が1:4〜4:1であることを特徴とする請求項1記載の熱成形体。 The thermoformed body according to claim 1, wherein the mass ratio of the core component and the sheath component is 1: 4 to 4: 1. 鞘成分がさらにε−カプロラクトンを含有することを特徴とする請求項1または2記載の熱成形体。 The thermoformed product according to claim 1 or 2, wherein the sheath component further contains ε-caprolactone. 繊維製品が、編織物、網地、ロープ、撚糸および紐よりなる群から選ばれたものであることを特徴とする請求項1から3までのいずれか1項記載の熱成形体。 The thermoformed body according to any one of claims 1 to 3, wherein the textile product is selected from the group consisting of knitted fabrics, nets, ropes, twisted yarns and strings. 横断面において芯鞘構造を呈する複合繊維によって構成され、芯成分がエチレングリコールとテレフタル酸とを含む共重合体により形成され、鞘成分がテレフタル酸とエチレングリコールと1,4−ブタンジオールとジエチレングリコールとを含む共重合体より形成され、鞘成分の融点が芯成分の融点よりも50℃〜120℃低く、芯成分と鞘成分との少なくともいずれかにリン化合物を含有し、複合繊維におけるリン原子の含有率が500〜7000ppmである熱接着性繊維にて繊維製品を製造し、この繊維製品を鞘成分の融点以上かつ芯成分の融点以下の温度条件で熱処理することによって、鞘成分を熱溶融させかつその後に冷却固化させて芯成分同士を熱接着させることを特徴とする熱成形体の製造方法。 It is composed of composite fibers that exhibit a core-sheath structure in the cross section, the core component is formed of a copolymer containing ethylene glycol and terephthalic acid, and the sheath component is terephthalic acid, ethylene glycol, 1,4-butanediol, and diethylene glycol. It is formed from a copolymer containing, the melting point of the sheath component is 50 ° C. to 120 ° C. lower than the melting point of the core component, and at least one of the core component and the sheath component contains a phosphorus compound, and the phosphorus atom in the composite fiber is contained. A textile product is manufactured from heat-adhesive fibers having a content of 500 to 7000 ppm, and the sheath component is thermally melted by heat-treating the fiber product under temperature conditions equal to or higher than the melting point of the sheath component and lower than the melting point of the core component. A method for producing a thermopolymer, which comprises then cooling and solidifying to heat-bond the core components to each other.
JP2019157501A 2019-08-30 2019-08-30 Thermoformed body and method for producing same Active JP7474461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157501A JP7474461B2 (en) 2019-08-30 2019-08-30 Thermoformed body and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157501A JP7474461B2 (en) 2019-08-30 2019-08-30 Thermoformed body and method for producing same

Publications (2)

Publication Number Publication Date
JP2021036082A true JP2021036082A (en) 2021-03-04
JP7474461B2 JP7474461B2 (en) 2024-04-25

Family

ID=74716921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157501A Active JP7474461B2 (en) 2019-08-30 2019-08-30 Thermoformed body and method for producing same

Country Status (1)

Country Link
JP (1) JP7474461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036081A (en) * 2019-08-30 2021-03-04 ユニチカ株式会社 Heat-bondable fiber and heat compact using the fiber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119011A (en) * 1993-10-26 1995-05-09 Nippon Ester Co Ltd Polyester-based heat-resistant nonwoven fabric and its production
JPH11124732A (en) * 1997-10-17 1999-05-11 Unitika Ltd Weather-resistant, flame-retardant polyester fiber
JP2001271270A (en) * 2000-03-23 2001-10-02 Unitica Fibers Ltd Mesh sheet for construction work and method for producing the same
WO2006092835A1 (en) * 2005-02-28 2006-09-08 Unitika Fibers Ltd. Automotive ceiling material and method for molding thereof
JP2007092204A (en) * 2005-09-28 2007-04-12 Toray Ind Inc Polyester-based thermally bondable conjugate fiber and method for producing the same
JP2019163582A (en) * 2018-03-19 2019-09-26 ユニチカ株式会社 Sheath core type composite thermally adhesive fiber
JP2021036081A (en) * 2019-08-30 2021-03-04 ユニチカ株式会社 Heat-bondable fiber and heat compact using the fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119011A (en) * 1993-10-26 1995-05-09 Nippon Ester Co Ltd Polyester-based heat-resistant nonwoven fabric and its production
JPH11124732A (en) * 1997-10-17 1999-05-11 Unitika Ltd Weather-resistant, flame-retardant polyester fiber
JP2001271270A (en) * 2000-03-23 2001-10-02 Unitica Fibers Ltd Mesh sheet for construction work and method for producing the same
WO2006092835A1 (en) * 2005-02-28 2006-09-08 Unitika Fibers Ltd. Automotive ceiling material and method for molding thereof
JP2007092204A (en) * 2005-09-28 2007-04-12 Toray Ind Inc Polyester-based thermally bondable conjugate fiber and method for producing the same
JP2019163582A (en) * 2018-03-19 2019-09-26 ユニチカ株式会社 Sheath core type composite thermally adhesive fiber
JP2021036081A (en) * 2019-08-30 2021-03-04 ユニチカ株式会社 Heat-bondable fiber and heat compact using the fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036081A (en) * 2019-08-30 2021-03-04 ユニチカ株式会社 Heat-bondable fiber and heat compact using the fiber
JP7411202B2 (en) 2019-08-30 2024-01-11 ユニチカ株式会社 Weather-resistant thermoformed body and its manufacturing method

Also Published As

Publication number Publication date
JP7474461B2 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
KR102571047B1 (en) fabrics and textiles
CN108779585B (en) Yarn, fabric and textile product
KR100951190B1 (en) Low melting and flame retardant polyester composite yarn and fabric and a method of fabricating the same
KR100537872B1 (en) Flame-retardant polyester fiber, woven or knitted flame-retardant polyester fiber fabric, nonwoven flame-retardant polyester fiber fabric, and woven or knitted suede fabric
JP7281174B2 (en) Sheath-core composite thermoadhesive fiber
JP2010138537A (en) Fabric for screen including spun-dyed yarn
JP7474461B2 (en) Thermoformed body and method for producing same
JP2010216019A (en) Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear
JP2009299201A (en) Knitted fabric excellent in quick dryability and fiber product
JP7411202B2 (en) Weather-resistant thermoformed body and its manufacturing method
JP5178413B2 (en) Hollow modified polyester multifilament
JP2008240183A (en) Elastic warp-knitted fabric
KR101590231B1 (en) Polyester multi-filament fiber with twisted yarn effect and method for manufacturing thereof
JP2018066077A (en) Knitted fabric, manufacturing method of the same, and shirt
JP6715679B2 (en) Spun yarn, cloth and textile products
JP2009299207A (en) Multi-layered fabric and fiber product
JP6271908B2 (en) Sewing thread for feather products and feather products
JP2006022436A (en) Fiber product
KR101460939B1 (en) Flame-resistant fabrics comprising Cotton/Polyester mixed yarn and method for manufacturing thereof
JP2021031807A (en) Multifilament yarn and method for producing thermally-formed body using the same
JP2006022435A (en) Fiber product
US20170035225A1 (en) Quilt cover
KR20220022872A (en) Polyester yarn for apparel use and method for preparing the same
JP5032425B2 (en) Polyester monofilament having thickness spots, method for producing the same, fabric and textile product
JP2018150658A (en) Blended yarn of polyester fiber for industrial material net

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7474461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150