JP2021031714A - Non-oriented electrical steel sheet and method for manufacturing the same - Google Patents

Non-oriented electrical steel sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2021031714A
JP2021031714A JP2019151288A JP2019151288A JP2021031714A JP 2021031714 A JP2021031714 A JP 2021031714A JP 2019151288 A JP2019151288 A JP 2019151288A JP 2019151288 A JP2019151288 A JP 2019151288A JP 2021031714 A JP2021031714 A JP 2021031714A
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
mother
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019151288A
Other languages
Japanese (ja)
Other versions
JP7389323B2 (en
Inventor
藤村 浩志
Hiroshi Fujimura
浩志 藤村
屋鋪 裕義
Hiroyoshi Yashiki
裕義 屋鋪
高橋 克
Katsu Takahashi
克 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019151288A priority Critical patent/JP7389323B2/en
Publication of JP2021031714A publication Critical patent/JP2021031714A/en
Application granted granted Critical
Publication of JP7389323B2 publication Critical patent/JP7389323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a non-oriented electrical steel sheet that is excellent in magnetic property and film adhesion property, and to provide a method for manufacturing the same.SOLUTION: Provided is a non-oriented electrical steel sheet having: a mother steel sheet having a chemical composition containing, in mass%, C: 0.004% or less, Si: 2.0% or more and 4.0% or less, Al: 0.20 or more and 3.00% or less, Mn: 0.05% or more and 4.00% or less, S: 0.005% or less, N: 0.004% or less, P: 0.20% or less, and at least one of Sn and Sb: 0.001% or more and 0.200% or less in total, and in which the balance is Fe and impurities; and an insulation coating film formed on the surface of the mother steel sheet, and in which an Al-based oxide is present on the surface of the mother steel sheet on the insulation coating film side, and the coverage percentage of the Al-based oxide on the surface of the mother steel sheet is 30% or more and 95% or less.SELECTED DRAWING: Figure 1

Description

本発明は、磁気特性に優れかつ高強度の無方向性電磁鋼板およびその製造方法に関する。より詳しくは、本発明は、エアコンのコンプレッサーモータ、ハイブリッド自動車、電気自動車、燃料電池自動車に搭載される駆動モータなど、高いエネルギー効率と小型・高出力化とを同時に要求される電気機器の鉄心の素材に好適な無方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties and high strength and a method for producing the same. More specifically, the present invention relates to the iron core of an electric device such as a compressor motor of an air conditioner, a hybrid vehicle, an electric vehicle, and a drive motor mounted on a fuel cell vehicle, which are required to have high energy efficiency and small size and high output at the same time. The present invention relates to a non-oriented electrical steel sheet suitable for a material and a method for producing the same.

近年の地球環境問題の高まりから、電気機器においては小型、高出力、高エネルギー効率が要求され、鉄心材料である無方向性電磁鋼板には低鉄損と高磁束密度の高位両立が強く求められている。 Due to the growing global environmental problems in recent years, small size, high output, and high energy efficiency are required for electrical equipment, and non-oriented electrical steel sheets, which are core materials, are strongly required to have both low iron loss and high magnetic flux density. ing.

特にハイブリッド自動車や電気自動車等の駆動モータでは、小型化に伴うトルク低下を補償するために、回転数を増加させる手段が取られている。そして、回転数を増加させると、鋼板に印加される磁場の周波数が増加し鉄損が増加するため、鉄心材料である無方向性電磁鋼板には、高い周波数における鉄損(高周波鉄損)を低減することが求められている。また、回転数を増加させるために、高速回転でも変形や疲労破壊しない強度が求められている。さらに、ハイブリッド自動車や電気自動車等の駆動モータの効率を高めるためには、駆動モータの十分な冷却が必要とされる。 In particular, in drive motors of hybrid vehicles and electric vehicles, measures are taken to increase the number of revolutions in order to compensate for the decrease in torque due to miniaturization. When the number of revolutions is increased, the frequency of the magnetic field applied to the steel sheet increases and the iron loss increases. Therefore, the non-oriented electrical steel sheet, which is the core material, suffers iron loss (high frequency iron loss) at a high frequency. It is required to reduce. Further, in order to increase the number of rotations, strength that does not deform or fatigue fracture even at high speed rotation is required. Further, in order to increase the efficiency of the drive motor of a hybrid vehicle, an electric vehicle, or the like, sufficient cooling of the drive motor is required.

高周波鉄損を低減する手段としては、板厚の薄手化、SiやAlなどの合金元素含有量の増加による高比抵抗化、SbやSnなどの添加による集合組織制御、および鋼板の高純度化などが採用されてきた。しかしながら、鉄損を低減するために、SbやSnを母鋼板に添加すると、打ち抜きや加工による歪を除去する目的で歪取焼純を行った後に母鋼板の被膜密着性が低下することがある。この結果、母鋼板表面から絶縁被膜が剥離して駆動モータの冷却に用いる冷媒に混入することによって、冷却性能を劣化させることがある。 As means for reducing high-frequency iron loss, thinning the plate thickness, increasing the specific resistivity by increasing the content of alloying elements such as Si and Al, controlling the texture by adding Sb and Sn, and increasing the purity of the steel sheet. Etc. have been adopted. However, if Sb or Sn is added to the mother steel sheet in order to reduce iron loss, the film adhesion of the mother steel sheet may decrease after strain removal and quenching for the purpose of removing strain due to punching or processing. .. As a result, the insulating coating may be peeled off from the surface of the mother steel plate and mixed with the refrigerant used for cooling the drive motor, thereby deteriorating the cooling performance.

これに対し、特許文献1には、絶縁被膜の密着性を高めるには、絶縁被膜下のサブスケール量を酸素目付量で1.3g/m以下とし、かつ絶縁被膜の目付量を、絶縁被膜の種類が無機または有機無機複合被膜の場合は0.1〜4.0g/m、有機被膜の場合は0.1〜12g/mとすることが有効であることが開示されている。 On the other hand, in Patent Document 1, in order to improve the adhesion of the insulating film, the amount of subscale under the insulating film is set to 1.3 g / m 2 or less in terms of oxygen basis weight, and the basis weight of the insulating film is set to be insulated. 0.1~4.0g / m 2 if the type of coating is an inorganic or organic-inorganic composite film has been disclosed that in the case of the organic coating is effective to 0.1~12g / m 2 ..

また、特許文献2には、微量のSbやSnを含有して磁気特性を向上した無方向性電磁鋼板における被膜密着性を改善するためには、母鋼板表面におけるSbおよびSnの濃度、Sb+1/2Snを20wt%以下に抑制することが有効であることが開示されている。これにより、母鋼板表面から絶縁被膜が剥離して冷媒に混入し、冷却性能を劣化させることを回避している。 Further, in Patent Document 2, in order to improve the film adhesion in the non-oriented electrical steel sheet containing a small amount of Sb and Sn to improve the magnetic characteristics, the concentration of Sb and Sn on the surface of the mother steel sheet, Sb + 1 /. It is disclosed that it is effective to suppress 2Sn to 20 wt% or less. As a result, it is possible to prevent the insulating film from peeling off from the surface of the mother steel sheet and being mixed with the refrigerant to deteriorate the cooling performance.

さらに、特許文献3には、SbおよびSnと共にCuおよびNiを母鋼板表面に偏析させれば、母鋼板表面に偏析したSbおよびSnによる絶縁被膜の密着性の低下作用を打ち消して、母鋼板表面に形成される絶縁被膜の密着性をより優れたものとする技術が開示されている。 Further, in Patent Document 3, if Cu and Ni are segregated on the surface of the mother steel sheet together with Sb and Sn, the effect of Sb and Sn segregated on the surface of the mother steel sheet to reduce the adhesion of the insulating coating is canceled out, and the surface of the mother steel sheet A technique for improving the adhesion of the insulating coating formed on the steel sheet is disclosed.

しかしながら、特許文献1および2に記載の無方向性電磁鋼板では、ハイブリッド自動車や電気自動車等の駆動モータの長期運転時において、母鋼板表面から絶縁被膜が剥離することを回避するのに十分な程度には、被膜密着性が優れたものではなかった。このため、ハイブリッド自動車や電気自動車等の駆動モータの長期運転時には、母鋼板表面から絶縁被膜が剥離して冷媒に混入し、冷却性能を劣化させるといった問題が依然として生じるおそれがある。 However, the non-oriented electrical steel sheets described in Patent Documents 1 and 2 are sufficient to prevent the insulating coating from peeling from the surface of the mother steel sheet during long-term operation of a drive motor of a hybrid vehicle, an electric vehicle, or the like. The film adhesion was not excellent. Therefore, during long-term operation of a drive motor of a hybrid vehicle, an electric vehicle, or the like, there is still a possibility that the insulating film is peeled off from the surface of the mother steel plate and mixed with the refrigerant, resulting in deterioration of cooling performance.

また、特許文献4では、母鋼板表面にAlの濃化層を形成させ、かつ、母鋼板最表面のSbおよびSnの含有量が母鋼板中のSi含有量と[Sb]+1/2[Sn]≦40/[Si]を満足するようにすることにより、歪取焼純時の酸化による耐食性の劣化を抑制でき、歪取焼純後の耐食性および磁気特性の双方に優れた無方向性電磁鋼板を提供している。これにより、母鋼板での錆の発生を回避するとしているが、被膜の密着性については効果が十分ではない。 Further, in Patent Document 4, an Al-concentrated layer is formed on the surface of the mother steel sheet, and the Sb and Sn contents on the outermost surface of the mother steel sheet are the Si content in the mother steel sheet and [Sb] + 1/2 [Sn]. ] ≤40 / [Si] can be satisfied to suppress deterioration of corrosion resistance due to oxidation during pure strain removal and quenching, and non-directional electromagnetic steel having excellent corrosion resistance and magnetic properties after purely strain removal and quenching. We provide steel sheets. It is said that this avoids the occurrence of rust on the mother steel sheet, but the effect on the adhesion of the coating film is not sufficient.

特開2001−279400号公報Japanese Unexamined Patent Publication No. 2001-279400 特開平8−291375号公報Japanese Unexamined Patent Publication No. 8-291375 特開2017−82276号公報Japanese Unexamined Patent Publication No. 2017-82276 特開2003−293101号公報Japanese Unexamined Patent Publication No. 2003-293101

本発明は、上記実情に鑑みてなされたものであり、高周波鉄損を低減するためにSbやSnを母鋼板に添加するのに際して、SbおよびSnが母鋼板表面に偏析して母鋼板表面に形成される絶縁被膜の密着性を低下する作用を無害化することによって、ハイブリッド自動車や電気自動車等の駆動モータの長期運転時において、母鋼板表面から絶縁被膜が剥離することを回避するのに十分な程度に、被膜密着性に優れる無方向性電磁鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when Sb and Sn are added to the base steel sheet in order to reduce high-frequency iron loss, Sb and Sn segregate on the surface of the base steel sheet and onto the surface of the base steel sheet. By detoxifying the action of reducing the adhesion of the formed insulating coating, it is sufficient to prevent the insulating coating from peeling off from the surface of the base steel plate during long-term operation of a drive motor such as a hybrid vehicle or an electric vehicle. An object of the present invention is to provide a non-oriented electrical steel sheet having excellent film adhesion and a method for producing the same.

本発明者らは、上記課題を解決すべく、SbおよびSnを母鋼板表面に偏析させた場合において、母鋼板表面での酸化物の被覆状態による絶縁被膜の密着性の変化について鋭意研究を行った。その結果、母鋼板表面にAl系酸化物を所定の被覆率で存在させれば、母鋼板表面に偏析したSbおよびSnによる絶縁被膜の密着性の低下作用を打ち消して、母鋼板表面に形成される絶縁被膜の密着性をより優れたものにできることを見出した。本発明はこれらの知見を元になされたものであり、その要旨は、以下の通りである。 In order to solve the above problems, the present inventors have conducted diligent research on the change in the adhesion of the insulating film depending on the oxide coating state on the surface of the mother steel sheet when Sb and Sn are segregated on the surface of the mother steel sheet. It was. As a result, if an Al-based oxide is present on the surface of the mother steel sheet at a predetermined coverage, it is formed on the surface of the mother steel sheet by canceling the effect of Sb and Sn segregated on the surface of the mother steel sheet to reduce the adhesion of the insulating film. It was found that the adhesiveness of the insulating coating can be improved. The present invention has been made based on these findings, and the gist thereof is as follows.

すなわち、本発明は、質量%で、C:0.004%以下、Si:2.0%以上4.0%以下、Al:0.20以上3.00%以下、Mn:0.05%以上4.00%以下、S:0.005%以下、N:0.004%以下、P:0.20%以下、ならびにSnおよびSbのうち少なくとも1種:合計で0.001%以上0.200%以下を含有し、残部がFeおよび不純物よりなる化学組成を有する母鋼板と、上記母鋼板の表面に形成された絶縁被膜と、を有する無方向性電磁鋼板であって、上記母鋼板の上記絶縁被膜側の表面にAl系酸化物が存在し、上記母鋼板の表面における上記Al系酸化物の被覆率が30%以上95%以下である、無方向性電磁鋼板を提供する。 That is, in the present invention, in terms of mass%, C: 0.004% or less, Si: 2.0% or more and 4.0% or less, Al: 0.20 or more and 3.00% or less, Mn: 0.05% or more. 4.00% or less, S: 0.005% or less, N: 0.004% or less, P: 0.20% or less, and at least one of Sn and Sb: 0.001% or more and 0.200 in total A non-directional electromagnetic steel sheet containing% or less and having a chemical composition in which the balance is composed of Fe and impurities, and an insulating film formed on the surface of the mother steel sheet, wherein the mother steel sheet is the above-mentioned. Provided is a non-directional electromagnetic steel sheet in which an Al-based oxide is present on the surface on the insulating coating side and the coverage of the Al-based oxide on the surface of the mother steel sheet is 30% or more and 95% or less.

また、本発明は、上述の無方向性電磁鋼板を製造する無方向性電磁鋼板の製造方法であって、上述の化学組成を有するスラブを、加熱炉で1000℃以上1250℃以下の温度に加熱するスラブ加熱工程と、上記加熱後のスラブに熱間圧延を施し、最終圧延パス後に水冷して650℃以下の温度でコイル状に巻き取る熱間圧延工程と、上記熱間圧延工程により得られた熱延鋼板に熱延板焼鈍および酸洗を施す熱延板焼鈍・酸洗工程と、上記熱延板焼鈍・酸洗工程により得られた熱延焼鈍板に冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷延鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程と、上記仕上げ焼鈍工程により得られた鋼板の表面に絶縁被膜を形成する絶縁被膜形成工程と、を有し、上記仕上げ焼鈍工程では、最初に900℃に到達する前の500℃以上900℃以下の温度域における雰囲気は、水蒸気(HO)と水素(H)との分圧比P(HO)/P(H)を0.002以上0.100以下とし、上記温度域における滞留時間は40秒以下とする、無方向性電磁鋼板の製造方法を提供する。 Further, the present invention is a method for producing a non-directional electromagnetic steel sheet, wherein the slab having the above-mentioned chemical composition is heated to a temperature of 1000 ° C. or higher and 1250 ° C. or lower in a heating furnace. It is obtained by the slab heating step, the hot rolling step in which the heated slab is hot-rolled, water-cooled after the final rolling pass, and wound into a coil at a temperature of 650 ° C. or lower, and the hot rolling step. A hot-rolled sheet annealing / pickling step in which a hot-rolled steel sheet is annealed and pickled, and a cold-rolled sheet obtained by the above-mentioned hot-rolled sheet annealing / pickling step is cold-rolled. There are a step, a finish annealing step of applying finish annealing to the cold-rolled steel sheet obtained by the cold rolling step, and an insulating film forming step of forming an insulating film on the surface of the steel sheet obtained by the finish annealing step. However, in the finish annealing step, the atmosphere in the temperature range of 500 ° C. or higher and 900 ° C. or lower before first reaching 900 ° C. is the partial pressure ratio P (H 2 ) of water vapor (H 2 O) and hydrogen (H 2). Provided is a method for producing a non-directional electromagnetic steel sheet, wherein O) / P (H 2 ) is 0.002 or more and 0.100 or less, and the residence time in the above temperature range is 40 seconds or less.

本発明によれば、ハイブリッド自動車や電気自動車等の駆動モータの長期運転時において、母鋼板表面から絶縁被膜が剥離することを回避するのに十分な程度に、被膜密着性に優れる無方向性電磁鋼板およびその製造方法を提供することができる。本発明により得られる無方向性電磁鋼板は、電気機器の小型、高出力、高エネルギー効率化に極めて効果的であり、その工業的価値は極めて高い。 According to the present invention, omnidirectional electromagnetic steel having excellent film adhesion is sufficient to prevent the insulating film from peeling off from the surface of the mother steel plate during long-term operation of a drive motor of a hybrid vehicle, an electric vehicle, or the like. A steel plate and a method for manufacturing the same can be provided. The non-oriented electrical steel sheet obtained by the present invention is extremely effective in improving the small size, high output, and high energy efficiency of electrical equipment, and its industrial value is extremely high.

EPMAによる元素マッピング像の例を示す図である。It is a figure which shows the example of the element mapping image by EPMA.

以下、本発明の無方向性電磁鋼板およびその製造方法について詳細に説明する。 Hereinafter, the non-oriented electrical steel sheet of the present invention and its manufacturing method will be described in detail.

A.無方向性電磁鋼板
以下、本発明の無方向性電磁鋼板における各構成について説明する。
A. Non-oriented electrical steel sheet Hereinafter, each configuration of the non-oriented electrical steel sheet of the present invention will be described.

1.母鋼板
a.化学組成
まず、本発明の無方向性電磁鋼板における母鋼板の化学組成の限定理由について説明する。以下において、各成分の含有量は質量%での値である。
1. 1. Mother steel plate a. Chemical Composition First, the reason for limiting the chemical composition of the grain steel sheet in the non-oriented electrical steel sheet of the present invention will be described. In the following, the content of each component is a value in% by mass.

(1)C
Cは、不純物として含有され、含有量が0.004%を超えると微細な炭化物が析出して鉄損の増加が著しくなる。したがって、C含有量は0.004%以下とする。また、この観点から、C含有量は好ましくは0.003%以下、より好ましくは0.002%以下とする。
(1) C
C is contained as an impurity, and when the content exceeds 0.004%, fine carbides are precipitated and the iron loss increases remarkably. Therefore, the C content is set to 0.004% or less. From this viewpoint, the C content is preferably 0.003% or less, more preferably 0.002% or less.

(2)Si
Siは、比抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。また、鋼板の強度を向上させるのにも有効である。しかしながら、Siを過剰に含有させると飽和磁束密度を減少させ、鋼の脆化および仕上げ焼鈍温度の上昇を招き、さらにはコストを増加させる。これらの観点から、Si含有量は2.0%以上4.0%以下とする。また、これらの観点から、Si含有量は好ましくは2.5%以上、より好ましくは3.0%以上とし、Si含有量は好ましくは3.5%以下とする。
(2) Si
Since Si has an action of increasing specific resistance, it is contained in order to reduce iron loss. It is also effective in improving the strength of the steel sheet. However, excessive Si content reduces the saturation magnetic flux density, causing embrittlement of the steel and an increase in the finish annealing temperature, further increasing the cost. From these viewpoints, the Si content is set to 2.0% or more and 4.0% or less. From these viewpoints, the Si content is preferably 2.5% or more, more preferably 3.0% or more, and the Si content is preferably 3.5% or less.

(3)Al
Alは、Siと同様に比抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。また、本発明は母鋼板表面に形成される絶縁被膜の密着性をAl系酸化物を活用して向上させるため、Alは本発明において必須の元素である。絶縁被膜の密着性を向上させるために、Al含有量は0.20%以上とする。Al含有量は好ましくは0.6%以上、さらに好ましくは0.9%以上、さらに好ましくは1.4%以上とする。しかしながら、Alを過剰に含有させると母鋼板表面でのAl系酸化物の被覆率が過剰となり絶縁被膜の密着性を低下させるばかりか飽和磁束密度を減少させることになり、磁束密度の点から不利となる。これらの観点から、Al含有量は3.00%以下とする。
(3) Al
Since Al has an action of increasing specific resistance like Si, it is contained in order to reduce iron loss. Further, in the present invention, Al is an essential element in the present invention because the adhesion of the insulating film formed on the surface of the mother steel sheet is improved by utilizing the Al-based oxide. In order to improve the adhesion of the insulating film, the Al content is 0.20% or more. The Al content is preferably 0.6% or more, more preferably 0.9% or more, still more preferably 1.4% or more. However, if Al is excessively contained, the coverage of the Al-based oxide on the surface of the mother steel sheet becomes excessive, which not only lowers the adhesion of the insulating film but also reduces the saturation magnetic flux density, which is disadvantageous in terms of magnetic flux density. It becomes. From these viewpoints, the Al content is set to 3.00% or less.

(4)Mn
Mnは、Si、Alと同様に比抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。しかしながら、Mnを過剰に含有させると飽和磁束密度を減少させることになり、磁束密度の点から不利となる。これらの観点から、Mn含有量は0.05%以上4.00%以下とする。また、これらの観点から、Mn含有量は好ましくは3.00%以下、より好ましくは2.00%以下とする。
(4) Mn
Since Mn has an action of increasing specific resistance like Si and Al, it is contained in order to reduce iron loss. However, if Mn is excessively contained, the saturation magnetic flux density is reduced, which is disadvantageous in terms of magnetic flux density. From these viewpoints, the Mn content is 0.05% or more and 4.00% or less. From these viewpoints, the Mn content is preferably 3.00% or less, more preferably 2.00% or less.

(5)S
Sは、その含有量が0.005%を超えるとMnSなどの硫化物が多数析出して鉄損の増加が著しくなる。したがって、S含有量は0.005%以下とする。また、これらの観点から、S含有量は好ましくは0.003%以下、より好ましくは0.002%以下とする。
(5) S
When the content of S exceeds 0.005%, a large amount of sulfides such as MnS are precipitated and the iron loss increases remarkably. Therefore, the S content is set to 0.005% or less. From these viewpoints, the S content is preferably 0.003% or less, more preferably 0.002% or less.

(6)N
Nは、その含有量が0.004%を超えると窒化物の増加により鉄損の増加が著しくなる。したがって、N含有量は0.004%以下とする。
(6) N
When the content of N exceeds 0.004%, the increase in iron loss becomes remarkable due to the increase in nitride. Therefore, the N content is set to 0.004% or less.

(7)P
Pは、Siと同様に鋼板の強度を向上させるのに有効な元素である。ただし、過剰に含有させると鋼の脆化を招く。この観点から、P含有量は0.20%以下とする。Pは、母鋼板表面に偏析する時に偏析サイトがSnおよびSbと競合するため、Pを母鋼板表面に偏析させることにより、SnおよびSbの母鋼板表面への偏析を抑制して、母鋼板表面に形成される絶縁被膜の密着性の低下を抑制する効果が得られる。このため、母鋼板表面に形成される絶縁被膜の密着性を向上させるために、Pが母鋼板表面に偏析するようにPを含有させることが好ましい。この観点から、P含有量は0.05%以上0.20%以下とすることが好ましい。
(7) P
Like Si, P is an element effective for improving the strength of the steel sheet. However, excessive content causes embrittlement of steel. From this point of view, the P content is 0.20% or less. Since the segregation site of P competes with Sn and Sb when segregating on the surface of the mother steel sheet, segregation of Sn and Sb on the surface of the mother steel sheet is suppressed by segregating P on the surface of the mother steel sheet, and the surface of the mother steel sheet is suppressed. It is possible to obtain the effect of suppressing a decrease in the adhesiveness of the insulating coating formed on the steel sheet. Therefore, in order to improve the adhesion of the insulating film formed on the surface of the mother steel sheet, it is preferable to contain P so that P segregates on the surface of the mother steel sheet. From this viewpoint, the P content is preferably 0.05% or more and 0.20% or less.

(8)SnおよびSb
SnおよびSbは、電磁鋼板の集合組織を改善し鉄損を低減する効果があるので、SnおよびSbの少なくとも1種を含有させる。また、水素を含む窒素雰囲気中で高温に加熱されるとき、鋼の表面からの窒素の侵入を防止し、AlNが形成されるのを抑止することによる鉄損低減効果もある。なお、SnまたはSbを含有させると、母鋼板表面に偏析して濃化することにより、母鋼板表面に形成される絶縁被膜の密着性を低下させるものの、後述のAl系酸化物の作用によって、被膜密着性の低下が抑制される効果が得られる。しかしながら、SnまたはSbを過剰に含有させると、後述のAl系酸化物による被膜密着性の低下を抑制する作用にもかかわらず、被膜密着性の低下を免れることはできない。また、SnまたはSbを過剰に含有させると結晶粒成長を阻害することになる。これらの観点から、SnおよびSbの合計含有量は0.001%以上0.200%以下とする。また、これらの観点から、合計含有量は好ましくは0.003%以上とし、さらに好ましくは0.010%以上、さらに好ましくは0.030%以上とする。また、合計含有量は好ましくは0.100%以下とする。
(8) Sn and Sb
Since Sn and Sb have the effect of improving the texture of the electrical steel sheet and reducing iron loss, at least one of Sn and Sb is contained. Further, when heated to a high temperature in a nitrogen atmosphere containing hydrogen, there is also an iron loss reducing effect by preventing the invasion of nitrogen from the surface of the steel and suppressing the formation of AlN. When Sn or Sb is contained, it segregates and thickens on the surface of the mother steel sheet, thereby lowering the adhesion of the insulating film formed on the surface of the mother steel sheet, but due to the action of the Al-based oxide described later, The effect of suppressing the decrease in film adhesion can be obtained. However, if Sn or Sb is excessively contained, the decrease in film adhesion cannot be avoided despite the effect of suppressing the decrease in film adhesion due to the Al-based oxide described later. Further, if Sn or Sb is excessively contained, the crystal grain growth will be inhibited. From these viewpoints, the total content of Sn and Sb is 0.001% or more and 0.200% or less. From these viewpoints, the total content is preferably 0.003% or more, more preferably 0.010% or more, still more preferably 0.030% or more. The total content is preferably 0.100% or less.

(9)Ca、Mg、およびREM
Ca、Mg、およびREMは、介在物の形態制御に有効な元素であり、結晶粒の成長を促進する作用を通じて鉄損低減に有効に作用する。したがって、Ca、Mg、およびREMからなる群から選択される少なくとも1種が、Feの一部に代えて含有されていてもよい。しかしながら、いずれの元素もその含有量を0.01%超としても、上記作用による効果は飽和してコスト的に不利になる。したがって、Ca含有量は0.01%以下、Mg含有量は0.01%以下、REM含有量は0.01%以下とすることが好ましい。より好ましくは、Ca含有量は0.005%以下、Mg含有量は0.005%以下、REM含有量は0.005%以下である。上記作用による効果をより確実に得るには、いずれかの元素の含有量を0.001%以上とすることが好ましい。
(9) Ca, Mg, and REM
Ca, Mg, and REM are elements effective in controlling the morphology of inclusions, and effectively reduce iron loss through the action of promoting the growth of crystal grains. Therefore, at least one selected from the group consisting of Ca, Mg, and REM may be contained in place of a part of Fe. However, even if the content of any of the elements exceeds 0.01%, the effect of the above action is saturated and it is disadvantageous in terms of cost. Therefore, it is preferable that the Ca content is 0.01% or less, the Mg content is 0.01% or less, and the REM content is 0.01% or less. More preferably, the Ca content is 0.005% or less, the Mg content is 0.005% or less, and the REM content is 0.005% or less. In order to obtain the effect of the above action more reliably, the content of any of the elements is preferably 0.001% or more.

ここで、REMとは、Sc、Y、およびランタノイドの合計17元素の総称である。REMとしては、合計17元素のうちの1種または2種以上の元素を含んでいればよい。REMの含有量はこれら元素の合計含有量を指す。 Here, REM is a general term for a total of 17 elements of Sc, Y, and lanthanoids. The REM may contain one or more of the 17 elements in total. The content of REM refers to the total content of these elements.

(10)Cu、CrおよびNi
Cu、CrおよびNiは、SnおよびSbと共に母鋼板表面に偏析して濃化することにより、表面に偏析したSnおよびSbによる被膜密着性低下を打ち消す作用を有する。したがって、Cu、CrおよびNiの少なくとも1種が、Feの一部に代えて含有されていてもよい。しかしながら、Cu、Cr、Niの添加は合金コストの上昇を招くため、Cu含有量、Cr含有量およびNi含有量はそれぞれ1.0%以下とすることが好ましい。上記作用による効果を得るには、Cu、CrおよびNiの少なくとも1種を合計で0.02%以上含有させることが好ましい。
(10) Cu, Cr and Ni
Cu, Cr, and Ni, together with Sn and Sb, segregate and thicken on the surface of the mother steel sheet, thereby having an effect of canceling the decrease in film adhesion due to the segregated Sn and Sb on the surface. Therefore, at least one of Cu, Cr and Ni may be contained in place of a part of Fe. However, since the addition of Cu, Cr, and Ni causes an increase in alloy cost, the Cu content, Cr content, and Ni content are preferably 1.0% or less, respectively. In order to obtain the effect of the above action, it is preferable to contain at least one of Cu, Cr and Ni in a total of 0.02% or more.

(11)残部
残部はFeおよび不純物である。不純物のうち粒成長性に悪影響を及ぼすTi、V、Nb、Zr、およびSeは極力低減することが望ましく、それぞれの含有量は0.008%以下とすることが好ましい。また、Bを0.0010%以下含有してもよい。
(11) Remaining portion The remaining portion is Fe and impurities. Of the impurities, Ti, V, Nb, Zr, and Se, which adversely affect the grain growth, are preferably reduced as much as possible, and the content of each is preferably 0.008% or less. Further, B may be contained in an amount of 0.0010% or less.

ここで、母鋼板の化学組成は、無方向性電磁鋼板において絶縁被膜を除去し、絶縁被膜が除去された鋼板を母鋼板とし、この母鋼板について測定を実施する。絶縁被膜の除去方法については、後述する。 Here, the chemical composition of the grain steel sheet is measured by removing the insulating film from the non-oriented electrical steel sheet and using the steel sheet from which the insulating film has been removed as the grain steel sheet, and measuring the master steel sheet. The method for removing the insulating film will be described later.

b.Al系酸化物
本発明においては、母鋼板の絶縁被膜側の表面、すなわち母鋼板と絶縁被膜との界面にAl系酸化物が存在し、母鋼板の表面におけるAl系酸化物の被覆率が30%以上95%以下であることを特徴とする。母鋼板の絶縁被膜側の表面にAl系酸化物が所定の被覆率で存在することによって、Snおよび/またはSbによる絶縁被膜の密着性低下を抑制することができる理由については明らかではないが、次のように考えられる。すなわち、母鋼板において、被膜密着性低下の原因となるSnおよび/またはSbはAl系酸化物よりも内層に偏析するため、Al系酸化物が母鋼板表面に所定の被覆率で存在すると、Snおよび/またはSbの母鋼板表面への偏析を抑制することができ、Sbおよび/またはSnが母鋼板表面に偏析して母鋼板表面に形成される絶縁被膜の密着性を低下する作用を実質的に無害化することができるためと考えられる。なお、母鋼板表面に形成される酸化物について、母鋼板の化学組成や酸化性雰囲気や温度などの酸化条件にもよるが、無方向性電磁鋼板においては、Al、Mn、Si、Crなどの酸化物が形成されることが知られている。このうち、Al系酸化物は、他の酸化物、例えばSi系酸化物よりも、母鋼板との結晶格子の整合性が低いために、偏析元素がAl系酸化物と母鋼板との界面にトラップされやすい。その結果、Al系酸化物が母鋼板表面に所定の被覆率で存在することにより、絶縁被膜と母鋼板との界面へのSn、Sbの偏析を抑制することができると推察される。
b. Al-based oxide In the present invention, Al-based oxide is present on the surface of the mother steel sheet on the insulating coating side, that is, at the interface between the mother steel plate and the insulating coating, and the coverage of the Al-based oxide on the surface of the mother steel sheet is 30. It is characterized by being% or more and 95% or less. It is not clear why the decrease in adhesion of the insulating coating due to Sn and / or Sb can be suppressed by the presence of the Al-based oxide on the surface of the base steel sheet on the insulating coating side at a predetermined coating ratio. It can be considered as follows. That is, in the mother steel sheet, Sn and / or Sb, which cause a decrease in film adhesion, segregate in the inner layer rather than the Al oxide. Therefore, when the Al oxide is present on the surface of the mother steel sheet at a predetermined coverage, Sn and / or Sb are segregated. Segregation of and / or Sb on the surface of the mother steel sheet can be suppressed, and Sb and / or Sn segregate on the surface of the mother steel sheet to substantially reduce the adhesion of the insulating film formed on the surface of the mother steel sheet. It is thought that this is because it can be detoxified. Regarding the oxide formed on the surface of the mother steel sheet, although it depends on the chemical composition of the mother steel sheet and the oxidation conditions such as the oxidizing atmosphere and temperature, in the non-directional electromagnetic steel sheet, Al, Mn, Si, Cr and the like are used. It is known that oxides are formed. Of these, the Al-based oxide has a lower crystal lattice consistency with the mother steel plate than other oxides such as Si-based oxides, so that the segregation element is present at the interface between the Al-based oxide and the mother steel plate. Easy to be trapped. As a result, it is presumed that the presence of the Al-based oxide on the surface of the mother steel sheet at a predetermined coating ratio can suppress the segregation of Sn and Sb at the interface between the insulating film and the mother steel sheet.

ここで、Al系酸化物については、被膜密着性の劣化を回避するため形成を回避すべきとする文献もある。一方、本発明においては、Al系酸化物は被膜密着性の確保にとって有効に作用する。この差は明確ではないが、以下のように考えられる。すなわち、従来では、鋼板の酸化が鋼板表面の全面で進行するため、鋼板が膜状のAl系酸化物で覆われてしまい、鋼板内部への酸素供給が遮断される状況になっていたと思料される。この状況では、鋼板の表層域に存在していた内部酸化物が還元されて分解し、その分解過程で鋼板の表層域にボイドが形成される。そして、このボイドが被膜剥離の起点となり、被膜密着性を低下させていたと推量される。これに対し、本発明においては、鋼板の化学組成および熱処理条件等により鋼板表面の酸化が全面で進行しない状況に保たれ、鋼板表面のAl系酸化物の被覆率が適度な範囲で制御されている。このため、鋼板の表層域でのボイド形成が抑制され、さらにAl系酸化物による被覆の不均一さが絶縁被膜と鋼板との界面構造を複雑化させ、被膜密着性の確保に有利に作用するようになったと考えられる。 Here, there is also a document that the formation of Al-based oxides should be avoided in order to avoid deterioration of film adhesion. On the other hand, in the present invention, the Al-based oxide acts effectively for ensuring the film adhesion. This difference is not clear, but it can be considered as follows. That is, it is considered that conventionally, since the oxidation of the steel sheet proceeds on the entire surface of the steel sheet, the steel sheet is covered with a film-like Al-based oxide, and the oxygen supply to the inside of the steel sheet is cut off. To. In this situation, the internal oxide existing in the surface layer region of the steel sheet is reduced and decomposed, and voids are formed in the surface layer region of the steel sheet in the decomposition process. Then, it is presumed that this void became the starting point of the film peeling and lowered the film adhesion. On the other hand, in the present invention, the surface of the steel sheet is kept in a state where oxidation does not proceed on the entire surface due to the chemical composition of the steel sheet, heat treatment conditions, etc., and the coverage of the Al-based oxide on the surface of the steel sheet is controlled within an appropriate range. There is. Therefore, the formation of voids in the surface layer region of the steel sheet is suppressed, and the non-uniformity of the coating by the Al-based oxide complicates the interface structure between the insulating film and the steel sheet, which is advantageous for ensuring the film adhesion. It is thought that it has become.

母鋼板の表面におけるAl系酸化物の被覆率は、30%以上95%以下であり、好ましくは40%以上90%以下、より好ましくは50%以上80%以下である。上記被覆率が高いほど、Sn、Sbのトラップサイトが増加して表面偏析を抑制することができる。一方、上記被覆率が高いほど被膜密着性が向上するが、上記被覆率が高すぎるとAl系酸化物が厚くなるため、力学的な効果でAl系酸化物と母鋼板との界面での剥離が生じるおそれがある。そのため、上記被覆率は上記範囲内であることが好ましい。 The coverage of the Al-based oxide on the surface of the base steel sheet is 30% or more and 95% or less, preferably 40% or more and 90% or less, and more preferably 50% or more and 80% or less. The higher the coverage, the more trap sites Sn and Sb are, and the more the surface segregation can be suppressed. On the other hand, the higher the coating ratio, the better the film adhesion, but if the coating ratio is too high, the Al-based oxide becomes thicker, so that the peeling at the interface between the Al-based oxide and the mother steel plate has a mechanical effect. May occur. Therefore, the coverage is preferably within the above range.

本発明においては、上記の母鋼板の表面におけるAl系酸化物の被覆率は、無方向性電磁鋼板において絶縁被膜を除去し、絶縁被膜が除去された鋼板を母鋼板とし、この母鋼板について測定を実施する。具体的には、上記の母鋼板の表面におけるAl系酸化物の被覆率は、電子プローブマイクロアナライザー(EPMA)を用い、母鋼板表面に対してAlおよびOについてマッピング分析を行うことにより求める。代表的な試験条件としては、加速電圧15kV、照射電流100nA、照射時間50ms、観察視野200μm×200μm、分割数400×400とする。ここで、EPMA測定より求められたAl濃度5%以上かつO濃度5%以上の領域をAl系酸化物による被覆領域と定義する。上記の方法によりFe、Si、Al、Oの分布を測定した例を図1に示す。図1に示す例では、母鋼板の表面におけるAl系酸化物の被覆率は90%である。 In the present invention, the coverage of Al-based oxides on the surface of the above-mentioned grain steel sheet is measured with respect to the grain steel sheet in which the insulating film is removed in the non-oriented electrical steel sheet and the steel sheet from which the insulating film is removed is used as the grain steel sheet. To carry out. Specifically, the coverage of Al-based oxides on the surface of the mother steel sheet is determined by performing mapping analysis on Al and O on the surface of the mother steel sheet using an electron probe microanalyzer (EPMA). Typical test conditions are an acceleration voltage of 15 kV, an irradiation current of 100 nA, an irradiation time of 50 ms, an observation field of view of 200 μm × 200 μm, and a number of divisions of 400 × 400. Here, a region having an Al concentration of 5% or more and an O concentration of 5% or more determined by EPMA measurement is defined as a coating region with an Al-based oxide. An example of measuring the distribution of Fe, Si, Al, and O by the above method is shown in FIG. In the example shown in FIG. 1, the coverage of the Al-based oxide on the surface of the mother steel sheet is 90%.

また、絶縁被膜は、次の方法によって除去する。すなわち、絶縁被膜を有する無方向性電磁鋼板を、NaOH:10質量%、HO:90質量%の水酸化ナトリウム水溶液に、80℃で5分間、浸漬する。 The insulating coating is removed by the following method. That is, the non-oriented electrical steel sheet having an insulation coating, NaOH: 10% by weight, H 2 O: 90 wt% aqueous sodium hydroxide, 5 minutes at 80 ° C., immersion.

2.絶縁被膜
本発明の無方向性電磁鋼板は、鉄心における鋼板積層間での絶縁を図るために母鋼板表面に形成される絶縁被膜をさらに有する。
2. Insulating film The non-oriented electrical steel sheet of the present invention further has an insulating film formed on the surface of the base steel sheet in order to insulate between the laminated steel sheets in the iron core.

母鋼板表面に形成される絶縁被膜は、鉄心における鋼板積層間での絶縁を図るために膜厚を確保する必要があるが、厚過ぎると被膜密着性が低下し剥がれ易くなる。これらの観点から、絶縁被膜の膜厚は0.1μm以上0.5μm以下であることが好ましい。絶縁被膜の膜厚が厚すぎると被膜密着性が低下するのは、電磁鋼板をモータ鉄心に打ち抜き加工後に歪取り焼鈍する際、絶縁被膜に含まれる酸素が母鋼板表面と反応して新たな酸化被膜を形成することが原因であると推定される。 It is necessary to secure a film thickness of the insulating film formed on the surface of the base steel sheet in order to insulate between the laminated steel sheets in the iron core, but if it is too thick, the film adhesion is lowered and it is easy to peel off. From these viewpoints, the film thickness of the insulating film is preferably 0.1 μm or more and 0.5 μm or less. If the film thickness of the insulating film is too thick, the film adhesion will decrease. When the electromagnetic steel sheet is punched into the motor steel core and then strain-removed and annealed, the oxygen contained in the insulating film reacts with the surface of the mother steel sheet to cause new oxidation. It is presumed that the cause is the formation of a film.

3.板厚
本発明は、本質的に高周波の低鉄損を達成することを前提としている。そのため、無方向性電磁鋼板の板厚は0.30mm以下とすることが好ましい。一方、過度の薄手化は平坦度劣化による極端な占積率低下や鉄心の生産性低下を招く場合があるので、無方向性電磁鋼板の板厚は0.10mm以上とすることが好ましい。
3. 3. Plate Thickness The present invention is essentially premised on achieving high frequency low iron loss. Therefore, the thickness of the non-oriented electrical steel sheet is preferably 0.30 mm or less. On the other hand, excessive thinning may lead to an extreme decrease in space factor and a decrease in productivity of the iron core due to deterioration of flatness. Therefore, the thickness of the non-oriented electrical steel sheet is preferably 0.10 mm or more.

4.製造方法
本発明の無方向性電磁鋼板は、後述する無方向性電磁鋼板の製造方法により製造することが好適である。
4. Manufacturing Method The non-oriented electrical steel sheet of the present invention is preferably manufactured by the non-oriented electrical steel sheet manufacturing method described later.

B.無方向性電磁鋼板の製造方法
次に、本発明の無方向性電磁鋼板の製造方法における各工程について説明する。
本発明を特定するために必要な工程の条件は、スラブ加熱工程、熱間圧延工程および仕上げ焼鈍工程に関するものである。これら以外の工程の条件についての以下の説明は、一般的な条件を参考までに示したものであり、その条件を充足しなかったとしても、本発明の効果を得ることは可能である。
B. Method for manufacturing grain-oriented electrical steel sheet Next, each step in the method for manufacturing grain-oriented electrical steel sheet of the present invention will be described.
The process conditions required to identify the present invention relate to a slab heating process, a hot rolling process and a finish annealing process. The following description of the conditions of the steps other than these shows general conditions for reference, and even if the conditions are not satisfied, the effect of the present invention can be obtained.

1.スラブ加熱工程
スラブ加熱工程においては、上述の化学組成を有するスラブを、加熱炉で1000℃以上1250℃以下の温度に加熱する。加熱温度が1000℃未満では、スラブ表面のスケール生成が不十分であり鋼板の表面性状が劣化し、冷延工程で破断の原因になるおそれがある。また、加熱温度が1250℃を超えると、スラブ中の硫化物が固溶し熱延中に微細析出して鉄損を劣化させるおそれがある。加熱温度は1050℃以上1200℃以下とすることが好ましい。
1. 1. Slab heating step In the slab heating step, a slab having the above-mentioned chemical composition is heated to a temperature of 1000 ° C. or higher and 1250 ° C. or lower in a heating furnace. If the heating temperature is less than 1000 ° C., scale formation on the slab surface is insufficient, the surface texture of the steel sheet deteriorates, and there is a risk of causing breakage in the cold rolling process. Further, if the heating temperature exceeds 1250 ° C., the sulfide in the slab may be solid-solved and finely precipitated during hot spreading to deteriorate the iron loss. The heating temperature is preferably 1050 ° C or higher and 1200 ° C or lower.

2.熱間圧延工程
熱間圧延工程においては、上記加熱後のスラブに熱間圧延を施し、最終圧延パス後に水冷して650℃以下の温度でコイル状に巻き取る。
2. Hot rolling step In the hot rolling step, the slab after heating is hot-rolled, and after the final rolling pass, it is water-cooled and wound into a coil at a temperature of 650 ° C. or lower.

本発明において、ここで規定する温度は熱間圧延後の鋼板の表面温度を意味し、熱間圧延後の鋼板の表面温度とは、接触式の温度計あるいは放射温度計によって測定した温度を意味する。 In the present invention, the temperature specified here means the surface temperature of the steel sheet after hot rolling, and the surface temperature of the steel sheet after hot rolling means the temperature measured by a contact thermometer or a radiation thermometer. To do.

最終圧延パス後にコイル状に巻き取る温度が650℃を超えると、母鋼板表面におけるスケール層が厚くなるとともに内部酸化が起こり磁気特性劣化の原因となるおそれがある。さらに、スケール除去のために酸洗を強化すると大量の酸化物として母鋼板表層からAlが除去されるため母鋼板表層のAl濃度低下を生じ、後述する仕上げ焼鈍工程におけるAl系酸化物の形成を阻害する要因にもなる。 If the temperature at which the coil is wound after the final rolling pass exceeds 650 ° C., the scale layer on the surface of the mother steel sheet becomes thick and internal oxidation may occur, which may cause deterioration of magnetic properties. Furthermore, when pickling is strengthened to remove scale, Al is removed from the surface layer of the mother steel sheet as a large amount of oxide, which causes a decrease in the Al concentration on the surface layer of the mother steel sheet, resulting in the formation of Al-based oxides in the finish annealing step described later. It can also be a hindrance factor.

また、これ以外の熱間圧延工程の条件は、特に限定されるものではない。 Further, the conditions of the hot rolling process other than this are not particularly limited.

3.熱延板焼鈍・酸洗工程
熱延板焼鈍・酸洗工程においては、上記熱間圧延工程により得られた熱延鋼板に熱延板焼鈍および酸洗を施す。酸洗および熱延板焼鈍は順不同であり、酸洗後に熱延板焼鈍を施してもよく、熱延板焼鈍後に酸洗を施してもよい。
3. 3. Hot-rolled plate annealing / pickling step In the hot-rolled plate annealing / pickling step, the hot-rolled steel sheet obtained by the hot rolling step is annealed and pickled. Pickling and hot-rolled plate annealing are in no particular order, and hot-rolled plate annealing may be performed after pickling, or pickling may be performed after hot-rolled plate annealing.

熱延板焼鈍の条件は、特に限定されるものではないが、熱延板焼鈍を施す際には、上記熱延鋼板を700℃以上1100℃以下の温度域に1分以上24時間以下保持することが好ましい。上記熱延板焼鈍温度が上記範囲を下回ると、熱延鋼板に蓄積された歪みが開放されず後工程の冷間圧延で破断する可能性が高まるからであり、上記熱延板焼鈍時間が上記範囲を下回ると、同様の理由により冷間圧延で破断する可能性が高まるからである。また、上記熱延板焼鈍温度が上記範囲を超えると設備への付加が大きくなり、上記熱延板焼鈍時間が上記範囲を超えると生産性の劣化を招くからである。 The conditions for hot-rolled sheet annealing are not particularly limited, but when hot-rolled sheet is annealed, the hot-rolled steel sheet is held in a temperature range of 700 ° C. or higher and 1100 ° C. or lower for 1 minute or longer and 24 hours or shorter. Is preferable. This is because when the hot-rolled sheet annealing temperature is lower than the above range, the strain accumulated in the hot-rolled steel sheet is not released and the possibility of fracture in the cold rolling in the subsequent process increases, and the hot-rolled sheet annealing time is described above. If it falls below the range, the possibility of breaking in cold rolling increases for the same reason. Further, when the hot-rolled plate annealing temperature exceeds the above range, the addition to the equipment becomes large, and when the hot-rolled plate annealing time exceeds the above range, the productivity is deteriorated.

また、焼鈍雰囲気は母鋼板表面におけるスケール成長を抑制する観点から水素を含むことが好ましく、水素濃度を10体積%以上とすることがより好ましい。さらに、焼鈍雰囲気はコスト面から主要ガスとして窒素を含むことが好ましい。 Further, the annealing atmosphere preferably contains hydrogen from the viewpoint of suppressing scale growth on the surface of the mother steel sheet, and more preferably the hydrogen concentration is 10% by volume or more. Further, the annealing atmosphere preferably contains nitrogen as a main gas from the viewpoint of cost.

熱延板焼鈍の方式は連続焼鈍式でもバッチ焼鈍式でもよい。熱延板焼鈍条件は、必要とされる磁気特性や生産効率に応じて焼鈍後の母鋼板における結晶組織を制御するために調整することが好ましい。例えば、磁束密度を向上させるためには、焼鈍後の母鋼板における結晶粒径が40μm以上となるように焼鈍温度および焼鈍時間を調節することが好ましい。 The hot-rolled plate annealing method may be a continuous annealing method or a batch annealing method. The hot-rolled sheet annealing conditions are preferably adjusted in order to control the crystal structure of the mother steel sheet after annealing according to the required magnetic properties and production efficiency. For example, in order to improve the magnetic flux density, it is preferable to adjust the annealing temperature and annealing time so that the crystal grain size of the mother steel sheet after annealing is 40 μm or more.

一方、酸洗の条件は、特に限定されるものではなく、例えば、酸洗液の主成分を塩酸、温度を80℃以上とすることができる。 On the other hand, the pickling conditions are not particularly limited, and for example, the main component of the pickling solution can be hydrochloric acid and the temperature can be 80 ° C. or higher.

4.冷間圧延工程
冷間圧延工程においては、上記熱延板焼鈍・酸洗工程により得られた熱延焼鈍板に冷間圧延を施す。冷延圧下率等の冷間圧延条件は、特に限定されるものではなく、通常の条件でよい。例えば、冷延圧下率は70%以上とすることができる。
4. Cold rolling step In the cold rolling step, the hot-rolled annealed sheet obtained by the above-mentioned hot-rolled sheet annealing / pickling step is cold-rolled. Cold rolling conditions such as cold rolling reduction are not particularly limited and may be normal conditions. For example, the cold spreading reduction rate can be 70% or more.

5.仕上げ焼鈍工程
仕上げ焼鈍工程においては、上記冷間圧延工程により得られた冷延鋼板に仕上げ焼鈍を施して、鋼板表面にAl系酸化物を形成する。仕上げ焼鈍工程においては、最初に900℃に到達する前の500℃以上900℃以下の温度域における雰囲気および滞留時間を制御することにより、Al系酸化物を適切な形態で母鋼板表面に形成させることができる。
5. Finish Annealing Step In the finish annealing step, the cold-rolled steel sheet obtained by the cold rolling step is subjected to finish annealing to form an Al-based oxide on the surface of the steel sheet. In the finish annealing step, Al-based oxides are formed on the surface of the mother steel sheet in an appropriate form by controlling the atmosphere and residence time in the temperature range of 500 ° C. or higher and 900 ° C. or lower before first reaching 900 ° C. be able to.

上記温度域における雰囲気は、水蒸気(HO)と水素(H)との分圧比、P(HO)/P(H)を0.002以上0.100以下とすることが好ましい。P(HO)/P(H)が0.002未満では還元性雰囲気となりAl系酸化物が形成されにくくなる場合がある。P(HO)/P(H)は、好ましくは0.01以上、さらに好ましくは0.03以上とする。一方、P(HO)/P(H)が0.100を超えると、内部酸化が進み磁気特性を劣化させるおそれがある。 The atmosphere in the above temperature range is preferably such that the partial pressure ratio of water vapor (H 2 O) and hydrogen (H 2 ) and P (H 2 O) / P (H 2 ) are 0.002 or more and 0.100 or less. .. If P (H 2 O) / P (H 2 ) is less than 0.002, a reducing atmosphere may be formed and it may be difficult to form an Al-based oxide. P (H 2 O) / P (H 2 ) is preferably 0.01 or more, more preferably 0.03 or more. On the other hand, if P (H 2 O) / P (H 2 ) exceeds 0.100, internal oxidation may proceed and the magnetic characteristics may be deteriorated.

上記温度域における滞留時間は、40秒以下とすることが好ましい。滞留時間が40秒を超えると、内部酸化が進み磁気特性が劣化するおそれがある。滞留時間は、好ましくは20秒以下、さらに好ましくは10秒以下とする。滞留時間が短いと、上記雰囲気にもよるが十分なAl系酸化物の形成が困難となるため、滞留時間は上記雰囲気を考慮して適宜調整する。ただし、このような調整は、日常的に鋼板の表面酸化状態を管理した熱処理を実施している当業者であれば困難なことではない。 The residence time in the above temperature range is preferably 40 seconds or less. If the residence time exceeds 40 seconds, internal oxidation may proceed and the magnetic characteristics may deteriorate. The residence time is preferably 20 seconds or less, more preferably 10 seconds or less. If the residence time is short, it becomes difficult to form a sufficient Al-based oxide depending on the above atmosphere. Therefore, the residence time is appropriately adjusted in consideration of the above atmosphere. However, such adjustment is not difficult for those skilled in the art who routinely carry out heat treatment in which the surface oxidation state of the steel sheet is controlled.

ここで、鋼板の表面にAl系酸化物を形成するだけであれば、例えば900℃を超える温度域で雰囲気および滞留時間を調整することでも実行可能である。そしてそのような調整は前述のとおり当業者であれば比較的容易でもある。しかし、900℃以上の温度域になると、鋼中での酸素の拡散速度が速くなることなどから、適切な形態での酸化物の形成の制御が困難になる。特に本発明においては、高温保持中に生じるSnおよびSbの表面偏析との兼ね合いで酸化物の成長および形態を制御する必要があるため、Al系酸化物は仕上げ焼鈍工程において最初に900℃に到達する前の500℃以上900℃以下の温度域で形成しておき、その後900℃以上に昇温する場合、900℃以上の温度域ではAl系酸化物の形成を抑制する雰囲気とすることが好ましい。具体的には900℃以上の温度域では、雰囲気についてP(HO)/P(H)を0.002未満とすることが好ましい。 Here, if only the Al-based oxide is formed on the surface of the steel sheet, it can be carried out by adjusting the atmosphere and the residence time in a temperature range exceeding 900 ° C., for example. And such adjustment is also relatively easy for those skilled in the art as described above. However, in the temperature range of 900 ° C. or higher, the diffusion rate of oxygen in the steel becomes high, and it becomes difficult to control the formation of oxides in an appropriate form. In particular, in the present invention, since it is necessary to control the growth and morphology of the oxide in consideration of the surface segregation of Sn and Sb generated during high temperature holding, the Al-based oxide first reaches 900 ° C. in the finish annealing step. When the film is formed in a temperature range of 500 ° C. or higher and 900 ° C. or lower before annealing, and then the temperature is raised to 900 ° C. or higher, it is preferable to create an atmosphere that suppresses the formation of Al-based oxides in the temperature range of 900 ° C. or higher. .. Specifically, in the temperature range of 900 ° C. or higher, it is preferable that P (H 2 O) / P (H 2 ) is less than 0.002 for the atmosphere.

さらに、仕上げ焼鈍の冷却過程でも鋼板表面の酸化物の形成を制御することは可能ではあるが、本発明は高温保持中に生じるSnおよびSbの表面偏析との兼ね合いで酸化物の成長および形態を制御するものであるから、発明の効果を得るには、仕上げ焼鈍工程において最初に高温領域に達する前、具体的には900℃に達する前の過程で酸化物の形成を制御しておくことが好ましい。 Further, although it is possible to control the formation of oxides on the surface of the steel sheet even in the cooling process of finish annealing, the present invention determines the growth and morphology of oxides in consideration of the surface segregation of Sn and Sb generated during high temperature holding. Since it is controlled, in order to obtain the effect of the invention, it is necessary to control the formation of oxides before reaching the high temperature region for the first time in the finish annealing step, specifically, before reaching 900 ° C. preferable.

また、900℃超の温度域について、最高到達温度および滞留時間は、鋼板組織の再結晶および粒成長を通じた目的の磁気特性を考慮して適宜決定すればよい。一般的な条件としては、最高到達温度は950℃以上1200℃以下、滞留時間は10秒以上300秒以下とすることができる。 Further, in the temperature range over 900 ° C., the maximum temperature reached and the residence time may be appropriately determined in consideration of the target magnetic properties through recrystallization and grain growth of the steel sheet structure. As a general condition, the maximum temperature reached can be 950 ° C. or higher and 1200 ° C. or lower, and the residence time can be 10 seconds or longer and 300 seconds or lower.

なお、上記の500℃以上900℃以下の温度域における雰囲気および滞留時間は、本発明の磁気特性および被膜密着性に優れる無方向性電磁鋼板を製造するのに好ましい条件である。当然ではあるが、鋼板表面でのAl系酸化物の形成挙動は、鋼板の化学組成、特にAl含有量の影響を受けることはもちろん、酸化物形成で競合する元素、例えばSi、Mn、Crなど、さらには鋼板表面に偏析する傾向があるSn、Sb、Cu、Ni、P、B、Sなどの影響を受ける。このため、たとえ上記温度域における雰囲気および滞留時間の好ましい条件から外れる条件であっても、本発明で規定する母鋼板表面におけるAl系酸化物の被覆率を満たすように仕上げ焼鈍が施されるものは、本発明の範囲に含まれるものとする。鋼板の化学組成によって多少の調整が必要となるが、上記温度域における雰囲気および滞留時間の好ましい条件を参考にし、必要に応じて数度の試行により鋼板表面へのAl系酸化物の形成を適切に制御することは、日常的に鋼板の表面酸化状態を管理した熱処理を実施している当業者であれば困難なことではない。 The atmosphere and residence time in the temperature range of 500 ° C. or higher and 900 ° C. or lower are preferable conditions for producing the non-oriented electrical steel sheet having excellent magnetic properties and film adhesion of the present invention. As a matter of course, the formation behavior of Al-based oxides on the surface of the steel sheet is influenced not only by the chemical composition of the steel sheet, especially the Al content, but also by elements competing in oxide formation, such as Si, Mn, Cr, etc. Furthermore, it is affected by Sn, Sb, Cu, Ni, P, B, S, etc., which tend to segregate on the surface of the steel sheet. Therefore, even if the conditions deviate from the preferable conditions of the atmosphere and the residence time in the above temperature range, the finish annealing is performed so as to satisfy the coverage of the Al-based oxide on the surface of the mother steel sheet specified in the present invention. Is included in the scope of the present invention. Some adjustment is required depending on the chemical composition of the steel sheet, but it is appropriate to form an Al-based oxide on the surface of the steel sheet by several trials as necessary with reference to the preferable conditions of the atmosphere and residence time in the above temperature range. It is not difficult for a person skilled in the art who routinely performs heat treatment in which the surface oxidation state of the steel sheet is controlled.

6.絶縁被膜形成工程
絶縁被膜形成工程においては、上記仕上げ焼鈍工程により得られた鋼板の表面に絶縁被膜を形成する。絶縁被膜は、上記仕上げ焼鈍工程により得られた鋼板表面にコーティング液を塗布し、焼き付けることによって形成することができる。絶縁被膜形成条件およびコーティング液は、通常通りでよい。
6. Insulating film forming step In the insulating film forming step, an insulating film is formed on the surface of the steel sheet obtained by the above finish annealing step. The insulating film can be formed by applying a coating liquid to the surface of the steel sheet obtained by the above finish annealing step and baking it. The insulating film forming conditions and the coating liquid may be the same as usual.

本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

以下、実施例および比較例を例示して、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

[実施例1]
(無方向性電磁鋼板の作製)
表1に示す試料No.A01〜A19の化学組成を有する鋼を真空溶解し、25kgインゴットに鋳造して1150℃に加熱後、40mm厚の鋼片に鍛造した。次に、鋼片を、加熱炉で1150℃に加熱し、熱間圧延によって2.0mmの板厚に仕上げた。熱間圧延は表面温度にして850℃の熱間圧延終了温度で終了した。次に、熱間圧延後の鋼板を水冷して表面温度にして650℃に1時間保持した後、空冷した。次に、空冷後の鋼板を、窒素雰囲気中において950℃に30秒間保持して均熱する熱延板焼純を施してから、大気中で放冷した。次に、熱延板焼純後の鋼板を酸洗後に、冷間圧延によって0.25mmの板厚に仕上げた。次に、冷間圧延後の鋼板を脱脂後、窒素・水素混合雰囲気中において、1000℃に30秒間保持する仕上げ焼純を施した。この際、加熱過程における500℃以上900℃以下の温度域については、雰囲気のP(HO)/P(H)と滞留時間を表1に示すように調整することで、Al系酸化物の形態を制御した。なお、900℃に到達した以降の雰囲気のP(HO)/P(H)は0.002未満とした。次に、仕上げ焼純後の鋼板表面に有機無機複合系のコーティング液を塗布し、焼き付けることによって、0.5μm厚の絶縁被膜を形成した。
[Example 1]
(Manufacturing of non-oriented electrical steel sheet)
Sample No. shown in Table 1. Steels having a chemical composition of A01 to A19 were melted in vacuum, cast into a 25 kg ingot, heated to 1150 ° C., and then forged into a steel piece having a thickness of 40 mm. Next, the steel pieces were heated to 1150 ° C. in a heating furnace and hot-rolled to a plate thickness of 2.0 mm. The hot rolling was completed at a surface temperature of 850 ° C., which is the end temperature of the hot rolling. Next, the hot-rolled steel sheet was water-cooled to a surface temperature of 650 ° C. for 1 hour, and then air-cooled. Next, the air-cooled steel sheet was held at 950 ° C. for 30 seconds in a nitrogen atmosphere for 30 seconds to perform hot-rolled sheet baking, and then allowed to cool in the air. Next, the steel sheet after hot-rolling and pure was pickled and then cold-rolled to a thickness of 0.25 mm. Next, the steel sheet after cold rolling was degreased and then subjected to finish quenching in a nitrogen / hydrogen mixed atmosphere at 1000 ° C. for 30 seconds. At this time, in the temperature range of 500 ° C. or higher and 900 ° C. or lower in the heating process , Al-based oxidation is performed by adjusting the atmosphere P (H 2 O) / P (H 2 ) and the residence time as shown in Table 1. Controlled the morphology of things. The P (H 2 O) / P (H 2 ) in the atmosphere after reaching 900 ° C. was set to less than 0.002. Next, an organic-inorganic composite coating liquid was applied to the surface of the steel sheet after finish baking and baked to form an insulating film having a thickness of 0.5 μm.

(母鋼板表面におけるAl系酸化物の被覆率)
上記のように得られた無方向性電磁鋼板について、上述の方法によって絶縁被膜を除去した後、母鋼板表面におけるAl系酸化物の被覆率を計測した。結果を下記表1に示す。
(Coating rate of Al-based oxide on the surface of the mother steel sheet)
With respect to the non-oriented electrical steel sheet obtained as described above, after removing the insulating film by the above-mentioned method, the coverage of Al-based oxide on the surface of the mother steel sheet was measured. The results are shown in Table 1 below.

(被膜密着性)
上記のように得られた無方向性電磁鋼板について、被膜密着性を評価した。まず、上記のように得られた無方向性電磁鋼板における母鋼板表面に形成された絶縁被膜に対して、1回目の剥離試験を行った。1回目の剥離試験では、直径10mmのステンレス棒に巻き付けように180度曲げ、さらに曲げ戻した母鋼板表面(曲げ時に内側の面)にセロハンテープを貼り剥離した後に、絶縁被膜の剥離の有無を目視で評価し、絶縁被膜が剥離した面積の割合を剥離率[%]として測定した。さらに、1回目の剥離試験の結果、絶縁被膜の剥離が無かった無方向性電磁鋼板に対しては、窒素雰囲気中において600℃に2時間保持する熱処理後に2回目の剥離試験を行った。2回目の剥離試験でも、直径10mmのステンレス棒に巻き付けように180度曲げ、さらに曲げ戻した母鋼板表面(曲げ時に内側の面)にセロハンテープを貼り剥離した後に、絶縁被膜の剥離の有無を目視で評価した。さらに、2回目の剥離試験の結果、絶縁被膜の剥離が無かった無方向性電磁鋼板に対しては、窒素雰囲気中において600℃に2時間保持する熱処理後に3回目の剥離試験を行った。3回目の剥離試験でも、直径10mmのステンレス棒に巻き付けように180度曲げ、さらに曲げ戻した母鋼板表面(曲げ時に内側の面)にセロハンテープを貼り剥離した後に、絶縁被膜の剥離の有無を目視で評価した。これにより、母鋼板表面に形成された絶縁被膜の被膜密着性を評価した。結果を下記表1に示す。母鋼板表面に形成された絶縁被膜の被膜密着性の評価基準は、以下の通りである。
(Film adhesion)
The film adhesion was evaluated for the non-oriented electrical steel sheets obtained as described above. First, the first peeling test was performed on the insulating film formed on the surface of the base steel sheet of the non-oriented electrical steel sheet obtained as described above. In the first peeling test, after bending 180 degrees so as to wrap it around a stainless steel rod with a diameter of 10 mm, and then applying cellophane tape to the surface of the mother steel plate (inner surface during bending) that was bent back, the presence or absence of peeling of the insulating film was checked. It was evaluated visually, and the ratio of the area where the insulating film was peeled off was measured as the peeling rate [%]. Further, as a result of the first peeling test, the non-oriented electrical steel sheet in which the insulating film was not peeled was subjected to the second peeling test after the heat treatment held at 600 ° C. for 2 hours in a nitrogen atmosphere. In the second peeling test as well, after bending 180 degrees so as to wrap it around a stainless steel rod with a diameter of 10 mm, and then applying cellophane tape to the surface of the mother steel plate (inner surface during bending) that was bent back, the presence or absence of peeling of the insulating film was checked. It was evaluated visually. Further, as a result of the second peeling test, the non-oriented electrical steel sheet in which the insulating film was not peeled was subjected to the third peeling test after the heat treatment held at 600 ° C. for 2 hours in a nitrogen atmosphere. In the third peeling test as well, after bending 180 degrees so as to wrap it around a stainless steel rod with a diameter of 10 mm, and then applying cellophane tape to the surface of the mother steel plate (inner surface during bending) that was bent back, the presence or absence of peeling of the insulating film was checked. It was evaluated visually. From this, the film adhesion of the insulating film formed on the surface of the mother steel sheet was evaluated. The results are shown in Table 1 below. The evaluation criteria for the film adhesion of the insulating film formed on the surface of the base steel sheet are as follows.

2:3回目の剥離試験でも剥離無し
1:2回目の剥離試験では剥離無しで3回目の剥離試験では剥離有り
0:1回目の剥離試験では剥離無しで2回目の剥離試験では剥離有り
−1:1回目の剥離試験での剥離率10%以下
−2:1回目の剥離試験での剥離率10%超20%以下
−3:1回目の剥離試験での剥離率20%超30%以下
−4:1回目の剥離試験での剥離率30%超40%以下
−5:1回目の剥離試験での剥離率40%超
2: No peeling in the 3rd peeling test 1: No peeling in the 2nd peeling test No peeling in the 3rd peeling test 0: No peeling in the 1st peeling test and peeling in the 2nd peeling test -1 1: Peeling rate in the first peeling test 10% or less -2: Peeling rate in the first peeling test more than 10% 20% or less -3: Peeling rate in the first peeling test more than 20% 30% or less- 4: Peeling rate over 30% in the first peeling test 40% or less -5: Peeling rate over 40% in the first peeling test

(強度および磁気特性)
上記のように得られた無方向性電磁鋼板からJIS5号引張試験片を採取し、引張試験を行って降伏応力(YS)[MPa]を評価した。さらに、上記のように得られた無方向性電磁鋼板から55mm角の単板試験片を打ち抜き、単板磁気測定器を用いて、鉄損W10/400[W/kg](400Hzにて最大磁束密度1.0Tに交番励磁した場合の圧延方向の鉄損と圧延直角方向の鉄損の平均値)を測定した。結果を下記表1に示す。
(Strength and magnetic properties)
A JIS No. 5 tensile test piece was taken from the non-oriented electrical steel sheet obtained as described above, and a tensile test was performed to evaluate the yield stress (YS) [MPa]. Further, a 55 mm square single plate test piece is punched from the non-oriented electrical steel sheet obtained as described above, and using a single plate magnetic measuring instrument, iron loss W 10/400 [W / kg] (maximum at 400 Hz). The average value of the iron loss in the rolling direction and the iron loss in the direction perpendicular to the rolling when the magnetic flux density was alternately excited to 1.0 T) was measured. The results are shown in Table 1 below.

(評価)
鋼板成分が実質同一である試料No.A01〜A05では、Al系酸化物が実質的に形成されていない試料No.A01、Al系酸化物が形成されても被覆率が低い試料No.A02、被覆率が過剰な試料No.A05に対し、Al系酸化物が適切に形成されている試料No.A03、A04の被膜密着性が良好であった。
(Evaluation)
Sample No. in which the steel plate components are substantially the same. In A01 to A05, sample No. in which Al-based oxide was not substantially formed. Sample No. A01, which has a low coverage even if Al-based oxides are formed. A02, Sample No. with excessive coverage. Sample No. in which Al-based oxide is appropriately formed with respect to A05. The film adhesion of A03 and A04 was good.

また、母鋼板の表面改質のためにさらにCuおよびNiを活用した試料No.A06〜A10において、Al系酸化物の効果を確認した。試料No.A06およびA07はAl酸化膜の形成が不十分ではあるが、CuおよびNiの効果により被膜密着性は良好であった。試料No.A06については特性が劣るものではないので、本実施例では参考例とした。試料No.A07は試料No.A06にAl系酸化物を形成したものであるが、被覆率が不足しており、試料No.A06と比較して効果が現れていないため比較例とした。これらに対し試料No.A08、A09を比較すると、Al系酸化物によりさらなる被膜密着性改善の効果が現れていることを確認できた。なお、Al系酸化物が過剰である試料No.A10の被膜密着性は試料No.A06およびA07よりも劣るものとなっており、過剰なAl系酸化物は密着性を顕著に劣化させることが示唆された。 In addition, sample No. which further utilized Cu and Ni for surface modification of the mother steel sheet. In A06 to A10, the effect of Al-based oxide was confirmed. Sample No. In A06 and A07, the formation of the Al oxide film was insufficient, but the film adhesion was good due to the effects of Cu and Ni. Sample No. Since the characteristics of A06 are not inferior, it was used as a reference example in this example. Sample No. A07 is the sample No. Al-based oxide was formed on A06, but the coverage was insufficient, and sample No. Since the effect did not appear as compared with A06, it was used as a comparative example. For these, sample No. Comparing A08 and A09, it was confirmed that the Al-based oxide had the effect of further improving the film adhesion. In addition, the sample No. in which the Al-based oxide is excessive. The film adhesion of A10 is the sample No. It was inferior to A06 and A07, suggesting that excess Al-based oxide significantly deteriorates the adhesion.

また、試料No.A11〜A19は、Al含有量が高い試料No.A01〜A10と比較してAl含有量が低い鋼種において同様の検討を行ったものである。試料No.A01〜A10と同様の効果を確認できた。 In addition, sample No. A11 to A19 are sample No. having a high Al content. A similar study was conducted on steel grades having a lower Al content than A01 to A10. Sample No. The same effect as A01 to A10 could be confirmed.

なお、試料No.A15は、仕上げ焼鈍条件は上述の好ましい条件ではあるが、鋼板のAl含有量が低いためAl系酸化物の被覆率が十分ではなかった。試料No.A15は、CuおよびNiの効果により被膜密着性を確保していると判断でき、上記試料No.A06と同様、本実施例では参考例とした。一方、試料No.A17は仕上げ焼鈍条件の滞留時間が上述の好ましい条件を外れる条件で製造されているが、鋼板のAl含有量が低くAl系酸化物の形成が抑制気味となるため、結果的に鋼板表面でのAl系酸化物の被覆率は本発明の範囲内に留まり被膜密着性向上効果が発揮された。 In addition, sample No. In A15, the finish annealing conditions are the above-mentioned preferable conditions, but the coverage of the Al-based oxide is not sufficient because the Al content of the steel sheet is low. Sample No. It can be judged that A15 secures the film adhesion due to the effects of Cu and Ni, and the sample No. Similar to A06, this example was used as a reference example. On the other hand, sample No. Although A17 is manufactured under conditions where the residence time under the finish annealing conditions does not meet the above-mentioned preferable conditions, the Al content of the steel sheet is low and the formation of Al-based oxides tends to be suppressed, resulting in the result on the surface of the steel sheet. The coverage of the Al-based oxide remained within the range of the present invention, and the effect of improving the film adhesion was exhibited.

[実施例2]
下記表2に示す化学組成を有する試料No.B01〜D08の鋼を真空溶解し、40mm厚の鋼片に鋳造して1150℃に加熱後、熱間圧延によって2.0mmの板厚に仕上げた。熱間圧延は表面温度にして850℃の熱間圧延終了温度で終了した。次に、熱間圧延後の鋼板を水冷して表面温度にして650℃に1時間保持した後、空冷した。次に、空冷後の鋼板を、窒素雰囲気中において1000℃に30秒間保持して均熱する熱延板焼純を施してから、大気中で放冷した。次に、熱延板焼純後の鋼板を酸洗後に、冷間圧延によって0.20mmの板厚に仕上げた。次に、冷間圧延後の鋼板を脱脂後、仕上げ焼純を施した。この際、加熱過程における500℃以上900℃以下の温度域については、雰囲気のP(HO)/P(H)は0.03、滞留時間は40秒で固定条件とした。本実施例においては、主として鋼板成分、特にAl含有量により、Al系酸化物の形態を制御した。なお、900℃に到達した以降の雰囲気のP(HO)/P(H)は0.002未満とした。次に、仕上げ焼純後の鋼板表面に有機無機複合系のコーティング液を塗布し、焼き付けることによって、0.3μm厚の絶縁被膜を形成した。
[Example 2]
Sample No. having the chemical composition shown in Table 2 below. The steels B01 to D08 were melted in vacuum, cast into a piece of steel having a thickness of 40 mm, heated to 1150 ° C., and then hot-rolled to a plate thickness of 2.0 mm. The hot rolling was completed at a surface temperature of 850 ° C., which is the end temperature of the hot rolling. Next, the hot-rolled steel sheet was water-cooled to a surface temperature of 650 ° C. for 1 hour, and then air-cooled. Next, the air-cooled steel sheet was kept at 1000 ° C. for 30 seconds in a nitrogen atmosphere for 30 seconds to perform hot-rolled sheet baking, and then allowed to cool in the air. Next, the steel sheet after hot-rolling and pure was pickled and then cold-rolled to a thickness of 0.20 mm. Next, the steel sheet after cold rolling was degreased and then finish-baked. At this time, in the temperature range of 500 ° C. or higher and 900 ° C. or lower in the heating process, the atmosphere P (H 2 O) / P (H 2 ) was 0.03 and the residence time was 40 seconds, which were fixed conditions. In this example, the morphology of the Al-based oxide was controlled mainly by the steel sheet component, particularly the Al content. The P (H 2 O) / P (H 2 ) in the atmosphere after reaching 900 ° C. was set to less than 0.002. Next, an organic-inorganic composite coating liquid was applied to the surface of the steel sheet after finish baking and baked to form an insulating film having a thickness of 0.3 μm.

(母鋼板表面におけるAl系酸化物の被覆率)
上記のように得られた無方向性電磁鋼板について、実施例1と同様に、母鋼板表面におけるAl系酸化物の被覆率を計測した。結果を下記表2に示す。
(Coating rate of Al-based oxide on the surface of the mother steel sheet)
With respect to the non-oriented electrical steel sheet obtained as described above, the coverage of Al-based oxide on the surface of the grain steel sheet was measured in the same manner as in Example 1. The results are shown in Table 2 below.

(被膜密着性)
上記のように得られた無方向性電磁鋼板について、実施例1と同様に、被膜密着性を評価した。結果を下記表2に示す。
(Film adhesion)
With respect to the non-oriented electrical steel sheet obtained as described above, the film adhesion was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.

(強度および磁気特性)
上記のように得られた無方向性電磁鋼板について、実施例1と同様に、降伏応力(YS)および鉄損W10/400を測定した。結果を下記表2に示す。
(Strength and magnetic properties)
With respect to the non-oriented electrical steel sheet obtained as described above, the yield stress (YS) and the iron loss W 10/400 were measured in the same manner as in Example 1. The results are shown in Table 2 below.

(評価)
Al以外の鋼板成分を実質同一とし、Al含有量を変化させた試料No.B01〜B06およびB07〜B10では、Al系酸化物が実質的に形成されていない試料No.B01、B07、Al系酸化物が形成されても被覆率が低い試料No.B02、被覆率が過剰な試料No.B06、B10に対し、Al系酸化物が適切に形成されている試料No.B03〜B05、B08、B09の被膜密着性が良好であった。
(Evaluation)
Sample No. in which the steel sheet components other than Al were substantially the same and the Al content was changed. In B01 to B06 and B07 to B10, sample No. in which Al-based oxide was not substantially formed. Sample No. which has a low coverage even if B01, B07, and Al oxides are formed. B02, sample No. with excessive coverage. Sample No. in which Al-based oxides are appropriately formed with respect to B06 and B10. The film adhesion of B03 to B05, B08, and B09 was good.

試料No.C01〜C11は同一のAl含有量の鋼板において、SnおよびSbの含有量に応じたAl系酸化物の効果を確認した例である。Al系酸化物が適切に形成された試料No.C02〜C04、C06、C07、C09〜C11は、本発明が規定する範囲でSnおよびSbを含有する鋼板において良好な被膜密着性を示すことを確認できた。試料No.C01はSnおよびSbを含有しないので被膜密着性はそれほど悪いわけではないが、Al系酸化物を形成しているにも関わらず被膜密着性が特に好ましいものにもなってはいなかった。また、試料No.C05、C08はSnおよびSbを過剰に含有しているため、本発明のAl系酸化物を適用しても十分な被膜密着性を得ることはできなった。 Sample No. C01 to C11 are examples in which the effects of Al-based oxides are confirmed according to the Sn and Sb contents in steel sheets having the same Al content. Sample No. in which Al-based oxide was appropriately formed. It was confirmed that C02 to C04, C06, C07, and C09 to C11 exhibited good film adhesion in the steel sheet containing Sn and Sb within the range specified by the present invention. Sample No. Since C01 does not contain Sn and Sb, the film adhesion is not so bad, but the film adhesion is not particularly preferable even though it forms an Al-based oxide. In addition, sample No. Since C05 and C08 contain an excess of Sn and Sb, sufficient film adhesion could not be obtained even if the Al-based oxide of the present invention was applied.

また、試料No.D02、D03およびD05〜D08は、それぞれ試料No.B02、B03およびB05〜B08の鋼板化学組成をベースとして、それぞれに母鋼板の表面改質のためにCuおよびNiをさらに含有させたものである。試料No.B系列の被膜密着性と試料No.D系列の被膜密着性を比較すると、Al系酸化物が適正範囲で形成される場合のみ、CuおよびNiによる被膜密着性確保効果の上に、Al系酸化物による被膜密着性向上効果が重畳された。 In addition, sample No. D02, D03 and D05 to D08 are sample Nos. Based on the chemical composition of the steel sheets of B02, B03 and B05 to B08, Cu and Ni are further added to each of them for surface modification of the mother steel sheet. Sample No. B-series film adhesion and sample No. Comparing the film adhesion of the D series, only when the Al-based oxide is formed in an appropriate range, the film adhesion improving effect of the Al-based oxide is superimposed on the film adhesion ensuring effect of Cu and Ni. It was.

なお、表1および表2の全体を比較することで、本発明のAl系酸化物による被膜密着性向上効果は、SnまたはSbを単独で含有する鋼板よりも、SnおよびSbを同時添加した鋼板においてより顕著な効果が現れることを確認できた。 By comparing Table 1 and Table 2 as a whole, the effect of improving the film adhesion by the Al-based oxide of the present invention is that the steel sheet containing Sn or Sb at the same time is more effective than the steel sheet containing Sn or Sb alone. It was confirmed that a more remarkable effect appears in.

Claims (2)

質量%で、C:0.004%以下、Si:2.0%以上4.0%以下、Al:0.20以上3.00%以下、Mn:0.05%以上4.00%以下、S:0.005%以下、N:0.004%以下、P:0.20%以下、ならびにSnおよびSbのうち少なくとも1種:合計で0.001%以上0.200%以下を含有し、残部がFeおよび不純物よりなる化学組成を有する母鋼板と、前記母鋼板の表面に形成された絶縁被膜と、を有する無方向性電磁鋼板であって、
前記母鋼板の前記絶縁被膜側の表面にAl系酸化物が存在し、
前記母鋼板の表面における前記Al系酸化物の被覆率が30%以上95%以下である、無方向性電磁鋼板。
By mass%, C: 0.004% or less, Si: 2.0% or more and 4.0% or less, Al: 0.20 or more and 3.00% or less, Mn: 0.05% or more and 4.00% or less, S: 0.005% or less, N: 0.004% or less, P: 0.20% or less, and at least one of Sn and Sb: 0.001% or more and 0.200% or less in total. A non-directional electromagnetic steel plate having a mother steel plate having a chemical composition in which the balance is composed of Fe and impurities and an insulating film formed on the surface of the mother steel plate.
Al-based oxide is present on the surface of the mother steel sheet on the insulating coating side,
A non-oriented electrical steel sheet having a coverage of the Al-based oxide on the surface of the mother steel sheet of 30% or more and 95% or less.
請求項1に記載の無方向性電磁鋼板を製造する無方向性電磁鋼板の製造方法であって、
請求項1に記載の化学組成を有するスラブを、加熱炉で1000℃以上1250℃以下の温度に加熱するスラブ加熱工程と、
前記加熱後のスラブに熱間圧延を施し、最終圧延パス後に水冷して650℃以下の温度でコイル状に巻き取る熱間圧延工程と、
前記熱間圧延工程により得られた熱延鋼板に熱延板焼鈍および酸洗を施す熱延板焼鈍・酸洗工程と、
前記熱延板焼鈍・酸洗工程により得られた熱延焼鈍板に冷間圧延を施す冷間圧延工程と、
前記冷間圧延工程により得られた冷延鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程と、
前記仕上げ焼鈍工程により得られた鋼板の表面に絶縁被膜を形成する絶縁被膜形成工程と、を有し、
前記仕上げ焼鈍工程では、最初に900℃に到達する前の500℃以上900℃以下の温度域における雰囲気は、水蒸気(HO)と水素(H)との分圧比P(HO)/P(H)を0.002以上0.100以下とし、前記温度域における滞留時間は40秒以下とする、無方向性電磁鋼板の製造方法。
A method for manufacturing a non-oriented electrical steel sheet according to claim 1, wherein the non-oriented electrical steel sheet is manufactured.
A slab heating step of heating the slab having the chemical composition according to claim 1 to a temperature of 1000 ° C. or higher and 1250 ° C. or lower in a heating furnace.
A hot rolling step in which the heated slab is hot-rolled, water-cooled after the final rolling pass, and wound into a coil at a temperature of 650 ° C. or lower.
A hot-rolled sheet annealing / pickling step in which the hot-rolled steel sheet obtained by the hot rolling step is annealed and pickled.
A cold rolling step of cold-rolling the hot-rolled annealed plate obtained by the hot-rolled sheet annealing / pickling step, and a cold rolling step.
A finish annealing step of applying finish annealing to the cold-rolled steel sheet obtained by the cold rolling step, and
It has an insulating coating forming step of forming an insulating coating on the surface of the steel sheet obtained by the finish annealing step.
In the finish annealing step, the atmosphere in the temperature range of 500 ° C. or higher and 900 ° C. or lower before first reaching 900 ° C. is the partial pressure ratio P (H 2 O) of water vapor (H 2 O) and hydrogen (H 2). A method for producing a non-directional electromagnetic steel plate, wherein / P (H 2 ) is 0.002 or more and 0.100 or less, and the residence time in the temperature range is 40 seconds or less.
JP2019151288A 2019-08-21 2019-08-21 Non-oriented electrical steel sheet and its manufacturing method Active JP7389323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019151288A JP7389323B2 (en) 2019-08-21 2019-08-21 Non-oriented electrical steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019151288A JP7389323B2 (en) 2019-08-21 2019-08-21 Non-oriented electrical steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021031714A true JP2021031714A (en) 2021-03-01
JP7389323B2 JP7389323B2 (en) 2023-11-30

Family

ID=74675460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019151288A Active JP7389323B2 (en) 2019-08-21 2019-08-21 Non-oriented electrical steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7389323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023063369A1 (en) * 2021-10-13 2023-04-20

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117817A (en) * 1991-10-22 1993-05-14 Nkk Corp Soft magnetic steel material having excellent direct current magnetizing characteristic and coating stickness and this manufacture
JPH10212556A (en) * 1997-01-31 1998-08-11 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing and its production
JP2006144036A (en) * 2004-11-16 2006-06-08 Jfe Steel Kk Non-oriented magnetic steel sheet for modular type motor and its production method
JP2007291491A (en) * 2006-03-28 2007-11-08 Jfe Steel Kk Nonoriented electromagnetic steel sheet
KR20100037705A (en) * 2008-10-02 2010-04-12 주식회사 포스코 Non-oriented electromagnetic steel sheet with low iron loss and adequate workability, and manufacturing method therefor
JP2013515170A (en) * 2009-12-28 2013-05-02 ポスコ Non-oriented electrical steel sheet excellent in magnetism and method for producing the same
JP2017082276A (en) * 2015-10-27 2017-05-18 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP6388092B1 (en) * 2016-11-25 2018-09-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117817A (en) * 1991-10-22 1993-05-14 Nkk Corp Soft magnetic steel material having excellent direct current magnetizing characteristic and coating stickness and this manufacture
JPH10212556A (en) * 1997-01-31 1998-08-11 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing and its production
JP2006144036A (en) * 2004-11-16 2006-06-08 Jfe Steel Kk Non-oriented magnetic steel sheet for modular type motor and its production method
JP2007291491A (en) * 2006-03-28 2007-11-08 Jfe Steel Kk Nonoriented electromagnetic steel sheet
KR20100037705A (en) * 2008-10-02 2010-04-12 주식회사 포스코 Non-oriented electromagnetic steel sheet with low iron loss and adequate workability, and manufacturing method therefor
JP2013515170A (en) * 2009-12-28 2013-05-02 ポスコ Non-oriented electrical steel sheet excellent in magnetism and method for producing the same
JP2017082276A (en) * 2015-10-27 2017-05-18 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP6388092B1 (en) * 2016-11-25 2018-09-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023063369A1 (en) * 2021-10-13 2023-04-20
WO2023063369A1 (en) * 2021-10-13 2023-04-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, iron core and motor core, and method for manufacturing iron core and motor core
TWI837877B (en) * 2021-10-13 2024-04-01 日商日本製鐵股份有限公司 Non-oriented electromagnetic steel plate, iron core and motor core, and manufacturing method of iron core and motor core
JP7560795B2 (en) 2021-10-13 2024-10-03 日本製鉄株式会社 Non-oriented electrical steel sheet, iron core, motor core, and manufacturing method of iron core and motor core

Also Published As

Publication number Publication date
JP7389323B2 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
EP3572535B1 (en) Method for manufacturing non-oriented electromagnetic steel plate, and method for manufacturing motor core
US11962184B2 (en) Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
EP3904551A1 (en) Non-oriented electrical steel sheet and method for producing same
US20190316221A1 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
RU2662753C1 (en) Electrotechnical steel sheet with oriented grain structure
US11053574B2 (en) Non-oriented electrical steel sheet
JP6593097B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
US20210343458A1 (en) Non-oriented electrical steel sheet
US20230137498A1 (en) Non-oriented electrical steel sheet and method of manufacturing the same
JP7389323B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP4810777B2 (en) Oriented electrical steel sheet and manufacturing method thereof
CN117120651B (en) Non-oriented electromagnetic steel sheet and method for producing same
JP4258163B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
WO2023149269A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP7541638B1 (en) Non-oriented electrical steel sheet and its manufacturing method
WO2023149248A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
WO2023149249A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP4267215B2 (en) Method for producing non-oriented electrical steel sheet with excellent iron loss and brittleness characteristics
WO2022176933A1 (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
TW202321477A (en) Non-oriented electrical steel sheet and method for producing same, and method for producing motor cores
JP2001279396A (en) Nonoriented silicon steel sheet excellent in workability and high frequency magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7389323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151