JP2021030920A - Rail breakage detection device - Google Patents

Rail breakage detection device Download PDF

Info

Publication number
JP2021030920A
JP2021030920A JP2019153892A JP2019153892A JP2021030920A JP 2021030920 A JP2021030920 A JP 2021030920A JP 2019153892 A JP2019153892 A JP 2019153892A JP 2019153892 A JP2019153892 A JP 2019153892A JP 2021030920 A JP2021030920 A JP 2021030920A
Authority
JP
Japan
Prior art keywords
signal
rail
unit
section
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019153892A
Other languages
Japanese (ja)
Other versions
JP6785352B1 (en
Inventor
了 石川
Satoru Ishikawa
了 石川
厚司 三澤
Atsushi Misawa
厚司 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP2019153892A priority Critical patent/JP6785352B1/en
Application granted granted Critical
Publication of JP6785352B1 publication Critical patent/JP6785352B1/en
Publication of JP2021030920A publication Critical patent/JP2021030920A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a technique for a novel rail breakage detection device which has improved detection capability of rail breakages and is not influenced by a train current.SOLUTION: A rail breakage detection device 1 includes a signal generating part 10 which modulates a coded signal with spread spectrum to generate a transmission signal S, and outputs the transmission signal S from a signal input point si of each section Ti to a rail, a signal acquisition detection part 30 which tries modulation with spread spectrum to reception signals Ri1, Ri2 input from signal output points ri1, ri2 of each section Ti, and detects that acquisition of the reception signals Ri1, Ri2 succeeded, and a breakage determination part 50 which judges rail breakage for each section Ti on the basis of a detection result of the signal acquisition detection part 30.SELECTED DRAWING: Figure 1

Description

本発明は、レールの破断を検知するレール破断検知装置に関する。 The present invention relates to a rail rupture detection device that detects rail rupture.

従来、鉄道において、レール破断の検知は軌道回路の副次的な機能として実現されていた。軌道回路は、列車の輪軸で左右のレール間が短絡されることにより軌道回路の送信側から送出された信号の受信側での受信レベルが低下することを利用して、軌道回路内に列車が在線していることを検出する装置である。レール破断が発生した場合も受信レベルが低下することから、軌道回路はレール破断を副次的に検知することができるのである。 Conventionally, in railways, detection of rail breakage has been realized as a secondary function of track circuits. The track circuit uses the fact that the reception level of the signal transmitted from the transmitting side of the track circuit decreases on the receiving side due to the short circuit between the left and right rails on the wheelset of the train, and the train is placed in the track circuit. It is a device that detects that the train is on the line. Since the reception level is lowered even when the rail break occurs, the track circuit can detect the rail break secondarily.

近年では、コスト削減や高密度な列車運行を実現可能とした地上・車上間の無線通信を利用した列車制御システムの開発が進められている。かかるシステムは、列車位置を車上で取得することから軌道回路が設置されないことが多い。このため、レール破断検知装置を別途設けることが求められている。この要求に応えるため、例えば特許文献1には、コストを低減したレール破断検知装置が開示されている。 In recent years, the development of a train control system using wireless communication between the ground and the vehicle, which has made it possible to reduce costs and realize high-density train operation, has been promoted. In such a system, a track circuit is often not installed because the train position is acquired on the vehicle. Therefore, it is required to separately provide a rail breakage detection device. In order to meet this demand, for example, Patent Document 1 discloses a rail breakage detection device with reduced cost.

特開2011−225192号公報Japanese Unexamined Patent Publication No. 2011-225192

上述の特許文献1に開示されているような軌道回路を利用したレール破断検知装置は、レールに検知信号を送信し、その受信レベルの低下によってレール破断を検知している。この場合、軌道回路には検知信号の信号電流よりはるかに大きな電車電流が流れているが、電車電流は並行する2本のレールにほぼ同じ大きさに分流して同一方向に流れる。レール破断が生じていない状態においては、レール破断の検知信号は軌道回路の並行するレールに還流して流れるため、検知信号に対する電車電流の影響は、同一方向に並行して流れる電流の差分となる。しかしながら、レール破断時においては、レール破断が生じていない健全なレールだけに電車電流が流れ、これが全て検知信号に対する妨害波となることからS/N(Signal-to-Noise)比が大幅に悪化し、レール破断の検知能力が低下するおそれがある。 The rail breakage detection device using the track circuit as disclosed in Patent Document 1 described above transmits a detection signal to the rail, and detects the rail breakage by lowering the reception level thereof. In this case, a train current much larger than the signal current of the detection signal flows through the track circuit, but the train current is divided into two parallel rails to have substantially the same magnitude and flows in the same direction. In the state where the rail breakage does not occur, the rail breakage detection signal flows back to the parallel rails of the track circuit, so the effect of the train current on the detection signal is the difference between the currents flowing in parallel in the same direction. .. However, when the rail is broken, the train current flows only to the healthy rail where the rail is not broken, and all of this becomes an interfering wave to the detection signal, so the S / N (Signal-to-Noise) ratio deteriorates significantly. However, the ability to detect rail breakage may decrease.

また、レール破断の発生頻度は低いことから、コスト削減のため、駅間といった比較的長い区間を1つの検知対象区間とする場合が考えられる。しかしその場合には、レールを流れる検知信号の減衰が大きくなるため、上述した電車電流による雑音や妨害波の影響が更に強まり、更なるレール破断の検知能力の低下につながることが考えられる。 In addition, since the frequency of rail breakage is low, it is conceivable that a relatively long section such as between stations may be set as one detection target section in order to reduce costs. However, in that case, since the attenuation of the detection signal flowing through the rail becomes large, the influence of the noise and the disturbing wave due to the above-mentioned train current becomes stronger, and it is considered that the detection ability of the rail breakage is further lowered.

また、軌道回路を使用して受信レベルの低下を検知するレール破断検知装置は、レール破断の検知だけではなく列車の在線、すなわち走行列車も検知する。鉄の塊であるレールの破断の発生頻度は極めて少ないのに対し、走行列車の検知は桁違いに多い。従って、レール破断と列車を区分しないとレール破断検知を見逃すことが考えられることから、レール破断だけを検知する必要がある。 Further, the rail breakage detection device that detects a decrease in reception level using a track circuit not only detects rail breakage, but also detects the presence of a train, that is, a traveling train. While the frequency of breakage of rails, which are lumps of iron, is extremely low, the detection of running trains is orders of magnitude higher. Therefore, if the rail rupture and the train are not separated, it is possible that the rail rupture detection will be overlooked. Therefore, it is necessary to detect only the rail rupture.

本発明が解決しようとする課題は、電車電流の影響を受けることのない、レール破断の検知能力を高めた新たなレール破断検知装置の技術を提供すること、である。 An object to be solved by the present invention is to provide a technique of a new rail rupture detection device having enhanced rail rupture detection capability, which is not affected by train current.

上記課題を解決するための第1の発明は、
列車が走行する軌道を区切った複数の区間それぞれのレール破断を検知するレール破断検知装置であって、
所定の符号化信号を所定の多周波利用変調方式で変調して周波数の異なる複数の送信信号を生成し、隣接する前記区間で周波数が異なるように各区間のレールに定められた信号入力点に当該送信信号を出力する信号生成部と、
各区間のレールに定められた信号出力点から入力した受信信号それぞれに対して、前記多周波利用変調方式に対応する復調方式による復調を試行し、当該受信信号を前記符号化信号に復号可能な状態に達する以前の、所定の復調成功条件に達した時点で、信号捕捉に成功したことを区間毎に検出する信号捕捉検出部と、
前記信号捕捉検出部の検出結果に基づいて、前記区間毎のレール破断を判定する破断判定部と、
を備えたレール破断検知装置である。
The first invention for solving the above problems is
It is a rail rupture detection device that detects rail rupture in each of a plurality of sections that divide the track on which the train travels.
A predetermined coded signal is modulated by a predetermined multi-frequency utilization modulation method to generate a plurality of transmission signals having different frequencies, and at signal input points defined on rails of each section so that the frequencies are different in the adjacent sections. A signal generator that outputs the transmission signal and
Each received signal input from the signal output point defined on the rail of each section can be demodulated by a demodulation method corresponding to the multi-frequency utilization modulation method, and the received signal can be decoded into the coded signal. A signal capture detection unit that detects that signal acquisition was successful for each section when a predetermined demodulation success condition is reached before reaching the state.
A rupture determination unit that determines rail rupture for each section based on the detection result of the signal acquisition detection unit, and a rupture determination unit.
It is a rail breakage detection device equipped with.

第1の発明によれば、レールに送信する送信信号を所定の多周波利用変調方式で変調して生成し、レールからの受信信号に対する復調を試行して信号捕捉に成功したかを検出することにより、レール破断を検知することが可能となる。つまり、受信信号を元の符号化信号にまで復号しなくとも、送信時の多周波利用変調方式に対応する復調方式で復調成功条件に達する復調ができたこと、すなわち信号捕捉に成功したことの検出でもって、受信した信号は適正な信号に違いないことを確認できる。これにより、電車電流による雑音や妨害波の影響を受けても信号捕捉が可能となり、耐雑音および耐妨害波特性が大幅に向上して、レール破断の検知能力の高いレール破断検知装置を実現できる。また、隣接する区間で周波数が異なるように複数の区間それぞれに送信信号を出力するので、各区間から入力する受信信号として、当該区間に入力した送信信号の周波数の信号を選別して入力することができる。 According to the first invention, a transmission signal transmitted to a rail is modulated by a predetermined multi-frequency utilization modulation method to be generated, and demodulation of the reception signal from the rail is attempted to detect whether the signal acquisition is successful. This makes it possible to detect rail breakage. In other words, even if the received signal was not decoded to the original coded signal, the demodulation method corresponding to the multi-frequency utilization modulation method at the time of transmission was able to achieve the demodulation success condition, that is, the signal was successfully captured. With the detection, it can be confirmed that the received signal must be a proper signal. This makes it possible to capture signals even under the influence of noise and interference waves caused by train currents, greatly improving noise resistance and interference resistance characteristics, and realizing a rail breakage detection device with high rail breakage detection capability. it can. In addition, since the transmission signal is output to each of a plurality of sections so that the frequencies are different in the adjacent sections, the signal of the frequency of the transmission signal input to the section is selected and input as the reception signal to be input from each section. Can be done.

第2の発明は、第1の発明において、
前記破断判定部は、前記信号捕捉検出部による未検出の区間が前記軌道に沿って順次切り替わっていない場合に、当該未検出の区間に基づいてレール破断を判定する、
レール破断検知装置である。
The second invention is the first invention.
The rupture determination unit determines the rail rupture based on the undetected section when the undetected section by the signal acquisition detection unit is not sequentially switched along the track.
It is a rail breakage detection device.

第2の発明によれば、列車在線による信号捕捉の成功の未検出と、レール破断による信号捕捉の成功の未検出とを区別して判定することができる。軌道在線時にも、列車の輪軸によりレール間が短絡されることで送信信号が受信されずに信号捕捉の成功が未検出となるが、列車は軌道に沿って走行することから、時間経過に伴って、信号捕捉の成功の未検出の区間が軌道に沿って順次変化する。一方、レール破断が生じた場合には、そのレール破断した区間のみが信号捕捉の成功が未検出となる。このことから、信号捕捉の成功が未検出の区間が軌道に沿って順次切り替わっていない場合には、レール破断と判定することができる。 According to the second invention, it is possible to distinguish between the undetected success of signal acquisition due to the train presence and the undetected success of signal acquisition due to rail breakage. Even when the train is on the track, the rails are short-circuited by the wheel sets of the train, so the transmission signal is not received and the success of signal acquisition is not detected. Therefore, the undetected section of successful signal acquisition changes sequentially along the orbit. On the other hand, when the rail breaks, the success of signal acquisition is not detected only in the section where the rail breaks. From this, it can be determined that the rail is broken when the section in which the success of signal acquisition has not been detected is not sequentially switched along the track.

第3の発明は、第1又は第2の発明において、
前記信号生成部は、所定の拡散符号を用いて前記符号化信号を拡散符号化するスペクトラム拡散により前記多周波利用変調方式での一次変調を行い、当該一次変調した信号で所定の搬送波を変調させる二次変調を行って前記送信信号を生成し、
前記信号捕捉検出部は、前記受信信号に対して前記二次変調に対応する復調を行った信号に対して、前記拡散符号を用いて逆拡散復号することで、前記多周波利用変調方式に対応する復調方式による復調の試行を行う、
レール破断検知装置である。
The third invention is the first or second invention.
The signal generation unit performs primary modulation in the multi-frequency utilization modulation method by spread coding of the coded signal using a predetermined spreading code, and modulates a predetermined carrier wave with the primary modulated signal. Secondary modulation is performed to generate the transmission signal,
The signal capture detection unit corresponds to the multi-frequency utilization modulation method by despreading and decoding the received signal by demodulating the signal corresponding to the secondary modulation using the diffusion code. Trial demodulation by the demodulation method
It is a rail breakage detection device.

第3の発明によれば、符号化信号に対する多周波利用変調方式としてスペクトラム拡散変調を行うことで、送信信号を生成することができる。 According to the third invention, a transmission signal can be generated by performing spread spectrum modulation as a multi-frequency utilization modulation method for a coded signal.

第4の発明は、第1又は第2の発明において、
前記信号生成部は、前記符号化信号をサブキャリア数分のパラレル信号に変換した上でサブキャリア変調および逆フーリエ変換を行って各信号を合成するOFDM(Orthogonal Frequency Division Multiplexing)により前記多周波利用変調方式での一次変調を行い、当該一次変調した信号で所定の搬送波を変調させる二次変調を行って前記送信信号を生成し、
前記信号捕捉検出部は、前記受信信号に対して前記二次変調に対応する復調を行った信号に対して、フーリエ変換およびサブキャリア復調を行って得られるサブキャリア数分のパラレル信号をシリアル信号に変換することで、前記多周波利用変調方式に対応する復調方式による復調の試行を行う、
レール破断検知装置である。
The fourth invention is the first or second invention.
The signal generation unit uses the multi-frequency by OFDM (Orthogonal Frequency Division Multiplexing) that synthesizes each signal by converting the coded signal into parallel signals for the number of subcarriers and then performing subcarrier modulation and inverse Fourier conversion. The transmission signal is generated by performing primary modulation by a modulation method and performing secondary modulation in which a predetermined carrier is modulated by the primary modulated signal.
The signal capture / detection unit serializes parallel signals for the number of subcarriers obtained by performing Fourier conversion and subcarrier demodulation on the signal obtained by demodulating the received signal corresponding to the secondary modulation. By converting to, the demodulation by the demodulation method corresponding to the multi-frequency utilization modulation method is tried.
It is a rail breakage detection device.

第4の発明によれば、符号化信号に対する多周波利用変調方式としてOFDM変調を行うことで、送信信号を生成することができる。 According to the fourth invention, a transmission signal can be generated by performing OFDM modulation as a multi-frequency utilization modulation method for a coded signal.

第5の発明は、第1〜第4の何れかの発明において、
前記受信信号のレベルが所定の閾値レベル範囲内となるように前記受信信号のレベルを調整するAGC制御部であって、当該受信信号のレベル変化が急峻変化条件を満たす場合には当該受信信号のレベル調整を停止するAGC制御部、
を更に備えたレール破断検知装置である。
The fifth invention is the fifth invention in any one of the first to fourth inventions.
An AGC control unit that adjusts the level of the received signal so that the level of the received signal is within a predetermined threshold level range, and when the level change of the received signal satisfies a steep change condition, the received signal of the received signal AGC control unit to stop level adjustment,
It is a rail breakage detection device further equipped with.

第5の発明によれば、受信信号のレベルの低下に追従するようにレベル調整を行うことで、レール破断の検知精度を向上させることが可能となる。繰り返しの列車通過に伴うバラスト沈下や環境変化に伴う経時変化等による道床の変動等によって受信信号のレベルが低下する可能性がある。また、列車通過時にも受信信号のレベルが低下する。両者を時間変化で比較すると、道床変動による受信信号のレベル低下は、低下の程度が小さく、また、その低下はゆっくりであるが、列車通過時の受信信号のレベル低下は、急激に低下した後に元のレベルに戻るといった急峻な変化をする。このため、受信信号のレベル変化が急峻変化条件を満たすか否かによって、受信信号のレベル変化(低下)が列車通過によるものか否かを判別する。道床変動等によるゆっくりとした受信信号のレベル低下に対する追従制御として、受信信号のレベルを所定の閾値レベル範囲となるようにレベル調整を行うことで、受信信号に対する復調および信号捕捉の成否判定の精度を高めることができる。 According to the fifth invention, it is possible to improve the detection accuracy of rail breakage by adjusting the level so as to follow the decrease in the level of the received signal. The level of the received signal may decrease due to ballast subsidence due to repeated train passages and changes in the trackbed due to changes over time due to environmental changes. Also, the level of the received signal drops when the train passes. Comparing the two over time, the decrease in the level of the received signal due to the track bed fluctuation is small and the decrease is slow, but the decrease in the level of the received signal when the train passes is after a sharp decrease. It makes a sharp change such as returning to the original level. Therefore, it is determined whether or not the level change (decrease) of the received signal is due to the passage of the train depending on whether or not the level change of the received signal satisfies the steep change condition. The accuracy of demodulation and signal capture success / failure judgment for the received signal is performed by adjusting the level of the received signal so that it falls within a predetermined threshold level range as a follow-up control for a slow decrease in the level of the received signal due to roadbed fluctuations, etc. Can be enhanced.

レール破断検知装置の構成図。The block diagram of the rail breakage detection device. 信号生成部の構成図。The block diagram of the signal generation part. 信号捕捉検出部の構成図。The block diagram of the signal acquisition detection part. 破断判定部によるレール破断の判定の一例。An example of rail rupture determination by the rupture determination unit. 破断判定部によるレール破断の判定の一例。An example of rail rupture determination by the rupture determination unit. 破断判定部によるレール破断の判定の一例。An example of rail rupture determination by the rupture determination unit. OFDMを用いて送信信号を生成する場合の並列信号生成部の構成図。The block diagram of the parallel signal generation part in the case of generating a transmission signal using OFDM. OFDMを用いて送信信号を生成する場合の並列捕捉検出部の構成図。The block diagram of the parallel capture detection part in the case of generating a transmission signal using OFDM.

以下、図面を参照して本発明の好適な実施形態について説明する。なお、以下に説明する実施形態によって本発明が限定されるものではなく、本発明を適用可能な形態が以下の実施形態に限定されるものでもない。また、図面の記載において、同一要素には同一符号を付す。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the present invention, and the embodiments to which the present invention can be applied are not limited to the following embodiments. Further, in the description of the drawings, the same elements are designated by the same reference numerals.

[構成]
図1は、本実施形態のレール破断検知装置1の構成図である。レール破断検知装置1は、列車が走行する軌道3を区切った複数の区間Ti(i=1,2,・・,n)それぞれのレール破断を検知する装置である。
[Constitution]
FIG. 1 is a configuration diagram of the rail breakage detection device 1 of the present embodiment. The rail rupture detection device 1 is a device that detects rail rupture of each of a plurality of sections Ti (i = 1, 2, ..., N) that divide the track 3 on which the train travels.

各区間Tiには、1つの信号入力点siと、2つの信号出力点ri1,ri2とが定められている。信号入力点sは区間Tの中央に定められ、信号出力点rは区間Tの両端に定められている。信号入力点sおよび信号出力点rは、レールとレール破断検知装置1との電気的接点であり、左右一対の2本のレール間に接続された整合変成器を介してレールに信号が入出力される。レール破断検知装置1は、複数の区間Tそれぞれに対して並列的に、当該区間Tの信号入力点sからレールに送信信号Sを出力し、当該区間Tの信号出力点rから入力される受信信号Rに基づいて当該区間Tのレール破断を判定する。 One signal input point si and two signal output points ri1 and ri2 are defined in each section Ti. The signal input point s is defined in the center of the section T, and the signal output points r are defined at both ends of the section T. The signal input point s and the signal output point r are electrical contacts between the rail and the rail breakage detection device 1, and signals are input and output to and from the rail via a matching transformer connected between two pairs of left and right rails. Will be done. The rail breakage detection device 1 outputs a transmission signal S to the rail from the signal input point s of the section T in parallel with each of the plurality of sections T, and receives input from the signal output point r of the section T. The rail breakage of the section T is determined based on the signal R.

レール破断検知装置1は、信号生成部10と、信号捕捉検出部30と、破断判定部50とを備える。 The rail rupture detection device 1 includes a signal generation unit 10, a signal capture detection unit 30, and a rupture determination unit 50.

信号生成部10は、所定の符号化信号であるレール破断検知信号を、多周波利用変調方式の1つであるスペクトラム拡散による変調を行った上で、周波数の異なる複数の送信信号Sを生成し、隣接する区間Tで周波数が異なるように各区間Tのレールに定められた信号入力点sに送信信号Sを送信する。 The signal generation unit 10 generates a plurality of transmission signals S having different frequencies after modulating the rail breakage detection signal, which is a predetermined coded signal, by spread spectrum, which is one of the multi-frequency utilization modulation methods. , The transmission signal S is transmitted to the signal input points s defined on the rails of each section T so that the frequencies are different in the adjacent sections T.

図2に示すように、信号生成部10は、複数の並列信号生成部20−j(j=1,2,・・,m:2≦m≦n)を有する。並列信号生成部20の数mは、区間数n以下である。並列信号生成部20は、検知信号生成部21と、変調部29とを有する。変調部29は、拡散符号生成部22と、拡散符号化部23と、搬送波生成部24と、搬送波変調部25とを有する。検知信号生成部21は、符号化信号であるレール破断検知信号を生成する。拡散符号生成部22は、不図示のクロック信号に従って、拡散符号である疑似雑音符号(以下、「PN符号」という)を生成する。拡散符号化部23は、検知信号生成部21により生成されたレール破断検知信号と拡散符号生成部22により生成されたPN符号とを乗算することで、スペクトラム拡散による一次変調を行って拡散符号化信号を生成する。搬送波生成部24は、所定周波数の搬送波を生成する。搬送波変調部25は、拡散符号化部23により生成された拡散符号化信号と搬送波生成部24により生成された搬送波とを乗算することで、拡散符号化信号で搬送波を変調させる二次変調を行って変調信号H(H1,H2,・・,Hm)を生成する。変調信号Hは各区間Tに出力されて送信信号Sとされる。変調信号Hxは、送信信号Sx,Sm+x,S2m+x,・・・、に対応する(x=1,2,・・・)。 As shown in FIG. 2, the signal generation unit 10 has a plurality of parallel signal generation units 20-j (j = 1, 2, ..., M: 2 ≦ m ≦ n). The number m of the parallel signal generation unit 20 is not more than the number of sections n. The parallel signal generation unit 20 includes a detection signal generation unit 21 and a modulation unit 29. The modulation unit 29 includes a diffusion code generation unit 22, a diffusion coding unit 23, a carrier wave generation unit 24, and a carrier wave modulation unit 25. The detection signal generation unit 21 generates a rail breakage detection signal which is a coded signal. The diffusion code generation unit 22 generates a pseudo noise code (hereinafter, referred to as “PN code”) which is a diffusion code according to a clock signal (not shown). The diffusion coding unit 23 performs first-order modulation by spread spectrum by multiplying the rail breakage detection signal generated by the detection signal generation unit 21 and the PN code generated by the diffusion code generation unit 22 to perform diffusion coding. Generate a signal. The carrier wave generation unit 24 generates a carrier wave having a predetermined frequency. The carrier wave modulation unit 25 performs secondary modulation for modulating the carrier wave with the spread coded signal by multiplying the spread coded signal generated by the spread code unit 23 and the carrier wave generated by the carrier wave generation unit 24. A modulation signal H (H1, H2, ..., Hm) is generated. The modulated signal H is output to each section T and is used as a transmission signal S. The modulated signal Hx corresponds to the transmission signals Sx, Sm + x, S2m + x, ... (X = 1, 2, ...).

搬送波生成部24は、並列信号生成部20毎に異なる周波数f(f1,f2,・・,fm)の搬送波を生成する。各搬送波生成部24が生成する搬送波の周波数f(f1,f2,・・,fm)は、搬送波変調部25による変調後の変調信号H(H1,H2,・・,Hm)の周波数帯域が、周波数において隣り合う変調信号Hの周波数帯域と少なくとも所定の周波数帯域Δfをおいて重畳しないように定められている。より具体的には、並列信号生成部20それぞれの拡散符号生成部22が生成するPN符号は同じ符号であり、且つ、PN符号の信号は同じ周波数である。そのため、PN符号の信号周波数帯域幅より広い周波数帯域Δfをおいて搬送波の周波数fjを設定することで、隣り合う変調信号Hの周波数が重ならないように定められる。そして、信号生成部10は、各並列信号生成部20が生成した変調信号Hを送信信号Sとして、各区間Tに出力する送信信号Sの周波数fが軌道3に沿って所定順に繰り返すように各区間Tの信号入力点sからレールに出力する。図2では、区間T1,Tm+1,T2m+1,・・・、に周波数f1の搬送波の変調信号H1が送信信号Sとして出力され、区間T2,Tm+2,T2m+2,・・・、に周波数f2の搬送波の変調信号H2が送信信号Sとして出力される、といったように、m種類の周波数fj(j=1,2,・・,m)の変調信号Hが、送信信号Sとして軌道3に沿って繰り返すように各区間Tに出力されている。 The carrier wave generation unit 24 generates a carrier wave having a frequency f (f1, f2, ..., Fm) different for each parallel signal generation unit 20. The frequency f (f1, f2, ..., Fm) of the carrier wave generated by each carrier wave generation unit 24 has a frequency band of the modulated signal H (H1, H2, ..., Hm) after modulation by the carrier wave modulation unit 25. In terms of frequency, it is defined so that the frequency band of adjacent modulation signals H and at least a predetermined frequency band Δf are not superimposed. More specifically, the PN codes generated by the diffusion code generation units 22 of the parallel signal generation units 20 have the same code, and the signals of the PN code have the same frequency. Therefore, by setting the frequency fj of the carrier wave in a frequency band Δf wider than the signal frequency bandwidth of the PN code, it is determined that the frequencies of the adjacent modulated signals H do not overlap. Then, each of the signal generation units 10 uses the modulation signal H generated by each parallel signal generation unit 20 as the transmission signal S so that the frequency f of the transmission signal S output to each section T repeats in a predetermined order along the orbit 3. Output to the rail from the signal input point s in section T. In FIG. 2, the modulation signal H1 of the carrier wave of the frequency f1 is output as the transmission signal S in the sections T1, Tm + 1, T2m + 1, ..., And the modulation of the carrier wave of the frequency f2 in the sections T2, Tm + 2, T2m + 2, ... The modulated signal H of m kinds of frequencies fj (j = 1, 2, ..., M) is repeated along the orbit 3 as the transmission signal S, such that the signal H2 is output as the transmission signal S. It is output to each section T.

図1に戻り、信号捕捉検出部30は、各区間Tのレールに定められた信号出力点rから入力した受信信号Rそれぞれに対してスペクトラム拡散による復調を試行し、受信信号Rをレール破断検知信号に復号可能な状態に達する以前の、所定の復調成功条件に達した時点で、信号捕捉に成功したことを検出する。受信信号Rからレール破断検知信号を復号する必要はない。 Returning to FIG. 1, the signal capture detection unit 30 attempts demodulation by spread spectrum for each received signal R input from the signal output point r defined on the rail of each section T, and detects the received signal R as rail breakage. It detects that the signal has been successfully captured when a predetermined demodulation success condition is reached before the signal can be decoded. It is not necessary to decode the rail breakage detection signal from the received signal R.

図3に示すように、信号捕捉検出部30は、複数の並列捕捉検出部40−k(k=1,2,・・,2n)を有する。各区間Tiに2つの信号出力点ri1,ri2が定められており、各信号出力点ri1,ri2から受信信号Ri1,Ri2が入力されるから、区間数nの2倍である2n個の並列捕捉検出部40を有することになる(図1参照)。並列捕捉検出部40は、AGC制御部41と、復調部49とを有する。復調部49は、搬送波生成部42と、搬送波信号除去部43と、拡散符号生成部44と、逆拡散復号部45と、同期捕捉部46とを有する。 As shown in FIG. 3, the signal acquisition detection unit 30 has a plurality of parallel acquisition detection units 40-k (k = 1, 2, ..., 2n). Two signal output points ri1 and ri2 are defined in each section Ti, and since the received signals Ri1 and Ri2 are input from each signal output point ri1 and ri2, 2n parallel acquisitions, which is twice the number of sections n, are captured. It will have a detection unit 40 (see FIG. 1). The parallel capture detection unit 40 includes an AGC control unit 41 and a demodulation unit 49. The demodulation unit 49 includes a carrier wave generation unit 42, a carrier wave signal removal unit 43, a diffusion code generation unit 44, a reverse diffusion decoding unit 45, and a synchronous capture unit 46.

AGC制御部41は、受信信号Rのレベルが所定の閾値レベル範囲となるように当該受信信号Rのレベルを調整する。また、受信信号Rのレベル変化が急峻変化条件を満たす場合には当該受信信号Rのレベル調整を停止し、停止時点での調整値をそのまま保持する。その後、急峻変化条件を満たさなくなると、保持している調整値から受信信号Rのレベル調整を再開する。急峻変化条件は、受信信号Rのレベルが急峻に変化したとみなす条件である。具体的には、軌道3を列車が走行すると、当該列車の輪軸によって左右のレール間が短絡されることで、受信信号Rのレベルが短時間で大きく低下し、列車が通過して輪軸による短絡が終了すると、直後に元のレベルに戻るといった急峻な変化をする。急峻変化条件は、この列車通過時の受信信号の急峻なレベル変化を判定するための条件である。入力された信号レベルを随時更新保持する回路と、当該回路に保持されている直前の信号レベルと今回入力された信号レベルとの差を所定の閾値と比較して、当該閾値を超える差が生じた場合に急峻変化条件を満たしたと判定する比較回路とで急峻変化条件を満たすか否かを判定する回路を構成することができる。 The AGC control unit 41 adjusts the level of the received signal R so that the level of the received signal R falls within a predetermined threshold level range. When the level change of the received signal R satisfies the steep change condition, the level adjustment of the received signal R is stopped, and the adjusted value at the time of the stop is maintained as it is. After that, when the steep change condition is no longer satisfied, the level adjustment of the received signal R is restarted from the held adjustment value. The steep change condition is a condition in which the level of the received signal R is considered to have changed sharply. Specifically, when a train travels on track 3, the left and right rails are short-circuited by the wheel sets of the train, so that the level of the received signal R drops significantly in a short time, and the train passes through and is short-circuited by the wheel sets. When is finished, it makes a sharp change such as returning to the original level immediately after. The steep change condition is a condition for determining a steep level change of the received signal when the train passes. A circuit that updates and holds the input signal level at any time, and the difference between the signal level immediately before being held in the circuit and the signal level input this time are compared with a predetermined threshold value, and a difference exceeding the threshold value occurs. In this case, a comparison circuit for determining that the steep change condition is satisfied and a circuit for determining whether or not the steep change condition is satisfied can be configured.

また、受信信号Rのレベルは、繰り返しの列車通過に伴うバラスト沈下や環境変化に伴う経時変化等による道床の変動等によって低下する可能性があるが、このレベル低下は、列車通過時と比較すると、低下の程度は小さく、また、ゆっくりとした低下である。このため、AGC制御部41は、受信信号Rのレベル変化が急峻変化条件を満たすか否かによって、受信信号Rのレベル変化(低下)が列車通過によるものか否かを判別し、道床変動等によるゆっくりとした受信信号Rのレベル低下に追従させるように、受信信号Rのレベルを所定の閾値レベル範囲となるようにレベル調整することができる。これにより、受信信号Rに対する復調および信号捕捉の成否判定の精度を高め、その結果としてレール破断の検知精度を向上させることが可能となる。 In addition, the level of the received signal R may decrease due to ballast subsidence due to repeated train passages and changes in the trackbed due to changes over time due to environmental changes, etc., but this level decrease is compared to when the train passes. , The degree of decrease is small, and the decrease is slow. Therefore, the AGC control unit 41 determines whether or not the level change (decrease) of the received signal R is due to the passage of the train depending on whether or not the level change of the received signal R satisfies the steep change condition, and the roadbed change or the like. The level of the received signal R can be adjusted so as to be within a predetermined threshold level range so as to follow the slow decrease in the level of the received signal R due to the above. This makes it possible to improve the accuracy of demodulation of the received signal R and the success / failure determination of signal capture, and as a result, the accuracy of detecting rail breakage.

搬送波生成部42は、並列信号生成部20の搬送波生成部24が生成する搬送波と同じ周波数の搬送波を生成する。すなわち、搬送波生成部42に入力される受信信号Rの信号出力点rと同じ区間Tの信号入力点sに出力される送信信号Sの生成の際に用いられた搬送波と同じ周波数の搬送波を生成する。搬送波信号除去部43は、AGC制御部41から出力された受信信号Rと搬送波生成部42により生成された搬送波とを乗算することで、受信信号Rに対する復調を行う機能部であり、この復調によって搬送波信号が除去される。除去された後の信号を復調信号と呼称する。搬送波信号除去部43が行う復調は、並列信号生成部20の搬送波変調部25による二次変調に対応する復調である。 The carrier wave generation unit 42 generates a carrier wave having the same frequency as the carrier wave generated by the carrier wave generation unit 24 of the parallel signal generation unit 20. That is, a carrier wave having the same frequency as the carrier wave used when generating the transmission signal S output to the signal input point s in the same section T as the signal output point r of the received signal R input to the carrier wave generation unit 42 is generated. To do. The carrier wave signal removing unit 43 is a functional unit that demodulates the received signal R by multiplying the received signal R output from the AGC control unit 41 and the carrier wave generated by the carrier wave generating unit 42. The carrier signal is removed. The signal after being removed is called a demodulated signal. The demodulation performed by the carrier wave signal removing unit 43 is a demodulation corresponding to the secondary modulation by the carrier wave modulation unit 25 of the parallel signal generation unit 20.

拡散符号生成部44は、不図示のクロック信号に従って、並列信号生成部20の拡散符号生成部22が生成するPN符号と同じ拡散符号であるPN符号を生成する。逆拡散復号部45は、搬送波信号除去部43により搬送波信号が除去された後の復調信号と拡散符号生成部44により生成されたPN符号とを乗算することで、復調信号に対してPN符号を用いた逆拡散復号を行う。この逆拡散復号はスペクトラム拡散による復調の試行ということができる。 The diffusion code generation unit 44 generates a PN code which is the same diffusion code as the PN code generated by the diffusion code generation unit 22 of the parallel signal generation unit 20 according to a clock signal (not shown). The despread decoding unit 45 multiplies the demodulated signal after the carrier signal is removed by the carrier signal removing unit 43 with the PN code generated by the spreading code generating unit 44 to obtain a PN code for the demodulated signal. Perform the reverse diffusion decoding used. This reverse diffusion decoding can be said to be a trial of demodulation by spread spectrum.

同期捕捉部46は、拡散符号生成部44に対して、生成するPN符号の位相を指示する信号を出力して、拡散符号生成部44が生成するPN符号の位相と、受信信号Rに含まれているPN符号の位相とを一致させる受信信号Rの同期捕捉を行う。具体的には、逆拡散復号部45によって逆拡散復号された信号の値を積算し、この積算値(相関値ともいえる)ができるだけ高い値となるように、拡散符号生成部44に対して、生成するPN符号の位相をずらす指示をする。積算は、いわゆる相互相関演算に相当する。また、同期捕捉部46は、逆拡散復号された信号の積算値(相関値)が所定のピーク値条件を満たす場合、復調成功条件に達したとして、受信信号Rの捕捉に成功したことを検出する。信号捕捉の成否の検出結果は、捕捉信号Dとして出力する。 The synchronous acquisition unit 46 outputs a signal indicating the phase of the PN code to be generated to the diffusion code generation unit 44, and is included in the phase of the PN code generated by the diffusion code generation unit 44 and the reception signal R. Synchronous acquisition of the received signal R that matches the phase of the PN code is performed. Specifically, the values of the signals despread-decrypted by the de-diffusion decoding unit 45 are integrated, and the diffusion code generation unit 44 is subjected to such an integrated value (which can be said to be a correlation value) as high as possible. Instructs to shift the phase of the generated PN code. The integration corresponds to a so-called cross-correlation operation. Further, when the integrated value (correlation value) of the despread-decrypted signal satisfies a predetermined peak value condition, the synchronous capture unit 46 detects that the demodulation success condition has been reached and has succeeded in capturing the received signal R. To do. The detection result of the success or failure of signal acquisition is output as the acquisition signal D.

復調成功条件は、受信信号Rがレール破断検知信号を含むとみなせる条件である。本実施形態では、スペクトラム拡散によりレール破断検知信号の変調を行っているので、受信信号R(より正確には逆拡散復号された信号)とPN符号との積算値(相関値)が所定のピーク値条件を満たすことを復調成功条件としている。PN符号は所定長(例えば、64ビット)の符号であるので、PN符号全体ではなく、その一部(例えば、符号長を64ビットとした場合、50%である32ビット、20%である12ビット、10%である6ビット、などである)が合致した場合に積算値(相関値)として表れ得る閾値に達したことを所定のピーク値条件を満たすこととし、復調成功条件に達したと判定することができる。 The demodulation success condition is a condition in which the received signal R can be regarded as including the rail breakage detection signal. In the present embodiment, since the rail breakage detection signal is modulated by spread spectrum, the integrated value (correlation value) of the received signal R (more accurately, the signal despread-decoded) and the PN code has a predetermined peak. The condition for successful demodulation is that the value condition is satisfied. Since the PN code is a code having a predetermined length (for example, 64 bits), it is not the entire PN code but a part thereof (for example, when the code length is 64 bits, it is 50% 32 bits and 20% 12). It is said that the predetermined peak value condition is satisfied when the threshold value that can appear as the integrated value (correlation value) is reached when the bits (bits, 10%, 6 bits, etc.) are matched, and the demodulation success condition is reached. Can be determined.

図1に戻り、破断判定部50は、信号捕捉検出部30の検出結果に基づいて、区間T毎のレール破断を判定する。ある区間Tにレール破断が生じると、当該レール破断の部分で送信信号Sの伝搬が遮断されるため、当該区間Tでの受信信号Rの信号捕捉が失敗する。また、軌道3を列車が走行すると、当該列車の輪軸によってレール間が短絡されることで、受信信号Rの信号捕捉が失敗する。破断判定部50は、信号捕捉検出部30による信号捕捉の失敗した区間T、すなわち信号捕捉の成功が未検出の区間Tが軌道3に沿って順次切り替わっている場合には列車通過と判定し、順次切り替わっていない場合に、当該信号捕捉の失敗に基づいてレール破断を判定する。 Returning to FIG. 1, the rupture determination unit 50 determines the rail rupture for each section T based on the detection result of the signal acquisition detection unit 30. When a rail break occurs in a certain section T, the propagation of the transmission signal S is blocked at the rail break portion, so that the signal acquisition of the received signal R in the section T fails. Further, when the train travels on the track 3, the rails are short-circuited by the wheel sets of the train, so that the signal acquisition of the received signal R fails. The rupture determination unit 50 determines that the train has passed when the section T in which the signal acquisition by the signal acquisition detection unit 30 has failed, that is, the section T in which the success of signal acquisition has not been detected is sequentially switched along the track 3. If the switches are not sequentially switched, the rail breakage is determined based on the failure of the signal acquisition.

図4〜図6は、破断判定部50によるレール破断の判定の一例である。図4は、レール破断も生じておらず、且つ、軌道3を列車が走行していない通常時の判定結果の一例であり、図5は、軌道3を列車が走行している列車通過時の判定結果の一例であり、図6は、レール破断が生じた場合の判定結果の一例である。また、図4〜図6では、何れも、破断判定部50による判定とともに、信号捕捉検出部30の検出結果として、各時刻tにおける各区間Tiについての捕捉信号Di1,Di2(i=1,2,・・,n)が表す信号捕捉の検出の成否を示している。各区間Tiでは、信号入力点siに対する信号出力点ri1と信号出力点ri2との位置が逆となるため、当該区間Tiを、信号入力点siを境界として2つに分けることができる。図4〜図6では“前半”および“後半”と呼称して示している。信号出力点ri1からの受信信号R1に基づく捕捉信号Di1と、信号出力点ri2からの受信信号R2に基づく捕捉信号Di2とで、当該区間Tiの“前半”および“後半”それぞれについて、レール破断或いは列車通過を判定することができる。 4 to 6 are examples of rail fracture determination by the fracture determination unit 50. FIG. 4 is an example of the determination result in the normal time when the rail is not broken and the train is not traveling on the track 3, and FIG. 5 is an example of the determination result when the train is traveling on the track 3 when passing through the train. It is an example of the determination result, and FIG. 6 is an example of the determination result when the rail breaks. Further, in FIGS. 4 to 6, in each of the determinations by the fracture determination unit 50 and the detection result of the signal acquisition detection unit 30, the acquisition signals Di1 and Di2 (i = 1, 2) for each section Ti at each time t. ,,,, n) indicates the success or failure of the signal capture detection. In each section Ti, since the positions of the signal output point ri1 and the signal output point ri2 are opposite to each other with respect to the signal input point si, the section Ti can be divided into two with the signal input point si as a boundary. In FIGS. 4 to 6, they are referred to as “first half” and “second half”. In the captured signal Di1 based on the received signal R1 from the signal output point ri1 and the captured signal Di2 based on the received signal R2 from the signal output point ri2, rail breakage or rail breakage or It is possible to determine the passage of a train.

破断判定部50は、区間T毎の捕捉信号Dが示す信号捕捉の失敗に基づいて、レール破断或いは列車通過を判定する。 The rupture determination unit 50 determines rail rupture or train passage based on the failure of signal acquisition indicated by the acquisition signal D for each section T.

図4に示すように、通常時には、すべての区間Tについて受信信号Rの信号捕捉は成功となり、破断判定部50は“通常(レール破断も列車通過も無し)”と判定する。 As shown in FIG. 4, in the normal state, the signal acquisition of the received signal R is successful for all the sections T, and the rupture determination unit 50 determines that "normal (no rail rupture or train passage)".

また、図5に示すように、列車通過時には、列車は軌道3に沿って走行するから、受信信号Rの信号捕捉に失敗した区間Tが、時間経過に伴い軌道3に沿って順次切り替わる。破断判定部50は“列車通過”と判定する。 Further, as shown in FIG. 5, when the train passes, the train travels along the track 3, so that the section T in which the signal acquisition of the received signal R fails is sequentially switched along the track 3 with the passage of time. The rupture determination unit 50 determines that the train has passed.

また、図6に示すように、レール破断が生じた場合には、受信信号Rの信号捕捉に失敗した区間T(図6では、区間T2の前半)はレール破断が生じた区間のみとなり、列車通過時のような、当該区間Tで信号捕捉に失敗する前後で隣接する区間Tが信号捕捉に失敗するという時間経過に伴った切り替わりが起こらない。また、同じ区間Tで継続して信号捕捉に失敗した状態となる。破断判定部50は“区間T2の前半でレール破断”と判定する。 Further, as shown in FIG. 6, when the rail rupture occurs, the section T in which the signal acquisition of the received signal R fails (in FIG. 6, the first half of the section T2) is only the section in which the rail rupture occurs, and the train. There is no switching with the passage of time that the adjacent section T fails to acquire the signal before and after the signal acquisition fails in the section T as in the case of passing. In addition, the signal acquisition fails continuously in the same section T. The rupture determination unit 50 determines that "the rail ruptures in the first half of the section T2".

[作用効果]
このように、本実施形態のレール破断検知装置1によれば、レールに送信する送信信号Sをスペクトラム拡散により変調して生成し、レールからの受信信号Rに対する復調を試行して信号捕捉に成功したかを検出することにより、レール破断を検知することができる。つまり、受信信号Rを元の符号化信号であるレール破断検知信号にまで復号しなくとも、送信時の多周波利用変調方式に対応する復調方式で復調成功条件に達する復調ができたこと、すなわち信号捕捉に成功したことの検出でもって、受信信号は適正な信号であるレール破断検知信号に違いないことを確認できる。これにより、電車電流による雑音や妨害波の影響を受けてもレール破断検知信号の捕捉が可能となり、耐雑音および耐妨害波特性が大幅に向上して、レール破断の検知能力の高いレール破断検知装置1を実現できる。また、隣接する区間で周波数が異なるように複数の区間それぞれに送信信号Sを出力するので、各区間から入力する受信信号Rとして、当該区間に入力した送信信号Sの周波数の信号を選別して入力することができる。また、信号捕捉に失敗した区間、すなわち信号捕捉の成功の未検出区間が軌道に沿って順次切り替わっているか否かによって、列車在線による信号捕捉の成功の未検出と、レール破断による信号捕捉の成功の未検出とを区別して判定することができる。また、AGC制御部41が、受信信号Rのレベルの低下に追従するように受信信号Rの信号レベルを調整することで、レール破断の検知能力を向上させることが可能となる。
[Action effect]
As described above, according to the rail breakage detection device 1 of the present embodiment, the transmission signal S transmitted to the rail is modulated and generated by spread spectrum, and demodulation with respect to the received signal R from the rail is attempted to succeed in signal acquisition. Rail breakage can be detected by detecting whether or not the rail has broken. That is, even if the received signal R is not decoded into the rail breakage detection signal which is the original coded signal, the demodulation method corresponding to the multi-frequency utilization modulation method at the time of transmission can be used to achieve the demodulation success condition. By detecting that the signal has been successfully captured, it can be confirmed that the received signal must be a rail breakage detection signal, which is an appropriate signal. This makes it possible to capture the rail rupture detection signal even if it is affected by noise or interference waves due to train current, greatly improves noise resistance and interference resistance characteristics, and has high rail rupture detection capability. The detection device 1 can be realized. Further, since the transmission signal S is output to each of a plurality of sections so that the frequencies are different in the adjacent sections, the signal of the frequency of the transmission signal S input to the section is selected as the reception signal R to be input from each section. You can enter it. In addition, depending on whether the section where signal acquisition failed, that is, the undetected section where signal acquisition was successful, is sequentially switched along the track, the success of signal acquisition due to the train presence is not detected and the signal acquisition is successful due to rail breakage. Can be distinguished from undetected. Further, the AGC control unit 41 adjusts the signal level of the received signal R so as to follow the decrease in the level of the received signal R, so that the rail breakage detection ability can be improved.

なお、本発明の適用可能な実施形態は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。 It should be noted that the applicable embodiments of the present invention are not limited to the above-described embodiments, and of course, they can be appropriately changed without departing from the spirit of the present invention.

(A)多周波利用変調方式
上述の実施形態では、送信信号Sの生成の際に用いる多周波利用変調方式をスペクトラム拡散による変調としたが、その他の変調方式として、例えば、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数多重分割)を用いることにしてもよい。この場合、上述の実施形態のレール破断検知装置1(図1参照)において、信号生成部10の各並列信号生成部20を図7に示す並列信号生成部20Aに、信号捕捉検出部30の各並列捕捉検出部40を図8に示す並列捕捉検出部40Aに置き替えることで実現できる。
(A) Multi-frequency utilization modulation method In the above-described embodiment, the multi-frequency utilization modulation method used when generating the transmission signal S is modulation by spread spectrum, but as another modulation method, for example, OFDM (Orthogonal Frequency Division). Multiplexing (Orthogonal Frequency Multiplexing) may be used. In this case, in the rail breakage detection device 1 (see FIG. 1) of the above-described embodiment, each parallel signal generation unit 20 of the signal generation unit 10 is connected to the parallel signal generation unit 20A shown in FIG. 7, and each of the signal capture detection units 30. This can be realized by replacing the parallel capture detection unit 40 with the parallel capture detection unit 40A shown in FIG.

図7に示すように、OFDMを用いたレール破断検知装置における並列信号生成部20Aは、検知信号生成部21と、変調部29Aとを備える。変調部29Aは、検知信号生成部21により生成されたレール破断検知信号を一次変調するOFDM変調部26と、搬送波生成部24と、搬送波変調部25とを備える。OFDM変調部26は、検知信号生成部21により生成されたシリアル信号であるレール破断検知信号を、所定のサブキャリア数分のパラレル信号に変換するS/P変換部と、複数のパラレル信号それぞれを変調してサブキャリア信号を生成するサブキャリア変調部と、複数のサブキャリア信号に対して逆フーリエ変換を行って合成するIFFT部とを有する。 As shown in FIG. 7, the parallel signal generation unit 20A in the rail breakage detection device using OFDM includes a detection signal generation unit 21 and a modulation unit 29A. The modulation unit 29A includes an OFDM modulation unit 26 that primaryly modulates the rail breakage detection signal generated by the detection signal generation unit 21, a carrier wave generation unit 24, and a carrier wave modulation unit 25. The OFDM modulation unit 26 converts a rail breakage detection signal, which is a serial signal generated by the detection signal generation unit 21, into parallel signals for a predetermined number of subcarriers, and a plurality of parallel signals, respectively. It has a subcarrier modulation unit that modulates and generates a subcarrier signal, and an IFFT unit that performs inverse Fourier transform on a plurality of subcarrier signals to synthesize them.

また、図8に示すように、並列捕捉検出部40Aは、AGC制御部41と、復調部49Aと、捕捉検出部48とを備える。復調部49Aは、搬送波生成部42と、搬送波信号除去部43と、並列信号生成部20AのOFDM変調部26による一次変調に対応する復調の試行を行うOFDM復調部47とを備える。OFDM復調部47は、搬送波信号除去部43により搬送波が除去された信号に対してフーリエ変換を行って複数のサブキャリア信号に再生するFFT部と、複数のサブキャリア信号それぞれを復調するサブキャリア復調部と、復調されたパラレル信号をシリアル信号に変換して捕捉検出部48に出力するP/S変換部とを有する。 Further, as shown in FIG. 8, the parallel capture detection unit 40A includes an AGC control unit 41, a demodulation unit 49A, and a capture detection unit 48. The demodulation unit 49A includes a carrier wave generation unit 42, a carrier wave signal removal unit 43, and an OFDM demodulation unit 47 that attempts demodulation corresponding to the primary modulation by the OFDM modulation unit 26 of the parallel signal generation unit 20A. The OFDM demodulation unit 47 includes an FFT unit that performs Fourier conversion on a signal whose carrier wave has been removed by the carrier wave signal removal unit 43 to reproduce it as a plurality of subcarrier signals, and a subcarrier demodulation unit that demodulates each of the plurality of subcarrier signals. It has a unit and a P / S conversion unit that converts the demodulated parallel signal into a serial signal and outputs it to the capture / detection unit 48.

捕捉検出部48は、OFDM復調部47により復調された信号と符号化信号であるレール破断検知信号とを比較し、復調成功条件に達した時点で受信信号Rの信号捕捉に成功したことを検出する。復調成功条件は、例えば、復調された信号とレール破断検知信号との合致度合(復調率ともいえる)であり、具体的には、所定長の符号化信号であるレール破断検知信号の全体が合致する(つまり、復調率が100%)としてもよいが、復調率が50%以上、20%以上、10%以上などといったように、レール破断検知信号の一部が復調されたことを復調成功条件に達したと判定してもよい。捕捉検出部48は、復調成功条件に達したと判定した場合には信号捕捉に成功したと判定して、その判定結果を示す捕捉信号Dを出力する。 The capture detection unit 48 compares the signal demodulated by the OFDM demodulation unit 47 with the rail breakage detection signal which is a coded signal, and detects that the signal capture of the received signal R is successful when the demodulation success condition is reached. To do. The demodulation success condition is, for example, the degree of matching between the demodulated signal and the rail breakage detection signal (which can also be called the demodulation rate). Specifically, the entire rail breakage detection signal, which is a coded signal of a predetermined length, matches. (That is, the demodulation rate is 100%), but the demodulation success condition is that a part of the rail breakage detection signal is demodulated, such as the demodulation rate is 50% or more, 20% or more, 10% or more, and so on. It may be determined that the value has been reached. When the capture detection unit 48 determines that the demodulation success condition has been reached, it determines that the signal capture has been successful, and outputs a capture signal D indicating the determination result.

(B)信号入力点sおよび信号出力点r
また、上述の実施形態では、区間Tの中央に信号入力点sを定め、区間の両端に信号出力点r(r1,r2)を定めているが、次のようにしてもよい。すなわち、区間Tの両端のうちの一方側の端部に信号入力点sを定め、他方側の端部に信号出力点rを定める。この場合、図4〜図6に示したように、信号入力点sを境界として区間Tを“前半/後半”に分けてレール破断を判定することはできないことになる。
(B) Signal input point s and signal output point r
Further, in the above-described embodiment, the signal input point s is defined in the center of the section T, and the signal output points r (r1, r2) are defined at both ends of the section. However, the following may be used. That is, a signal input point s is defined at one end of both ends of the section T, and a signal output point r is defined at the other end. In this case, as shown in FIGS. 4 to 6, it is not possible to determine the rail fracture by dividing the section T into “first half / second half” with the signal input point s as the boundary.

1…レール破断検知装置
10…信号生成部
20…並列信号生成部
21…検知信号生成部、
29…変調部
22…拡散符号生成部、23…拡散符号化部
24…搬送波生成部、25…搬送波変調部
30…信号捕捉検出部
40…並列捕捉検出部
41…AGC制御部
49…復調部
42…搬送波生成部、43…搬送波信号除去部
44…拡散符号生成部、45…逆拡散復号部、46…同期捕捉部
50…破断判定部
S(Si)…送信信号、R(Ri1,Ri2)…受信信号
3…軌道、T(Ti)…区間
s(si)…信号入力点、r(ri1,ri2)…信号出力点
1 ... Rail breakage detection device 10 ... Signal generation unit 20 ... Parallel signal generation unit 21 ... Detection signal generation unit,
29 ... Modulation unit 22 ... Diffusion code generation unit, 23 ... Diffusion coding unit 24 ... Carrier wave generation unit, 25 ... Carrier wave modulation unit 30 ... Signal acquisition detection unit 40 ... Parallel acquisition detection unit 41 ... AGC control unit 49 ... Demodulation unit 42 ... Carrier wave generation unit, 43 ... Carrier wave signal removal unit 44 ... Diffusion code generation unit, 45 ... Reverse diffusion decoding unit, 46 ... Synchronous capture unit 50 ... Breakage determination unit S (Si) ... Transmission signal, R (Ri1, Ri2) ... Received signal 3 ... Orbit, T (Ti) ... Section s (si) ... Signal input point, r (ri1, ri2) ... Signal output point

Claims (5)

列車が走行する軌道を区切った複数の区間それぞれのレール破断を検知するレール破断検知装置であって、
所定の符号化信号を所定の多周波利用変調方式で変調して周波数の異なる複数の送信信号を生成し、隣接する前記区間で周波数が異なるように各区間のレールに定められた信号入力点に当該送信信号を出力する信号生成部と、
各区間のレールに定められた信号出力点から入力した受信信号それぞれに対して、前記多周波利用変調方式に対応する復調方式による復調を試行し、当該受信信号を前記符号化信号に復号可能な状態に達する以前の、所定の復調成功条件に達した時点で、信号捕捉に成功したことを区間毎に検出する信号捕捉検出部と、
前記信号捕捉検出部の検出結果に基づいて、前記区間毎のレール破断を判定する破断判定部と、
を備えたレール破断検知装置。
It is a rail rupture detection device that detects rail rupture in each of a plurality of sections that divide the track on which the train travels.
A predetermined coded signal is modulated by a predetermined multi-frequency utilization modulation method to generate a plurality of transmission signals having different frequencies, and at signal input points defined on rails of each section so that the frequencies are different in the adjacent sections. A signal generator that outputs the transmission signal and
Each received signal input from the signal output point defined on the rail of each section can be demodulated by a demodulation method corresponding to the multi-frequency utilization modulation method, and the received signal can be decoded into the coded signal. A signal capture detection unit that detects that signal acquisition was successful for each section when a predetermined demodulation success condition is reached before reaching the state.
A rupture determination unit that determines rail rupture for each section based on the detection result of the signal acquisition detection unit, and a rupture determination unit.
Rail breakage detection device equipped with.
前記破断判定部は、前記信号捕捉検出部による未検出の区間が前記軌道に沿って順次切り替わっていない場合に、当該未検出の区間に基づいてレール破断を判定する、
請求項1に記載のレール破断検知装置。
The rupture determination unit determines the rail rupture based on the undetected section when the undetected section by the signal acquisition detection unit is not sequentially switched along the track.
The rail breakage detection device according to claim 1.
前記信号生成部は、所定の拡散符号を用いて前記符号化信号を拡散符号化するスペクトラム拡散により前記多周波利用変調方式での一次変調を行い、当該一次変調した信号で所定の搬送波を変調させる二次変調を行って前記送信信号を生成し、
前記信号捕捉検出部は、前記受信信号に対して前記二次変調に対応する復調を行った信号に対して、前記拡散符号を用いて逆拡散復号することで、前記多周波利用変調方式に対応する復調方式による復調の試行を行う、
請求項1又は2に記載のレール破断検知装置。
The signal generation unit performs primary modulation in the multi-frequency utilization modulation method by spread coding of the coded signal using a predetermined spreading code, and modulates a predetermined carrier wave with the primary modulated signal. Secondary modulation is performed to generate the transmission signal,
The signal capture detection unit corresponds to the multi-frequency utilization modulation method by despreading and decoding the received signal by demodulating the signal corresponding to the secondary modulation using the diffusion code. Trial demodulation by the demodulation method
The rail breakage detection device according to claim 1 or 2.
前記信号生成部は、前記符号化信号をサブキャリア数分のパラレル信号に変換した上でサブキャリア変調および逆フーリエ変換を行って各信号を合成するOFDM(Orthogonal Frequency Division Multiplexing)により前記多周波利用変調方式での一次変調を行い、当該一次変調した信号で所定の搬送波を変調させる二次変調を行って前記送信信号を生成し、
前記信号捕捉検出部は、前記受信信号に対して前記二次変調に対応する復調を行った信号に対して、フーリエ変換およびサブキャリア復調を行って得られるサブキャリア数分のパラレル信号をシリアル信号に変換することで、前記多周波利用変調方式に対応する復調方式による復調の試行を行う、
請求項1又は2に記載のレール破断検知装置。
The signal generation unit uses the multi-frequency by OFDM (Orthogonal Frequency Division Multiplexing) that synthesizes each signal by converting the coded signal into parallel signals for the number of subcarriers and then performing subcarrier modulation and inverse Fourier conversion. The transmission signal is generated by performing primary modulation by a modulation method and performing secondary modulation in which a predetermined carrier is modulated by the primary modulated signal.
The signal capture / detection unit serializes parallel signals for the number of subcarriers obtained by performing Fourier conversion and subcarrier demodulation on the signal obtained by demodulating the received signal corresponding to the secondary modulation. By converting to, the demodulation by the demodulation method corresponding to the multi-frequency utilization modulation method is tried.
The rail breakage detection device according to claim 1 or 2.
前記受信信号のレベルが所定の閾値レベル範囲内となるように前記受信信号のレベルを調整するAGC制御部であって、当該受信信号のレベル変化が急峻変化条件を満たす場合には当該受信信号のレベル調整を停止するAGC制御部、
を更に備えた請求項1〜4の何れか一項に記載のレール破断検知装置。
An AGC control unit that adjusts the level of the received signal so that the level of the received signal is within a predetermined threshold level range, and when the level change of the received signal satisfies a steep change condition, the received signal of the received signal AGC control unit to stop level adjustment,
The rail breakage detection device according to any one of claims 1 to 4, further comprising.
JP2019153892A 2019-08-26 2019-08-26 Rail breakage detector Active JP6785352B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019153892A JP6785352B1 (en) 2019-08-26 2019-08-26 Rail breakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019153892A JP6785352B1 (en) 2019-08-26 2019-08-26 Rail breakage detector

Publications (2)

Publication Number Publication Date
JP6785352B1 JP6785352B1 (en) 2020-11-18
JP2021030920A true JP2021030920A (en) 2021-03-01

Family

ID=73220089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019153892A Active JP6785352B1 (en) 2019-08-26 2019-08-26 Rail breakage detector

Country Status (1)

Country Link
JP (1) JP6785352B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321110A (en) * 1993-05-18 1994-11-22 Railway Technical Res Inst Rail breakage detection method and rail breakage detection device and rail breakage section detection method using the device
JP2007168676A (en) * 2005-12-26 2007-07-05 East Japan Railway Co Train detection device
JP2010173537A (en) * 2009-01-30 2010-08-12 Kyosan Electric Mfg Co Ltd Narrow-band multi-frequency track circuit apparatus
JP2011057005A (en) * 2009-09-08 2011-03-24 Railway Technical Res Inst Method of detecting rail breakage and rail breakage detection system
JP2011173486A (en) * 2010-02-24 2011-09-08 Railway Technical Research Institute Track circuit device
JP2011225192A (en) * 2010-04-23 2011-11-10 Nippon Signal Co Ltd:The Rail fracture detection device
JP2012091671A (en) * 2010-10-27 2012-05-17 Nippon Signal Co Ltd:The Rail breakage detecting device
EP3196095A1 (en) * 2014-09-15 2017-07-26 Instalaciones Inabensa, S.A. System and method for detecting broken rails on a railway line

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321110A (en) * 1993-05-18 1994-11-22 Railway Technical Res Inst Rail breakage detection method and rail breakage detection device and rail breakage section detection method using the device
JP2007168676A (en) * 2005-12-26 2007-07-05 East Japan Railway Co Train detection device
JP2010173537A (en) * 2009-01-30 2010-08-12 Kyosan Electric Mfg Co Ltd Narrow-band multi-frequency track circuit apparatus
JP2011057005A (en) * 2009-09-08 2011-03-24 Railway Technical Res Inst Method of detecting rail breakage and rail breakage detection system
JP2011173486A (en) * 2010-02-24 2011-09-08 Railway Technical Research Institute Track circuit device
JP2011225192A (en) * 2010-04-23 2011-11-10 Nippon Signal Co Ltd:The Rail fracture detection device
JP2012091671A (en) * 2010-10-27 2012-05-17 Nippon Signal Co Ltd:The Rail breakage detecting device
EP3196095A1 (en) * 2014-09-15 2017-07-26 Instalaciones Inabensa, S.A. System and method for detecting broken rails on a railway line

Also Published As

Publication number Publication date
JP6785352B1 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
US10298429B2 (en) Transmitting device, receiving device and communication method for an OFDM communication system with new preamble structure
KR101558008B1 (en) Method and apparatus for implementing a digital signal quality metric
RU2248673C2 (en) Method and device for detecting mode of transmission and synchronization of audio broadcast digital signal
JP5323291B2 (en) Method and apparatus for estimating fine and coarse frequency offset in digital audio broadcasting
US20040047427A1 (en) Method and device for transmitting data on at least one electrical power supply line
US6661771B1 (en) Method and apparatus for interleaver synchronization in an orthogonal frequency division multiplexing (OFDM) communication system
US6987752B1 (en) Method and apparatus for frequency offset estimation and interleaver synchronization using periodic signature sequences
KR20010108236A (en) A system and method for recovering symbol timing offset and carrier frequency error in an ofdm digital audio broadcast system
WO2008150908A2 (en) Method and apparatus for implementing seek and scan functions for an fm digital radio signal
JP2008259231A (en) Methods and apparatus for frame synchronization in digital audio broadcasting system
KR100717978B1 (en) Alternative frequency service verification
US6445693B1 (en) Method and apparatus for estimating power of first adjacent analog FM interference in an in-band on-channel (IBOC) communication system
CN113726347A (en) Transmitter, receiver and method for chirp modulated radio signals
US20140328439A1 (en) Method to increase signal-to-noise ratio of a cyclic-prefix orthogonal frequency-division multiplex signasl
JP6785352B1 (en) Rail breakage detector
RU2241620C2 (en) Method to transmit data through traction current conductor transmitting electric drive current for vehicles
JP6785351B1 (en) Rail breakage detector
US7088766B2 (en) Dynamic measurement of communication channel characteristics using direct sequence spread spectrum (DSSS) systems, methods and program products
JP6785353B1 (en) Rail breakage detector
JP2005333344A (en) Wireless communication apparatus
Honcharov et al. Multi-Valued Automatic Cab Signalling System Based on the CDMA Technology
JP6840357B2 (en) Information transmission system, ground equipment and on-board equipment
EP2100792A1 (en) Detection system and method for railway track circuits using BPSK modulated coding
JP2004284480A (en) System and method for train detection and communication
JP2004276761A (en) Train sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6785352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250