JP2021030762A - Manhole cover for inspection and examination, pipeline inspection and examination system, and pipeline inspection and examination method - Google Patents

Manhole cover for inspection and examination, pipeline inspection and examination system, and pipeline inspection and examination method Download PDF

Info

Publication number
JP2021030762A
JP2021030762A JP2019149656A JP2019149656A JP2021030762A JP 2021030762 A JP2021030762 A JP 2021030762A JP 2019149656 A JP2019149656 A JP 2019149656A JP 2019149656 A JP2019149656 A JP 2019149656A JP 2021030762 A JP2021030762 A JP 2021030762A
Authority
JP
Japan
Prior art keywords
inspection
investigation
transmitting
pipeline
manhole cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019149656A
Other languages
Japanese (ja)
Other versions
JP7294943B2 (en
Inventor
浩一 津野
Koichi Tsuno
浩一 津野
仁志 宮内
Hitoshi Miyauchi
仁志 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Kogyo Co Ltd
Original Assignee
Kokusai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Kogyo Co Ltd filed Critical Kokusai Kogyo Co Ltd
Priority to JP2019149656A priority Critical patent/JP7294943B2/en
Publication of JP2021030762A publication Critical patent/JP2021030762A/en
Application granted granted Critical
Publication of JP7294943B2 publication Critical patent/JP7294943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To provide a manhole cover for inspection and examination, a pipeline inspection and examination system, and a pipeline inspection and examination method allowing a flying object to continuously fly (that is, to perform inspection and examination) while automatically supplying power locally without bringing the flying object back to a predetermined charging facility, so as to solve the problem of the prior art.SOLUTION: The manhole cover for inspection and examination of the present invention is used for a manhole in a pipeline, and comprises: a "platform" on which a flying object capable of electric-powered autonomous flight can land; a "power supply facility" that supplies electric power to the flying object; and a "manhole-cover-transmission/reception means" for transmitting/receiving data to/from the flying-object-transmission/reception means (mounted on the flying object).SELECTED DRAWING: Figure 1

Description

本願発明は、下水道管などの管路内の点検調査技術に関するものであり、より具体的には、管路内を自律飛行する飛行体を用いた点検調査技術に関するものである。 The present invention relates to an inspection / investigation technique in a pipeline such as a sewer pipe, and more specifically, to an inspection / investigation technique using an air vehicle that autonomously flies in the pipeline.

昭和30年代に現行の下水道法が施行され、さらに第一次下水道整備五箇年計画が策定されたことによって、我が国の下水道整備は本格化した。そして、その後50年間で下水道の普及率は概ね80%に達している。英国(97%)や独国(93%)などの欧州諸国に比べると我が国の下水道普及率はまだ十分とはいえないものの、今後は普及率向上のための新たな建設と同時に、下水道施設の維持管理が重要となることは衆目の一致するところである。 With the enforcement of the current Sewerage Law in the 1955's and the formulation of the first five-year sewerage development plan, Japan's sewerage development has begun in earnest. Then, in the next 50 years, the sewerage penetration rate has reached about 80%. Compared to European countries such as the United Kingdom (97%) and Germany (93%), Japan's sewerage penetration rate is still not sufficient, but in the future, at the same time as new construction to improve the penetration rate, sewerage facilities will be installed. It is in agreement with the public that maintenance is important.

現在、全国の下水道管路の管理延長は約47万kmであり、そのうち約1万kmの下水道管が50年を経過し、20年後には約11万kmの下水道管が50年を経過することが知られている。多くの下水道管渠はコンクリート製であり、一般にコンクリートの耐久性は50年とも100年ともいわれるが仮に50年とすると、20年後には実に約1/4の下水道管渠が相当に老朽化することになる。実際、2015年には下水道施設の老朽化等に起因して3,300箇所にも及ぶ道路陥没が生じており、我が国にとって下水道施設の維持管理は喫緊の課題といえる。 Currently, the management extension of sewerage pipelines nationwide is about 470,000 km, of which about 10,000 km of sewerage pipes will pass 50 years, and 20 years later, about 110,000 km of sewerage pipes will pass 50 years. It is known. Many sewer pipes are made of concrete, and the durability of concrete is generally said to be 50 years or 100 years, but if it is 50 years, about 1/4 of the sewer pipes will be considerably deteriorated in 20 years. It will be. In fact, in 2015, as many as 3,300 road collapses occurred due to the deterioration of sewerage facilities, and it can be said that maintenance of sewerage facilities is an urgent issue for Japan.

下水道管内の点検や調査(以下、総じて「点検調査」という。)は、目視による手法(以下、「目視式点検調査」という。)と機械を用いた手法(以下、「機械式点検調査」という。)に大別される。目視式点検調査は、人孔(マンホール)から作業者が下水道管内に立ち入って内部を目視で確認する手法であり、機械式点検調査は、管口カメラやテレビカメラを下水道管内に挿入して内部を確認する手法である。このように点検調査の手法は概ね確立されているものの、管理総延長が47万kmにも上る下水道管に対して点検調査を行うことは容易ではなく、十分な点検調査が行われていないのが現状である。特に人手不足を抱える地方公共団体では、下水道管の点検調査率が15%程度というところもあり、計画的に点検調査を実施している地方公共団体の割合も2割程度に過ぎないといわれている。 Inspections and surveys inside sewer pipes (hereinafter collectively referred to as "inspection surveys") are referred to as visual methods (hereinafter referred to as "visual inspection surveys") and mechanical methods (hereinafter referred to as "mechanical inspection surveys"). It is roughly divided into.). The visual inspection is a method in which a worker enters the sewer pipe through a manhole and visually checks the inside, and the mechanical inspection is a method in which a pipe opening camera or a TV camera is inserted into the sewer pipe to check the inside. It is a method to confirm. In this way, although the inspection and survey method is generally established, it is not easy to carry out inspection and survey on sewer pipes with a total management length of 470,000 km, and sufficient inspection and survey have not been carried out. Is the current situation. Especially in local governments with labor shortages, the inspection and survey rate for sewer pipes is about 15%, and it is said that the percentage of local governments that carry out inspections and surveys systematically is only about 20%. There is.

上記したとおり、下水道施設の維持管理は極めて重要である一方、人手不足などが原因で十分な点検調査が行われているとはいえない。人手不足を回避するには機械式点検調査が考えられるが、実際に管口カメラやテレビカメラを用いた点検調査を採用した実績は約0.45万km(全体の1/100)程度であり、コストも含めて決定的に有効な点検調査手法とはなっていない。 As mentioned above, while the maintenance of sewerage facilities is extremely important, it cannot be said that sufficient inspections and surveys have been conducted due to labor shortages and other factors. Mechanical inspection surveys can be considered to avoid labor shortages, but the actual number of inspection surveys using tube mouth cameras and TV cameras is about 405,000 km (1/100 of the total). , It is not a decisively effective inspection and investigation method including cost.

そこで、従来手法とは異なる種々の機械式点検調査が、これまで提案されてきた。例えば特許文献1では、いわゆるドローンなど飛行体を利用して管路内の画像を取得する点検調査技術について提案している。 Therefore, various mechanical inspection surveys different from the conventional method have been proposed so far. For example, Patent Document 1 proposes an inspection and investigation technique for acquiring an image in a pipeline using a flying object such as a so-called drone.

特開2017−87917号公報JP-A-2017-87917

特許文献1は、カメラなどの撮像手段を搭載した無人の飛行体が下水道管内を飛行し、飛行中に取得した下水道管内の画像を確認することによって管内に生じたクラック等を検出する点検調査技術である。この手法によれば、従来の機械式点検調査に比して点検調査者等の労力を軽減することができる。 Patent Document 1 is an inspection and investigation technique for detecting cracks and the like generated in a sewer pipe by confirming an image in the sewer pipe acquired during flight by an unmanned air vehicle equipped with an imaging means such as a camera flying in the sewer pipe. Is. According to this method, it is possible to reduce the labor of the inspection surveyor and the like as compared with the conventional mechanical inspection survey.

しかしながら、ドローンなど一般的な飛行体は電力によって駆動し、しかも充電式とされることから、当然ながらその飛行距離は有限である。したがって、点検調査のため所定距離を飛行すると、一旦、飛行体を充電設備まで持ち帰って充電しなければならない。つまり特許文献1の点検調査技術は、直接的な点検調査作業にはそれほど人手がかからないが、飛行体の持ち運びや充電作業など点検調査のための準備作業には相当な労力を要するという問題点がある。また、下水道管内で飛行する状況は人が直接確認することができないことから、飛行に不測の事態が生じた場合も把握することができず、下水道管路の途中で電力を失って水没する事態を回避することができないといった問題も指摘することができる。 However, since a general flying object such as a drone is driven by electric power and is rechargeable, its flight distance is naturally finite. Therefore, once the aircraft has flown a predetermined distance for inspection and investigation, the flying object must be brought back to the charging facility to be charged. That is, the inspection and investigation technique of Patent Document 1 does not require much manpower for direct inspection and investigation work, but has a problem that a considerable amount of labor is required for preparatory work for inspection and investigation such as carrying and charging the flying object. is there. In addition, since it is not possible for a person to directly check the situation of flying in the sewer pipe, it is not possible to grasp even if an unexpected situation occurs in the flight, and the situation where power is lost in the middle of the sewer pipe and it is submerged. It can also be pointed out that the problem cannot be avoided.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち飛行体を所定の充電設備まで持ち帰ることなく、現地で自動的に給電しながら継続して飛行(すなわち点検調査)することができる点検調査用人孔蓋、管路点検調査システム、及び管路点検調査方法を提供することである。 An object of the present invention is to solve the problems of the prior art, that is, to continuously fly (that is, inspection and investigation) while automatically supplying power locally without bringing the flying object back to a predetermined charging facility. It is to provide a human hole lid for inspection and investigation, a pipeline inspection and investigation system, and a pipeline inspection and investigation method.

本願発明は、飛行体が着地し得る「プラットフォーム」と飛行体に給電する「給電設備」とを備えた点検調査用人孔蓋を利用する、という点に着目したものであり、従来にはなかった発想に基づいてなされた発明である。 The present invention focuses on the use of a human hole lid for inspection and investigation equipped with a "platform" on which the aircraft can land and a "power supply facility" for supplying power to the aircraft, which has not been conventionally performed. It is an invention made based on an idea.

本願発明の点検調査用人孔蓋は、管路の人孔に用いる蓋であって、電力による自律飛行が可能な飛行体が着地し得る「プラットフォーム」と、飛行体に給電する「給電設備」、そして飛行体送受信手段(飛行体に搭載)とのデータ送受信を行う「人孔蓋送受信手段」を備えたものである。 The manhole cover for inspection and investigation of the present invention is a lid used for a manhole in a pipeline, and is a "platform" on which an air vehicle capable of autonomous flight by electric power can land, and a "power supply facility" that supplies power to the air vehicle. It is also equipped with a "manhole cover transmitting / receiving means" for transmitting / receiving data to / from the flying object transmitting / receiving means (mounted on the flying body).

本願発明の点検調査用人孔蓋は、衛星測位受信機をさらに備えたものとすることもできる。 The human hole lid for inspection and investigation of the present invention may be further provided with a satellite positioning receiver.

本願発明の点検調査用人孔蓋は、太陽光発電設備をさらに備えたものとすることもできる。この場合の給電設備は、太陽光発電設備によって発電された電気を蓄電することができるものである。 The human hole lid for inspection and investigation of the present invention may be further equipped with a photovoltaic power generation facility. The power supply equipment in this case can store the electricity generated by the solar power generation equipment.

本願発明の管路点検調査システムは、飛行体によって管路内を点検調査するシステムであって、飛行体と本願発明の点検調査用人孔蓋を備えたものである。このうち飛行体は、電力による自律飛行が可能であり、自律飛行を制御する飛行体制御手段と、管路内における自機位置を測位する自機位置測位手段、管路内の管内画像を取得する画像取得手段、そして第1人孔蓋送受信手段(点検調査用人孔蓋が具備)とのデータ送受信を行う飛行体送受信手段を有するものである。また飛行体は、起点側の点検調査用人孔蓋のプラットフォームから、終点側の点検調査用人孔蓋のプラットフォームまで、飛行体制御手段による制御にしたがって管路内を自律飛行し、終点側の点検調査用人孔蓋のプラットフォームに着地すると給電設備によって給電される。さらに飛行体は、自律飛行しながら連続的(定期的あるいは断続的)に、自機位置測位手段によって自機位置を測位し、画像取得手段によって管内画像を取得する。そして飛行体送受信手段が、管内画像と自機位置を第1人孔蓋送受信手段に送信すると、第1人孔蓋送受信手段が、飛行体送受信手段によって送信された管内画像と自機位置を受信する。 The pipeline inspection and investigation system of the present invention is a system for inspecting and inspecting the inside of a pipeline by an air vehicle, and includes an air vehicle and a human hole lid for inspection and investigation of the present invention. Of these, the air vehicle is capable of autonomous flight by electric power, and acquires an air vehicle control means for controlling autonomous flight, a self-positioning means for positioning its own position in the pipeline, and an in-pipe image in the pipeline. It has an image acquisition means for transmitting and receiving data, and an air vehicle transmitting / receiving means for transmitting / receiving data to / from a first manhole cover transmitting / receiving means (provided with a manhole cover for inspection and investigation). In addition, the air vehicle autonomously flies in the pipeline from the platform of the human hole lid for inspection and investigation on the starting point side to the platform of the human hole lid for inspection and investigation on the end point side under the control of the flying object control means, and the inspection and investigation on the end point side. When it lands on the platform of the user hole lid, it is powered by the power supply equipment. Further, the flying object continuously (regularly or intermittently) positions its own aircraft by the own aircraft positioning means while autonomously flying, and acquires an image in the jurisdiction by the image acquisition means. Then, when the flying object transmitting / receiving means transmits the in-pipe image and the position of the aircraft to the first manhole cover transmitting / receiving means, the first manhole cover transmitting / receiving means receives the in-pipe image and the own position transmitted by the flying object transmitting / receiving means. To do.

本願発明の管路点検調査システムは、情報管理部をさらに備えたものとすることもできる。なおこの場合の点検調査用人孔蓋は、第2人孔蓋送受信手段をさらに有するものとされる。情報管理部は、第2人孔蓋送受信手段とのデータ送受信を行う管理部送受信手段を有しており、第2人孔蓋送受信手段が、管内画像と自機位置を管理部送受信手段に送信すると、管理部送受信手段が、第2人孔蓋送受信手段によって送信された管内画像と自機位置を受信する。 The pipeline inspection and investigation system of the present invention may further include an information management unit. The manhole cover for inspection and investigation in this case is further provided with a second manhole cover transmitting / receiving means. The information management unit has a management unit transmission / reception means for transmitting / receiving data to / from the second manhole cover transmission / reception means, and the second manhole cover transmission / reception means transmits an in-pipe image and its own position to the management unit transmission / reception means. Then, the management unit transmission / reception means receives the in-pipe image and the own machine position transmitted by the second manhole cover transmission / reception means.

本願発明の管路点検調査システムは、情報管理部が地理情報システム(背景地図に地理空間情報を表示するシステム)をさらに有するものとすることもできる。この地理情報システムは、管内画像を画像取得時の自機位置に関連付けて記憶し、さらに自機位置に基づいて自律飛行中の飛行体の位置を背景地図上に表示するとともに、自機位置に基づいて管内画像を背景地図上に表示することができるものである。 In the pipeline inspection and investigation system of the present invention, the information management unit may further have a geographic information system (a system for displaying geospatial information on a background map). This geographic information system stores the image in the jurisdiction in association with the position of the own aircraft at the time of image acquisition, and also displays the position of the flying object during autonomous flight on the background map based on the position of the own aircraft, and at the position of the own aircraft. Based on this, the image in the jurisdiction can be displayed on the background map.

本願発明の管路点検調査システムは、点検調査用人孔蓋が衛星測位受信機をさらに有するものとすることもできる。この場合、第2人孔蓋送受信手段が、衛星測位受信機の受信データを管理部送受信手段に送信すると、地理情報システムが、点検調査用人孔蓋にあらかじめ付与された識別子に関連付けて点検調査用人孔蓋の位置情報を記憶し、さらに位置情報に基づいて点検調査用人孔蓋を背景地図上に表示する。 In the pipeline inspection and investigation system of the present invention, the human hole lid for inspection and investigation may further have a satellite positioning receiver. In this case, when the second manhole cover transmitting / receiving means transmits the received data of the satellite positioning receiver to the management unit transmitting / receiving means, the geographic information system associates the manhole cover for inspection and investigation with the identifier given in advance to the manhole cover for inspection and investigation. The position information of the hole lid is stored, and the manhole cover for inspection and investigation is displayed on the background map based on the position information.

本願発明の管路点検調査システムは、電力残量と必要電力量に応じて飛行体制御手段が飛行体の自律飛行を制御するものとすることもできる。この場合、飛行体制御手段は、自機位置から終点側の点検調査用人孔蓋までの飛行距離を求めるとともに、飛行距離に要する必要電力量を求め、さらに電力残量を取得し、電力残量と必要電力量とを照らし合わせる。そして飛行体制御手段は、電力残量が必要電力量を超えるときは終点側の点検調査用人孔蓋まで自律飛行するよう制御し、電力残量が必要電力量を下回るときは自機位置から最も近い点検調査用人孔蓋まで自律飛行するよう制御する。 In the pipeline inspection and investigation system of the present invention, the flying object control means may control the autonomous flight of the flying object according to the remaining electric power and the required electric energy. In this case, the flying object control means obtains the flight distance from the position of the own aircraft to the human hole lid for inspection and investigation on the end point side, obtains the required electric energy required for the flight distance, further acquires the remaining electric power, and obtains the remaining electric power. And the required electric energy. When the remaining electric power exceeds the required electric energy, the flying object control means controls to autonomously fly to the human hole lid for inspection and investigation on the end point side, and when the remaining electric power is less than the required electric energy, the most from the position of the own aircraft. Control to fly autonomously to the nearby human hole lid for inspection and investigation.

本願発明の管路点検調査方法は、本願発明の管路点検調査システムを用いて管路内を点検調査する方法であって、点検調査計画工程と蓋交換工程、飛行体配置工程、飛行工程、給電工程、第1送受信工程を備えた方法である。このうち点検調査計画工程では、2以上の管路用人孔を対象管路用人孔として抽出するとともに、起点側管路用人孔(飛行体が出発する管路用人孔)と終点側管路用人孔(飛行体が到着する管路用人孔)を設定する。また蓋交換工程では、対象管路用人孔の蓋を取り外すとともに点検調査用人孔蓋を設置し、飛行体配置工程では、起点側管路用人孔に設置された点検調査用人孔蓋のプラットフォームに飛行体を配置する。飛行工程では、飛行体が起点側管路用人孔のプラットフォームから終点側管路用人孔のプラットフォームまで飛行体制御手段の制御にしたがって管路内を自律飛行し、しかも自律飛行しながら連続的(定期的あるいは断続的)に自機位置測位手段によって自機位置を測位するとともに、画像取得手段によって管内画像を取得する。給電工程では、飛行体が終点側管路用人孔に設置された点検調査用人孔蓋のプラットフォームに着地したときに給電設備によって給電され、第1送受信工程では、飛行体送受信手段が管内画像と自機位置を第1人孔蓋送受信手段に送信すると、第1人孔蓋送受信手段が飛行体送受信手段によって送信された管内画像と自機位置を受信する。 The pipeline inspection and investigation method of the present invention is a method of inspecting and inspecting the inside of a pipeline by using the pipeline inspection and investigation system of the present invention, and includes an inspection and investigation planning process, a lid replacement process, a flying object placement process, and a flight process. This method includes a power feeding process and a first transmission / reception process. Of these, in the inspection and investigation planning process, two or more pipeline human holes are extracted as target pipeline human holes, and the starting side pipeline human holes (the conduit human holes from which the flying object departs) and the ending side pipeline human holes are extracted. Set (the human hole for the conduit where the aircraft arrives). In the lid replacement process, the lid of the human hole for the target pipeline is removed and the human hole lid for inspection and investigation is installed. Place the body. In the flight process, the flying object autonomously flies in the pipeline from the platform of the human hole for the starting point side to the platform of the human hole for the ending side pipeline under the control of the flying object control means, and continuously (regularly) while flying autonomously. The position of the own machine is positioned by the position positioning means of the own machine (targetly or intermittently), and the image in the jurisdiction is acquired by the image acquisition means. In the power supply process, power is supplied by the power supply equipment when the air vehicle lands on the platform of the manhole cover for inspection and investigation installed in the manhole for the pipeline on the end point side. When the aircraft position is transmitted to the first manhole cover transmitting / receiving means, the first manhole cover transmitting / receiving means receives the in-pipe image transmitted by the flying object transmitting / receiving means and the own aircraft position.

本願発明の管路点検調査方法は、第2送受信工程をさらに備えた方法とすることもできる。この場合、管路点検調査システムは情報管理部をさらに備えたものであって、点検調査用人孔蓋は第2人孔蓋送受信手段をさらに有するものであり、情報管理部は管理部送受信手段を有するものとされる。第2送受信工程では、第2人孔蓋送受信手段が管内画像と自機位置を管理部送受信手段に送信すると、管理部送受信手段が第2人孔蓋送受信手段によって送信された管内画像と自機位置を受信する。 The pipeline inspection and investigation method of the present invention may be a method further including a second transmission / reception step. In this case, the pipeline inspection and investigation system is further provided with an information management unit, the inspection and investigation manhole cover further has a second manhole cover transmission / reception means, and the information management unit has a management unit transmission / reception means. It is supposed to have. In the second transmission / reception step, when the second manhole cover transmission / reception means transmits the in-pipe image and the position of the own machine to the management unit transmission / reception means, the management unit transmission / reception means transmits the in-pipe image and the own machine transmitted by the second manhole cover transmission / reception means. Receive the position.

本願発明の管路点検調査方法は、監視工程をさらに備えた方法とすることもできる。この場合、情報管理部は地理情報システムをさらに有するものとされる。監視工程では、地理情報システムを用い、自機位置に基づいて自律飛行中の飛行体の位置を背景地図上に表示するとともに、自機位置に基づいて管内画像を背景地図上に表示する。 The pipeline inspection and investigation method of the present invention may be a method further including a monitoring process. In this case, the information management department is supposed to have a geographic information system. In the monitoring process, the geographic information system is used to display the position of the flying object in autonomous flight on the background map based on the position of the aircraft, and display the image in the jurisdiction on the background map based on the position of the aircraft.

本願発明の点検調査用人孔蓋、管路点検調査システム、及び管路点検調査方法には、次のような効果がある。
(1)従来の機械式点検調査に比して、点検調査者等の労力を大幅に軽減することができる。
(2)飛行体を所定の充電設備まで持ち帰ることなく現地で自動的に給電されることから、点検調査準備にかかる労力を軽減することができるうえ、長い時間継続して飛行(すなわち点検調査)することができる。
(3)下水道管内の画像を取得することから、客観的かつ定量的に下水道管の劣化度を評価することができる。
(4)地理情報システムを用いることで、所望位置における下水道管の劣化度について画像を参照しながら評価することができるうえ、飛行中の飛行体の自機位置をリアルタイムでしかも直感的に把握することができる。
(5)点検調査中も点検調査用人孔蓋で人孔を閉鎖していることから、道路の通行止め時間を従来に比して大幅に短縮することができる。
The human hole lid for inspection and investigation, the pipeline inspection and investigation system, and the pipeline inspection and investigation method of the present invention have the following effects.
(1) Compared with the conventional mechanical inspection survey, the labor of the inspection surveyor and the like can be significantly reduced.
(2) Since the air vehicle is automatically supplied with power locally without being brought back to the specified charging equipment, the labor required for preparation for inspection and investigation can be reduced, and the flight continues for a long time (that is, inspection and investigation). can do.
(3) Since the image inside the sewer pipe is acquired, the degree of deterioration of the sewer pipe can be evaluated objectively and quantitatively.
(4) By using the geographic information system, the degree of deterioration of the sewer pipe at the desired position can be evaluated with reference to the image, and the position of the flying object in flight can be grasped in real time and intuitively. be able to.
(5) Since the manhole is closed by the manhole lid for inspection and investigation even during the inspection and investigation, the road closure time can be significantly shortened as compared with the conventional case.

下水道管用の人孔に本願発明の点検調査用人孔蓋が設置され、飛行体が下水道管内を飛行する状況を模式的に示す断面図。A cross-sectional view schematically showing a situation in which a manhole lid for inspection and investigation of the present invention is installed in a manhole for a sewer pipe and an air vehicle flies in the sewer pipe. 本願発明の管路点検調査システムの主な構成を示すブロック図。The block diagram which shows the main structure of the pipeline inspection investigation system of this invention. 本願発明の点検調査用人孔蓋の主な構成を示すブロック図。The block diagram which shows the main structure of the human hole lid for inspection and investigation of this invention. 下水用人孔に設置された本願発明の点検調査用人孔蓋を示す部分断面図。A partial cross-sectional view showing a human hole lid for inspection and investigation of the present invention installed in a human hole for sewage. 飛行体の主な構成を示すブロック図。A block diagram showing the main configurations of an air vehicle. 電力残量に応じて飛行体制御手段が飛行体を適宜誘導する処理の流れを示すフロー図。The flow chart which shows the flow of the process which the flying object control means guides the flying object appropriately according to the remaining electric power. 情報管理部の主な構成を示すブロック図。A block diagram showing the main configuration of the information management unit. 本願発明の管路点検調査システムの主な工程の流れを示すフロー図。The flow chart which shows the flow of the main process of the pipeline inspection investigation system of this invention.

本願発明の点検調査用人孔蓋、管路点検調査システム、及び管路点検調査方法の実施形態の一例を、図に基づいて説明する。なお本願発明は、共同溝や電線共同溝、情報ボックスなど人孔(マンホール)が設けられたあらゆる管路を対象とすることができ、さらに人孔そのものの点検調査にも適用することができるが、便宜上ここでは、下水道管を対象とする例で説明する。 An example of an embodiment of the human hole lid for inspection and investigation, the pipeline inspection and investigation system, and the pipeline inspection and investigation method of the present invention will be described with reference to the drawings. It should be noted that the present invention can be applied to all pipelines provided with manholes such as utility tunnels, electric wire utility tunnels, and information boxes, and can also be applied to inspections and investigations of human holes themselves. For convenience, here, an example in which a sewer pipe is targeted will be described.

1.全体概要
図1は、下水道管用の人孔(以下、単に「下水用人孔MH」という。)に本願発明の点検調査用人孔蓋100が設置され、飛行体200が下水道管SP内を飛行する状況を模式的に示す断面図である。この図に示すように、本願発明を実施するにあたっては、下水用人孔MHの本来の蓋を取り外して本願発明の点検調査用人孔蓋100を設置し、下水道管SP内で飛行体200を飛行させる。
1. 1. Overall Overview FIG. 1 shows a situation in which the inspection and investigation manhole lid 100 of the present invention is installed in a manhole for a sewer pipe (hereinafter, simply referred to as “sewage manhole MH”), and the flying object 200 flies in the sewer pipe SP. It is sectional drawing which shows typically. As shown in this figure, in carrying out the present invention, the original lid of the sewage human hole MH is removed, the inspection and investigation human hole lid 100 of the present invention is installed, and the flying object 200 is flown in the sewer pipe SP. ..

点検調査用人孔蓋100は、起点側の下水用人孔MH(図では左側)と終点側の下水用人孔MH(図では右側)を含む2以上の下水用人孔MHに設置され、飛行体200は、起点側の下水用人孔MHに設置された点検調査用人孔蓋100(以下、「起点側点検調査用人孔蓋100」という。)のプラットフォーム120から出発して、下水道管SP内の画像(以下、「管内画像」という。)を取得しながら飛行していき、終点側の下水用人孔MHに設置された点検調査用人孔蓋100(以下、「終点側点検調査用人孔蓋100」という。)のプラットフォーム120に到達する。なお飛行中、飛行体200の位置(以下、「自機位置」という。)が随時(連続的、定期的、または断続的に)測位され、この自機位置と管内画像は点検調査用人孔蓋100が具備する送受信手段(以下、「人孔蓋送受信手段」という。)に送信される。また、飛行体200が終点側点検調査用人孔蓋100のプラットフォーム120に着地すると、飛行体200は点検調査用人孔蓋100が具備する給電設備によって給電される。 The inspection and investigation human hole lid 100 is installed in two or more sewage human hole MHs including the sewage human hole MH on the starting point side (left side in the figure) and the sewage human hole MH on the end point side (right side in the figure). , Starting from the platform 120 of the inspection and investigation human hole lid 100 (hereinafter referred to as "starting point side inspection and investigation human hole lid 100") installed in the sewage human hole MH on the starting point side, the image inside the sewer pipe SP (hereinafter referred to as "the starting point side inspection and investigation human hole lid 100"). , "In-pipe image"), and the inspection and investigation human hole lid 100 installed in the sewage human hole MH on the end point side (hereinafter referred to as "end point side inspection and investigation human hole lid 100"). Reach platform 120. During flight, the position of the aircraft 200 (hereinafter referred to as "own aircraft position") is positioned at any time (continuously, regularly, or intermittently), and the own aircraft position and the image inside the pipe are the manhole cover for inspection and investigation. It is transmitted to the transmission / reception means (hereinafter, referred to as "manhole cover transmission / reception means") included in the 100. Further, when the air vehicle 200 lands on the platform 120 of the end point side inspection / investigation human hole lid 100, the air vehicle 200 is supplied with power by the power feeding equipment provided in the inspection / investigation human hole lid 100.

2.管路点検調査システム
次に、本願発明の管路点検調査システムについて詳しく説明する。なお本願発明の点検調査用人孔蓋100は、本願発明の管路点検調査システムを構成するものであるから、管路点検調査システムを説明する中で点検調査用人孔蓋100についても説明することとする。また本願発明の管路点検調査方法は、管路点検調査システムを用いて管路(下水道管)を点検調査する方法であり、したがってまずは管路点検調査システムについて説明し、その後に本願発明の管路点検調査方法について説明することとする。
2. Pipeline inspection and investigation system Next, the pipeline inspection and investigation system of the present invention will be described in detail. Since the inspection and investigation human hole lid 100 of the present invention constitutes the pipeline inspection and investigation system of the present invention, the inspection and investigation human hole lid 100 will also be described in the explanation of the pipeline inspection and investigation system. To do. Further, the pipeline inspection and investigation method of the present invention is a method of inspecting and inspecting a pipeline (sewer pipe) using a pipeline inspection and investigation system. Therefore, the pipeline inspection and investigation system will be described first, and then the pipe of the present invention will be described. The road inspection survey method will be explained.

図2は、本願発明の管路点検調査システムの主な構成を示すブロック図である。この図に示すように管路点検調査システムは、2以上(図では3個)の点検調査用人孔蓋100と、1又は2以上(図では2機)の飛行体200を含んで構成され、さらに情報管理部300を含んで構成することもできる。この情報管理部300は、飛行体200が取得した自機位置と管内画像を、点検調査用人孔蓋100の人孔蓋送受信手段を介して収集するものであり、現地(下水用人孔MH)から離れた場所(管理棟やデータセンターなど)に設けることができる。 FIG. 2 is a block diagram showing a main configuration of the pipeline inspection and investigation system of the present invention. As shown in this figure, the pipeline inspection and investigation system is configured to include two or more (three in the figure) inspection and investigation human hole lids 100 and one or two or more (two in the figure) flying objects 200. Further, the information management unit 300 can be included in the configuration. The information management unit 300 collects the position of the aircraft and the image in the pipe acquired by the flying object 200 via the manhole cover transmitting / receiving means of the manhole cover 100 for inspection and investigation, and collects the images from the site (manhole MH for sewage). It can be installed in a remote location (administrative building, data center, etc.).

(点検調査用人孔蓋)
図3は、本願発明の点検調査用人孔蓋100の主な構成を示すブロック図であり、図4は、下水用人孔MHに設置された点検調査用人孔蓋100を示す部分断面図である。図3に示すように点検調査用人孔蓋100は、蓋本体110とプラットフォーム120、給電設備130、人孔蓋送受信手段140(図3では第1人孔蓋送受信手段141)を含んで構成され、さらに第2人孔蓋送受信手段142や衛星測位受信機150や太陽光発電設備160、ロッド170を含んで構成することもできる。このうち蓋本体110は、従来用いられている下水用人孔MH用の蓋を利用することができる。
(Human hole lid for inspection and investigation)
FIG. 3 is a block diagram showing a main configuration of the inspection / investigation human hole lid 100 of the present invention, and FIG. 4 is a partial cross-sectional view showing the inspection / investigation human hole lid 100 installed in the sewage human hole MH. As shown in FIG. 3, the manhole cover 100 for inspection and investigation includes a lid main body 110, a platform 120, a power feeding facility 130, and a manhole cover transmitting / receiving means 140 (in FIG. 3, the first manhole cover transmitting / receiving means 141). Further, the second manhole cover transmission / reception means 142, the satellite positioning receiver 150, the solar power generation facility 160, and the rod 170 may be included. Of these, as the lid main body 110, a conventionally used lid for sewage human hole MH can be used.

プラットフォーム120は、飛行体200を着地させるいわば着地台であり、ロッド170を介して蓋本体110に取り付けることができる。図4に示すように蓋本体110を所定位置に設置したときのプラットフォーム120は、飛行体200を着地させるため、その上面が略水平(水平含む)な平坦面とされ、また下水道管SP内に位置するように配置される。ただし蓋本体110と下水道管SPとの間隔はそれぞれ下水用人孔MHによって異なることから、ロッド170を伸縮自在なものとし、プラットフォーム120の位置(高さ)を調整することができる構造にするとよい。 The platform 120 is a so-called landing platform on which the flying object 200 is landed, and can be attached to the lid main body 110 via the rod 170. As shown in FIG. 4, the platform 120 when the lid main body 110 is installed at a predetermined position has a flat surface whose upper surface is substantially horizontal (including horizontal) in order to land the flying object 200, and is also inside the sewer pipe SP. Arranged to be located. However, since the distance between the lid body 110 and the sewer pipe SP differs depending on the sewage human hole MH, it is preferable that the rod 170 is expandable and contractible so that the position (height) of the platform 120 can be adjusted.

給電設備130は、電力によって駆動する飛行体200に電気を供給するものである。特に、飛行体200がプラットフォーム120に着地すると、その飛行体200に対して給電設備130が自動的に給電を開始する仕様にするとよい。この場合、飛行体200がプラットフォーム120のうちあらかじめ設定された範囲内に着地することとし、電磁誘導方式によって飛行体200に給電する仕様にすることができる。例えば、プラットフォーム120の上面全体を電極とし、プラットフォーム120の任意位置に着地した飛行体200に対して給電可能な構造とするとよい。あるいは、飛行体200が着地すると一方(例えばプラットフォーム120)のプラグが他方ソケット(例えば飛行体200)のソケット(コンセント)に差し込まれる仕様にすることもできる。 The power supply equipment 130 supplies electricity to the flying object 200 driven by electric power. In particular, when the flying object 200 lands on the platform 120, the power feeding equipment 130 may automatically start supplying power to the flying object 200. In this case, the flying object 200 may land within a preset range of the platform 120, and the specifications may be such that power is supplied to the flying object 200 by an electromagnetic induction method. For example, the entire upper surface of the platform 120 may be used as an electrode, and the structure may be such that power can be supplied to the flying object 200 that has landed at an arbitrary position on the platform 120. Alternatively, when the flying object 200 lands, the plug of one (for example, the platform 120) can be inserted into the socket (outlet) of the other socket (for example, the flying object 200).

給電設備130が飛行体200に供給する電気は、キャプタイヤ等を利用して点検調査用人孔蓋100の設置位置まで送電することもできるし、相当容量を有する蓄電池を給電設備130の周辺に設置することもできる。あるいは、発電設備を給電設備130の周辺に設置することもできる。この場合、蓋本体110の上面側(外側)に太陽光発電設備160を取り付け、太陽光発電設備160によって発電された電気を給電設備130に蓄電させる構成にするとよい。 The electricity supplied by the power supply equipment 130 to the flying object 200 can be transmitted to the installation position of the human hole lid 100 for inspection and investigation by using a cap tire or the like, and a storage battery having a considerable capacity is installed around the power supply equipment 130. You can also do it. Alternatively, the power generation equipment can be installed around the power supply equipment 130. In this case, the photovoltaic power generation facility 160 may be attached to the upper surface side (outside) of the lid main body 110, and the electricity generated by the photovoltaic power generation facility 160 may be stored in the power supply facility 130.

衛星測位受信機150は、衛星測位システム(GNSS:GlobalNavigationSatelliteSystem)によって測位するためのものであり、測位衛星からの搬送波(電波)を受信する受信機である。そのため衛星測位受信機150は、太陽光発電設備160と同様、蓋本体110の上面側(外側)に取り付けるとよい。 The satellite positioning receiver 150 is for positioning by a satellite positioning system (GNSS: Global Navigation Satellite System), and is a receiver that receives a carrier wave (radio wave) from a positioning satellite. Therefore, the satellite positioning receiver 150 may be attached to the upper surface side (outside) of the lid main body 110 like the photovoltaic power generation facility 160.

第1人孔蓋送受信手段141は、飛行体200から送信される管内画像と自機位置を受信する手段であり、第2人孔蓋送受信手段142は、第1人孔蓋送受信手段141が受信した管内画像と自機位置を情報管理部300に送信する手段である。そのため、第1人孔蓋送受信手段141で受信したデータは第2人孔蓋送受信手段142に受け渡される構成とされる。また第2人孔蓋送受信手段142は、管内画像と自機位置とともに、衛星測位受信機150が測位衛星からの受信した情報(以下、「受信データ」という。)を情報管理部300に送信することもできる。 The first manhole cover transmitting / receiving means 141 is a means for receiving the in-pipe image and its own position transmitted from the flying object 200, and the second manhole cover transmitting / receiving means 142 is received by the first manhole cover transmitting / receiving means 141. This is a means for transmitting the in-pipe image and the position of the own machine to the information management unit 300. Therefore, the data received by the first manhole cover transmitting / receiving means 141 is passed to the second manhole cover transmitting / receiving means 142. Further, the second manhole cover transmitting / receiving means 142 transmits the information received from the positioning satellite (hereinafter referred to as “received data”) by the satellite positioning receiver 150 together with the in-pipe image and the position of the own machine to the information management unit 300. You can also do it.

ここで、第1人孔蓋送受信手段141と飛行体200との通信(データ送受信)は、閉鎖空間での通信となり、飛行体200が移動することから無線通信が望ましい。そのため、飛行体200が具備する通信手段(以下、「飛行体送受信手段」という。)と第1人孔蓋送受信手段141は、それぞれ無線通信が可能であっていわゆる屋内通信が可能なものを採用するとよい。一方、第2人孔蓋送受信手段142と情報管理部300との通信(データ送受信)は、通常の屋外での通信となる。ただし、点検調査用人孔蓋100が道路内に設置される場合もあることからやはり無線通信が望ましく、情報管理部300が具備する通信手段(以下、「管理部送受信手段」という。)と第2人孔蓋送受信手段142は、それぞれ無線通信が可能であっていわゆる屋外通信が可能なものを採用するとよい。なお、第1人孔蓋送受信手段141と第2人孔蓋送受信手段142は別体として構成することもできるし、屋内外対応のものを利用して第1人孔蓋送受信手段141と第2人孔蓋送受信手段142を一体のものとして構成することもできる。 Here, the communication (data transmission / reception) between the first manhole cover transmitting / receiving means 141 and the flying object 200 is communication in a closed space, and wireless communication is desirable because the flying object 200 moves. Therefore, the communication means (hereinafter referred to as "flying body transmitting / receiving means") and the first manhole cover transmitting / receiving means 141 provided in the flying object 200 are respectively capable of wireless communication and so-called indoor communication. It is good to do it. On the other hand, the communication (data transmission / reception) between the second manhole cover transmission / reception means 142 and the information management unit 300 is normal outdoor communication. However, since the human hole lid 100 for inspection and investigation may be installed on the road, wireless communication is still desirable, and the communication means provided by the information management unit 300 (hereinafter referred to as "management unit transmission / reception means") and the second. As the human hole lid transmitting / receiving means 142, it is preferable to adopt one capable of wireless communication and so-called outdoor communication. The first manhole cover transmitting / receiving means 141 and the second manhole cover transmitting / receiving means 142 can be configured as separate bodies, or the first manhole cover transmitting / receiving means 141 and the second manhole cover transmitting / receiving means 141 can be used indoors or outdoors. The manhole cover transmission / reception means 142 can also be configured as an integral unit.

(飛行体)
図5は、飛行体200の主な構成を示すブロック図である。この図に示すように飛行体200は、飛行体本体210と飛行体制御手段220、自機位置測位手段230、画像取得手段240、飛行体送受信手段250を含んで構成され、さらに飛行計画記憶手段260や人孔蓋記憶手段270を含んで構成することもできる。なお、飛行体制御手段220と自機位置測位手段230、画像取得手段240、飛行体送受信手段250、飛行計画記憶手段260、人孔蓋記憶手段270は、飛行体本体210に搭載される。
(Flying body)
FIG. 5 is a block diagram showing a main configuration of the flying object 200. As shown in this figure, the flight body 200 includes a flight body main body 210, a flight body control means 220, a self-positioning means 230, an image acquisition means 240, and a flight body transmission / reception means 250, and further includes flight plan storage means. It can also include 260 and a manhole cover storage means 270. The flight object control means 220, the own aircraft positioning means 230, the image acquisition means 240, the flight object transmission / reception means 250, the flight plan storage means 260, and the manhole cover storage means 270 are mounted on the flight body main body 210.

飛行体本体210は、電力によって無人で飛行するUAV(UnmannedAirVehicle)であり、いわゆるドローンなど市場に提供されているものを利用することができる。また飛行体制御手段220は、飛行体本体210の飛行を制御するものであり、コンピュータを利用することができる。なお飛行体本体210は、飛行体制御手段220の制御によって自ら飛行することから、便宜上ここでは飛行体200の飛行のことを「自律飛行」ということとする。 The vehicle body 210 is a UAV (Unmanned Air Vehicle) that flies unmanned by electric power, and a so-called drone or the like provided on the market can be used. Further, the flight object control means 220 controls the flight of the flight object main body 210, and a computer can be used. Since the flight body 210 flies by itself under the control of the flight body control means 220, the flight of the flight body 200 is referred to as "autonomous flight" here for convenience.

飛行体制御手段220は、あらかじめ設定された「飛行計画」にしたがって飛行体200を自律飛行させる。この飛行計画には、起点側点検調査用人孔蓋100と終点側点検調査用人孔蓋100、起点側点検調査用人孔蓋100の種々の座標(特にプラットフォーム120の3次元座標)、終点側点検調査用人孔蓋100の種々の座標(特にプラットフォーム120の3次元座標)、起点側点検調査用人孔蓋100と終点側点検調査用人孔蓋100を連結する下水道管SP、その下水道管SPの線形や3次元座標などが含まれる。起点側点検調査用人孔蓋100と終点側点検調査用人孔蓋100との間に点検調査用人孔蓋100が設置されている場合は、中間点検調査用人孔蓋100とその座標(特にプラットフォーム120の3次元座標)も飛行計画に含まれる。飛行体200が飛行計画記憶手段260を具備する場合、飛行計画は飛行計画記憶手段260によって記憶され、飛行体制御手段220が飛行計画記憶手段260から飛行計画を読み出して実行する。 The flight object control means 220 autonomously flies the flight object 200 according to a preset “flight plan”. In this flight plan, various coordinates (especially three-dimensional coordinates of the platform 120) of the starting point side inspection and investigation human hole lid 100, the ending point side inspection and investigation human hole lid 100, the starting point side inspection and investigation human hole lid 100, and the ending point side inspection and investigation Various coordinates of the user hole lid 100 (particularly the three-dimensional coordinates of the platform 120), the sewer pipe SP connecting the starting point side inspection and investigation human hole lid 100 and the end point side inspection and investigation human hole lid 100, the alignment of the sewer pipe SP, and 3 Dimensional coordinates etc. are included. If the inspection and investigation human hole lid 100 is installed between the start point side inspection and investigation human hole lid 100 and the end point side inspection and investigation human hole lid 100, the intermediate inspection and investigation human hole lid 100 and its coordinates (particularly, the platform 120). (3D coordinates) is also included in the flight plan. When the flight object 200 includes the flight plan storage means 260, the flight plan is stored by the flight plan storage means 260, and the flight body control means 220 reads the flight plan from the flight plan storage means 260 and executes the flight plan.

自機位置測位手段230は、飛行中の飛行体200の自機位置を連続的(定期的あるいは断続的)に取得する手段である。ただし、下水道管SP内では衛星測位の搬送波(電波)を受信することが難しいため、自機位置測位手段230はいわゆる屋内測位技術を利用して自機位置を測位する。屋内測位技術としては、例えば、SLAM(Simultaneous Localization and Mapping)による測位方法や、無線LANのアクセスポイントを利用する測位方法、室内に電波発信機を配置して測位するIMES(IndoorMessagingSystem)、LEDの高速点滅を信号として伝送する可視光通信を利用した測位方法、赤外線通信を利用した測位方法などが挙げられる。このうちSLAMは、カメラやレーザーによって得られるデータを高速に繋いでいくことで、下水道管SP内の3次元地図を作成すると同時に、この3次元地図におけるカメラやレーザー計測機の位置(3次元座標)と姿勢(ω、φ、κ)も得られる技術であり、下水道管SP内における自機位置の測位には適している。なおSLAMを採用した場合、画像取得手段(デジタルカメラやデジタルビデオ)あるいはレーザー計測機を具備することとなり、測位の結果得られる画像取得手段等の3次元座標をそのまま自機位置の座標とすることもできるし、画像取得手段等の3次元座標に基づいて(オフセットを勘案して)自機位置の座標を求めることができる。 The own-machine positioning means 230 is a means for continuously (regularly or intermittently) acquiring the own-machine position of the flying object 200 in flight. However, since it is difficult to receive the carrier wave (radio wave) of satellite positioning in the sewer pipe SP, the own machine positioning means 230 uses so-called indoor positioning technology to position the own machine. Examples of indoor positioning technology include a positioning method using SLAM (Simultaneus Localization and Mapping), a positioning method using a wireless LAN access point, an IMES (Infrared Measuring System) for positioning by arranging a radio wave transmitter indoors, and a high-speed LED. Examples include a positioning method using visible light communication in which blinking is transmitted as a signal, and a positioning method using infrared communication. Of these, SLAM creates a three-dimensional map inside the sewer pipe SP by connecting the data obtained by the camera and laser at high speed, and at the same time, the position (three-dimensional coordinates) of the camera and laser measuring device on this three-dimensional map. ) And posture (ω, φ, κ) are also obtained, and it is suitable for positioning the position of the own machine in the sewer pipe SP. If SLAM is adopted, an image acquisition means (digital camera or digital video) or a laser measuring device will be provided, and the three-dimensional coordinates of the image acquisition means obtained as a result of positioning shall be used as the coordinates of the own machine position. It is also possible to obtain the coordinates of the position of the own machine based on the three-dimensional coordinates of the image acquisition means or the like (taking into account the offset).

飛行体制御手段220は、自機位置測位手段230が取得した自機位置の3次元座標と、飛行計画(特に下水道管SPの線形や3次元座標)とを照らし合わせ、現在の自機位置が飛行計画から著しく外れている場合は、自律飛行を修正する機能を有するものとすることもできる。この場合、起点側点検調査用人孔蓋100の位置や終点側点検調査用人孔蓋100の位置、中間の点検調査用人孔蓋100の位置、下水道管SPの線形等を規定する座標系と、自機位置測位手段230が取得した自機位置を規定する座標系は、同じ座標系とすることが望ましい。例えば、両者の座標系を世界測地系といったいわゆる絶対座標系で統一することもできるし、両者の座標系をいわゆる任意座標系(ローカル座標系)で統一してもよい。 The vehicle body control means 220 compares the three-dimensional coordinates of the own aircraft position acquired by the own aircraft positioning means 230 with the flight plan (particularly the alignment and three-dimensional coordinates of the sewer pipe SP), and the current own aircraft position is determined. It may also have the ability to modify autonomous flight if it deviates significantly from the flight plan. In this case, the coordinate system that defines the position of the human hole lid 100 for inspection and investigation on the starting point side, the position of the human hole lid 100 for inspection and investigation on the end point side, the position of the human hole lid 100 for inspection and investigation in the middle, the alignment of the sewer pipe SP, etc. It is desirable that the coordinate system that defines the position of the own machine acquired by the machine position positioning means 230 is the same coordinate system. For example, both coordinate systems may be unified by a so-called absolute coordinate system such as a world geodetic system, or both coordinate systems may be unified by a so-called arbitrary coordinate system (local coordinate system).

画像取得手段240は、飛行体200が自律飛行しながら連続的(定期的あるいは断続的)に管内画像を取得する手段であり、例えばデジタルカメラやデジタルビデオ、あるいは赤外線カメラ、近赤外線カメラなどを利用することができる。自機位置測位手段230がSLAMを採用し画像取得手段を具備する場合、画像取得手段240はSLAM用のものと兼用することもできる。もちろん、目的が違うため画像取得手段240とSLAM用のものはそれぞれ別に用意してもよい。画像取得手段240は、管内画像を広く撮影できるものが望ましく、用いられるレンズは広角のもの(望ましくは画角120〜190°のもの)が適し、超広角レンズや円周魚眼レンズを採用するとよい。 The image acquisition means 240 is a means for the flying object 200 to continuously (regularly or intermittently) acquire in-pipe images while autonomously flying, and uses, for example, a digital camera, a digital video, an infrared camera, a near-infrared camera, or the like. can do. When the own machine positioning means 230 employs SLAM and includes image acquisition means, the image acquisition means 240 can also be used for SLAM. Of course, since the purpose is different, the image acquisition means 240 and the one for SLAM may be prepared separately. The image acquisition means 240 is preferably one capable of taking a wide image in a tube, and a wide-angle lens (preferably one having an angle of view of 120 to 190 °) is suitable, and an ultra-wide-angle lens or a circumferential fisheye lens is preferable.

また、画像取得手段240が画像を取得する際に照明を与える照明手段を設けることもできる。この照明手段は、光を常時照射する仕様とすることもできるし、画像取得手段240が画像取得するタイミングで(つまり画像取得手段240による画像取得と同期して)光を照射する仕様とすることもできる。 Further, it is also possible to provide a lighting means that gives illumination when the image acquisition means 240 acquires an image. The lighting means may be specified to constantly irradiate light, or may be specified to irradiate light at the timing when the image acquisition means 240 acquires an image (that is, in synchronization with the image acquisition by the image acquisition means 240). You can also.

飛行体送受信手段250は、点検調査用人孔蓋100の第1人孔蓋送受信手段141に管内画像と自機位置を送信する手段であり、既述したとおり無線通信が可能であっていわゆる屋内通信が可能なものが望ましい。また、管内画像と、その管内画像を取得したとき(あるいは最も近いとき)の自機位置を関連付けて(紐付けて)送信するとよい。なお、管内画像や自機位置は、それぞれ取得するたびに送信してもよいし、ある程度まとめて送信してもよい。 The aircraft body transmitting / receiving means 250 is a means for transmitting an in-pipe image and its own position to the first manhole cover transmitting / receiving means 141 of the inspection / investigation manhole cover 100, and as described above, wireless communication is possible and so-called indoor communication. Is desirable. In addition, it is preferable to associate (link) the image in the jurisdiction with the position of the own machine when the image in the jurisdiction is acquired (or when it is closest) and transmit it. In addition, the image in the jurisdiction and the position of the own machine may be transmitted each time they are acquired, or may be transmitted collectively to some extent.

飛行計画記憶手段260は、既述したとおり飛行計画を記憶するものであり、人孔蓋記憶手段270は、点検調査用人孔蓋100の設置位置(例えば中心座標)やプラットフォーム120の位置を示す3次元座標などを、設置された複数の点検調査用人孔蓋100ごとに記憶するものである。なお、飛行計画記憶手段260と人孔蓋記憶手段270は飛行体本体210に搭載されると説明したが、これに代えて(あるいは加えて)情報管理部300に設置することとし、飛行体送受信手段250と管理部送受信手段によって必要な情報を送受信して利用することもできる。 The flight plan storage means 260 stores the flight plan as described above, and the manhole cover storage means 270 indicates the installation position (for example, center coordinates) of the manhole cover 100 for inspection and investigation and the position of the platform 120. Dimensional coordinates and the like are stored for each of a plurality of installed manhole covers for inspection and investigation. It was explained that the flight plan storage means 260 and the manhole cover storage means 270 are mounted on the flight body main body 210, but instead (or in addition), the flight plan storage means 260 and the manhole cover storage means 270 will be installed in the information management unit 300 to transmit and receive the flight body. Necessary information can be transmitted and received by the means 250 and the management unit transmission / reception means.

飛行体制御手段220は、原則として飛行計画にしたがい飛行体200を終点側点検調査用人孔蓋100に誘導するが、必ずしも飛行体200が飛行計画どおりに自律飛行するとは限らない。下水道管SPを自律飛行している飛行体200は目視確認することはできないため、場合によっては不測の事態が生じて終点側点検調査用人孔蓋100に向かう途中で電力を失い墜落するおそれもある。そこで、飛行体制御手段220が残された電力量(以下、「電力残量」という。)に応じて飛行体200を適宜誘導する仕様を採用することもできる。 As a general rule, the flying object control means 220 guides the flying object 200 to the human hole lid 100 for inspection and investigation on the end point side according to the flight plan, but the flying object 200 does not always fly autonomously according to the flight plan. Since the flying object 200 autonomously flying through the sewer pipe SP cannot be visually confirmed, in some cases, an unexpected situation may occur and the electric power may be lost on the way to the human hole lid 100 for inspection and investigation on the end point side and the aircraft may crash. .. Therefore, it is also possible to adopt a specification in which the flying object control means 220 appropriately guides the flying object 200 according to the remaining electric power (hereinafter, referred to as “remaining electric power”).

図6は、電力残量に応じて飛行体制御手段220が飛行体200を適宜誘導する処理の流れを示すフロー図である。なおこのフロー図では、中央の列に実施する行為を示し、左列にはその行為に必要なものを、右列にはその行為から生ずるものを示している。以下、この図を参照しながら、電力残量に応じて飛行体制御手段220が飛行体200を適宜誘導する処理について詳しく説明する。 FIG. 6 is a flow chart showing a flow of processing in which the flight object control means 220 appropriately guides the flight object 200 according to the remaining electric power. In this flow chart, the central column shows the actions to be performed, the left column shows what is necessary for the action, and the right column shows what results from the action. Hereinafter, with reference to this figure, a process in which the flight object control means 220 appropriately guides the flight object 200 according to the remaining electric power will be described in detail.

飛行体制御手段220の制御によって飛行体200が終点側点検調査用人孔蓋100に向かって自律飛行を行いながら(Step101)、自機位置測位手段230が飛行中の飛行体200の自機位置を連続的(定期的あるいは断続的)に取得する(Step102)。飛行体制御手段220は、自機位置の座標と終点側点検調査用人孔蓋100の座標に基づいて、終点側点検調査用人孔蓋100までの飛行距離を求める(Step103)。このとき、下水道管SPの線形や座標も考慮するとよい。 While the aircraft 200 is autonomously flying toward the end point side inspection and investigation human hole lid 100 under the control of the aircraft control means 220 (Step 101), the own position positioning means 230 determines the own position of the in-flight aircraft 200. Obtained continuously (regularly or intermittently) (Step 102). The flying object control means 220 obtains the flight distance to the end point side inspection and investigation human hole lid 100 based on the coordinates of the own aircraft position and the coordinates of the end point side inspection and investigation human hole lid 100 (Step 103). At this time, it is advisable to consider the alignment and coordinates of the sewer pipe SP.

飛行距離を求めると、単位距離当たりに要する電力量(例えば100m飛行するために必要な電力量)に基づいて、飛行距離に要する電力量(以下、「必要電力量」という。)を求める(Step104)。必要電力量を求めると、飛行体制御手段220は電力残量を取得し(Step105)、必要電力量と電力残量を照らし合わせる(Step106)。そして、電力残量が必要電力量を超えるとき(Step106のYes)、飛行体制御手段220は飛行体200をそのまま終点側点検調査用人孔蓋100に向けて自律飛行させる。一方、電力残量が必要電力量を下回るとき(Step106のNo)、飛行体制御手段220は自機位置から最も近い点検調査用人孔蓋100を検出する(Step107)。具体的には、飛行体制御手段220が自機位置をもって人孔蓋記憶手段270に照会すると、人孔蓋記憶手段270に記憶された複数の点検調査用人孔蓋100中から最も自機位置に近い点検調査用人孔蓋100が選出され、飛行体制御手段220に引き渡される。最寄りの点検調査用人孔蓋100が検出されると、飛行体制御手段220は飛行体200をその最寄りの点検調査用人孔蓋100に向けて自律飛行させる(Step108)。なお、電力残量が必要電力量を下回るときは、最寄りの点検調査用人孔蓋100を検出することなく直ちに起点側点検調査用人孔蓋100に自律飛行させる仕様とすることもできる。 When the flight distance is obtained, the amount of power required for the flight distance (hereinafter referred to as "required power amount") is obtained based on the amount of power required per unit distance (for example, the amount of power required to fly 100 m) (Step 104). ). When the required electric energy is obtained, the vehicle body control means 220 acquires the remaining electric power (Step 105) and compares the required electric energy with the remaining electric power (Step 106). Then, when the remaining electric power exceeds the required electric energy (Yes in Step 106), the flying object control means 220 makes the flying object 200 autonomously fly toward the end point side inspection and investigation human hole lid 100 as it is. On the other hand, when the remaining electric power is less than the required electric energy (No in Step 106), the flying object control means 220 detects the human hole lid 100 for inspection and investigation closest to the position of the own aircraft (Step 107). Specifically, when the flying object control means 220 inquires of the manhole cover storage means 270 with its own position, the manhole cover 100 for inspection and investigation stored in the manhole cover storage means 270 is placed at the most own position. A close manhole cover 100 for inspection and investigation is selected and handed over to the flying object control means 220. When the nearest inspection and investigation human hole lid 100 is detected, the flying object control means 220 autonomously flies the flying object 200 toward the nearest inspection and investigation human hole lid 100 (Step 108). When the remaining amount of electric power is less than the required amount of electric power, the specification may be such that the human hole lid 100 for inspection and investigation on the starting point side is immediately autonomously flown without detecting the nearest human hole lid 100 for inspection and investigation.

飛行体200が、終点側点検調査用人孔蓋100(あるいは最寄りの点検調査用人孔蓋100)に到達し、そのプラットフォーム120に着地すると、飛行体200は終点側点検調査用人孔蓋100(あるいは最寄りの点検調査用人孔蓋100)が具備する給電設備によって給電される。 When the vehicle 200 reaches the end point side inspection and investigation human hole lid 100 (or the nearest inspection and investigation human hole lid 100) and lands on the platform 120, the aircraft body 200 reaches the end point side inspection and investigation human hole lid 100 (or the nearest). The power is supplied by the power supply equipment provided in the human hole lid 100) for inspection and investigation.

(情報管理部)
図7は、情報管理部の主な構成を示すブロック図である。この図に示すように情報管理部300は、管理部送受信手段310を含んで構成され、さらに地理情報システム320やディスプレイ等の表示手段330、人孔情報記憶手段340、管路情報記憶手段350、背景地図記憶手段360、取得情報記憶手段370、人孔蓋記憶手段380を含んで構成することもできる。
(Information Management Department)
FIG. 7 is a block diagram showing a main configuration of the information management unit. As shown in this figure, the information management unit 300 includes a management unit transmission / reception means 310, and further includes a geographic information system 320, a display means 330 such as a display, a human hole information storage means 340, and a pipeline information storage means 350. The background map storage means 360, the acquired information storage means 370, and the human hole lid storage means 380 can also be included.

管理部送受信手段310は、点検調査用人孔蓋100の第2人孔蓋送受信手段142から送信される管内画像と自機位置、衛星受信データ(GNSSデータ)を受信する手段であり、既述したとおり無線通信が可能であっていわゆる屋外通信が可能なものが望ましい。 The management unit transmission / reception means 310 is a means for receiving the in-pipe image, the position of the own machine, and satellite reception data (GNSS data) transmitted from the second manhole cover transmission / reception means 142 of the inspection / investigation manhole cover 100, and has been described above. As you can see, it is desirable that wireless communication is possible and so-called outdoor communication is possible.

人孔情報記憶手段340は、下水用人孔MHごとにその位置座標や属性情報を記憶するものであり、管路情報記憶手段350は、下水道管SPの線形や3次元座標、形状や寸法、材質(断面と長さ)を記憶するものであり、背景地図記憶手段360は、後述する地理情報システム320の背景地図を記憶するものである。また取得情報記憶手段370は、管理部送受信手段310が受信したデータ(管内画像と自機位置、衛星受信データ)を記憶するものであり、管内画像と、その管内画像を取得したとき(あるいは最も近いとき)の自機位置が関連付けられた(紐付けられた)うえで記憶され、自機位置はその自機位置に係る飛行体200と関連付けられた(紐付けられた)うえで記憶される。人孔蓋記憶手段380は、設置された複数の点検調査用人孔蓋100ごとに点検調査用人孔蓋100の設置位置(例えば中心座標)や属性情報を記憶するものであり、それぞれ点検調査用人孔蓋100の識別子(ID:identification)に関連付けられた(紐付けられた)うえで記憶される。これら人孔情報記憶手段340と管路情報記憶手段350、背景地図記憶手段360、取得情報記憶手段370、人孔蓋記憶手段380は、例えばデータベースサーバに構築することができ、ローカルなネットワーク(LAN:Local Area Network)に置くこともできるし、インターネット経由で保存するクラウドサーバとすることもできる。 The human hole information storage means 340 stores the position coordinates and attribute information for each sewage human hole MH, and the pipeline information storage means 350 is a linear or three-dimensional coordinate, shape, dimension, material of the sewer pipe SP. (Cross section and length) are stored, and the background map storage means 360 stores the background map of the geographic information system 320, which will be described later. Further, the acquired information storage means 370 stores the data (in-pipe image, own machine position, satellite received data) received by the management unit transmission / reception means 310, and when the in-pipe image and the in-pipe image are acquired (or most). The position of the aircraft (when close) is stored after being associated (linked), and the position of the aircraft is stored after being associated (linked) with the aircraft 200 related to the position of the aircraft. .. The manhole cover storage means 380 stores the installation position (for example, center coordinates) and attribute information of the inspection and investigation manhole cover 100 for each of the plurality of installed inspection and investigation manhole covers 100, and each of them stores the inspection and investigation manhole cover 100. It is stored after being associated with (associated with) an identifier (ID) of the lid 100. These manhole information storage means 340, pipeline information storage means 350, background map storage means 360, acquisition information storage means 370, and manhole cover storage means 380 can be constructed on a database server, for example, and can be constructed in a local network (LAN). : Local Area Network), or a cloud server that saves via the Internet.

地理情報システム320は、一般に「GIS:Geographic Information System)」と呼ばれるもので、コンピュータ装置を使用して背景地図上に種々の地理空間情報を表示することができるものである。ここで地理空間情報とは、地点(ポイント)や領域(エリア)の位置を示す情報(位置情報)、あるいは位置情報に加えその位置に関連付けられた様々な情報のことであり、地図に記載するための情報という概念を超えたものである。例えば、建物や道路、河川といった地物の場合、地物の位置や形状を表す情報だけでなく、地物が出現した時間、その地物の名称や分類、地物が有する機能など、必要とされる全ての情報を含んだものも、その地物の地理空間情報とすることができる。 The geographic information system 320 is generally called "GIS: Geographic Information System", and can display various geospatial information on a background map by using a computer device. Here, geospatial information is information (position information) indicating the position of a point (point) or area (area), or various information associated with the position in addition to the position information, and is described on a map. It goes beyond the concept of information for. For example, in the case of features such as buildings, roads, and rivers, not only information indicating the position and shape of the feature, but also the time when the feature appeared, the name and classification of the feature, and the functions of the feature are necessary. The information including all the information to be provided can also be the geospatial information of the feature.

地理情報システム320は、背景地図記憶手段360から読み出した背景地図を表示手段330に表示するとともに、人孔情報記憶手段340から読み出した下水用人孔MHを背景地図のうちその設置位置に表示し、管路情報記憶手段350から読み出した下水道管SPを背景地図のうちその敷設位置に表示し、人孔蓋記憶手段380から読み出した点検調査用人孔蓋100を背景地図のうちその設置位置に表示することができる。さらに地理情報システム320は、取得情報記憶手段370から読み出した管内画像を背景地図のうちその取得位置に表示することができ、取得情報記憶手段370から読み出した自機位置に基づいて飛行体200の位置をリアルタイムで背景地図上に表示することができる。このとき複数の飛行体200が自律飛行している場合は、飛行体200ごとにその位置をリアルタイムで背景地図上に表示することができる。 The geographic information system 320 displays the background map read from the background map storage means 360 on the display means 330, and displays the sewage manhole MH read from the manhole information storage means 340 at the installation position of the background map. The sewer pipe SP read from the pipeline information storage means 350 is displayed at the laying position on the background map, and the manhole cover 100 for inspection and investigation read from the manhole cover storage means 380 is displayed at the installation position on the background map. be able to. Further, the geographic information system 320 can display the in-pipe image read from the acquired information storage means 370 at the acquired position in the background map, and based on the position of the own aircraft read from the acquired information storage means 370, the flying object 200 The position can be displayed on the background map in real time. At this time, when a plurality of flying objects 200 are autonomously flying, the positions of the plurality of flying objects 200 can be displayed on the background map in real time.

3.管路点検調査方法
続いて本願発明の管路点検調査方法について図8を参照しながら説明する。なお、本願発明の管路点検調査方法は、ここまで説明した管路点検調査システムを用いて管路(下水道管)を点検調査する方法であり、したがって管路点検調査システムで説明した内容と重複する説明は避け、本願発明の管路点検調査方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「2.管路点検調査システム」で説明したものと同様である。
3. 3. Pipeline inspection and investigation method Subsequently, the pipeline inspection and investigation method of the present invention will be described with reference to FIG. The pipeline inspection and investigation method of the present invention is a method of inspecting and inspecting a pipeline (sewer pipe) using the pipeline inspection and investigation system described so far, and therefore overlaps with the contents explained in the pipeline inspection and investigation system. The explanation will be omitted, and only the contents peculiar to the pipeline inspection and investigation method of the present invention will be explained. That is, the contents not described here are the same as those explained in "2. Pipeline inspection and investigation system".

図8は、本願発明の管路点検調査システムの主な工程の流れを示すフロー図である。この図に示すように、まずは点検調査計画を行う(Step201)。具体的には、点検調査対象とする下水道管SPを選出するとともに、点検調査対象となった下水道管SPに設置された管路用人孔MHを「対象管路用人孔」として抽出する。そして対象管路用人孔の中から、飛行体200が出発する対象管路用人孔を「起点側管路用人孔」、飛行体200が到達する対象管路用人孔を「終点側管路用人孔」、それ以外の対象管路用人孔を「中間管路用人孔」として抽出する。なお、点検調査対象とする水道管SPの範囲によっては、起点側管路用人孔と終点側管路用人孔のみが抽出されることもある。 FIG. 8 is a flow chart showing a flow of a main process of the pipeline inspection and investigation system of the present invention. As shown in this figure, first, an inspection survey plan is made (Step 201). Specifically, the sewer pipe SP to be inspected and investigated is selected, and the pipeline human hole MH installed in the sewer pipe SP to be inspected is extracted as the “target pipeline human hole”. Then, from the target pipeline human holes, the target pipeline human hole from which the flying object 200 departs is the "starting point side pipeline human hole", and the target pipeline human hole to which the flying object 200 arrives is the "end point side pipeline human hole". , Other target pipeline human holes are extracted as "intermediate pipeline human holes". Depending on the range of the water pipe SP to be inspected and investigated, only the starting point side pipeline human hole and the ending point side pipeline human hole may be extracted.

点検調査計画を行うと、現地に赴き対象管路用人孔とされた蓋を取り外し、本願発明の点検調査用人孔蓋100を設置する(Step202)。そして、起点側管路用人孔に設置された点検調査用人孔蓋100のプラットフォーム120に、飛行体200を配置して(Step203)、準備を終える。 When the inspection and investigation plan is carried out, the lid, which is the human hole for the target pipeline, is removed from the site, and the inspection and investigation human hole lid 100 of the present invention is installed (Step 202). Then, the flying object 200 is arranged on the platform 120 of the inspection / investigation human hole lid 100 installed in the starting point side pipeline human hole (Step 203), and the preparation is completed.

オペレータ操作によって飛行体200に対して運転開始の指示を送ると、飛行体200は、起点側点検調査用人孔蓋100のプラットフォーム120を飛び立って飛行体制御手段220の制御による自律飛行を開始する。自律飛行中は、随時(連続的、定期的、または断続的に)自機位置測位手段230によって自機位置を取得するとともに、画像取得手段240によって管内画像を取得する(Step204)。また、取得された管内画像と自機位置は、飛行体送受信手段250によって第1人孔蓋送受信手段141に送信され(Step205)、第2人孔蓋送受信手段142によって管理部送受信手段310に送信される(Step206)。 When an instruction to start operation is sent to the flying object 200 by an operator operation, the flying object 200 takes off from the platform 120 of the human hole lid 100 for inspection and investigation on the starting point side and starts autonomous flight under the control of the flying object control means 220. During autonomous flight, the position of the aircraft is acquired by the positioning means 230 of the aircraft at any time (continuously, periodically, or intermittently), and the image in the jurisdiction is acquired by the image acquiring means 240 (Step 204). Further, the acquired in-pipe image and the position of the aircraft are transmitted to the first manhole cover transmitting / receiving means 141 by the flying object transmitting / receiving means 250 (Step 205), and transmitted to the management unit transmitting / receiving means 310 by the second manhole cover transmitting / receiving means 142. (Step 206).

管理部送受信手段310が、管内画像と自機位置、衛星受信データ(GNSSデータ)を受信すると、地理情報システム320を使用して背景地図を表示手段330に表示するとともに、下水用人孔MHや下水道管SP、点検調査用人孔蓋100を背景地図に表示する。さらに地理情報システム320を使用して、飛行体200の現在位置を監視しつつ、取得位置に表示した管内画像を確認することで下水道管SP内部の劣化状況を把握する(Step207)。 When the management unit transmission / reception means 310 receives the in-service image, its own position, and satellite reception data (GNSS data), the geographic information system 320 is used to display a background map on the display means 330, as well as a human hole for sewage MH and sewerage. The pipe SP and the human hole lid 100 for inspection and investigation are displayed on the background map. Further, the geographic information system 320 is used to monitor the current position of the flying object 200 and check the in-pipe image displayed at the acquired position to grasp the deterioration state inside the sewer pipe SP (Step 207).

管理部送受信手段310が、管内画像と自機位置、衛星受信データ(GNSSデータ)を受信すると、地理情報システム320を使用して背景地図を表示手段330に表示するとともに、下水用人孔MHや下水道管SP、点検調査用人孔蓋100を背景地図に表示する。さらに地理情報システム320を使用して、飛行体200の現在位置を監視しつつ、取得位置に表示した管内画像を確認することで下水道管SP内部の劣化状況を把握する(Step207)。 When the management unit transmission / reception means 310 receives the in-service image, its own position, and satellite reception data (GNSS data), the geographic information system 320 is used to display a background map on the display means 330, as well as a human hole for sewage MH and sewerage. The pipe SP and the human hole lid 100 for inspection and investigation are displayed on the background map. Further, the geographic information system 320 is used to monitor the current position of the flying object 200 and check the in-pipe image displayed at the acquired position to grasp the deterioration state inside the sewer pipe SP (Step 207).

飛行体200が、終点側点検調査用人孔蓋100(あるいは最寄りの点検調査用人孔蓋100)に到達し、そのプラットフォーム120に着地すると、飛行体200は終点側点検調査用人孔蓋100(あるいは最寄りの点検調査用人孔蓋100)が具備する給電設備によって給電される(Step208)。 When the vehicle 200 reaches the end point side inspection and investigation human hole lid 100 (or the nearest inspection and investigation human hole lid 100) and lands on the platform 120, the aircraft body 200 reaches the end point side inspection and investigation human hole lid 100 (or the nearest). The power is supplied by the power supply equipment provided in the human hole lid 100) for inspection and investigation (Step 208).

本願発明の点検調査用人孔蓋、管路点検調査システム、及び管路点検調査方法は、下水道管のほか、共同溝や電線共同溝、情報ボックスなど、人孔が設けられた様々な埋設管に利用することができる。本願発明は、我が国のライフラインである下水道施設等の永続的な運用に資することを考えれば、産業上利用できるうえに社会的にも貢献が期待できる発明といえる。 The manhole lid for inspection and investigation, the pipeline inspection and investigation system, and the pipeline inspection and investigation method of the present invention can be applied to various buried pipes provided with human holes such as utility tunnels, electric wire utility tunnels, and information boxes, in addition to sewer pipes. It can be used. Considering that the invention of the present application contributes to the permanent operation of sewerage facilities, which is a lifeline of Japan, it can be said that the invention can be used industrially and can be expected to contribute to society.

100 点検調査用人孔蓋
110 (点検調査用人孔蓋の)蓋本体
120 (点検調査用人孔蓋の)プラットフォーム
130 (点検調査用人孔蓋の)給電設備
141 (点検調査用人孔蓋の)第1人孔蓋送受信手段
142 (点検調査用人孔蓋の)第2人孔蓋送受信手段
150 (点検調査用人孔蓋の)衛星測位受信機
160 (点検調査用人孔蓋の)太陽光発電設備
170 (点検調査用人孔蓋の)ロッド
200 飛行体
210 (飛行体の)飛行体本体
220 (飛行体の)飛行体制御手段
230 (飛行体の)自機位置測位手段
240 (飛行体の)画像取得手段
250 (飛行体の)飛行体送受信手段
260 (飛行体の)飛行計画記憶手段
270 (飛行体の)人孔蓋記憶手段
300 情報管理部
310 (情報管理部の)管理部送受信手段
320 (情報管理部の)地理情報システム
340 (情報管理部の)人孔情報記憶手段
350 (情報管理部の)管路情報記憶手段
360 (情報管理部の)背景地図記憶手段
370 (情報管理部の)取得情報記憶手段
380 (情報管理部の)人孔蓋記憶手段
MH 下水用人孔
SP 下水道管
100 Inspection and investigation manhole cover 110 (for inspection and investigation manhole cover) Lid body 120 (for inspection and investigation manhole cover) Platform 130 (for inspection and investigation manhole cover) Power supply equipment 141 (for inspection and investigation manhole cover) First person Hole cover transmission / reception means 142 (for inspection and investigation manhole cover) Second person hole cover transmission / reception means 150 (for inspection and investigation manhole cover) Satellite positioning receiver 160 (for inspection and investigation manhole cover) Solar power generation equipment 170 (for inspection and investigation) Manhole cover rod 200 Aircraft 210 (Aircraft) Aircraft body 220 (Aircraft) Aircraft control means 230 (Aircraft) own position positioning means 240 (Aircraft) Image acquisition means 250 (Air vehicle) Aircraft transmission / reception means 260 (Aircraft) Flight plan storage means 270 (Manhole cover storage means) 300 Information management unit 310 (Information management department) Management department Transmission / reception means 320 (Information management department) ) Geographic information system 340 (of the information management department) manhole information storage means 350 (of the information management department) pipeline information storage means 360 (of the information management department) background map storage means 370 (of the information management department) acquisition information storage means 380 Manhole cover storage means (of the Information Management Department) MH Manhole for sewage SP Sewer pipe

Claims (11)

管路の人孔に用いる蓋において、
電力による自律飛行が可能な飛行体が着地し得るプラットフォームと、
前記飛行体に給電する給電設備と、
前記飛行体に搭載される飛行体送受信手段とのデータ送受信を行う人孔蓋送受信手段と、を備えた、
ことを特徴とする点検調査用人孔蓋。
In the lid used for the manhole of the pipeline
A platform on which an air vehicle capable of autonomous flight by electric power can land,
Power supply equipment that supplies power to the aircraft and
A manhole cover transmitting / receiving means for transmitting / receiving data to / from the flying object transmitting / receiving means mounted on the flying object is provided.
A human hole lid for inspection and investigation.
衛星測位受信機を、さらに備えた、
ことを特徴とする請求項1記載の点検調査用人孔蓋。
Equipped with a satellite positioning receiver,
The human hole lid for inspection and investigation according to claim 1.
太陽光発電設備を、さらに備え、
前記給電設備は、前記太陽光発電設備によって発電された電気を蓄電する、
ことを特徴とする請求項1記載の点検調査用人孔蓋。
Further equipped with solar power generation equipment,
The power supply facility stores electricity generated by the photovoltaic power generation facility.
The human hole lid for inspection and investigation according to claim 1.
飛行体によって管路内を点検調査するシステムであって、
前記飛行体と、2以上の点検調査用人孔蓋と、を備え、
前記飛行体は、電力による自律飛行が可能であり、自律飛行を制御する飛行体制御手段と、管路内における自機位置を測位する自機位置測位手段と、管路内の管内画像を取得する画像取得手段と、前記点検調査用人孔蓋が具備する第1人孔蓋送受信手段とのデータ送受信を行う飛行体送受信手段と、を有し、
前記点検調査用人孔蓋は、前記飛行体が着地し得るプラットフォームと、該飛行体に給電する給電設備と、前記飛行体送受信手段とのデータ送受信を行う前記第1人孔蓋送受信手段と、を有し、
前記飛行体は、事前に計画された起点側の前記点検調査用人孔蓋の前記プラットフォームから、事前に計画された終点側の前記点検調査用人孔蓋の前記プラットフォームまで、前記飛行体制御手段によって管路内を自律飛行し、終点側の該点検調査用人孔蓋の該プラットフォームに着地すると前記給電設備によって給電され、
さらに前記飛行体は、自律飛行しながら連続的、定期的、または断続的に、前記自機位置測位手段によって自機位置を測位するとともに、前記画像取得手段によって前記管内画像を取得し、
前記飛行体送受信手段が、前記管内画像及び自機位置を前記第1人孔蓋送受信手段に送信し、
前記第1人孔蓋送受信手段が、前記飛行体送受信手段によって送信された前記管内画像及び自機位置を受信する、
ことを特徴とする管路点検調査システム。
It is a system that inspects the inside of the pipeline by the aircraft.
The flying object and two or more inspection and investigation human hole lids are provided.
The air vehicle is capable of autonomous flight by electric power, and acquires an air vehicle control means for controlling autonomous flight, a self-positioning means for positioning its own position in a pipeline, and an in-pipe image in the pipeline. It has an image acquisition means for transmitting and receiving data, and an air vehicle transmitting / receiving means for transmitting / receiving data to / from the first manhole cover transmitting / receiving means provided in the inspection / investigation manhole cover.
The manhole cover for inspection and investigation includes a platform on which the air vehicle can land, a power supply facility for supplying power to the air vehicle, and the first manhole cover transmission / reception means for transmitting / receiving data to / from the air vehicle transmission / reception means. Have and
The air vehicle is piped by the air vehicle control means from the platform of the inspection and investigation human hole lid on the start point side planned in advance to the platform of the inspection and investigation human hole lid on the end point side planned in advance. When autonomously flying in the road and landing on the platform of the inspection and investigation human hole lid on the end point side, power is supplied by the power supply facility.
Further, the flying object continuously, periodically, or intermittently positions its own aircraft by the own aircraft positioning means while autonomously flying, and acquires the in-pipe image by the image acquisition means.
The flying object transmitting / receiving means transmits the in-pipe image and its own position to the first manhole cover transmitting / receiving means.
The first manhole cover transmitting / receiving means receives the in-pipe image and its own position transmitted by the flying object transmitting / receiving means.
A pipeline inspection and investigation system characterized by this.
情報管理部を、さらに備え、
前記点検調査用人孔蓋は、第2人孔蓋送受信手段を、さらに有し、
前記情報管理部は、前記第2人孔蓋送受信手段とのデータ送受信を行う管理部送受信手段を有し、
前記第2人孔蓋送受信手段が、前記管内画像及び自機位置を前記管理部送受信手段に送信し、
前記管理部送受信手段が、前記第2人孔蓋送受信手段によって送信された前記管内画像及び自機位置を受信する、
ことを特徴とする請求項4記載の管路点検調査システム。
Further equipped with an information management department
The inspection and investigation manhole cover further includes a second manhole cover transmitting / receiving means.
The information management unit has a management unit transmission / reception means for transmitting / receiving data to / from the second manhole cover transmission / reception means.
The second manhole cover transmitting / receiving means transmits the in-pipe image and the position of the own machine to the management unit transmitting / receiving means.
The management unit transmitting / receiving means receives the in-pipe image and its own position transmitted by the second manhole cover transmitting / receiving means.
4. The pipeline inspection and investigation system according to claim 4.
前記情報管理部は、背景地図に地理空間情報を表示する地理情報システムを、さらに有し、
前記地理情報システムは、前記管内画像を画像取得時の自機位置に関連付けて記憶し、該自機位置に基づいて自律飛行中の前記飛行体の位置を前記背景地図上に表示するとともに、該自機位置に基づいて該管内画像を前記背景地図上に表示する、
ことを特徴とする請求項5記載の管路点検調査システム。
The information management unit further has a geographic information system that displays geospatial information on a background map.
The geographic information system stores the image in the jurisdiction in association with the position of the own aircraft at the time of image acquisition, displays the position of the flying object during autonomous flight based on the position of the own aircraft, and displays the position on the background map. The image in the jurisdiction is displayed on the background map based on the position of the own machine.
5. The pipeline inspection and investigation system according to claim 5.
前記点検調査用人孔蓋は、衛星測位受信機を、さらに有し、
前記第2人孔蓋送受信手段は、前記衛星測位受信機の受信データを前記管理部送受信手段に送信し、
前記地理情報システムは、前記点検調査用人孔蓋にあらかじめ付与された識別子に関連付けて当該点検調査用人孔蓋の位置情報を記憶し、該位置情報に基づいて該点検調査用人孔蓋を前記背景地図上に表示する、
ことを特徴とする請求項6記載の管路点検調査システム。
The inspection and investigation human hole lid further has a satellite positioning receiver.
The second manhole cover transmitting / receiving means transmits the received data of the satellite positioning receiver to the management unit transmitting / receiving means.
The geographic information system stores the position information of the inspection and investigation human hole lid in association with an identifier given in advance to the inspection and investigation human hole lid, and based on the position information, displays the inspection and investigation human hole lid on the background map. Show on,
6. The pipeline inspection and investigation system according to claim 6.
前記飛行体制御手段は、自機位置から終点側の前記点検調査用人孔蓋までの飛行距離を求めるとともに、該飛行距離に要する必要電力量を求め、
さらに前記飛行体制御手段は、電力残量を取得するとともに、該電力残量と前記必要電力量とを照らし合わせ、該電力残量が該必要電力量を超えるときは終点側の前記点検調査用人孔蓋まで自律飛行するよう制御し、該電力残量が該必要電力量を下回るときは自機位置から最も近い前記点検調査用人孔蓋まで自律飛行するよう制御する、
ことを特徴とする請求項4乃至請求項7のいずれかに記載の管路点検調査システム。
The flying object control means obtains the flight distance from the position of the own aircraft to the human hole lid for inspection and investigation on the end point side, and also obtains the required electric energy required for the flight distance.
Further, the flying object control means acquires the remaining electric power, compares the remaining electric power with the required electric energy, and when the remaining electric power exceeds the required electric energy, the inspection and investigation person on the end point side. It is controlled to autonomously fly to the hole lid, and when the remaining electric power is less than the required electric energy, it is controlled to autonomously fly to the inspection and investigation human hole lid closest to the position of the own machine.
The pipeline inspection and investigation system according to any one of claims 4 to 7, wherein the pipeline inspection and investigation system is characterized.
管路点検調査システムを用いて、管路内を点検調査する方法であって、
前記管路点検調査システムは、飛行体と点検調査用人孔蓋を備え、
前記飛行体は、電力による自律飛行が可能であり、自律飛行を制御する飛行体制御手段と、管路内における自機位置を測位する自機位置測位手段と、管路内の管内画像を取得する画像取得手段と、前記点検調査用人孔蓋が具備する第1人孔蓋送受信手段とのデータ送受信を行う飛行体送受信手段と、を有し、
前記点検調査用人孔蓋は、前記飛行体が着地し得るプラットフォームと、該飛行体に給電する給電設備と、前記飛行体送受信手段とのデータ送受信を行う前記第1人孔蓋送受信手段と、を有し、
2以上の管路用人孔を対象管路用人孔として抽出するとともに、前記飛行体が出発する起点側管路用人孔と、前記飛行体が到着する終点側管路用人孔を設定する点検調査計画工程と、
前記対象管路用人孔の蓋を取り外すとともに、前記点検調査用人孔蓋を設置する蓋交換工程と、
前記起点側管路用人孔に設置された前記点検調査用人孔蓋の前記プラットフォームに、前記飛行体を配置する飛行体配置工程と、
前記飛行体が、前記起点側管路用人孔に設置された前記点検調査用人孔蓋の前記プラットフォームから、前記終点側管路用人孔に設置された前記点検調査用人孔蓋の前記プラットフォームまで、前記飛行体制御手段によって管路内を自律飛行し、自律飛行しながら連続的、定期的、または断続的に、前記自機位置測位手段によって自機位置を測位するとともに、前記画像取得手段によって前記管内画像を取得する飛行工程と、
前記飛行体が、前記終点側管路用人孔に設置された前記点検調査用人孔蓋の前記プラットフォームに着地すると、前記給電設備によって給電される給電工程と、
前記飛行体送受信手段が、前記管内画像及び自機位置を前記第1人孔蓋送受信手段に送信し、前記第1人孔蓋送受信手段が、該飛行体送受信手段によって送信された該管内画像及び自機位置を受信する第1送受信工程と、を備えた、
ことを特徴とする管路点検調査方法。
It is a method of inspecting and inspecting the inside of a pipeline using a pipeline inspection and investigation system.
The pipeline inspection and investigation system includes an air vehicle and a human hole lid for inspection and investigation.
The air vehicle is capable of autonomous flight by electric power, and acquires an air vehicle control means for controlling autonomous flight, a self-positioning means for positioning its own position in a pipeline, and an in-pipe image in the pipeline. It has an image acquisition means for transmitting and receiving data, and an air vehicle transmitting / receiving means for transmitting / receiving data to / from the first manhole cover transmitting / receiving means provided in the inspection / investigation manhole cover.
The manhole cover for inspection and investigation includes a platform on which the flying object can land, a power supply facility for supplying power to the flying object, and the first human hole cover transmitting / receiving means for transmitting / receiving data to / from the flying object transmitting / receiving means. Have and
An inspection and investigation plan in which two or more pipeline human holes are extracted as target pipeline human holes, and a starting point side pipeline human hole from which the flying object departs and an end point side pipeline human hole to which the flying object arrives are set. Process and
The lid replacement step of removing the lid of the human hole for the target pipeline and installing the human hole lid for inspection and investigation,
A flying object arranging step of arranging the flying object on the platform of the inspection and investigation human hole lid installed in the starting point side pipeline human hole, and
From the platform of the inspection and investigation human hole lid installed in the starting point side pipeline human hole to the platform of the inspection and investigation human hole lid installed in the end point side pipeline human hole, the flying object is described. The vehicle body control means autonomously flies in the pipeline, and while autonomously flying, the own aircraft position positioning means is used to position the own aircraft continuously, periodically, or intermittently, and the image acquisition means is used to position the own aircraft in the pipe. The flight process to acquire the image and
When the flying object lands on the platform of the inspection and investigation human hole lid installed in the terminal side pipeline human hole, a power feeding process in which power is supplied by the power feeding facility and
The flying object transmitting / receiving means transmits the in-pipe image and the position of the aircraft to the first manhole cover transmitting / receiving means, and the first manhole cover transmitting / receiving means transmits the in-pipe image and the in-pipe image transmitted by the flying body transmitting / receiving means. The first transmission / reception process for receiving the position of the own machine is provided.
A pipeline inspection and survey method characterized by this.
前記管路点検調査システムは、情報管理部を、さらに備え、
前記点検調査用人孔蓋は、第2人孔蓋送受信手段を、さらに有し、
前記情報管理部は、前記第2人孔蓋送受信手段とのデータ送受信を行う管理部送受信手段を有し、
前記第2人孔蓋送受信手段が、前記管内画像及び自機位置を前記管理部送受信手段に送信し、該管理部送受信手段が、該第2人孔蓋送受信手段によって送信された該管内画像及び自機位置を受信する第2送受信工程を、さらに備えた、
ことを特徴とする請求項9記載の管路点検調査方法。
The pipeline inspection and investigation system further includes an information management unit.
The inspection and investigation manhole cover further includes a second manhole cover transmitting / receiving means.
The information management unit has a management unit transmission / reception means for transmitting / receiving data to / from the second manhole cover transmission / reception means.
The second manhole cover transmitting / receiving means transmits the in-pipe image and the position of the own machine to the management unit transmitting / receiving means, and the management unit transmitting / receiving means transmits the in-pipe image and the pipe transmitting / receiving means transmitted by the second manhole cover transmitting / receiving means. A second transmission / reception process for receiving the position of the own machine is further provided.
9. The pipeline inspection and investigation method according to claim 9.
前記管路点検調査システムの前記情報管理部は、背景地図に地理空間情報を表示する地理情報システムを、さらに有し、
前記地理情報システムは、前記管内画像を画像取得時の自機位置に関連付けて記憶し、
前記地理情報システムを用いて、前記自機位置に基づいて自律飛行中の前記飛行体の位置を前記背景地図上に表示するとともに、該自機位置に基づいて該管内画像を前記背景地図上に表示する監視工程を、さらに備えた、
ことを特徴とする請求項10記載の管路点検調査方法。
The information management unit of the pipeline inspection and investigation system further has a geospatial information system that displays geospatial information on a background map.
The geographic information system stores the image in the jurisdiction in association with the position of the own machine at the time of image acquisition.
Using the geographic information system, the position of the flying object during autonomous flight based on the position of the own aircraft is displayed on the background map, and the image in the jurisdiction is displayed on the background map based on the position of the own aircraft. Further equipped with a monitoring process to display,
10. The pipeline inspection and investigation method according to claim 10.
JP2019149656A 2019-08-19 2019-08-19 Inspection and investigation manhole lid, pipeline inspection and investigation system, and pipeline inspection and investigation method Active JP7294943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019149656A JP7294943B2 (en) 2019-08-19 2019-08-19 Inspection and investigation manhole lid, pipeline inspection and investigation system, and pipeline inspection and investigation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019149656A JP7294943B2 (en) 2019-08-19 2019-08-19 Inspection and investigation manhole lid, pipeline inspection and investigation system, and pipeline inspection and investigation method

Publications (2)

Publication Number Publication Date
JP2021030762A true JP2021030762A (en) 2021-03-01
JP7294943B2 JP7294943B2 (en) 2023-06-20

Family

ID=74674849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019149656A Active JP7294943B2 (en) 2019-08-19 2019-08-19 Inspection and investigation manhole lid, pipeline inspection and investigation system, and pipeline inspection and investigation method

Country Status (1)

Country Link
JP (1) JP7294943B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042539A (en) * 2013-08-26 2015-03-05 国立大学法人 千葉大学 Helicopter, battery replacement device for helicopter, and helicopter system
JP2017087917A (en) * 2015-11-09 2017-05-25 株式会社日立製作所 Flight vehicle for pipeline facility inspection and pipeline facility inspection system using the same
JP2018001967A (en) * 2016-07-01 2018-01-11 株式会社日立製作所 Take-off landing device for unmanned flying object for inspecting closed space and system for inspecting closed space using unmanned flying object
JP2019167044A (en) * 2018-03-26 2019-10-03 株式会社日立製作所 Unmanned flight body introduction device, in-conduit line work system and work method using unmanned flight body
JP2021099540A (en) * 2019-12-19 2021-07-01 パナソニックIpマネジメント株式会社 Inspection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042539A (en) * 2013-08-26 2015-03-05 国立大学法人 千葉大学 Helicopter, battery replacement device for helicopter, and helicopter system
JP2017087917A (en) * 2015-11-09 2017-05-25 株式会社日立製作所 Flight vehicle for pipeline facility inspection and pipeline facility inspection system using the same
JP2018001967A (en) * 2016-07-01 2018-01-11 株式会社日立製作所 Take-off landing device for unmanned flying object for inspecting closed space and system for inspecting closed space using unmanned flying object
JP2019167044A (en) * 2018-03-26 2019-10-03 株式会社日立製作所 Unmanned flight body introduction device, in-conduit line work system and work method using unmanned flight body
JP2021099540A (en) * 2019-12-19 2021-07-01 パナソニックIpマネジメント株式会社 Inspection system

Also Published As

Publication number Publication date
JP7294943B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
CN111512256B (en) Automated and adaptive three-dimensional robotic site survey
KR101884920B1 (en) Method for underground facilities positional information by uav
JP6387782B2 (en) Control device, control method, and computer program
CN205584374U (en) Unmanned aerial vehicle oil gas pipeline system of patrolling and examining
US20120250010A1 (en) Aerial Inspection System(s) and Method(s)
CN104279425A (en) Pipeline-leakage detecting system and method on basis of infrared imaging and unmanned aircraft
CN106061836A (en) Control device, imaging device, control method, imaging method, and computer program
CN110888457A (en) System and method for carrying out three-dimensional inspection on power transformation equipment by using unmanned aerial vehicle and robot
CN105790155A (en) Differential-GPS-based unmanned-aerial-vehicle autonomous routing inspection system and method for power transmission line
CN105865427A (en) Individual geological disaster emergency investigation method based on remote sensing of small unmanned aerial vehicle
CN103472847A (en) Unmanned aerial vehicle electric power circuit polling track monitoring method and system
CN104132830A (en) Unmanned aerial vehicle-based air acquiring device and method
CN104118561B (en) Method for monitoring large endangered wild animals based on unmanned aerial vehicle technology
CN108983809A (en) The method and unmanned plane of accurate identification positioning surrounding based on unmanned plane
CN109506132A (en) A kind of heat distribution pipeline detection system based on visible light and infrared thermal imaging
KR101852368B1 (en) Method for underground information based on vrs geometric-correction used by uav taking picture
CN110427041A (en) A kind of heat-net-pipeline unmanned plane cruise system and method
CN102570345A (en) UAV (unmanned aerial vehicle) transmission-line patrolling system
CN109901623B (en) Method for planning inspection route of pier body of bridge
CN107069549A (en) Rotor wing unmanned aerial vehicle power-line patrolling system
CN113077561A (en) Intelligent inspection system for unmanned aerial vehicle
CN107730652A (en) A kind of cruising inspection system, method and device
CN108762307A (en) Skyscraper natural gas standpipe safety pre-warning system based on unmanned machine testing
CN110647170A (en) Navigation mark inspection device and method based on unmanned aerial vehicle
JP2019213132A (en) Remote monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230608

R150 Certificate of patent or registration of utility model

Ref document number: 7294943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150