JP2021032822A - Inspection device irregularity part evaluation system and inspection device irregularity part evaluation method - Google Patents

Inspection device irregularity part evaluation system and inspection device irregularity part evaluation method Download PDF

Info

Publication number
JP2021032822A
JP2021032822A JP2019155991A JP2019155991A JP2021032822A JP 2021032822 A JP2021032822 A JP 2021032822A JP 2019155991 A JP2019155991 A JP 2019155991A JP 2019155991 A JP2019155991 A JP 2019155991A JP 2021032822 A JP2021032822 A JP 2021032822A
Authority
JP
Japan
Prior art keywords
inspection device
displacement
correlation coefficient
sensor
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019155991A
Other languages
Japanese (ja)
Other versions
JP7252863B2 (en
Inventor
悠太 中村
Yuta Nakamura
悠太 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kayaba System Machinery Co Ltd
Original Assignee
Kayaba System Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba System Machinery Co Ltd filed Critical Kayaba System Machinery Co Ltd
Priority to JP2019155991A priority Critical patent/JP7252863B2/en
Publication of JP2021032822A publication Critical patent/JP2021032822A/en
Application granted granted Critical
Publication of JP7252863B2 publication Critical patent/JP7252863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide an inspection device irregularity part evaluation system and inspection device irregularity part evaluation method that can make an estimation of an irregularity part of an inspection device easy.SOLUTION: An irregularity part evaluation system 1 of an inspection device T comprises: a sensor unit 2 that has a first displacement sensor 2a, a load cell 2b, a second displacement sensor 2c and a third displacement sensor 2d as three or more sensor parts detecting an action of the inspection device T and an action of an analyte the inspection device T inspects as information, in which the pieces of information are respectively different; and a processing device 3 that processes information SD, d1, d2 and F the sensor device 2 detects. The processing device 3 includes: a correlation coefficient calculation unit 3a1 that obtains a correlation coefficient of the pieces of information themselves the two sensor parts detect about all the combinations of two sensor parts among the sensor parts; an index calculation unit 3a2 that obtains a difference between a correlation coefficient and a corresponding normal value for each of obtained all correlation coefficients as an index; and a rank calculation unit 3a3 that ranks the index.SELECTED DRAWING: Figure 1

Description

本発明は、検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法に関する。 The present invention relates to an abnormality location evaluation system for an inspection device and an abnormality location evaluation method for an inspection device.

検査装置は、コントローラと、コントローラからの入力に応じて検体へ出力を与える出力部とを備え、検体の性能や耐久性などを検査する。コントローラは、出力部の出力をフィードバックして検体に予め決められた検査条件通りに検査装置を制御して検体に出力を与える。 The inspection device includes a controller and an output unit that outputs an output to the sample in response to an input from the controller, and inspects the performance and durability of the sample. The controller feeds back the output of the output unit, controls the inspection device according to the inspection conditions predetermined for the sample, and gives the output to the sample.

このような検査装置としては、たとえば、振動検査装置があり、振動検査装置は、出力部として加振器を備えており、機械部品やダンパといった検体に対して加振器で振動を与える。この場合、振動検査装置の出力は、検体に与える荷重、速度や変位といった物理量となり、コントローラから操作量を指示する入力が与えられると、振動検査装置は、検体に検査条件通りの荷重、速度或いは変位を与える(たとえば、特許文献1参照)。 As such an inspection device, for example, there is a vibration inspection device, and the vibration inspection device includes a vibrating device as an output unit, and vibrates a sample such as a mechanical part or a damper with the vibrating device. In this case, the output of the vibration inspection device is a physical quantity such as a load, speed or displacement given to the sample, and when an input instructing the operation amount is given from the controller, the vibration inspection device gives the sample a load, speed or the load according to the inspection conditions. Displacement is given (see, for example, Patent Document 1).

特開2019−032261号公報Japanese Unexamined Patent Publication No. 2019-032261

このような検査装置に異常が生じると正常な検体の検査が行えないので、異常箇所を特定したうえで検査装置の修理や部品交換等の対応が必要となる。このように検査装置の修理や部品交換等の対応を行うには、検査装置の異常箇所の特定が必要となる。 If an abnormality occurs in such an inspection device, a normal sample cannot be inspected. Therefore, it is necessary to identify the abnormal part and then repair the inspection device or replace parts. In order to repair the inspection device or replace parts in this way, it is necessary to identify the abnormal part of the inspection device.

検査装置には多くの部品が使用されているため、予め異常箇所に当たりをつけて部品の異常の有無を確認する作業をしなければ異常箇所の特定に多大な時間がかかってしまう。 Since many parts are used in the inspection device, it takes a lot of time to identify the abnormal part unless the work of hitting the abnormal part in advance and confirming the presence or absence of the abnormality of the part is performed.

異常箇所を推定するには、検体の検査結果データを解析する等して行えなくはないが、データ解析による異常箇所の推定には熟練したオペレータの高度な知識が必要であって、誰もが異常箇所を推定できるものではない。 In order to estimate the abnormal part, it is not impossible to analyze the test result data of the sample, but the estimation of the abnormal part by the data analysis requires the advanced knowledge of a skilled operator, and everyone can do it. It is not possible to estimate the abnormal part.

そこで、本発明は、検査装置の異常箇所の推定を容易とすることができる検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法の提供を目的としている。 Therefore, an object of the present invention is to provide an abnormality part evaluation system of an inspection device and an abnormality part evaluation method of the inspection device, which can easily estimate an abnormality part of the inspection device.

上記した目的を達成するため、本発明の検査装置の異常箇所評価システムは、検査装置の動作と検査装置が検査する検体の動作を情報として検知する情報がそれぞれ異なる3つ以上のセンサ部を有するセンサ装置と、センサ装置が検知した情報を処理する処理装置とを備え、処理装置がセンサ部のうち2つのセンサ部の全組合わせについて2つのセンサ部が検知した情報同士の相関係数を求める相関係数算出部と、求めた全相関係数毎に相関係数と対応する正常値との差を指標として求める指標算出部と、指標を順位付けする順位算出部とを備えている。 In order to achieve the above object, the abnormality location evaluation system of the inspection device of the present invention has three or more sensor units having different information for detecting the operation of the inspection device and the operation of the sample to be inspected by the inspection device as information. A sensor device and a processing device that processes information detected by the sensor device are provided, and the processing device obtains a correlation coefficient between the information detected by the two sensor units for all combinations of the two sensor units. It is provided with a correlation coefficient calculation unit, an index calculation unit that obtains the difference between the correlation coefficient and the corresponding normal value as an index for each of the obtained correlation coefficients, and a ranking calculation unit that ranks the indexes.

また、本実施の形態の検査装置の異常箇所評価方法は、検査装置の動作と検査装置が検査する検体の動作を情報としてそれぞれ異なる3つ以上の情報を検知するセンシング過程と、センシング過程で検知した情報のうち2つの情報の全組合わせについて情報同士の相関係数を求める相関係数算出過程と、求めた全相関係数毎に相関係数と対応する正常値との差を指標として求める指標算出過程と、各指標を順位付けする順位算出過程とを備えている。 Further, the method for evaluating an abnormal part of the inspection device according to the present embodiment includes a sensing process for detecting three or more different pieces of information using the operation of the inspection device and the operation of the sample to be inspected by the inspection device as information, and a sensing process for detecting the abnormality. The difference between the correlation coefficient calculation process for obtaining the correlation coefficient between information for all combinations of two pieces of information and the corresponding normal value for each obtained correlation coefficient is obtained as an index. It has an index calculation process and a ranking calculation process for ranking each index.

以上のように構成された検査装置の異常箇所評価システムおよび異常箇所評価方法では、相関係数が正常値と乖離すれば乖離するほど大きな値を採る指標を順位付けするので、検査装置のオペレータに注意を払うべき指標を順位付けして認識させ得る。また、このように構成された検査装置の異常箇所評価システムおよび異常箇所評価方法で求めた指標を利用すれば、検査装置のオペレータは、順位の高い指標とセンサ部の設置位置との関係から容易に異常箇所に当たりをつけることができる。 In the abnormality part evaluation system and the abnormality part evaluation method of the inspection device configured as described above, the index that takes a larger value as the correlation coefficient deviates from the normal value is ranked, so that the operator of the inspection device can use it. You can rank and recognize the indicators that you should pay attention to. Further, by using the index obtained by the abnormality part evaluation system and the abnormality part evaluation method of the inspection device configured in this way, the operator of the inspection device can easily operate the inspection device from the relationship between the high-ranking index and the installation position of the sensor unit. You can hit the abnormal part.

また、検査装置の異常箇所評価システムは、処理装置が指標に基づいて検査装置の異常箇所を推定する異常箇所推定部を備えてもよい。このように構成された検査装置の異常箇所評価システムによれば、自動的に異常箇所を推定するので検査装置のオペレータに推定した異常箇所を認識させ得るので、同オペレータの異常箇所の特定作業がより一層容易となる。 Further, the abnormality location evaluation system of the inspection device may include an abnormality location estimation unit in which the processing apparatus estimates the abnormality location of the inspection device based on the index. According to the abnormal part evaluation system of the inspection device configured in this way, the abnormal part is automatically estimated, so that the operator of the inspection device can recognize the estimated abnormal part, so that the operator can identify the abnormal part. It will be even easier.

さらに、検査装置の異常箇所評価システムは、相関係数算出部が2つのセンサ部同士の情報の度数分布を求め、求めた度数分布に基づいて相関係数を求めてもよい。このように構成された検査装置の異常箇所評価システムによれば、位相ずれの影響を排除して情報の波形の一致度を示す相関係数が得られるので、常に安定した指標を求めることができ、異常箇所の特定に良好な指標を得ることができる。 Further, in the abnormality location evaluation system of the inspection device, the correlation coefficient calculation unit may obtain the frequency distribution of the information between the two sensor units, and may obtain the correlation coefficient based on the obtained frequency distribution. According to the abnormality location evaluation system of the inspection device configured in this way, the correlation coefficient indicating the degree of matching of the information waveforms can be obtained by eliminating the influence of the phase shift, so that a stable index can always be obtained. , A good index can be obtained for identifying the abnormal part.

また、検査装置の異常箇所評価システムは、過去に求めた正常な検査装置で正常な検体を検査した際に得られた複数の相関係数の平均値を正常値としてもよい。このように構成された検査装置の異常箇所評価システムによれば、異常な検査装置で検体を検査した際に得られる指標が平均値から乖離すればするほど大きな値を採るので、指標が異常値であるか否かについて検査装置のオペレータが判断しやすくなる。 In addition, the abnormality location evaluation system of the inspection device may set the average value of a plurality of correlation coefficients obtained when a normal sample is inspected by the normal inspection device obtained in the past as a normal value. According to the abnormal part evaluation system of the inspection device configured in this way, the index obtained when the sample is inspected by the abnormal inspection device becomes a larger value as it deviates from the average value, so that the index is an abnormal value. It becomes easier for the operator of the inspection device to judge whether or not it is.

そして、検査装置が振動検査装置であって、センサ装置が検査装置の変位と、検体の全体変位と検体の部分的な変位と、検体に作用する荷重を情報として検知してもよい。このように構成された検査装置の異常箇所評価システムによれば、検査装置のオペレータは、センサ部の位置関係と求めた指標とから、振動検査装置である検査装置のどこに異常があるのか異常箇所を具体的に推定できる。 Then, the inspection device may be a vibration inspection device, and the sensor device may detect the displacement of the inspection device, the total displacement of the sample, the partial displacement of the sample, and the load acting on the sample as information. According to the abnormality location evaluation system of the inspection device configured in this way, the operator of the inspection device determines where the abnormality is in the inspection device, which is a vibration inspection device, based on the positional relationship of the sensor unit and the obtained index. Can be estimated concretely.

本発明の検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法によれば、検査装置の異常箇所の推定を容易にできる。 According to the abnormality location evaluation system of the inspection device and the abnormality location evaluation method of the inspection device of the present invention, it is possible to easily estimate the abnormality location of the inspection device.

一実施の形態における検査装置の評価システムの構成図である。It is a block diagram of the evaluation system of the inspection apparatus in one Embodiment. 検査装置の側面図である。It is a side view of an inspection apparatus. 処理装置の構成図である。It is a block diagram of a processing apparatus. 検査装置の変位の波形を示した図である。It is a figure which showed the waveform of the displacement of an inspection apparatus. 正規化した検査装置の変位とダンパの荷重の波形を示した図である。It is the figure which showed the displacement of the normalized inspection apparatus, and the waveform of the load of a damper. 正規化した検査装置の変位とダンパの荷重のヒストグラムを示した図である。It is a figure which showed the histogram of the displacement of the normalized inspection apparatus and the load of a damper. 指標の大小と異常箇所との関係を示した表である。It is a table showing the relationship between the magnitude of the index and the abnormal part. 処理装置における処理手順の一例を示したフローチャートである。It is a flowchart which showed an example of the processing procedure in a processing apparatus.

以下、図に示した実施の形態に基づき、本発明を説明する。図1に示すように、一実施の形態における検査装置Tの異常箇所評価システム1は、検査装置Tの動作と検査装置Tが検査する検体としてのダンパDの動作を情報として検知するセンサ装置2と、センサ装置2が検知した情報を処理する処理装置3とを備え、検査装置Tの異常箇所の推定に使用される指標を求める。 Hereinafter, the present invention will be described based on the embodiments shown in the figure. As shown in FIG. 1, the abnormality location evaluation system 1 of the inspection device T according to the embodiment is a sensor device 2 that detects the operation of the inspection device T and the operation of the damper D as a sample to be inspected by the inspection device T as information. And a processing device 3 that processes the information detected by the sensor device 2, and obtains an index used for estimating an abnormal portion of the inspection device T.

以下、異常箇所評価システム1の各部について詳細に説明する。検体としてのダンパDは、異常箇所評価システム1で指標を求める際に検査装置Tの検査に供される基準となるダンパである。そして、検査装置Tの異常箇所評価システム1は、検査装置Tに異常が認められた場合に、ダンパDに所定の振動を与えて検査装置Tの異常箇所の特定に役立つ指標を求める。 Hereinafter, each part of the abnormality location evaluation system 1 will be described in detail. The damper D as a sample is a damper that serves as a reference for inspection of the inspection device T when an index is obtained by the abnormality location evaluation system 1. Then, when an abnormality is found in the inspection device T, the abnormality location evaluation system 1 of the inspection device T applies a predetermined vibration to the damper D to obtain an index useful for identifying the abnormality location of the inspection device T.

本実施の形態における検体であるダンパDは、シリンダ5と、シリンダ5内に出入りするロッド6とを備えたテレスコピック型のダンパとされており、シリンダ5に対してロッド6が軸方向に変位する伸縮時に減衰力を発揮する。 The damper D, which is a sample in the present embodiment, is a telescopic type damper including a cylinder 5 and a rod 6 that goes in and out of the cylinder 5, and the rod 6 is displaced in the axial direction with respect to the cylinder 5. Demonstrates damping force when expanding and contracting.

他方、検査装置Tは、図2に示すように、検体であるダンパDに振動を与える振動検査装置とされており、コントローラCと加振器Eとを備えている。加振器Eは、架台10と、架台10に設けられて図2中左右方向へ移動可能であってダンパDの一端を保持する保持部11と、架台10に設けられてダンパDの他端に接続されてダンパDに振動を与えるアクチュエータ13とを備えている。 On the other hand, as shown in FIG. 2, the inspection device T is a vibration inspection device that vibrates the damper D, which is a sample, and includes a controller C and a vibration exciter E. The exciter E is provided on the gantry 10, a holding portion 11 provided on the gantry 10 and movable in the left-right direction in FIG. 2 to hold one end of the damper D, and the other end of the damper D provided on the gantry 10. It is provided with an actuator 13 which is connected to and gives vibration to the damper D.

アクチュエータ13は、シリンダ13aと、シリンダ13a内に移動自在に挿入されてシリンダ13a内を図示しない伸側室と圧側室とに区画する図外のピストンと、シリンダ13a内に移動自在に挿入されて前記ピストンに連結されるロッド13bと、図外のポンプから供給される圧油を前記伸側室と前記圧側室とに選択的に送り込むサーボ弁13cとを備えている。 The actuator 13 is movably inserted into the cylinder 13a, a piston (not shown) that is movably inserted into the cylinder 13a to partition the inside of the cylinder 13a into an extension side chamber and a compression side chamber, and the actuator 13 is movably inserted into the cylinder 13a. It includes a rod 13b connected to a piston and a servo valve 13c that selectively feeds pressure oil supplied from a pump (not shown) to the extension side chamber and the compression side chamber.

サーボ弁13cは、詳細には図示はしないが、中空なハウジングと、ハウジング内に移動自在に挿入されるスプールと、スプールを駆動するソレノイドと、スプールを中立位置に位置決めするばねと、外部からの入力を受け取ってソレノイドを駆動する駆動回路とを備えている。ソレノイドは、駆動回路から供給される電流量に応じてスプールに与える推力を変更でき、スプールの位置を調節できる。そして、サーボ弁13cは、スプールの位置に応じて、前記伸側室へ圧油を供給するポジションと、前記圧側室へ圧油を供給するポジションと、両者への圧油の供給を遮断するポジションとに切り替わり、前記伸側室或いは前記圧側室へ圧油を供給するポジションではソレノイドへ供給される電流量に応じて流量を調節する。 Although not shown in detail, the servo valve 13c has a hollow housing, a spool that is movably inserted into the housing, a solenoid that drives the spool, a spring that positions the spool in a neutral position, and an external device. It is equipped with a drive circuit that receives input and drives the solenoid. The solenoid can change the thrust applied to the spool according to the amount of current supplied from the drive circuit, and can adjust the position of the spool. The servo valve 13c has a position of supplying pressure oil to the extension side chamber, a position of supplying pressure oil to the compression side chamber, and a position of shutting off the supply of pressure oil to both of them, depending on the position of the spool. At the position where the pressure oil is supplied to the extension side chamber or the compression side chamber, the flow rate is adjusted according to the amount of current supplied to the solenoid.

本実施の形態では、サーボ弁13cは、入力として電流指令Iを受けとるとソレノイドの推力を調整して、スプールのハウジングに対する位置を調節して、前記伸側室と前記圧側室のうち入力が指示する室に対して入力が指示する流量の圧油を供給する。アクチュエータ13は、伸側室と圧側室のうちサーボ弁13cから圧油の供給を受けた室を拡大させるとともに圧油の供給のない室を縮小させて、伸縮駆動する。このように、加振器Eは、コントローラCから入力を受けるとアクチュエータ13を伸縮駆動させてダンパDの一端を加振して、ダンパDに振動を与える。なお、駆動回路は、ソレノイドに流れる電流を検知する電流センサを備えており、電流センサで検知する電流をフィードバックして、コントローラCから入力される電流指令I通りにソレノイドへ電流を与える。なお、駆動回路は、サーボ弁13c側ではなく、コントローラCに内包されていてもよい。 In the present embodiment, when the servo valve 13c receives the current command I as an input, the thrust of the solenoid is adjusted to adjust the position of the spool with respect to the housing, and the input of the extension side chamber and the compression side chamber is instructed. The pressure oil of the flow rate indicated by the input is supplied to the chamber. The actuator 13 expands and contracts by expanding the chamber in which the pressure oil is supplied from the servo valve 13c among the extension side chamber and the compression side chamber and reducing the chamber in which the pressure oil is not supplied. In this way, when the vibrator E receives the input from the controller C, the actuator 13 is expanded and contracted to vibrate one end of the damper D, and the damper D is vibrated. The drive circuit includes a current sensor that detects the current flowing through the solenoid, feeds back the current detected by the current sensor, and applies the current to the solenoid according to the current command I input from the controller C. The drive circuit may be included in the controller C instead of the servo valve 13c side.

コントローラCは、検査装置Tの異常箇所評価にあたって、加振器Eにおけるアクチュエータ13を所定周期の正弦波で伸縮させる電流指令Iを入力としてアクチュエータ13へ与える。このように、検査装置Tは、アクチュエータ13を駆動して検体であるダンパDへ繰り返し正弦波の振動を与えるようになっている。 The controller C gives the actuator 13 a current command I that expands and contracts the actuator 13 in the exciter E with a sine wave of a predetermined cycle as an input when evaluating an abnormal portion of the inspection device T. In this way, the inspection device T drives the actuator 13 to repeatedly apply a sinusoidal vibration to the damper D, which is a sample.

このような所定周期の正弦波で検査装置Tの出力を変化させる電流指令Iは、予めコントローラCに格納しておくか、検査の際にコントローラCに記憶させてもよい。なお、所定周期は、任意に設定できる。 The current command I that changes the output of the inspection device T with such a sine wave having a predetermined cycle may be stored in the controller C in advance, or may be stored in the controller C at the time of inspection. The predetermined cycle can be set arbitrarily.

このように本実施の形態では、検査装置Tが振動検査装置とされているので、検査装置Tの動作は、加振器Eにおけるアクチュエータ13が発揮する荷重、速度および変位となっている。また、検査装置Tの動作によってダンパDに振動が与えられ、ダンパDは伸縮する動作を行う。よって、ダンパDの動作は、ダンパDの伸縮によって発揮する荷重、伸縮の速度および変位となっている。 As described above, in the present embodiment, since the inspection device T is a vibration inspection device, the operation of the inspection device T is the load, speed, and displacement exerted by the actuator 13 in the exciter E. Further, the damper D is subjected to vibration by the operation of the inspection device T, and the damper D expands and contracts. Therefore, the operation of the damper D is the load exerted by the expansion and contraction of the damper D, the speed of expansion and contraction, and the displacement.

つづいて、センサ装置2は、コントローラCからの入力としての電流指令IによってダンパDを検査する際の検査装置Tの動作と検体であるダンパDの動作を情報として検知する。本実施の形態では、センサ装置2は、アクチュエータ13の伸縮方向の変位を検知する第一変位センサ2aと、アクチュエータ13とダンパDとの間に設置されてダンパDが発揮する減衰力である荷重を検知するロードセル2bと、ダンパDの伸縮方向の全体の変位を検知する第二変位センサ2cと、ダンパDのシリンダ5に対するロッド6の伸縮方向の変位を検知する第三変位センサ2dとを備えている。このように本実施の形態のセンサ装置2は、検査装置Tの動作としての加振器Eの荷重、速度および変位のうち変位を情報として検知するとともに、ダンパDの動作としての荷重、速度および変位のうち、ダンパDの全体の伸縮変位とロッド6とシリンダ5の相対移動による伸縮ストロークの変位とダンパDが発揮する荷重を検知している。よって、第一変位センサ2aは、検査装置Tの動作の一つである変位を情報として検知するセンサ部として機能する。ロードセル2bは、ダンパDの動作の一つである荷重を情報として検知するセンサ部として機能する。また、第二変位センサ2cおよび第三変位センサ2dは、ダンパDの動作の一つである変位を情報として検知するセンサ部として機能する。そして、第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dは、互いに異なる情報を検知している。第二変位センサ2cと第三変位センサ2dは、ダンパDの動作の一つである変位を検知するが、第二変位センサ2cが検知するのは検査装置Tから受ける荷重によってダンパDが伸縮する際のロッド6とシリンダ5の相対変位およびロッド6およびシリンダ5の圧縮変形量を含むダンパDの全体変位であり、第三変位センサ2dが検知するのはロッド6とシリンダ5の相対移動によるダンパDの部分的な変位である。よって、第二変位センサ2cと第三変位センサ2dが検知する情報は、種類上のカテゴリとしては同一であるが検知部位も検知対象が異なっているので、互いに異なった情報である。 Subsequently, the sensor device 2 detects the operation of the inspection device T and the operation of the sample damper D when inspecting the damper D by the current command I as an input from the controller C as information. In the present embodiment, the sensor device 2 is installed between the first displacement sensor 2a for detecting the displacement of the actuator 13 in the expansion / contraction direction and the damper D, and is a load which is a damping force exerted by the damper D. A load cell 2b for detecting the above, a second displacement sensor 2c for detecting the total displacement of the damper D in the expansion / contraction direction, and a third displacement sensor 2d for detecting the displacement of the rod 6 with respect to the cylinder 5 of the damper D in the expansion / contraction direction are provided. ing. As described above, the sensor device 2 of the present embodiment detects the displacement of the load, speed and displacement of the exciter E as the operation of the inspection device T as information, and also detects the load, speed and the operation of the damper D. Among the displacements, the total expansion / contraction displacement of the damper D, the displacement of the expansion / contraction stroke due to the relative movement of the rod 6 and the cylinder 5, and the load exerted by the damper D are detected. Therefore, the first displacement sensor 2a functions as a sensor unit that detects displacement, which is one of the operations of the inspection device T, as information. The load cell 2b functions as a sensor unit that detects a load, which is one of the operations of the damper D, as information. Further, the second displacement sensor 2c and the third displacement sensor 2d function as a sensor unit that detects displacement, which is one of the operations of the damper D, as information. The first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d detect different information from each other. The second displacement sensor 2c and the third displacement sensor 2d detect displacement, which is one of the operations of the damper D, but the second displacement sensor 2c detects that the damper D expands and contracts due to the load received from the inspection device T. The relative displacement of the rod 6 and the cylinder 5 and the total displacement of the damper D including the amount of compression deformation of the rod 6 and the cylinder 5 are detected by the third displacement sensor 2d. It is a partial displacement of D. Therefore, the information detected by the second displacement sensor 2c and the third displacement sensor 2d is the same as the category in terms of type, but the detection target is also different, so that the information is different from each other.

このようにセンサ装置2は、本実施の形態では、互いに異なる情報を検知する4つのセンサ部を備えており、検査装置Tの動作およびダンパDの動作を情報として検知する。なお、センサ装置2は、検査装置Tの動作としての荷重、速度および変位の1つ以上を情報として検知し、ダンパDの動作としての荷重、速度および変位のうち1つ以上のカテゴリの情報を2つ以上検知すればよい。 As described above, in the present embodiment, the sensor device 2 includes four sensor units that detect information different from each other, and detects the operation of the inspection device T and the operation of the damper D as information. The sensor device 2 detects one or more of the load, speed, and displacement as the operation of the inspection device T as information, and outputs information of one or more categories of the load, speed, and displacement as the operation of the damper D. Two or more may be detected.

そして、センサ装置2は、検知した検査装置Tの変位SD、検知したダンパDの荷重F、検知したダンパDの全体の変位d1、および検知したロッド6とシリンダ5との相対的な変位d2を前記情報として処理装置3に入力する。なお、検査装置Tは、センサ装置2が検知した情報を一纏めにしたCSVファイル等にして、前記情報を処理装置3に入力するようにしてもよい。 Then, the sensor device 2 determines the detected displacement SD of the inspection device T, the detected load F of the damper D, the detected total displacement d1 of the damper D, and the detected relative displacement d2 between the rod 6 and the cylinder 5. The information is input to the processing device 3. The inspection device T may make a CSV file or the like that collects the information detected by the sensor device 2 and input the information to the processing device 3.

処理装置3は、図3に示すように、コンピュータシステムであり、演算処理装置3aと、処理装置3の制御と処理に必要なプログラムを記憶するとともに演算処理装置3aが当該プログラムの実行に必要となる記憶領域を提供する記憶装置3bと、第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dからの信号を受け取るインターフェース3cと、キーボードやマウスといった入力装置3dと、表示装置3eと、補助記憶装置3fと、印刷装置としてのプリンタ3gと、これら装置を互いに通信可能に接続するバス3hとを備えている。 As shown in FIG. 3, the processing unit 3 is a computer system, and stores the arithmetic processing unit 3a and the program required for control and processing of the processing unit 3, and the arithmetic processing unit 3a is required to execute the program. A storage device 3b that provides a storage area, an interface 3c that receives signals from a first displacement sensor 2a, a load cell 2b, a second displacement sensor 2c, and a third displacement sensor 2d, and an input device 3d such as a keyboard or a mouse are displayed. It includes a device 3e, an auxiliary storage device 3f, a printer 3g as a printing device, and a bus 3h that connects these devices so as to be able to communicate with each other.

演算処理装置3aは、演算処理を行うCPU等であって、オペレーティングシステムおよび他のプログラムの実行によって処理装置3の各部の制御を行うとともに、変位SD、d1,d2および荷重Fに基づいて指標を求める処理を行う。記憶装置3bは、ROMおよびRAMを備える他、ハードディスクを備えている。インターフェース3cは、第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dから入力されるアナログ信号を演算処理装置3aで読み取り可能なデジタル信号へ変換する。表示装置3eは、演算処理装置3aが処理したデータ等を表示する画面を備えており、たとえば、液晶ディスプレイ等である。補助記憶装置3fは、コンピュータで読み取り可能な記録媒体と記憶媒体のドライブ装置とで構成されており、記憶媒体は、磁気ディスク、光磁気ディスク、光ディスク、半導体メモリ等である。また、処理装置3は、第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dが検知した変位SD、d1,d2および荷重Fの値、変位SD、d1,d2および荷重Fに基づいて求められる相関係数および指標を表示装置3eの画面上に表示して閲覧を可能とするとともに、相関係数および指標を求めるためのアプリケーションプログラムを記憶装置3bに記憶している。なお、処理装置3は、前記情報を検査装置Tから受け取る場合、検査装置Tと通信可能とされてもよいし、補助記憶装置3fを利用して前記情報を受け取ってもよい。 The arithmetic processing unit 3a is a CPU or the like that performs arithmetic processing, controls each part of the processing apparatus 3 by executing an operating system and other programs, and outputs an index based on displacement SD, d1, d2, and load F. Perform the required processing. The storage device 3b includes a ROM and a RAM, and also includes a hard disk. The interface 3c converts analog signals input from the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d into digital signals that can be read by the arithmetic processing device 3a. The display device 3e is provided with a screen for displaying data or the like processed by the arithmetic processing unit 3a, and is, for example, a liquid crystal display or the like. The auxiliary storage device 3f is composed of a computer-readable recording medium and a drive device for the storage medium, and the storage medium is a magnetic disk, a magneto-optical disk, an optical disk, a semiconductor memory, or the like. Further, the processing device 3 includes the displacement SD, d1, d2 and the load F values, the displacement SD, d1, d2 and the load detected by the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c and the third displacement sensor 2d. The correlation coefficient and index obtained based on F are displayed on the screen of the display device 3e so that they can be viewed, and the application program for obtaining the correlation coefficient and index is stored in the storage device 3b. When the processing device 3 receives the information from the inspection device T, the processing device 3 may be able to communicate with the inspection device T, or the processing device 3 may receive the information using the auxiliary storage device 3f.

そして、本実施の形態では、情報としての変位SD、d1,d2および荷重Fを処理して相関係数および指標を求めるプログラムを処理装置3の演算処理装置3aが実行して実行することで、相関係数を求める相関係数算出部3a1と、求めた相関係数から指標を求める指標算出部3a2と、求めた指標を順位付けする順位算出部3a3と、指標の順位に基づいて検査装置Tの異常箇所を推定する異常箇所推定部3a4とを実現している。処理装置3は、センサ装置2のセンサ部である第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dのうち2つのセンサ部の全組み合わせについて組み合わせた2つのセンサ部が検知した情報同士の相関係数を求める。 Then, in the present embodiment, the arithmetic processing device 3a of the processing device 3 executes and executes a program for processing the displacement SD, d1, d2 and the load F as information to obtain the correlation coefficient and the index. The correlation coefficient calculation unit 3a1 for obtaining the correlation coefficient, the index calculation unit 3a2 for obtaining the index from the obtained correlation coefficient, the ranking calculation unit 3a3 for ranking the obtained indexes, and the inspection device T based on the ranking of the indexes. The abnormal part estimation unit 3a4 for estimating the abnormal part of the above is realized. The processing device 3 has two sensor units that are combined for all combinations of the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d, which are the sensor units of the sensor device 2. Obtain the correlation coefficient between the detected information.

以下、処理装置3の処理について詳しく説明する。本実施の形態では、センサ装置2は、第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dの4つのセンサ部を備えている。4つのセンサ部から2つのセンサ部の組み合わせを選ぶ場合、2つのセンサ部の組み合わせ方は6通りである。したがって、処理装置3は、6個の相関係数を求めればよいが、本実施の形態では、検体が片ロッド型のダンパDであって伸長時と収縮時とで異なる特性を持つことから、アクチュエータ13の変位SDについては伸長方向を正とし、ダンパDの収縮方向を正とし、ダンパDの収縮時に発生する荷重を正として、正の値を持つ変位SD,d1,d2および荷重Fのうち二つの情報同士の相関係数を6通りの全組み合わせについて求めるとともに、正の値を持つ変位SD,d1,d2および荷重Fのうち二つの情報同士の相関係数を6通りの全組み合わせについて求めるようにしている。よって、本実施の形態では、相関係数算出部3a1は、12通りの組み合わせについて情報同士の相関係数を求める。 Hereinafter, the processing of the processing apparatus 3 will be described in detail. In the present embodiment, the sensor device 2 includes four sensor units, a first displacement sensor 2a, a load cell 2b, a second displacement sensor 2c, and a third displacement sensor 2d. When selecting a combination of two sensor units from four sensor units, there are six ways to combine the two sensor units. Therefore, the processing device 3 may obtain six correlation coefficients, but in the present embodiment, the sample is a single-rod type damper D and has different characteristics at the time of extension and at the time of contraction. Regarding the displacement SD of the actuator 13, the extension direction is positive, the contraction direction of the damper D is positive, the load generated when the damper D is contracted is positive, and among the displacements SD, d1, d2 and the load F having positive values. The correlation coefficient between the two pieces of information is obtained for all 6 combinations, and the correlation coefficient between the two pieces of displacement SD, d1, d2 and the load F having positive values is obtained for all 6 combinations. I am doing it. Therefore, in the present embodiment, the correlation coefficient calculation unit 3a1 obtains the correlation coefficient between the information for 12 combinations.

相関係数算出部3a1について詳細に説明する。第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dの4つのセンサ部のうち2つのセンサ部が検知した情報同士は、検査装置TがダンパDに予め決められた所定の振動を与える場合、検査装置Tが正常であってダンパDにも異常がなければある一定の相関を示す筈である。 The correlation coefficient calculation unit 3a1 will be described in detail. The information detected by two of the four sensor units of the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d is determined by the inspection device T on the damper D in advance. If the inspection device T is normal and the damper D is not abnormal, it should show a certain correlation.

他方、検査装置Tに異常がある場合、第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dの4つのセンサ部のうち2つのセンサ部が検知した情報同士の相関が通常の相関と異なるセンサ部同士が見つかる。通常とは異なる相関を示すセンサ部同士の検査装置Tおよび検体であるダンパDへの設置位置の関係から通常とは異なった相関を示したセンサ部間に異常箇所があると考えられる。このように第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dの4つのセンサ部から2つのセンサ部を抜き出して組み合わせる場合の全通りのセンサ部の組み合わせについて、センサ部が検知した情報通りの相関係数を求め、求めた12通りの相関係数が正常な相関係数とどれだけ異なっているかを指標として求めれば、検査装置Tの異常箇所を推定する際に非常に有用な指標が得られる。 On the other hand, when there is an abnormality in the inspection device T, the correlation between the information detected by two of the four sensor units of the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c and the third displacement sensor 2d is Sensors that are different from the normal correlation can be found. It is considered that there is an abnormal part between the sensor units showing a different correlation from the usual one because of the relationship between the inspection device T and the damper D which is the sample, which show a different correlation from the usual one. Regarding the combination of all the sensor units when the two sensor units are extracted from the four sensor units of the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d and combined in this way, the sensor unit If the correlation coefficient according to the information detected by is obtained and the difference between the obtained 12 kinds of correlation coefficients and the normal correlation coefficient is obtained as an index, it is very difficult to estimate the abnormal part of the inspection device T. Useful indicators are obtained.

よって、相関係数算出部3a1は、本実施の形態では、第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dの4つのセンサ部から2つのセンサ部を選んだ場合の6通りの組み合わせの全てについて相関係数を求める。また、相関係数算出部3a1は、組み合わせた2つのセンサ部同士が検知した情報同士の相関係数を求めるにあたり、本実施の形態の検査装置Tのアクチュエータ13が伸長時と収縮時とで異なる特性を持つことから、前述したように正の値の情報と負の値の情報の双方について相関係数を求めるので、合計12個の相関係数を求める。 Therefore, in the present embodiment, the correlation coefficient calculation unit 3a1 selects two sensor units from the four sensor units of the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d. The correlation coefficient is obtained for all of the six combinations of. Further, when the correlation coefficient calculation unit 3a1 obtains the correlation coefficient between the information detected by the two combined sensor units, the actuator 13 of the inspection device T of the present embodiment differs between when it is extended and when it is contracted. Since it has characteristics, the correlation coefficients are obtained for both the positive value information and the negative value information as described above, so a total of 12 correlation coefficients are obtained.

相関係数は、2つのセンサ部が検知した各情報が互いに相関しているかを示す尺度となる値であり、値が1に近づくほど情報同士の相関が高いことを示す。本実施の形態では、相関係数算出部3a1は、第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dの4つのセンサ部がそれぞれ検知した変位SD、変位d1、変位d2および荷重Fの4つの情報のうちから2つの情報を抜き出し、6通りの情報の組み合わせについてそれぞれ正の値と負の値とについて相関係数を求める。 The correlation coefficient is a value that serves as a measure of whether the information detected by the two sensor units correlates with each other, and the closer the value is to 1, the higher the correlation between the information. In the present embodiment, the correlation coefficient calculation unit 3a1 has the displacement SD, displacement d1, and displacement detected by the four sensor units of the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d, respectively. Two pieces of information are extracted from the four pieces of information d2 and the load F, and the correlation coefficient is obtained for each of the positive value and the negative value for each of the six combinations of information.

具体的には、たとえば、相関係数算出部3a1は、第一変位センサ2aとロードセル2bとの組み合わせについて、こられが検知したアクチュエータ13の変位SDとダンパDの荷重Fとの相関係数をそれぞれ正と負の値の双方について求める。検査装置Tの異常箇所の推定にあたり、検査装置TがダンパDに3周期分の正弦波を与える場合、第一変位センサ2aが検知する変位SDは、図4に示すような波形を描く。この波形の最初の一周期と最後の一周期は、アクチュエータ13の急激な始動と停止を避ける目的でアクチュエータ13を伸縮させているので、相関係数算出部3a1は、この余分な最初と最後の一周期分の波に相当するデータを切り落とし、安定した3周期分の波形中のデータのみを用いて相関係数を求める。ダンパDの荷重Fについても同様に、アクチュエータ13によって振動させられるダンパDが発揮する荷重Fをロードセル2bで検知して、得られた荷重Fの波形から最初と最後の一周期の波に相当するデータを切り落として、中間の3周期分の波形に含まれるデータのみを相関係数の算出に利用する。 Specifically, for example, the correlation coefficient calculation unit 3a1 determines the correlation coefficient between the displacement SD of the actuator 13 and the load F of the damper D detected by the combination of the first displacement sensor 2a and the load cell 2b. Find both positive and negative values, respectively. When the inspection device T applies a sine wave for three cycles to the damper D in estimating the abnormal portion of the inspection device T, the displacement SD detected by the first displacement sensor 2a draws a waveform as shown in FIG. Since the actuator 13 is expanded and contracted in the first cycle and the last cycle of this waveform for the purpose of avoiding the sudden start and stop of the actuator 13, the correlation coefficient calculation unit 3a1 performs this extra first and last cycle. The data corresponding to the wave for one cycle is cut off, and the correlation coefficient is obtained using only the data in the waveform for three stable cycles. Similarly, for the load F of the damper D, the load F exerted by the damper D vibrated by the actuator 13 is detected by the load cell 2b, and the waveform of the obtained load F corresponds to the wave of the first and last cycles. The data is cut off and only the data included in the waveform for the middle three cycles is used to calculate the correlation coefficient.

そして、相関係数算出部3a1は、変位SDの3周期分の波形中の正の値を持つデータと荷重Fの3周期分の波形中の正の値を持つデータのみを抽出して、抽出した変位SDと荷重Fの両データの相関係数を求めるとともに、変位SDの3周期分の波形中の負の値を持つデータと荷重Fの3周期分の波形中の負の値を持つデータのみを抽出して、抽出した変位SDと荷重Fの両データの相関係数を求める。相関係数算出部3a1は、変位SDと荷重Fの相関係数を求める際に、変位SDと荷重Fを正規化して最大値1から最小値−1までの値を持つデータに変換する。 Then, the correlation coefficient calculation unit 3a1 extracts and extracts only the data having a positive value in the waveform for three cycles of displacement SD and the data having a positive value in the waveform for three cycles of load F. The correlation coefficient of both the displacement SD and the load F data is obtained, and the data having a negative value in the waveform for three cycles of the displacement SD and the data having a negative value in the waveform for the three cycles of the load F are obtained. Only is extracted, and the correlation coefficient of both the extracted displacement SD and load F data is obtained. When the correlation coefficient calculation unit 3a1 obtains the correlation coefficient between the displacement SD and the load F, the displacement SD and the load F are normalized and converted into data having a value from the maximum value 1 to the minimum value -1.

変位SDと荷重Fを正規化すると、たとえば、図5に示したように、変位SDの波形Wsdと荷重Fの波形Wfとが得られる。これらの波形Wsdと波形Wfの正側のデータ群の各標準偏差の積で波形Wsdと波形Wfの正側のデータ群の共分散を割って相関係数Rpsd_fを得るとともに、これらの波形Wsdと波形Wfの負側のデータ群の各標準偏差の積で波形Wsdと波形Wfの正側のデータ群の共分散を割って相関係数Rmsd_fを得ればよい。このようにして得られた相関係数Rpsd_fは、変位SDの波形Wsdの正側と荷重Fの波形Wfの正側との相関性を示す尺度となる値であり、相関係数Rmsd_fは、変位SDの波形Wsdの負側と荷重Fの波形Wfの負側との相関性を示す尺度となる値である。 When the displacement SD and the load F are normalized, for example, as shown in FIG. 5, the waveform Wsd of the displacement SD and the waveform Wf of the load F are obtained. The correlation coefficient Rpsd_f is obtained by dividing the covariance of the waveform Wsd and the data group on the positive side of the waveform Wf by the product of each standard deviation of the data group on the positive side of the waveform Wsd and the waveform Wf, and the correlation coefficient Rpsd_f is obtained. The correlation coefficient Rmsd_f may be obtained by dividing the covariance between the waveform Wsd and the data group on the positive side of the waveform Wf by the product of the standard deviations of the data groups on the negative side of the waveform Wf. The correlation coefficient Rpsd_f thus obtained is a value that serves as a measure of the correlation between the positive side of the waveform Wsd of the displacement SD and the positive side of the waveform Wf of the load F, and the correlation coefficient Rmsd_f is the displacement. It is a value that serves as a measure showing the correlation between the negative side of the SD waveform Wsd and the negative side of the load F waveform Wf.

前述したように相関係数Rpsd_f,Rmsd_fを求めることができるが、ダンパDは速度に対して伸縮速度に依存した減衰力を発揮するとともにヒステリシスを持っているので、アクチュエータ13の変位SDの波形Wsdに対してダンパDが発揮する荷重Fの波形Wfとでは位相にずれがある。位相ずれがあると波形Wsdと波形Wfの形状が良く一致していても変位SDと荷重Fの相関性が低くなる。 As described above, the correlation coefficients Rpsd_f and Rmsd_f can be obtained, but since the damper D exerts a damping force depending on the expansion / contraction speed with respect to the speed and has a hysteresis, the waveform Wsd of the displacement SD of the actuator 13 On the other hand, there is a phase shift from the waveform Wf of the load F exerted by the damper D. If there is a phase shift, the correlation between the displacement SD and the load F becomes low even if the shapes of the waveform Wsd and the waveform Wf match well.

そこで、本実施の形態の相関係数算出部3a1は、−1から1までの範囲を所定の幅のビンで区切って複数の区間を設定し、区間毎の変位SDの正の値と荷重Fの正の値の度数分布を求める。度数分布を縦軸に度数、横軸に値を採ってグラフ化すると、図6に示すように、変位SDのヒストグラムHsdと荷重FのヒストグラムHfとが得られる。 Therefore, the correlation coefficient calculation unit 3a1 of the present embodiment sets a plurality of sections by dividing the range from -1 to 1 by a bin having a predetermined width, and sets a positive value of the displacement SD and the load F for each section. Find the frequency distribution of positive values of. When the frequency distribution is graphed with the frequency on the vertical axis and the value on the horizontal axis, a histogram Hsd of the displacement SD and a histogram Hf of the load F can be obtained as shown in FIG.

そして、相関係数算出部3a1は、この図6に示したグラフ中の変位SDの0から1までのヒストグラムHsdの度数の標準偏差をσpsdとし、この図6に示したグラフ中の荷重Fの0から1までのヒストグラムHfの度数の標準偏差をσpfとし、変位SDの0から1までのヒストグラムHsdの度数と荷重Fの0から1までのヒストグラムHfの度数との共分散をSpsd_fとすると、相関係数Rpsd_f=Spsd_f/(σpsd×σpf)を演算して求める。 Then, the correlation coefficient calculation unit 3a1 sets the standard deviation of the frequency of the histogram Hsd from 0 to 1 of the displacement SD in the graph shown in FIG. 6 as σpsd, and sets the standard deviation of the frequency of the load F in the graph shown in FIG. 6 as σpsd. Let σpf be the standard deviation of the frequencies of the histogram Hf from 0 to 1, and Spsd_f be the covariance between the frequencies of the histogram Hsd from 0 to 1 of the displacement SD and the frequencies of the histogram Hf from 0 to 1 of the load F. The correlation coefficient Rpsd_f = Spsd_f / (σpsd × σpf) is calculated and obtained.

また、相関係数算出部3a1は、この図6に示したグラフ中の変位SDの−1から0までのヒストグラムHsdの度数の標準偏差をσmsdとし、この図6に示したグラフ中の荷重Fの−1から0までのヒストグラムHfの度数の標準偏差をσmfとし、変位SDの−1から0までのヒストグラムHsdの度数と荷重Fの−1から0までのヒストグラムHfの度数との共分散をSmsd_fとすると、相関係数Rmsd_f=Smsd_f/(σmsd×σmf)を演算して求める。なお、共分散を得るには、変位SDの0から1までのヒストグラムHsdの度数のデータ数と荷重Fの0から1までのヒストグラムHfの度数のデータ数が同じである必要があるが、予め、相関係数Rpsd_fを求めるために使用するデータ数を決めておけばよい。 Further, the correlation coefficient calculation unit 3a1 sets the standard deviation of the frequency of the histogram Hsd from -1 to 0 of the displacement SD in the graph shown in FIG. 6 as σmsd, and sets the standard deviation of the frequency in the graph shown in FIG. Let σmf be the standard deviation of the frequency of the histogram Hf from -1 to 0, and the covariance between the frequency of the histogram Hsd from -1 to 0 of the displacement SD and the frequency of the histogram Hf from -1 to 0 of the load F. Assuming that it is Smsd_f, the correlation coefficient Rmsd_f = Smsd_f / (σmsd × σmf) is calculated and obtained. In order to obtain the covariance, it is necessary that the number of data of the frequency of the histogram Hsd from 0 to 1 of the displacement SD and the number of data of the frequency of the histogram Hf from 0 to 1 of the load F are the same. , The number of data used to obtain the correlation coefficient Rpsd_f may be determined.

正規化した変位SDと荷重Fの値は、−1から1までの値を採るので、−1から1までに区分を設定して、変位SDと荷重Fの度数分布を求めると、位相が反映されることはないが、変位SDと荷重Fの値の出現度合をそのまま反映した度数分布が得られる。したがって、相関係数算出部3a1が前述のように変位SDと荷重Fの度数分布同士の相関係数Rpsd_f,Rmsd_fを求めると、位相にずれがある変位SDと荷重Fとからも波形Wsdと波形Wfの形状の一致度を示す相関係数が得られる。 Since the values of the normalized displacement SD and the load F take values from -1 to 1, if the division is set from -1 to 1 and the frequency distribution of the displacement SD and the load F is obtained, the phase is reflected. Although it is not done, a frequency distribution that directly reflects the appearance degree of the values of the displacement SD and the load F can be obtained. Therefore, when the correlation coefficient calculation unit 3a1 obtains the correlation coefficients Rpsd_f and Rmsd_f between the frequency distributions of the displacement SD and the load F as described above, the waveforms Wsd and the waveform are also obtained from the displacement SD and the load F having a phase shift. A correlation coefficient indicating the degree of coincidence of the shapes of Wf is obtained.

なお、位相ずれが検査装置Tの異常箇所を推定する指標に対して重大な影響を与えない場合には、前述したように、度数分布を求めずに正規化した変位SDと荷重Fとをそのまま利用して変位SDと荷重Fの相関係数Rpsd_f,Rmsd_fを求めることも可能である。 If the phase shift does not have a significant effect on the index for estimating the abnormal part of the inspection device T, the normalized displacement SD and the load F are used as they are without obtaining the frequency distribution as described above. It is also possible to obtain the correlation coefficients Rpsd_f and Rmsd_f of the displacement SD and the load F by using it.

また、本実施の形態では、相関係数算出部3a1は、変位SDの正の値と荷重Fの正の値の相関係数Rpsd_fと変位SDの負の値と荷重Fの負の値の相関係数Rmsd_fとを求めているが、検体の動作に方向性がない場合や方向性があっても正負の両側で相関係数を求める実益がない場合、正と負に分けずに変位SDと荷重Fとの組み合わせにおいて一つの相関係数のみを求めてもよい。 Further, in the present embodiment, the correlation coefficient calculation unit 3a1 describes the phase of the correlation coefficient Rpsd_f between the positive value of the displacement SD and the positive value of the load F, the negative value of the displacement SD, and the negative value of the load F. The relation number Rmsd_f is calculated, but if there is no direction in the movement of the sample, or if there is no actual benefit in obtaining the correlation coefficient on both the positive and negative sides even if there is direction, the displacement SD is not divided into positive and negative. Only one correlation coefficient may be obtained in combination with the load F.

そして、相関係数算出部3a1は、残りの5通りのセンサ部の組み合わせの全部について、つまり、第一変位センサ2aと第二変位センサ2cとの組み合わせ、第一変位センサ2aと第三変位センサ2dとの組み合わせ、第二変位センサ2cと第三変位センサ2dとの組み合わせ、ロードセル2bと第二変位センサ2cとの組み合わせ、およびロードセル2bと第三変位センサ2dとの組み合わせについても、それぞれ前述した第一変位センサ2aとロードセル2bとの組み合わせにおける変位SDと荷重Fの正負両方の値の相関係数Rpsd_f,Rmsd_fを求める処理と同様の処理を行う。 Then, the correlation coefficient calculation unit 3a1 is used for all the combinations of the remaining five sensor units, that is, the combination of the first displacement sensor 2a and the second displacement sensor 2c, the first displacement sensor 2a and the third displacement sensor. The combination with 2d, the combination of the second displacement sensor 2c and the third displacement sensor 2d, the combination of the load cell 2b and the second displacement sensor 2c, and the combination of the load cell 2b and the third displacement sensor 2d are also described above. The same process as the process of obtaining the correlation coefficients Rpsd_f and Rmsd_f of both the positive and negative values of the displacement SD and the load F in the combination of the first displacement sensor 2a and the load cell 2b is performed.

したがって、相関係数算出部3a1は、変位SDと変位d1の正の値の相関係数Rpsd_d1と負の値の相関係数Rmsd_d1を、変位SDと変位d2の正の値の相関係数Rpsd_d2と負の値の相関係数Rmsd_d2を、変位d1と変位d2の正の値の相関係数Rpd1_d2と負の値の相関係数Rmd1_d2を、変位d1と荷重Fの正の値の相関係数Rpd1_fと負の値の相関係数Rmd1_fを、さらには、変位d2と荷重Fの正の値の相関係数Rpd2_fと負の値の相関係数Rmd2_fを、それぞれ相関係数Rpsd_f,Rmsd_fを求める処理と同様の処理で求める。 Therefore, the correlation coefficient calculation unit 3a1 sets the positive value correlation coefficient Rpsd_d1 of the displacement SD and the displacement d1 and the negative value correlation coefficient Rmsd_d1 as the positive value correlation coefficient Rpsd_d2 of the displacement SD and the displacement d2. Negative value correlation coefficient Rmsd_d2, positive value correlation coefficient Rpd1_d2 of displacement d1 and displacement d2 and negative value correlation coefficient Rmd1_d2, and positive value correlation coefficient Rpd1_f of displacement d1 and load F. Negative value correlation coefficient Rmd1_f, further, positive value correlation coefficient Rpd2_f of displacement d2 and load F and negative value correlation coefficient Rmd2_f are the same as the process of obtaining the correlation coefficients Rpsd_f and Rmsd_f, respectively. Obtained by the processing of.

つづいて、指標算出部3a2は、相関係数算出部3a1が求めた全相関係数毎に相関係数と対応する正常値との差を指標として求める。つまり、指標算出部3a2は、たとえば、変位SDと荷重Fの正の値の相関係数Rpsd_fについては、相関係数Rpsd_fからこの相関係数Rpsd_f対応する正常値Npsd_fを差し引いて差を求め、この差の絶対値を指標Ipsd_fとする。正常値Npsd_fは、過去に正常な検査装置Tが同一のダンパDを検査した際に第一変位センサ2aとロードセル2bとで得られた変位SDと荷重Fの正の値について前述した処理で求めた多数の相関係数Rpsd_fの平均値とされている。つまり、正常値Npsd_fは、過去に正常な検査装置Tで得られた多数の相関係数Rpsd_fの平均値であり、予め処理装置3の記憶装置3b或いは補助記憶装置3fに記憶させてあり、指標算出部3a2の指標Ipsd_fの演算に利用される。 Subsequently, the index calculation unit 3a2 obtains the difference between the correlation coefficient and the corresponding normal value for each total correlation coefficient obtained by the correlation coefficient calculation unit 3a1 as an index. That is, for example, the index calculation unit 3a2 obtains the difference between the correlation coefficient Rpsd_f of the positive value of the displacement SD and the load F by subtracting the normal value Npsd_f corresponding to the correlation coefficient Rpsd_f from the correlation coefficient Rpsd_f. Let the absolute value of the difference be the index Ipsd_f. The normal value Npsd_f is obtained by the above-described processing for the positive values of the displacement SD and the load F obtained by the first displacement sensor 2a and the load cell 2b when the normal inspection device T inspects the same damper D in the past. It is the average value of a large number of correlation coefficients Rpsd_f. That is, the normal value Npsd_f is an average value of a large number of correlation coefficients Rpsd_f obtained by the normal inspection device T in the past, and is stored in advance in the storage device 3b or the auxiliary storage device 3f of the processing device 3 and is an index. It is used for the calculation of the index Ipsd_f of the calculation unit 3a2.

指標算出部3a2は、このほかの相関係数Rmsd_f,Rpsd_d1,Rmsd_d1,Rpsd_d2,Rmsd_d2,Rpd1_d2,Rmd1_d2,Rpd1_f,Rmd1_f,Rpd2_f,Rmd2_fについても同様の処理を行って、それぞれ指標Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fを求める。 The index calculation unit 3a2 also performs the same processing for the other correlation coefficients Rmsd_f, Rpsd_d1, Rmsd_d1, Rpsd_d2, Rmsd_d2, Rpd1_d2, Rmd1_d2, Rpd1_f, Rmd1_f, Rpd2_f, Rmd2_f, respectively. Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, Imd2_f are obtained.

相関係数Rmsd_f,Rpsd_d1,Rmsd_d1,Rpsd_d2,Rmsd_d2,Rpd1_d2,Rmd1_d2,Rpd1_f,Rmd1_f,Rpd2_f,Rmd2_fにそれぞれ対応する正常値Nmsd_f,Npsd_d1,Nmsd_d1,Npsd_d2,Nmsd_d2,Npd1_d2,Nmd1_d2 ,Npd1_f,Nmd1_f,Npd2_f,Nmd2_fも同様に対応する正常な検査装置TでダンパDを検査した際に得られた情報から求めた相関係数の平均値とされる。 Correlation coefficients Rmsd_f, Rpsd_d1, Rmsd_d1, Rpsd_d2, Rmsd_d2, Rpd1_d2, Rmd1_d2, Rpd1_f, Rmd1_f, Rpd2_f, Rmd2_f Normal values Nmsd_f, Npsd_d1, Nps1 Similarly, Nmd2_f is taken as the average value of the correlation coefficients obtained from the information obtained when the damper D is inspected by the corresponding normal inspection device T.

このようにして得られた指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fは、異常が認められた検査装置TがダンパDに振動を与えた際に得られる相関係数と、正常な検査装置TがダンパDに振動を与えた際に得られる多数の相関係数の平均値との差であるので、大きな値を持つほど相関係数が正常値から乖離していることを示している。 The indexes Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, and Imd2_f obtained in this way were damped when an abnormality was found. Since it is the difference between the correlation coefficient obtained in the above and the average value of many correlation coefficients obtained when the normal inspection device T vibrates the damper D, the larger the value, the more normal the correlation coefficient is. It shows that it deviates from the value.

つづいて、順位算出部3a3は、求めた12個の指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fを比較して大きな値を持つ順番で順位付けする。 Subsequently, the ranking calculation unit 3a3 compares the 12 indexes obtained, Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Imd1_f, Imd2_f, and Imd2_f. To do.

また、順位算出部3a3は、順位付けした12個の指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fを上から或いは左から順番に整列させて表示装置3eの画面上に表示させる。なお、順位算出部3a3は、12個の指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fを整列させることに変えて、順位とともに表示させるようにしてもよい。また、順位算出部3a3は、指標と順位をプリンタ3gによって紙媒体に印刷して出力してもよい。 Further, the ranking calculation unit 3a3 arranges the 12 ranked indexes Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, and Imd2_f in order from the left. It is displayed on the screen of the device 3e. In addition, the rank calculation unit 3a3 is changed so that the 12 indexes Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, Imd2_f are arranged together with the rank. May be good. Further, the rank calculation unit 3a3 may print the index and the rank on a paper medium by the printer 3g and output the index and the rank.

図2に示すように、検査装置Tと検体であるダンパDに対して図中右から順に第一変位センサ2a、第二変位センサ2c、第三変位センサ2d、ロードセル2bが設けられている。第一変位センサ2a、第二変位センサ2c、第三変位センサ2d、ロードセル2bの設置位置により、検査装置Tの異常箇所によって各指標が以下のように大小する傾向となる。 As shown in FIG. 2, the first displacement sensor 2a, the second displacement sensor 2c, the third displacement sensor 2d, and the load cell 2b are provided in order from the right in the figure with respect to the inspection device T and the damper D as a sample. Depending on the installation positions of the first displacement sensor 2a, the second displacement sensor 2c, the third displacement sensor 2d, and the load cell 2b, each index tends to be large or small as follows depending on the abnormal location of the inspection device T.

たとえば、ロードセル2bと第二変位センサ2cとの間のダンパDを検査装置Tへ取り付けるブラケット15に異常がある場合には、変位d1と荷重Fの相関係数Rpd1_f,Rmd1_fから求めた指標Ipd1_f,Imd1_fが大きな値となる傾向がある。また、ブラケット15に異常がある場合、ブラケット15が第一変位センサ2aとロードセル2bとの間に位置しているので変位DSと荷重Fとから求められる指標Ipsd_f,Imsd_fも大きな値となる傾向となるとともに、ブラケット15が第二変位センサ2cとロードセル2bとの間に位置しているので変位d1と荷重Fとから求められる指標Ipd1_f,Imd1_fも大きな値となる傾向となる。 For example, when the bracket 15 for attaching the damper D between the load cell 2b and the second displacement sensor 2c to the inspection device T has an abnormality, the indexes Ipd1_f obtained from the correlation coefficients Rpd1_f and Rmd1_f of the displacement d1 and the load F, Imd1_f tends to be a large value. Further, when there is an abnormality in the bracket 15, since the bracket 15 is located between the first displacement sensor 2a and the load cell 2b, the indexes Ipsd_f and Imsd_f obtained from the displacement DS and the load F tend to be large values. At the same time, since the bracket 15 is located between the second displacement sensor 2c and the load cell 2b, the indexes Ipd1_f and Imd1_f obtained from the displacement d1 and the load F tend to be large values.

また、ブラケット15に異常があっても、第一変位センサ2aが検知する変位SDと第二変位センサ2cが検知する変位d1との関係性、第一変位センサ2aが検知する変位SDと第三変位センサ2dが検知する変位d2との関係性、さらには、第二変位センサ2cが検知する変位d1と第三変位センサ2dが検知する変位d2との関係性には、影響が出づらいと考えられるので、これらに関連する指標Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2は小さな値を採る傾向となる。 Further, even if there is an abnormality in the bracket 15, the relationship between the displacement SD detected by the first displacement sensor 2a and the displacement d1 detected by the second displacement sensor 2c, and the displacement SD and the third displacement SD detected by the first displacement sensor 2a. It is considered that the relationship between the displacement d2 detected by the displacement sensor 2d and the relationship between the displacement d1 detected by the second displacement sensor 2c and the displacement d2 detected by the third displacement sensor 2d are unlikely to be affected. Therefore, the indexes Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2 related to these tend to take small values.

ダンパDとアクチュエータ13とを連結するブラケット16が異常箇所である場合、第一変位センサ2aが検出する変位SDと第二変位センサ2cが検出する変位d1とから得られた指標Ipsd_d1,Imsd_d1が大きな値となる傾向を示す。ブラケット16が第一変位センサ2aと第二変位センサ2cとの間に位置しているので変位DSと変位d1とから求められる指標Ipsd_d1,Imsd_d1も大きな値となる傾向となるとともに、ブラケット15が第一変位センサ2aとロードセル2bとの間に位置しているので変位SDと荷重Fとから求められる指標Ipsd_f,Imsd_fも大きな値となる傾向となる。 When the bracket 16 connecting the damper D and the actuator 13 is an abnormal portion, the indexes Ipsd_d1 and Imsd_d1 obtained from the displacement SD detected by the first displacement sensor 2a and the displacement d1 detected by the second displacement sensor 2c are large. Shows a tendency to be a value. Since the bracket 16 is located between the first displacement sensor 2a and the second displacement sensor 2c, the indexes Ipsd_d1 and Imsd_d1 obtained from the displacement DS and the displacement d1 tend to be large values, and the bracket 15 is the first. Since it is located between the displacement sensor 2a and the load cell 2b, the indexes Ipsd_f and Imsd_f obtained from the displacement SD and the load F tend to be large values.

また、ブラケット16に異常があっても、第二変位センサ2cが検知する変位d1と第三変位センサ2dが検知する変位d2との関係性、第二変位センサ2cが検知する変位d1とロードセル2bが検知する荷重Fとの関係性、さらには、第三変位センサ2dが検知する変位d2とロードセル2bが検知する荷重Fとの関係性には、影響が出づらいと考えられるので、これらに関連する指標Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fは小さな値を採る傾向となる。 Further, even if there is an abnormality in the bracket 16, the relationship between the displacement d1 detected by the second displacement sensor 2c and the displacement d2 detected by the third displacement sensor 2d, the displacement d1 detected by the second displacement sensor 2c and the load cell 2b Since it is considered that the relationship with the load F detected by the third displacement sensor 2d and the relationship between the displacement d2 detected by the third displacement sensor 2d and the load F detected by the load cell 2b are unlikely to be affected, they are related to these. The indexes Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, and Imd2_f tend to take small values.

さらに、指標のうち、第一変位センサ2aが検知する変位SDとロードセル2bが検知する荷重Fとから得られた指標Ipsd_f,Imsd_fのみが高い値を採る場合、加振器E或いは保持部11或いは架台10に異常箇所がある可能性が高い。 Further, when only the indexes Ipsd_f and Imsd_f obtained from the displacement SD detected by the first displacement sensor 2a and the load F detected by the load cell 2b take high values among the indexes, the exciter E or the holding unit 11 or There is a high possibility that the gantry 10 has an abnormal portion.

また、第二変位センサ2cの取付け不良の場合には、第二変位センサ2cが関係する指標Ipsd_d1,Imsd_d1,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_fのみが高い値を採るので、この取付け不良を判別可能であり、同様に、第三変位センサ2dの取付け不良の場合には、第三変位センサ2dが関係する指標Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd2_f,Imd2_fのみが高い値を採るので、この取付け不良を判別可能である。なお、センサ装置2は、異常箇所評価システム1を構成する要素ではあるが、検査装置Tに設けられているので、指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fを利用してセンサ部の取付不良についても把握できる。 Further, in the case of improper installation of the second displacement sensor 2c, only the indexes Ipsd_d1, Imsd_d1, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f related to the second displacement sensor 2c take high values, so that the improper installation can be determined. Similarly, in the case of improper installation of the third displacement sensor 2d, only the indexes Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd2_f, Imd2_f related to the third displacement sensor 2d take high values. It can be discriminated. Although the sensor device 2 is an element constituting the abnormality location evaluation system 1, since it is provided in the inspection device T, the indicators Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Imd1_f, Imd1_f , Ipd2_f, Imd2_f can also be used to grasp the improper mounting of the sensor unit.

以上を取りまとめて一覧にすると、図7に示した表のごとくとなる。たとえば、図7の表中の一行目を参照すると、指標Ipsd_f,Imsd_f,Ipsd_d1、Imds_d1,Ipsd_d2,Imsd_d2が大きな値となっており、その他の指標は小さな値となっている。このような場合、第一変位センサ2aと、その他のセンサ部であるロードセル2b、第二変位センサ2cおよび第三変位センサ2dとの間の相関性が異常を示していることに他ならないから、ブラケット16が異常箇所である可能性が高いことが分かる。よって、この場合、指標を順位付けすると、先程の6つの指標Ipsd_f,Imsd_f,Ipsd_d1、Imds_d1,Ipsd_d2,Imsd_d2が1番目から6番目を締めていれば、ブラケット16に異常がある可能性があると判断できる。また、本実施の形態では、変位SD,d1,d2および荷重F(情報)の正の値と負の値についても指標を求めているから、指標の順位付けにてアクチュエータ13の伸長時と収縮時とのどちらの指標が大きいかも把握できる。たとえば、ブラケット15,16に亀裂が入っていて、引っ張りに対して剛性が低くなるものの圧縮に対して剛性がさほど変化がないような場合などでは、アクチュエータ13の収縮側の指標で異常が認められることになる。よって、本実施の形態では、異常箇所の特定のみならず、異常箇所がどのような状態であるかもある程度把握することができる。 The above is summarized and listed as shown in the table shown in FIG. For example, referring to the first row in the table of FIG. 7, the indexes Ipsd_f, Imsd_f, Ipsd_d1, Imds_d1, Ipsd_d2, Imsd_d2 are large values, and the other indexes are small values. In such a case, the correlation between the first displacement sensor 2a and the other sensor units, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d, is nothing but an abnormality. It can be seen that there is a high possibility that the bracket 16 is an abnormal portion. Therefore, in this case, when the indexes are ranked, if the six indexes Ipsd_f, Imsd_f, Ipsd_d1, Imds_d1, Ipsd_d2, and Imsd_d2 are tightened from the first to the sixth, there is a possibility that the bracket 16 has an abnormality. I can judge. Further, in the present embodiment, since the indexes are also obtained for the positive and negative values of the displacement SD, d1, d2 and the load F (information), the actuator 13 is extended and contracted according to the ranking of the indexes. You can also grasp which index is larger, time or time. For example, when the brackets 15 and 16 have cracks and the rigidity is low with respect to tension but the rigidity does not change so much with respect to compression, an abnormality is observed in the index on the contraction side of the actuator 13. It will be. Therefore, in the present embodiment, it is possible to grasp not only the abnormal portion but also the state of the abnormal portion to some extent.

このように、大きな値を持つ指標と小さな値を持つ指標との対比によって、検査装置Tの異常箇所を推定することが可能であり、処理装置3が指標を求めて、これらの指標を順位付けして検査装置Tのオペレータに提示すると、オペレータは順位付けされた指標から容易に検査装置Tの異常箇所に当たりをつけることができる。したがって、このように異常箇所評価システム1が求めた順位付けされた指標は、検査装置Tのオペレータにとって異常箇所を特定するうえで非常に有用である。 In this way, it is possible to estimate the abnormal part of the inspection device T by comparing the index having a large value and the index having a small value, and the processing device 3 obtains the index and ranks these indexes. Then, when presented to the operator of the inspection device T, the operator can easily hit the abnormal portion of the inspection device T from the ranked index. Therefore, the ranked index obtained by the abnormal portion evaluation system 1 in this way is very useful for the operator of the inspection device T in identifying the abnormal portion.

また、異常箇所評価システム1は、指標の順位付けにとどまらず、指標に基づいて検査装置Tの異常箇所を推定する異常箇所推定部3a4を備えている。異常箇所推定部3a4は、12個の指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fの大小を判別するために各指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fに対して閾値を設定して、指標が閾値を超えるとその指標を「大」、指標が閾値以下であるとその指標を「小」として判断する。異常箇所推定部3a4は、12個の指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fの「大」「小」の判別により、「大」「小」の組み合わせパターンが図7の各行のどれに一致するかを判断し、一致するパターンのそれぞれに紐づけされた検査装置Tの箇所を異常箇所と推定する。 In addition, the abnormality location evaluation system 1 includes an abnormality location estimation unit 3a4 that estimates an abnormality location of the inspection device T based on the index, in addition to ranking the indexes. The abnormality location estimation unit 3a4 discriminates the magnitudes of 12 indexes Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, Imd2_f, and Imd2_f, respectively. , Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, Imd2_f. Judge as. The abnormality location estimation unit 3a4 has twelve indexes Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, Imd1_f, Ipd2_f, Imd2_f It is determined which of the rows of FIG. 7 the combination pattern of "" matches, and the location of the inspection device T associated with each of the matching patterns is estimated to be an abnormal location.

なお、異常箇所推定部3a4は、推定した異常箇所を表示装置3eに表示させる。また、異常箇所推定部3a4は、図7の表中のパターンに該当しない場合には、異常箇所を推定せず処理を終了する。前述した各指標に設定される閾値は、任意に設定すればよいが、たとえば、以下のように設定してもよい。各指標は、相関係数から過去の正常な相関係数の平均値を差し引いて求められることから、過去の正常な相関係数の標準偏差を求めて、この標準偏差の3倍の値を閾値とすればよい。このようにすると、標準偏差の3倍を閾値に設定すれば過去の正常な相関係数の99.7%が採り得る値を指標が逸脱した場合に「大」と判定されるので、精度よく指標を異常値であるか否かを判断できる。 The abnormality location estimation unit 3a4 causes the display device 3e to display the estimated abnormality location. If the pattern in the table of FIG. 7 does not correspond to the pattern in the table of FIG. 7, the abnormality location estimation unit 3a4 ends the process without estimating the abnormality location. The threshold value set for each of the above-mentioned indexes may be arbitrarily set, but may be set as follows, for example. Since each index is obtained by subtracting the average value of the past normal correlation coefficient from the correlation coefficient, the standard deviation of the past normal correlation coefficient is obtained, and a value three times this standard deviation is used as the threshold value. And it is sufficient. In this way, if the threshold value is set to 3 times the standard deviation, it will be judged as "large" if the index deviates from the value that can be taken by 99.7% of the past normal correlation coefficient, so that it is accurate. It is possible to judge whether or not the index is an abnormal value.

以上までの検査装置Tの異常箇所評価システム1の処理を図8に示したフローチャートに即して説明する。異常が認められた検査装置Tに検体であるダンパDを取り付け、コントローラCから電流指令Iを入力してアクチュエータ13を駆動し、ダンパDへ正弦波の振動を与え(ステップST1)、検査装置Tの動作およびダンパDの動作の情報として変位SD,d1,d2および荷重Fをそれぞれ第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dで検知する(ステップST2、センシング過程)し、処理装置3の演算処理装置3aへ入力する。 The processing of the abnormality portion evaluation system 1 of the inspection device T up to the above will be described with reference to the flowchart shown in FIG. A damper D, which is a sample, is attached to the inspection device T in which an abnormality is found, a current command I is input from the controller C to drive the actuator 13, and a sinusoidal vibration is applied to the damper D (step ST1). Displacement SD, d1, d2 and load F are detected by the first displacement sensor 2a, load cell 2b, second displacement sensor 2c and third displacement sensor 2d, respectively, as information on the operation of the damper D and the operation of the damper D (step ST2, sensing process). ), And input to the arithmetic processing device 3a of the processing device 3.

処理装置3は、検知した変位SD,d1,d2および荷重Fから第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dの各センサ部のうち2つのセンサ部の12通りの組み合わせについて検知した情報同士の相関係数を求める(ステップST3、相関係数算出過程)。また、処理装置3は、12個の相関係数と各相関係数の正常値との差を求めて12個の指標を求める(ステップST4、指標算出過程)。さらに、処理装置3は、各指標を順位付けする(ステップST5、順位算出過程)。さらに、処理装置3は、各指標と対応する閾値とを比較し、各指標が「大」か「小」のいずれに該当するか判定し、各指標の大小のパターンから異常箇所を推定する(ステップST6)。処理装置3は、推定した異常箇所とともに各指標を順位付けされた順番にしたがって表示装置3eの画面上に表示する(ステップST7)。 From the detected displacements SD, d1, d2 and the load F, the processing device 3 has 12 types of two sensor units out of the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c and the third displacement sensor 2d. The correlation coefficient between the detected information is obtained for the combination of (step ST3, correlation coefficient calculation process). Further, the processing device 3 obtains the difference between the 12 correlation coefficients and the normal value of each correlation coefficient to obtain 12 indexes (step ST4, index calculation process). Further, the processing device 3 ranks each index (step ST5, ranking calculation process). Further, the processing device 3 compares each index with the corresponding threshold value, determines whether each index corresponds to "large" or "small", and estimates the abnormal portion from the large / small pattern of each index ( Step ST6). The processing device 3 displays each index together with the estimated abnormal portion on the screen of the display device 3e according to the order in which they are ranked (step ST7).

検査装置Tの異常箇所評価システム1は、以上のように動作して、異常箇所の推定に有用な指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fを求めて順位付けし、表示装置3eにこれらの指標Ipsd_f,Imsd_f,Ipsd_d1,Imsd_d1,Ipsd_d2,Imsd_d2,Ipd1_d2,Imd1_d2,Ipd1_f,Imd1_f,Ipd2_f,Imd2_fと順位とともにして表示させるとともに、推定した異常箇所も表示させ、或いは、プリンタ3gで紙媒体に印刷してオペレータによるこれらの指標等を視認できるようにする。 The abnormality location evaluation system 1 of the inspection device T operates as described above, and the indexes Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f Ipsd_f, Imsd_f, Ipsd_d1, Imsd_d1, Ipsd_d2, Imsd_d2, Ipd1_d2, Imd1_d2, Ipd1_f, Imd1_f, Ipd2_f, Imd2_f Is also displayed, or is printed on a paper medium with a printer of 3 g so that these indexes and the like can be visually recognized by the operator.

このように本実施の形態の検査装置Tの異常箇所評価システム1は、検査装置Tの動作と検査装置Tが検査するダンパ(検体)Dの動作を情報として検知する情報がそれぞれ異なる3つ以上のセンサ部としての第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dを有するセンサ装置2と、センサ装置2が検知した変位(情報)SD,d1,d2および荷重(情報)Fを処理する処理装置3とを備え、処理装置3がセンサ部のうち2つのセンサ部の全組合わせについて2つのセンサ部が検知した情報同士の相関係数を求める相関係数算出部3a1と、求めた全相関係数毎に相関係数と対応する正常値との差を指標として求める指標算出部3a2と、指標を順位付けする順位算出部3a3とを備えている。 As described above, the abnormality location evaluation system 1 of the inspection device T of the present embodiment has three or more different information for detecting the operation of the inspection device T and the operation of the damper (specimen) D inspected by the inspection device T as information. Sensor device 2 having a first displacement sensor 2a, a load cell 2b, a second displacement sensor 2c and a third displacement sensor 2d as a sensor unit of the above, and displacement (information) SD, d1, d2 and a load (information) detected by the sensor device 2 ( Information) A correlation coefficient calculation unit that includes a processing device 3 that processes F, and the processing device 3 obtains the correlation coefficient between the information detected by the two sensor units for all combinations of the two sensor units. It is provided with an index calculation unit 3a2 for obtaining the difference between 3a1 and the corresponding normal value for each of the obtained correlation coefficients as an index, and a ranking calculation unit 3a3 for ranking the indexes.

また、本実施の形態の検査装置Tの異常箇所評価方法は、検査装置Tの動作と検査装置Tが検査するダンパ(検体)Dの動作を情報としてそれぞれ異なる3つ以上の情報としての変位SD,d1,d2および荷重Fを検知するセンシング過程と、センシング過程で検知した情報としての変位SD,d1,d2および荷重Fのうち2つの情報の全組合わせについて情報同士の相関係数を求める相関係数算出過程と、求めた全相関係数毎に相関係数と対応する正常値との差を指標として求める指標算出過程と、各指標を順位付けする順位算出過程とを備えている。 Further, in the method for evaluating an abnormal portion of the inspection device T according to the present embodiment, the displacement SD as three or more different information based on the operation of the inspection device T and the operation of the damper (specimen) D inspected by the inspection device T. , D1, d2 and the load F, and the displacement SD, d1, d2 and the load F as the information detected in the sensing process. It includes an index calculation process for calculating the number of relations, an index calculation process for obtaining the difference between the correlation coefficient and the corresponding normal value for each obtained correlation coefficient as an index, and a ranking calculation process for ranking each index.

以上のように構成された検査装置Tの異常箇所評価システム1および異常箇所評価方法では、相関係数が正常値と乖離すれば乖離するほど大きな値を採る指標を順位付けするので、検査装置Tのオペレータに注意を払うべき指標を順位付けして認識させ得る。また、このように構成された検査装置Tの異常箇所評価システム1および異常箇所評価方法で求めた指標を利用すれば、検査装置Tのオペレータは、順位の高い指標とセンサ部の設置位置との関係から容易に異常箇所に当たりをつけることができる。以上より、検査装置Tの異常箇所評価システム1および異常箇所評価方法によれば、検査装置Tの異常箇所の推定を容易にできる。 In the abnormal part evaluation system 1 and the abnormal part evaluation method of the inspection device T configured as described above, the index that takes a larger value as the correlation coefficient deviates from the normal value is ranked. Can be used to rank and recognize the indicators that should be paid attention to by the operator. Further, by using the index obtained by the abnormality part evaluation system 1 and the abnormality part evaluation method of the inspection device T configured in this way, the operator of the inspection device T can determine the index having a high rank and the installation position of the sensor unit. From the relationship, it is possible to easily hit the abnormal part. From the above, according to the abnormality portion evaluation system 1 of the inspection device T and the abnormality portion evaluation method, it is possible to easily estimate the abnormality portion of the inspection device T.

また、本実施の形態の検査装置Tの異常箇所評価システム1では、処理装置3が指標に基づいて検査装置Tの異常箇所を推定する異常箇所推定部3a4を備えているので、自動的に異常箇所を推定するので検査装置Tのオペレータに推定した異常箇所を認識させ得るので、同オペレータの異常箇所の特定作業がより一層容易となる。 Further, in the abnormality location evaluation system 1 of the inspection device T of the present embodiment, since the processing device 3 includes the abnormality location estimation unit 3a4 that estimates the abnormality location of the inspection device T based on the index, the abnormality is automatically performed. Since the location is estimated, the operator of the inspection device T can recognize the estimated abnormality portion, so that the operation of identifying the abnormality portion of the operator becomes easier.

さらに、本実施の形態の検査装置Tの異常箇所評価システム1では、相関係数算出部3a1が2つのセンサ部同士の情報の度数分布を求め、求めた度数分布に基づいて相関係数を求める。Dに動的に振動を与えるとノイズなどの影響もあって変位(情報)SD,d1,d2および荷重(情報)Fの波形が乱れる場合があって、そのまま相関係数を求めると位相ずれの影響で相関係数の値が変化して、異常箇所の推定に対して良好な指標が得られない場合がある。これに対して、本実施の形態の検査装置Tの異常箇所評価システム1によれば、度数分布に基づいて相関係数を求めれば位相ずれの影響を排除して、変位(情報)SD,d1,d2および荷重(情報)Fの波形の一致度を示す相関係数が得られるので、常に安定した指標を求めることができ、異常箇所の特定に良好な指標を得ることができる。 Further, in the abnormality location evaluation system 1 of the inspection device T of the present embodiment, the correlation coefficient calculation unit 3a1 obtains the frequency distribution of the information between the two sensor units, and obtains the correlation coefficient based on the obtained frequency distribution. .. If D is dynamically vibrated, the waveforms of displacement (information) SD, d1, d2 and load (information) F may be disturbed due to the influence of noise, etc., and if the correlation coefficient is calculated as it is, the phase shift will occur. The value of the correlation coefficient may change due to the influence, and a good index may not be obtained for the estimation of the abnormal part. On the other hand, according to the abnormality location evaluation system 1 of the inspection device T of the present embodiment, if the correlation coefficient is obtained based on the frequency distribution, the influence of the phase shift is eliminated and the displacement (information) SD, d1 , D2 and the correlation coefficient indicating the degree of coincidence of the load (information) F waveforms can be obtained, so that a stable index can always be obtained, and a good index for identifying an abnormal portion can be obtained.

また、本実施の形態の検査装置Tの異常箇所評価システム1では、過去に求めた正常な検査装置Tで正常なダンパ(検体)Dを検査した際に得られた複数の相関係数の平均値を正常値としたので、異常な検査装置Tでダンパ(検体)Dを検査した際に得られる指標が平均値から乖離すればするほど大きな値を採るので、指標が異常値であるか否かについて検査装置Tのオペレータが判断しやすくなる。 Further, in the abnormal part evaluation system 1 of the inspection device T of the present embodiment, the average of a plurality of correlation coefficients obtained when the normal damper (sample) D is inspected by the normal inspection device T obtained in the past. Since the value is set to the normal value, the larger the index obtained when the damper (sample) D is inspected by the abnormal inspection device T deviates from the average value, the larger the value is taken. It becomes easier for the operator of the inspection device T to determine whether or not.

そして、本実施の形態の検査装置Tの異常箇所評価システム1では、検査装置Tが振動検査装置であって、センサ装置2が検査装置Tの変位SDと、ダンパ(検体)Dの全体変位d1と、ダンパ(検体)d2の部分的な変位d2と、ダンパ(検体)Dに作用する荷重Fを情報として検知している。このように構成された検査装置Tの異常箇所評価システム1によれば、検査装置Tのオペレータは、センサ部である第一変位センサ2a、ロードセル2b、第二変位センサ2cおよび第三変位センサ2dの位置関係と求めた指標とから、振動検査装置である検査装置Tのどこに異常があるのか異常箇所を具体的に推定できる。 Then, in the abnormality location evaluation system 1 of the inspection device T of the present embodiment, the inspection device T is a vibration inspection device, and the sensor device 2 is the displacement SD of the inspection device T and the total displacement d1 of the damper (specimen) D. The partial displacement d2 of the damper (specimen) d2 and the load F acting on the damper (specimen) D are detected as information. According to the abnormality location evaluation system 1 of the inspection device T configured in this way, the operator of the inspection device T is the sensor unit, the first displacement sensor 2a, the load cell 2b, the second displacement sensor 2c, and the third displacement sensor 2d. From the positional relationship of the above and the obtained index, it is possible to specifically estimate the location of the abnormality in the inspection device T, which is the vibration inspection device.

なお、前述した実施の形態では、センサ装置2が検知する情報が変位SD,d1,d2および荷重Fであったが、検査装置Tの動作は変位SD以外にもアクチュエータ13の速度或いは荷重もあるので、センサ装置2はこれらを情報として検知してもよいし、また、ダンパ(検体)Dの動作についても変位d1,d2および荷重Fの他に速度もあるので、センサ装置2は速度を検知してもよい。センサ部は、検体の全体或いは部分について、変位、速度および加速度のうち2つ以上を並列に検知してもよく、この場合、並列されるセンサ部のうち一つに異常がある場合にはそのセンサ部に関連する指標が大きな値を採るのでセンサ装置2における一部のセンサ部の異常を見つけることが可能となる。 In the above-described embodiment, the information detected by the sensor device 2 is the displacement SD, d1, d2 and the load F, but the operation of the inspection device T also includes the speed or load of the actuator 13 in addition to the displacement SD. Therefore, the sensor device 2 may detect these as information, and the sensor device 2 detects the speed because the operation of the damper (specimen) D also has a speed in addition to the displacements d1 and d2 and the load F. You may. The sensor unit may detect two or more of displacement, velocity, and acceleration in parallel for the entire or part of the sample. In this case, if one of the parallel sensor units has an abnormality, the sensor unit may detect the displacement, velocity, and acceleration in parallel. Since the index related to the sensor unit takes a large value, it is possible to find an abnormality in a part of the sensor unit in the sensor device 2.

また、検査装置Tは、振動検査装置以外の検査装置とされてもよく、たとえば、検体の内部に圧力を負荷する圧力検査装置や、検体に温度を作用させる温度検査装置であってもよい。圧力検査装置の場合には、圧力検査装置の動作として圧力検査装置の圧力源の圧力を情報とし、検体内の圧力、検体の全長或いは部分の歪や応力を情報とし、前述のように指標を求めればよい。このように検査装置Tが圧力検査装置であっても、異常箇所評価システム1および異常箇所評価方法は、検査装置Tのオペレータの圧力検査装置の異常箇所の特定を助けることができる。検査装置Tが温度検査装置であっても、異常箇所評価システム1および異常箇所評価方法は、圧力検査装置と同様に、温度検査装置側の動作と検体側の動作を情報として検知して指標を求めれば、同様に検査装置Tのオペレータの異常箇所の特定を助けることができる。検体についても本実施の形態では、ダンパDを検体としているが、検体はダンパD以外の機械部品とされてもよく、検査装置Tが振動検査装置以外である場合には、検査に適した検体を使用すればよい。 Further, the inspection device T may be an inspection device other than the vibration inspection device, and may be, for example, a pressure inspection device that applies pressure to the inside of the sample or a temperature test device that applies temperature to the sample. In the case of a pressure inspection device, the pressure of the pressure source of the pressure inspection device is used as information as the operation of the pressure inspection device, the pressure in the sample, the strain or stress of the entire length or part of the sample is used as information, and the index is used as described above. Just ask. As described above, even if the inspection device T is a pressure inspection device, the abnormality location evaluation system 1 and the abnormality location evaluation method can help the operator of the inspection device T to identify the abnormality portion of the pressure inspection device. Even if the inspection device T is a temperature inspection device, the abnormality location evaluation system 1 and the abnormality location evaluation method detect the operation on the temperature inspection device side and the operation on the sample side as information and use an index as in the pressure inspection device. If required, it is possible to similarly assist the operator of the inspection device T in identifying an abnormal portion. As for the sample, the damper D is used as the sample in the present embodiment, but the sample may be a mechanical part other than the damper D, and when the test device T is other than the vibration test device, the sample is suitable for the test. Should be used.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, they can be modified, modified, and modified as long as they do not deviate from the claims.

1・・・異常箇所評価システム、2・・・センサ装置、2a・・・第一変位センサ(センサ部)、2b・・・ロードセル(センサ部)、2c・・・第二変位センサ(センサ部)、2d・・・第三変位センサ(センサ部)、3・・・処理装置、3a1・・・相関係数算出部、3a2・・・指標算出部、3a3・・・順位算出部、3a4・・・異常箇所推定部 1 ... Abnormal part evaluation system, 2 ... Sensor device, 2a ... First displacement sensor (sensor unit), 2b ... Load cell (sensor unit), 2c ... Second displacement sensor (sensor unit) ), 2d ... Third displacement sensor (sensor unit), 3 ... Processing device, 3a1 ... Correlation coefficient calculation unit, 3a2 ... Index calculation unit, 3a3 ... Rank calculation unit, 3a4.・ ・ Abnormal part estimation unit

Claims (6)

検査装置の異常箇所の推定に使用される指標を求める検査装置の異常箇所評価システムであって、
前記検査装置の動作と前記検査装置が検査する検体の動作を情報として、検知する情報がそれぞれ異なる3つ以上のセンサ部を有するセンサ装置と、
前記センサ装置が検知した情報を処理する処理装置とを備え、
前記処理装置は、
前記センサ部のうち2つのセンサ部の全組合わせについて前記2つのセンサ部が検知した前記情報同士の相関係数を求める相関係数算出部と、
求めた全相関係数毎に、前記相関係数と対応する正常値との差を前記指標として求める指標算出部と、
前記指標を順位付けする順位算出部とを有する
ことを特徴とする検査装置の異常箇所評価システム。
It is an abnormality part evaluation system of the inspection device that obtains the index used for estimating the abnormality part of the inspection device.
A sensor device having three or more sensor units having different detection information, using the operation of the inspection device and the operation of the sample to be inspected by the inspection device as information.
A processing device for processing information detected by the sensor device is provided.
The processing device is
A correlation coefficient calculation unit that obtains a correlation coefficient between the information detected by the two sensor units for all combinations of two sensor units among the sensor units, and a correlation coefficient calculation unit.
An index calculation unit that obtains the difference between the correlation coefficient and the corresponding normal value as the index for each of the obtained total correlation coefficients.
An abnormality location evaluation system for an inspection device, which comprises a ranking calculation unit for ranking the indicators.
前記処理装置は、
前記指標に基づいて、前記検査装置の異常箇所を推定する異常箇所推定部を有する
ことを特徴とする請求項1に記載の検査装置の異常箇所評価システム。
The processing device is
The abnormality location evaluation system for an inspection device according to claim 1, further comprising an abnormality location estimation unit that estimates an abnormality location of the inspection device based on the index.
前記相関係数算出部は、前記2つのセンサ部同士の前記情報の度数分布を求め、求めた前記度数分布に基づいて前記相関係数を求める
ことを特徴とする請求項1または2に記載の検査装置の異常箇所評価システム。
The first or second claim, wherein the correlation coefficient calculation unit obtains the frequency distribution of the information between the two sensor units, and obtains the correlation coefficient based on the obtained frequency distribution. An abnormality evaluation system for inspection equipment.
前記正常値は、過去に正常な前記検査装置で正常な前記検体を検査した際に得られた複数の相関係数の平均値を前記正常値とした
ことを特徴とする請求項1から3のいずれか1項に記載の異常箇所評価システム。
Claims 1 to 3 are characterized in that the normal value is the average value of a plurality of correlation coefficients obtained when the normal sample is inspected by the normal inspection device in the past as the normal value. The abnormal part evaluation system according to any one of the items.
前記検査装置は、振動検査装置であって、
前記センサ装置は、前記検査装置の変位と、前記検体の全体変位と、前記検体の部分的な変位と、前記検体に作用する荷重を情報として検知する
ことを特徴とする請求項1から4のいずれか1項に記載の検査装置の異常箇所評価システム。
The inspection device is a vibration inspection device.
The sensor device according to claims 1 to 4, wherein the sensor device detects the displacement of the inspection device, the total displacement of the sample, the partial displacement of the sample, and the load acting on the sample as information. The abnormality location evaluation system for the inspection device according to any one of the items.
検査装置の異常箇所の推定に使用される指標を求める検査装置の異常箇所評価方法であって、
前記検査装置の動作と前記検査装置が検査する検体の動作を情報として、それぞれ異なる3つ以上の情報を検知するセンシング過程と、
前記センシング過程で検知した前記情報のうち2つの情報の全組合わせについて前記情報同士の相関係数を求める相関係数算出過程と、
求めた全相関係数毎に、前記相関係数と対応する正常値との差を前記指標として求める指標算出過程と、
前記指標を順位付けする順位算出過程とを備えた
ことを特徴とする検査装置の異常箇所評価方法。
It is a method for evaluating abnormal parts of inspection equipment that obtains an index used for estimating abnormal parts of inspection equipment.
A sensing process that detects three or more different pieces of information by using the operation of the inspection device and the operation of the sample to be inspected by the inspection device as information.
A correlation coefficient calculation process for obtaining the correlation coefficient between the information for all combinations of two pieces of the information detected in the sensing process, and a correlation coefficient calculation process.
An index calculation process in which the difference between the correlation coefficient and the corresponding normal value is used as the index for each of the obtained correlation coefficients.
A method for evaluating an abnormal part of an inspection device, which comprises a ranking calculation process for ranking the indicators.
JP2019155991A 2019-08-28 2019-08-28 Abnormal location evaluation system for inspection device and method for evaluating abnormal location of inspection device Active JP7252863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019155991A JP7252863B2 (en) 2019-08-28 2019-08-28 Abnormal location evaluation system for inspection device and method for evaluating abnormal location of inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019155991A JP7252863B2 (en) 2019-08-28 2019-08-28 Abnormal location evaluation system for inspection device and method for evaluating abnormal location of inspection device

Publications (2)

Publication Number Publication Date
JP2021032822A true JP2021032822A (en) 2021-03-01
JP7252863B2 JP7252863B2 (en) 2023-04-05

Family

ID=74678463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019155991A Active JP7252863B2 (en) 2019-08-28 2019-08-28 Abnormal location evaluation system for inspection device and method for evaluating abnormal location of inspection device

Country Status (1)

Country Link
JP (1) JP7252863B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220089829A (en) * 2020-12-22 2022-06-29 한국기술교육대학교 산학협력단 Welding defect inspection device of friction welding part of automobile engine valve
WO2022269969A1 (en) * 2021-06-22 2022-12-29 株式会社荏原製作所 Vibration-monitoring system for rotating machine, and vibration-monitoring method for rotating machine
WO2023286247A1 (en) * 2021-07-15 2023-01-19 三菱電機株式会社 Inspection device, inspection system, inspection method, and inspection program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269221A (en) * 1990-03-19 1991-11-29 Hitachi Ltd Abnormal-sound diagnostic apparatus for rotary equipment
JPH07168619A (en) * 1993-10-20 1995-07-04 Hitachi Ltd Method and system for equipment/facility diagnosis
JP2005345154A (en) * 2004-05-31 2005-12-15 Kyushu Electric Power Co Inc Method and device for detecting omen of abnormality
US20150142337A1 (en) * 2012-05-22 2015-05-21 National Ict Australia Limitied Integrity of a civil structure
JP2016029390A (en) * 2015-10-28 2016-03-03 株式会社エヌ・ティ・ティ・データ Abnormality detection device, abnormality detection method, and abnormality detection program
WO2017064854A1 (en) * 2015-10-13 2017-04-20 日本電気株式会社 Structure abnormality detection device, structure abnormality detection method, recording medium, and structure abnormality detection system
WO2017064855A1 (en) * 2015-10-13 2017-04-20 日本電気株式会社 Structural abnormality detecting system, structural abnormality detecting method, and recording medium recording same
JP2018091640A (en) * 2016-11-30 2018-06-14 株式会社デンソー Apparatus inspection device and apparatus inspection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269221A (en) * 1990-03-19 1991-11-29 Hitachi Ltd Abnormal-sound diagnostic apparatus for rotary equipment
JPH07168619A (en) * 1993-10-20 1995-07-04 Hitachi Ltd Method and system for equipment/facility diagnosis
JP2005345154A (en) * 2004-05-31 2005-12-15 Kyushu Electric Power Co Inc Method and device for detecting omen of abnormality
US20150142337A1 (en) * 2012-05-22 2015-05-21 National Ict Australia Limitied Integrity of a civil structure
WO2017064854A1 (en) * 2015-10-13 2017-04-20 日本電気株式会社 Structure abnormality detection device, structure abnormality detection method, recording medium, and structure abnormality detection system
WO2017064855A1 (en) * 2015-10-13 2017-04-20 日本電気株式会社 Structural abnormality detecting system, structural abnormality detecting method, and recording medium recording same
JP2016029390A (en) * 2015-10-28 2016-03-03 株式会社エヌ・ティ・ティ・データ Abnormality detection device, abnormality detection method, and abnormality detection program
JP2018091640A (en) * 2016-11-30 2018-06-14 株式会社デンソー Apparatus inspection device and apparatus inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220089829A (en) * 2020-12-22 2022-06-29 한국기술교육대학교 산학협력단 Welding defect inspection device of friction welding part of automobile engine valve
KR102508599B1 (en) 2020-12-22 2023-03-10 주식회사 알티자동화 Welding defect inspection device of friction welding part of automobile engine valve
WO2022269969A1 (en) * 2021-06-22 2022-12-29 株式会社荏原製作所 Vibration-monitoring system for rotating machine, and vibration-monitoring method for rotating machine
WO2023286247A1 (en) * 2021-07-15 2023-01-19 三菱電機株式会社 Inspection device, inspection system, inspection method, and inspection program

Also Published As

Publication number Publication date
JP7252863B2 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
JP2021032822A (en) Inspection device irregularity part evaluation system and inspection device irregularity part evaluation method
JP4690865B2 (en) Mass flow meter control method
US6556939B1 (en) Inferential signal generator for instrumented equipment and processes
EP3206103B1 (en) Model based system monitoring
JP6406261B2 (en) Information processing apparatus and analysis method
CN107438758A (en) Method and system for the structural health monitoring with Frequency Synchronization
JP7158609B2 (en) Crack estimation device, fault diagnosis device, crack estimation method, and fault diagnosis method for rotating electric machine
AU2002236463A1 (en) Inferential signal generator for instrumented equipment and processes
JP2001518599A (en) Method and apparatus for deterministically obtaining measurements of process control device parameters when a process is operating online
KR20100117524A (en) Structural integrity monitoring system
JP6825714B2 (en) Vibration judgment device, vibration judgment method and program
JP7360415B2 (en) diagnostic equipment
JP7306916B2 (en) Anomaly detection system for inspection equipment
JP3759881B2 (en) Process diagnosis monitoring system
JP5312475B2 (en) Method for analyzing energy consumption of mechanical device and mechanical device
JP7252856B2 (en) Inspection device evaluation system and inspection device evaluation method
JP7199793B2 (en) Anomaly detection system and anomaly detection method
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
JP7359378B2 (en) Information board anomaly detection system
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
JP2001324420A (en) Method and device for predicting oscillation of blades in rotating machine
US20230288290A1 (en) Method and System for Automatically Loading Parameters, and Client-End Server Thereof
TWI789167B (en) Method and system for inspecting declining of dynamic response of feeding system
Rickli et al. Fault detection and prognosis of assembly locating systems using piezoelectric transducers
WO2021229815A1 (en) Information processing device, evaluation method, and evaluation program

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230324

R151 Written notification of patent or utility model registration

Ref document number: 7252863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350