JP2021030435A - 孔探索方法及び孔探索装置 - Google Patents

孔探索方法及び孔探索装置 Download PDF

Info

Publication number
JP2021030435A
JP2021030435A JP2020132341A JP2020132341A JP2021030435A JP 2021030435 A JP2021030435 A JP 2021030435A JP 2020132341 A JP2020132341 A JP 2020132341A JP 2020132341 A JP2020132341 A JP 2020132341A JP 2021030435 A JP2021030435 A JP 2021030435A
Authority
JP
Japan
Prior art keywords
shaft end
hole
deviation
contact state
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020132341A
Other languages
English (en)
Other versions
JP7026176B2 (ja
Inventor
チンフイ ワン
Chenfui Wang
チンフイ ワン
フーカン チン
Fukang Chin
フーカン チン
インルイ スー
Inrui Xu
インルイ スー
ビン ズオ
Ping Zuo
ビン ズオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JP2021030435A publication Critical patent/JP2021030435A/ja
Application granted granted Critical
Publication of JP7026176B2 publication Critical patent/JP7026176B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/91Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Electric Cable Installation (AREA)

Abstract

【課題】孔探索の精度と効率を向上する。【解決手段】孔探索の精度と効率を向上可能であるとともに、密集した孔端を対象とする孔探索配線タスクに適用可能な孔探索方法及び孔探索装置を提供する。孔探索方法は、複数の孔端のうちの標的孔に対する軸端の孔探索を行い、標的孔を取り囲む力制御範囲内に軸端が位置するよう、軸端を制御する孔探索ステップと、軸端に位置し、且つ軸端の中心点を通過する少なくとも1つの回動軸周りに軸端を回動させ、軸端に作用する軸方向力の変化を測定するとともに、軸方向力の変化に基づいて軸端と標的孔との接触状態を判定する接触状態判定ステップと、接触状態に基づいて、軸端に対し特定軌道のずれ補正を行うずれ補正ステップ、を含む。【選択図】図1

Description

本発明は、孔探索方法及び孔探索装置に関する。
自動化レベルの向上に伴って、配線タスクでは、ロボットによる自動配線の完了が関わるようになっている。この場合、ロボットによるケーブルと孔との孔探索及び組み付けの完了が関係してくるが、自動配線の精度や効率には孔探索戦略が大きな影響を及ぼす。
自動配線タスクにおける孔探索戦略は、軸−孔組み付け課題に分類される。しかし、配線タスクに存在する孔端の密集配置や、ケーブル先端部の端面構造の複雑さ、ケーブルが有する可撓性、及び何度もケーブルを挟持したり挿入したりせねばならないといった各種のランダムな不確定要素から、孔探索戦略は従来の軸−孔組み付け課題よりも接触状況がなお複雑であり、ノイズなどの干渉要因の影響を受けやすい。
従来の軸−孔組み付け課題では、例えば受動的コンプライアンス法を用い、コンプライアンス機構を利用して組み付けを補助している。しかし、接触情報によってロボットの運動を能動的に導けるわけではなく、環境情報に基づく能動的な位置・姿勢の調整は不可能なことから、接触状況が複雑な自動配線タスクへの適用は難しい。
このほか、例えば視覚に基づく孔探索と組み付けが用いられている。しかし、自動配線タスクでは孔端のサイズが小さく、配置も密集しているため、妨害やカメラの解像度不足、光線の多大な影響といった事態が発生しやすい。よって、完全に視覚に頼った孔探索は適用が難しい。
また、例えば、螺旋運動やランダム運動等の軌跡を予め設定することで孔探索と組み付けを行うブラインド探索法が用いられている。しかし、ロボット基端の運動軌跡が予め設定されているため、配置の密集した孔端の場合には孔への挿入ミスが発生しやすく、孔の探索時間が長くなるとの問題が発生する。
また、例えば、力情報に基づく定量演算法を用いた孔探索と組み付けが行われている。具体的には、センサで検出した力情報に軸と孔との幾何学的関係を組み合わせ、軸心と孔の中心との位置ずれを定量演算したあと、このずれをロボットにフィードバックすることで運動を修正する。しかし、配線タスクでは、ランダムな不確定要素や干渉要因が多く、力情報に歪みが生じて不正確となる結果、力情報から算出される位置ずれも不正確となる。そのため、力情報に基づく定量演算法も適用が難しい。
また、例えば、力情報に基づきリアルタイムで案内する接触状態識別法を用いた孔探索と組み付けが行われている(例えば、非特許文献1)。具体的には、まず、現時点の力情報から軸と孔との接触状態を識別することで、ずれの向きと調整方向を特定する。そして、力情報に基づきリアルタイムで案内しつつ、軸を何度も調整することで、運動を徐々に孔の中心に近付け、最終的に軸と孔を同心として組み付け条件を満たす。しかし、自動配線タスクでは、ケーブル端のサイズが過度に小さいことから、接触位置の違いによる静的力信号の差が明確でなく、ケーブルと孔との接触状況も複雑である。そのため、判断条件の探索が困難であり、接触状態の識別が難しい。且つ、複数回にわたるケーブルの挿入過程では何度もケーブルを挟持する必要があるが、ケーブルを挟持するたびに位置・姿勢が微妙に変化する。そのため、ケーブルが孔の同じ位置に接触したとしても力の値が異なり、アルゴリズムの安定性に極めて大きな影響を及ぼす。
Takahashi T, Ogata H, Muto S Y.A method for analyzing human assembly operations for use in automatically generating robot commands[C].IEEE International Conference on Robotics and Automation, 1993 Proceedings.695-700 vol.692.
非特許文献1等の上記従来技術では、配線タスクにおいて、軸線と孔との接触状況が複雑な場合に、接触状況の違いによる静的力情報の差が明らかでないといったランダムな不確定要素や干渉要因を考慮していない。そのため、孔探索の精度が低く、安定性や適応性が十分でないとの技術的課題が存在し、密集した孔端を対象とする孔探索配線タスクには適用が難しい。
そこで、本発明は、従来技術における上記技術的課題の少なくとも一つに対し、密集した孔端を対象とする孔探索配線タスクに適用できるよう、孔探索の精度と効率を向上可能な孔探索方法及び孔探索装置を提供することを目的とする。
そのため、本発明の実施形態は、複数の孔端のうちの標的孔に対する軸端の孔探索を対象とする孔探索方法を提供する。当該孔探索方法は、標的孔を取り囲む力制御範囲内に軸端が位置するよう、軸端を制御する孔探索ステップと、軸端に位置し、且つ軸端の中心点を通過する少なくとも1つの回動軸周りに軸端を回動させ、軸端に作用する軸方向力の変化を測定するとともに、軸方向力の変化に基づいて軸端と標的孔との接触状態を判定する接触状態判定ステップと、接触状態に基づいて、軸端に対し特定軌道のずれ補正を行うずれ補正ステップ、を含むことを特徴とする。
これにより、孔探索の精度と効率を向上可能である。
上記の孔探索方法において、例えば、ずれ補正ステップにおいて、軸方向力を検出し、軸方向力が所定の第1の閾値よりも小さくなるまで、軸端に対し特定軌道のずれ補正を行う。
これにより、孔探索方法の精度及び実行可能性が向上する。
上記の孔探索方法において、例えば、少なくとも1つの回動軸は、第1回動軸と、第1回動軸と直交する第2回動軸を含む。接触状態には、軸端と標的孔との第1回動軸方向におけるずれ及び第2回動軸方向におけるずれが含まれ、ずれ補正ステップにおいて、軸端に対し、ずれの向きに対応するずれ補正を行う。
これにより、複雑な接触状態に対応して正確な判定が可能となり、孔探索方法の適用性及び精度が向上する。
上記の孔探索方法において、例えば、接触状態判定ステップにおいて、軸端が未回動のときの軸方向力が第1の閾値よりも小さい場合には、ずれなし状態であると判定する。第1回動軸又は第2回動軸周りに軸端を2つの方向にそれぞれ回動させたとき、一方向への回動時に軸方向力が減少し、且つ他の方向への回動時に軸方向力が増大した場合には、接触状態が、標的孔に対して軸端が当該他の方向の側にのみずれている一方向ずれ状態であると判定する。第1回動軸又は第2回動軸周りに軸端を2つの方向にそれぞれ回動させたとき、2つの方向への回動時の軸方向力が、いずれも第1の閾値よりも大きな所定の第2の閾値を超えなかった場合には、接触状態が、標的孔に対して軸端が当該2つの方向のうちのいずれかの方向の側にのみずれてはいるが、ずれの向きが特定されない単軸ずれ状態であると判定する。第1回動軸及び第2回動軸周りに軸端を2つの方向にそれぞれ回動させたとき、軸方向力がいずれも第2の閾値を超えた場合には、接触状態が、第1回動軸方向のずれと第2回動軸方向のずれが存在する双方向ずれ状態であると判定する。
これにより、複数の接触状態を判定可能となり、複雑な接触状態に対応して正確な判定が実現されるため、適用性及び精度が向上する。
上記の孔探索方法において、例えば、接触状態が一方向ずれ状態の場合には、ずれ補正ステップにおいて、当該ずれの向きとは逆方向に軸端を移動させるずれ補正を行う。
これにより、効率的に孔探索を完了させられるため、孔探索効率が向上する。
上記の孔探索方法において、例えば、接触状態が単軸ずれ状態の場合には、ずれ補正ステップにおいて、当該ずれの存在方向に軸端を所定の距離だけ両側へとそれぞれ移動させるずれ補正を行う。所定の距離は、最大で、当該ずれの存在方向における力制御範囲の辺縁と標的孔の辺縁との間隔と等しく、間隔は軸端のサイズに基づき特定される。
これにより、複雑な接触状態に対応して正確且つ効果的に孔探索を完了可能であるとともに、挿入エラーの発生を回避できる。
上記の孔探索方法において、例えば、接触状態が双方向ずれ状態の場合には、ずれ補正ステップにおいて、第1回動軸方向に軸端を移動させ、所定の距離だけ移動させたあと、接触状態判定ステップに基づいて接触状態を再び判定する。これを、接触状態が、標的孔に対して軸端が第2回動軸方向にのみずれた状態であると判定されるまで繰り返す。
これにより、複雑な接触状態に対応して正確且つ効果的に孔探索を完了可能であるとともに、挿入エラーの発生を回避できる。
上記の孔探索方法において、例えば、孔探索方法は、凸多角形の軸端及び孔端を対象とし、少なくとも1つの回動軸は、軸端の中心点を通過し、且つ凸多角形の各辺と平行な複数の回動軸を含む。接触状態は、複数の回動軸の各々と直交する方向における軸端と標的孔とのずれを含み、ずれ補正ステップにおいて、軸端に対し、ずれの向きに対応するずれ補正を行う。
これにより、複雑な接触状態に対応して正確な判定が可能となり、孔探索方法の適用性及び精度が向上する。
上記の孔探索方法において、例えば、孔探索方法は、円形の軸端及び孔端を対象とし、少なくとも1つの回動軸は、軸端の円心を通過し、且つ互いに直交する2つの回動軸を含む。接触状態は、2つの回動軸各々の方向における軸端と標的孔とのずれを含み、ずれ補正ステップにおいて、軸端に対し、ずれの向きに対応するずれ補正を行う。
これにより、複雑な接触状態に対応して正確な判定が可能となり、孔探索方法の適用性及び精度が向上する。
また、本発明の実施形態は孔探索装置を更に提供する。当該孔探索装置は、複数の孔端のうちの標的孔に対する軸端の孔探索を対象とし、軸端を回動可能に保持する保持部と、軸端に作用する軸方向力を測定するセンサと、標的孔を取り囲む力制御範囲内に軸端が位置するよう軸端を制御する制御部であって、軸端に位置し、且つ軸端の中心点を通過する少なくとも1つの回動軸周りに軸端を回動させ、軸端に作用する軸方向力の変化を測定するとともに、軸方向力の変化に基づいて軸端と標的孔との接触状態を判定し、接触状態に基づいて、軸端に対し特定軌道のずれ補正を行う制御部、を含むことを特徴とする。
本発明の一態様によれば、孔探索の精度と効率を向上可能である。
図1は、本発明の一実施形態に係る孔探索装置の機能構造を示すブロック図である。 図2は、制御部が実行する孔探索方法を示すフローチャートである。 図3は、力制御範囲の具体例の1つを示す図である。 図4は、軸線が回動軸周りに回動する際の軸方向力の変化の原理を説明するための図である。 図5は、四角形の軸端と標的孔に発生し得る代表的な接触状態を示す図である。 図6Aは、回動軸周りに軸線を回動させる際の軸方向力の変化規則の一状況を示すグラフである。 図6Bは、回動軸周りに軸線を回動させる際の軸方向力の変化規則の一状況を示すグラフである。 図6Cは、回動軸周りに軸線を回動させる際の軸方向力の変化規則の一状況を示すグラフである。 図6Dは、回動軸周りに軸線を回動させる際の軸方向力の変化規則の一状況を示すグラフである。 図7Aは、左右回動時の動的軸方向力情報と接触状態との対応関係を示す表である。 図7Bは、上下回動時の動的軸方向力情報と接触状態との対応関係を示す表である。 図8は、右ずれ状態時のずれ補正ステップを示すフローチャートである。 図9は、左右ずれ状態時のずれ補正ステップを示すフローチャートである。 図10は、双方向ずれ状態時のずれ補正ステップを示すフローチャートである。 図11は、円形の軸端と孔端との接触状態を示す図である。 図12は、六角形の軸端を示す図である。
以下に、図面を参照して本発明の具体的実施形態につき説明する。なお、以下の説明は本発明の理解の便宜上提示する例にすぎず、本発明の範囲を限定するものではない。具体的実施形態において、装置が備える部材は実際の状況に応じて変更、省略又は追加してもよい。また、方法のステップは、実際の状況に応じて順序を変更、省略、追加又は変更すればよい。
図1は、一実施形態に係る孔探索装置1の機能構造を示すブロック図である。
図1に示すように、一実施形態に係る孔探索装置1は、保持部11、センサ12、カメラ13及び制御部14を備える。また、図1には、孔探索装置1を利用して孔アレイ3の標的孔31に対する軸線2の孔探索及び組み付けを実現する場合を示している。
保持部11は軸線2を保持し、保持部11の移動によって、孔アレイ3の標的孔31に対する軸線2の孔探索及び組み付けを完了する。本実施形態では、保持部11の姿勢を制御することで、軸線2が誤差の許容範囲内で孔アレイ3が位置する平面に対し略垂直となるよう、保持部11により軸線2を保持する。図1に示すように、孔アレイ3が位置する平面をyz平面とすると、軸線2はyz平面と垂直なx方向に保持される。
保持部11は例えば空気圧グリッパであり、圧縮空気を保持力として軸線2を挟持するとともに、タスクの必要性に応じて、複数回にわたる軸線の挟持及び挿入を完了可能である。且つ、機械力又は電動力等により保持部11を制御することで、軸線2をyz平面と平行に移動させつつ孔探索を実施可能とし、且つ、x方向に対する一定の夾角範囲において軸線2を回動可能とする。また、保持部11はこれに限らず、例えば、油圧式グリッパ、電動式グリッパ又はマニピュレータ等としてもよい。軸線2を保持可能であるとともに、軸線2をyz平面と平行に移動させつつ孔探索を実施可能であり、且つ、x方向に対する一定の夾角範囲において軸線2を回動させられればよい。
センサ12はフォースセンサであり、軸線2が位置する方向(x方向)において軸線2に作用する軸方向力を少なくとも検出する。センサ12は、保持部11に配置してもよいし、別個に装着されるフォースセンサとしてもよい。
カメラ13は、例えば固定カメラ又は追従カメラとし、軸線2と孔アレイ3との位置関係を撮影して大まかな孔探索を実現するために用いられる。カメラ13は、孔探索装置1内に設置してもよいし、別個に配置されるカメラとしてもよい。また、カメラ13を設置せず、その他の方式で軸線2と孔アレイ3との位置関係を特定することで大まかな孔探索を実現してもよい。
制御部14は、センサ12が取得した力信号と、カメラ13が取得した画像情報に基づき、特定のアルゴリズムに従って保持部11を制御することで、標的孔31に対する軸線2の孔探索及び組み付けを実現する。例えば、プロセッサやメモリ等を有するコンピュータ、或いは専用のハードウェア集積回路によって制御部14の機能を実現すればよい。また、関連のプログラムを記録媒体に蓄積しておき、コンピュータのプロセッサで当該プログラムを実行することで制御部14の機能を実現してもよい。制御部14が実行する孔探索方法については後に詳述する。
軸線2は、例えば端面の直径が1〜2mmで一定の可撓性を有するケーブルである。なお、軸線2のサイズや物理的特性はこれに限らず、例えば、端面の直径を30〜40mmとしてもよいし、可撓性のケーブルではなく硬質の軸としてもよい。また、孔アレイ3寄りの軸線2の端面である軸端21は、yz平面に対し略平行である。本実施形態では、図1に示すように、軸端21の形状が四角形の場合を例示して説明する。
孔アレイ3には複数の孔が密集して配列されている。なお、孔の形状及び大きさは軸端21の形状及び大きさと一致している。本実施形態では、孔の形状が四角形の場合を例示して説明する。複数の孔が密集して配列されているとは、例えば、孔アレイ3の孔端の間隔が軸端21の直径(最大径)よりも小さいことをいう。なお、本実施形態は複数の孔が密集して配列される孔アレイの場合に限らない。本実施形態では、孔アレイ3の複数の孔がyz平面に配置され、複数の孔の深さ方向がx方向であるとする。また、標的孔31とは、複数の孔のうち軸線2との組み付けを待つ孔のことをいう。
次に、制御部14により実行される孔探索方法について具体的に説明する。図2は、制御部14が実行する孔探索方法を示すフローチャートである。
まず、ステップS101において、制御部14は保持部11が大まかな孔探索を完了するよう制御する。具体的には、標的孔31を取り囲む力制御範囲内に軸端21が位置するよう、保持部11が保持する軸線2を制御する。力制御範囲とは、密集した孔端を対象に孔探索を行う際に挿入エラーが生じないよう、視覚による観察などで保持部11を力制御するための精度範囲のことをいう。密集した孔端を対象として孔探索を行う際に力制御範囲を限定しておかないと、どの孔が標的孔31かを判断できず、挿入エラーが発生する。例えば、軸端21が左右2つの孔の間の仕切りに接触した場合、力覚では軸端21が左側の孔の右辺縁に位置しているのか、右側の孔の左辺縁に位置しているのかを判断できない。本実施形態では、カメラ13が取得した画像情報を視覚により観察して保持部11を制御することで、軸端21を力制御範囲内に位置させるよう制御する大まかな孔探索を実現する。なお、大まかな孔探索の実現方式としては任意の方式を用いればよい。例えば、カメラ13を設置せず、光電センサ等のその他のデバイスで取得したパラメータ情報又は予め設定されているアルゴリズムによって大まかな孔探索を実現してもよい。
図3は、力制御範囲の具体例の1つを示す図である。図3に示す点線枠内の範囲が力制御範囲41であり、実線枠が軸線2の挿入を待つ標的孔31を示している。本図から明らかなように、力制御範囲とは、標的孔31から外側に一定の範囲だけ延伸させて得られる標的孔31を取り囲む範囲である。軸端21の最外縁が力制御範囲41内に入っていれば、実施形態で提示する密集した孔端を対象とする孔探索方法で孔探索を行うことが可能である。また、力制御範囲41の辺縁と標的孔31の辺縁との間隔は、例えば軸端21のサイズに基づき決定される。図3に示す具体例では、bw、hwがそれぞれ軸端21の幅と高さを表す。また、α及びβは予め設定される係数である。孔探索方法の確かさを保証するために、好ましくは、αとβの値は0.5よりも小さく、より好ましくは、αとβの値を0.4とする。これより、図3に示す具体例において、標的孔31の幅及び高さをそれぞれLt及びWtとすると、好ましくは、力制御範囲41の幅はLt+2*0.4bw、力制御範囲の高さはWt+2*0.4hwである。
これにより、力制御範囲に基づく大まかな孔探索を実施することで、密集して配置される複数の孔を対象として孔探索を行う際に挿入エラーの発生を回避可能となるため、孔探索の精度と効率が向上する。
次に、動的力情報に基づいて力制御及び精密な孔探索を実施する。まず、ステップS102において、軸端21と標的孔31との接触状態を判定する。具体的には、軸端21に位置し、且つ軸端21の中心点を通過する少なくとも1つの回動軸周りに軸線2を2つの方向にそれぞれ回動させて、軸端21に作用する軸方向力の変化を測定する。そして、軸方向力の変化に基づいて、軸端21と標的孔との接触状態を判定する。
図4は、軸線2が回動軸周りに回動する際の軸方向力の変化の原理を説明するための図である。図4において、回動軸Oは軸端21に位置し、且つ軸端21の中心点を通過している。また、回動軸Oの方向はz方向(用紙と垂直な方向)と平行である。これにより、軸線2をy方向における2つの方向(+y及び−y方向)に回動させる。軸線2が回動軸O周りに回動する際に、軸端21と標的孔31との接触線は軸端21に対し軸方向(x方向)の反作用力fを有する。下記式(1)で示すように、fの大きさは、端面と標的孔31との接触位置における仮想変位δに正比例する。
f=Kδ=KRsina 式(1)
Kは軸端21の軸方向剛性、Rは軸端21の辺縁と標的孔31との接触線から回動軸Oまでの距離、aは仮想変位δに対する回動角度を表す。
図4において、軸線2は標的孔31の右側(−y方向)に位置している。よって、右側(−y方向)に軸線2を回動させた場合には、偏向方向に軸端21と標的孔31との接触線が発生する。即ち、軸端21と標的孔31周りの仕切りとが接触・重畳している方向に偏向させることで、仮想変位δが増大し、これに応じて反作用力f(即ち、センサ12が検出するX軸の軸方向力)も増大する。一方で、左側(+y方向)に軸線2を回動させた場合には、偏向方向に軸端21と標的孔31との接触線は発生しない。即ち、軸端21と標的孔31周りの仕切りとが接触・重畳していない方向に偏向させることで、仮想変位δが減少し、これに応じて反作用力f(即ち、センサ12が検出するX軸の軸方向力)も減少する。このように、右側への回動時に軸方向力が次第に増大し、左側への回動時に軸方向力が次第に減少することを検出した場合には、軸線2が標的孔31の右側に位置すると判定可能である。
上記から明らかなように、軸端21と標的孔31との接触状態によって、2つの方向に軸線2を回動させたときの軸方向力の変化は異なる。そのため、上記のような回動時の軸方向力の変化を検出することで、異なる接触状態を判定可能となる。例えば、図4に示すように、軸線2をz方向の回動軸周りに回動させることで、軸端21と標的孔31のy方向における接触状態を判定可能である。単一の静的力信号による判定と比較して、2つの方向への回動時の一連の力信号の変化の特徴から接触状態を判定する場合には、不確定要素や干渉要因等に起因して何らかの力信号に歪みが生じたり、差が明らかでなかったりするために正確な判定が不可能になるとの事態が回避される。よって、接触状態の判定精度及び安定性が向上する。
本実施形態では、所定の規則に従って2つの方向へ回動させる場合を考える。具体的には、まず、未回動の初期状態から反時計回り方向にa°回動させてから、逆方向である時計回り方向に2a°回動させ、最後に再び反時計回り方向にa°回動させることで最初の軸線2の姿勢に戻す場合を考える。なお、角度a°は例えば10°と等しくする。また、回動方式はこれに限らず、例えば、先に時計回り方向に回動させる等のその他の回動方式としてもよい。
また、複数の異なる接触状態を判定可能とするために、好ましくは、回動軸は互いに直交する2つの回動軸(第1回動軸及び第2回動軸)を含み、当該2つの回動軸の各々周りに軸線2を2つの方向にそれぞれ回動させることで、当該2つの回動軸方向における軸端21と標的孔31との接触状態を判定する。
本実施形態では、軸端21及び標的孔31の形状が四角形であって、2つの回動軸が四角形の中心を通過しており、且つ、y軸及びz軸とそれぞれ平行な場合を例示して説明する。
図5は、四角形の軸端21と標的孔31に発生し得る代表的な接触状態を示す図である。また、図6A、図6B、図6C及び図6Dは、それぞれ回動軸周りに軸線2を回動させる際の軸方向力の変化規則の一状況を示すグラフである。以下では、y方向を左右方向、z方向を上下方向とする。具体的には、+y方向を左方向、−y方向を右方向、+z方向を上方向、−z方向を下方向とする。図5の(a)は、軸端21が標的孔31の左側に位置する左ずれ状態を示す。z方向の回動軸周りにまず左へa°回動させてから(時間t1〜t2)、右へ2a°回動させ(時間t2〜t4)、最後に左へa°回動させる(時間t4〜t5)左右回動過程を考えると、軸方向力の変化は図6Aのようになる。即ち、左への回動時には仮想変位δが増大するため軸方向力が増大し、右への回動時には仮想変位δが減少するため軸方向力が減少する。図5の(b)は、軸端21が標的孔31の右側に位置する右ずれ状態を示す。同様の原理で、左右回動過程において、軸方向力の変化は図6Bに示すように、まず小さくなってから大きくなり、最後に再び減少する。図5の(c)は、軸端21が標的孔31の上側に位置する上ずれ状態を示す。同様の原理で、y方向の回動軸周りにまず上へa°回動させてから(時間t1〜t2)、下へ2a°回動させ(時間t2〜t4)、最後に上へa°回動させる(時間t4〜t5)上下回動過程において、軸方向力の変化は図6Aに示すように、まず大きくなってから小さくなり、最後に再び増大する。図5の(d)は、軸端21が標的孔31の下側に位置する下ずれ状態を示す。同様の原理で、上下回動過程において、軸方向力の変化は図6Bに示すように、まず小さくなってから大きくなり、最後に再び減少する。
このほか、上記の分析は、軸端21の中心点付近が確実に標的孔31の孔内に入り込むことを前提条件として行っている。しかし、複数の孔が密集して配置される孔アレイ3の場合には、軸端21の中心点付近が孔内に入り込まない状態がある。即ち、当該中心点付近が標的孔31の辺縁の仕切りに接触する状態がある。例えば、図5の(a)に示す左ずれ状態において、軸端21の中心点付近が、標的孔31と、標的孔31の左側の孔との間の仕切りに接触する場合を想定する。この状態では、当該中心点を通過する回動軸周りに2つの方向へ回動させる際の軸方向力の差が大きくはならず、値も比較的小さくなる。この場合の軸方向力の変化は、例えば図6Cに示すように、左へa°回動させたとき(時間t1〜t2)には仮想変位δが小幅で増大するため、軸方向力も小幅で増大する。続いて、右へa°回動させたとき(時間t2〜t3)には仮想変位δが小幅で減少するため、軸方向力も小幅で減少する。そして、右へa°回動させたとき(時間t3〜t4)には仮想変位δが小幅で増大するため、軸方向力も小幅で増大する。また、再び左へa°回動させたとき(時間t4〜t5)には仮想変位δが小幅で減少するため、軸方向力も小幅で減少する。なお、当該状態における軸方向力の変化は図6Cに示すような状況に限らず、その他の変化規則となってもよい。ただし、2つの方向へ回動させる際の軸方向力の差が大きくはならず、値も比較的小さくなるとの点は共通する。また、図5の(b)、(c)、(d)に示すようなずれ状態の場合に、軸端21の中心点付近が標的孔31の辺縁の仕切りに接触する場合にも、類似の軸方向力の変化状況が発生する。
また、図5の(e)、(f)、(g)、(h)は、それぞれ軸端21が標的孔31の左上方、右上方、左下方及び右下方に位置する双方向ずれ状態を示している。即ち、y,zの両方向にずれが存在する状態を示している。この状態での軸方向力の変化は、例えば図6Dに示すように、左へa°回動させたとき(時間t1〜t2)には仮想変位δが増大するため、軸方向力が増大する。続いて、右へa°回動させて初期状態に戻した場合(時間t2〜t3)には仮想変位δが減少するため、軸方向力が減少する。そして、右へa°回動させたとき(時間t3〜t4)には仮想変位δが増大するため、軸方向力が増大する。続いて、左へa°回動させて初期状態に戻した場合(時間t4〜t5)には仮想変位δが減少するため、軸方向力が減少する。即ち、左回動及び右回動時の軸方向力の差は大きくないが、値はいずれも比較的大きな値まで増大する。また、当該状態における上下回動過程での軸方向力の変化は、左右回動過程の場合と類似している。つまり、図6Dに示すような変化規則となる。
このほか、図5の(i)は、軸端21が完全に標的孔31内に入り込んだ状態を示している。即ち、ずれのない状態を示している。当該状態では、軸線2を回動する必要がなく、軸方向力が所定の閾値よりも小さくなる。つまり、これが孔探索完了の合図となる。以下では、ずれのない状態で軸方向力が所定の閾値よりも小さくなるときの当該閾値を第1の閾値と称する。当該第1の閾値は具体的状況に応じて適宜決定すればよい。
上記のように、軸線2を左右に回動及び上下に回動させて、軸端21に作用する軸方向力を動的力情報として測定することで、複数の接触状態を判定可能となる。図7A及び7Bは、左右回動時及び上下回動時の動的軸方向力情報と接触状態との対応関係を示す表である。図7Aの上2行及び図7Bの上2行に示すように、左右回動過程又は上下回動過程で一方向への回動時に軸方向力が増大し、他方への回動時に軸方向力が減少した場合、即ち、図6A又は図6Bに示すような軸方向力の変化状況が発生した場合には、軸端21と標的孔31との接触状態が図5の(a)、(b)、(c)、(d)のいずれかに限られると判定可能である。即ち、一方向ずれ状態であると判定可能である。
また、図7Aの3行目及び図7Bの3行目に示すように、左右回動過程又は上下回動過程で、2つの方向への回動時における軸方向力の値の差が大きくはなく、且ついずれも比較的小さな値である(第2の閾値を超えない)場合、即ち、図6Cに示すような軸方向力の変化状況が発生した場合には、軸端21と標的孔31が特定の回動軸に対応する回動方向においてのみずれを生じているが、具体的なずれの向きが左ずれなのか右ずれなのか(又は、上ずれなのか下ずれなのか)を特定することはできないと判定される。即ち、左右ずれ或いは上下ずれの単軸ずれ状態であると判定される。
また、図7Aの4行目及び図7Bの4行目に示すように、上下回動過程又は左右回動過程で、2つの方向への回動時の軸方向力がいずれも比較的大きな値まで増大し得る(第2の閾値を超える)場合、即ち、図6Dに示すような軸方向力の変化状況が発生した場合には、当該回動方向と直交する回動方向にずれが存在する状態と判定される。また、上下回動過程と左右回動過程のいずれにおいても図6Dに示すような軸方向力の変化状況が発生した場合には、上下のずれと左右のずれが同時に存在すると判定される。即ち、双方向ずれ状態であると判定可能である。
また、第2の閾値は、図6Cと図6Dに示す軸方向力の変化状況を区別するために設定される。当該第2の閾値は第1の閾値よりも大きく、具体的状況に応じて適宜決定すればよい。
以上の説明より、上下回動又は左右回動のうち少なくとも1つの回動方式を利用するだけで、一方向ずれ状態及び単軸ずれ状態を判定可能である。また、上下回動及び左右回動の2種類の回動方式を利用するだけで、一方向ずれ状態、単軸ずれ状態及び双方向ずれ状態を含む複数の接触状態を判定可能である。よって、本実施形態によれば、接触状態の判定効率及び精度が極めて大きく向上する。
続いて、図2に戻り、ステップS103において、制御部14はステップS102で判定した接触状態に基づき、保持部11が軸端21に対し特定軌道のずれ補正を実行するよう制御する。具体的には、接触状態の違いに応じて、制御部14は異なるアルゴリズムを特定し、保持部11が軸線2をyz平面上で平行移動させるよう制御する。また、当該平行移動の過程で、センサ12は軸端21に作用する軸方向力を検出する。そして、当該軸方向力が所定の第1の閾値よりも小さくなると、標的孔31に対する軸線2の孔探索が完了したと判定し、軸と孔の組み付けを行う。以下に、接触状態の違いに応じて実行される異なるずれ補正アルゴリズムについて具体的に説明する。
まず、S102において、接触状態が軸端21と標的孔31との間にずれが存在しないずれなし状態であると判定された場合、例えば図5の(i)に示すような状態であると判定された場合には、ずれ補正をしなくとも孔探索が完了するため、軸と孔の組み付けをそのまま実行可能である。
また、S102において、接触状態が、軸端21と標的孔31との間に特定方向のずれのみが存在する一方向ずれ状態であると判定された場合、例えば、図5の(a)、(b)、(c)、(d)のいずれかに示す状態であると判定された場合には、当該ずれの向きとは逆方向に軸線2を移動させるずれ補正を行う。以下に、右ずれの場合を例示してずれ補正の詳細なステップにつき説明する。図8は、右ずれ状態時のずれ補正ステップを示すフローチャートである。図8に示すように、ステップS201において、制御部14は、保持部11が軸線2を左方向へ所定の距離だけ移動させるよう制御する。当該所定の距離は、ずれ補正の精度要求に応じて適宜決定すればよい。続いて、ステップS202において、制御部14は、センサ12により検出された軸方向力が所定の第1の閾値よりも小さいか否かを判定する。センサ12は、軸方向力を連続的に検出してもよいし、距離等の所定の頻度で断続的に軸方向力を検出してもよい。軸方向力が第1の閾値よりも小さくないと判定された場合(ステップS202で「NO」と判定された場合)には、ステップS201に戻る。一方、軸方向力が第1の閾値よりも小さいと判定された場合(ステップS202で「YES」と判定された場合)にはステップS203を実行し、孔探索が完了した旨の信号を出力するとともに、軸と孔の組み付けを行う。
なお、その他の一方向ずれ状態におけるずれ補正については、右ずれ状態の場合と類似する。
上記より、一方向ずれ状態における孔探索が効率よく完了するため、孔探索の効率が向上する。
また、S102において、接触状態が、軸端21と標的孔31との間に特定の回動軸に対応する回動方向のずれのみが存在するが、具体的な方向については特定されない単軸ずれ状態であると判定された場合、例えば、左右ずれ状態又は上下ずれ状態であると判定された場合には、当該ずれの存在方向において、軸線2を両側にそれぞれ所定の距離だけ移動させるずれ補正を行う。所定の距離は、最大で、当該ずれの存在方向における力制御範囲の辺縁と標的孔31の辺縁との間隔と等しい。上述したように、ステップS101の大まかな孔探索では、挿入エラーを回避するために、制御部14が、標的孔31を取り囲む力制御範囲内に軸端21を位置させるよう制御する。そのため、ステップS103のずれ補正では、限定の当該力制御範囲に基づいて軸線2を移動させるべきである。詳細には、具体的なずれの向きを特定できない場合に、当該ずれの存在方向における力制御範囲の辺縁と標的孔31の辺縁との間隔を超えて軸端21を一方向に移動させ、孔探索を完了すると、軸線2が標的孔31周辺の別の孔に誤って挿入される恐れがある。また、力制御範囲を設定する際に、αとβの値が0.5に近付くほど単軸ずれ状態の発生の恐れが大きくなる。よって、力制御範囲を縮小することで、即ち、αとβの値を小さくすることで、標的孔31の辺縁が軸端21の中心付近に接触する際に、左右回動時又は上下回動時の動的力情報の違いが明らかでなくなるとの事態を回避可能とする。これにより、単軸ずれ状態の発生が減少ないしは回避される。
以下では、左右ずれ状態の場合を例示して、ずれ補正の詳細なステップにつき説明する。図9は、左右ずれ状態時のずれ補正ステップを示すフローチャートである。まず、ステップS301において、制御部14は、保持部11が軸線2を左方向へ所定の距離だけ移動させるよう制御する。当該所定の距離は、ずれ補正の精度要求に応じて適宜決定すればよい。当該左方向への移動は、具体的に左ずれなのか右ずれなのかを判定不可能なために実施される能動的探索動作であり、保持部11が軸線2をまず右方向へ移動させるよう制御してもよい。続いて、ステップS302において、制御部14は、センサ12により検出された軸方向力が所定の第1の閾値よりも小さいか否かを判定する。そして、軸方向力が第1の閾値よりも小さくないと判定された場合(ステップS302で「NO」と判定された場合)には、ステップS303を実行する。一方、軸方向力が第1の閾値よりも小さいと判定された場合(ステップS302で「YES」と判定された場合)にはステップS307を実行し、孔探索が完了した旨の信号を出力するとともに、軸と孔の組み付けを行う。また、ステップS303において、制御部14は、左方向への移動距離が距離Dを超えたか否かを判定する。当該距離Dは、左右方向における力制御範囲の辺縁と標的孔31の辺縁との間隔と等しい。即ち、例えば図3に示すαbwの距離とする。制御部14による移動距離の判定方式としては、例えば、当該所定の距離と距離Dとの比率関係に基づいて、複数回にわたり当該所定の距離だけ移動させた後に、移動距離が距離Dを超えたと判定する。ただしこれに限らず、例えば、距離センサ等により移動距離を判定してもよい。また、孔探索の効果を保証するために、当該所定の距離は距離Dよりも小さくなるよう適宜決定する必要がある。例えば、当該所定の距離は距離Dの1/10と等しくする。左方向への移動距離が距離Dを超えていないと判定された場合(ステップS303で「NO」と判定された場合)には、ステップS301に戻る。一方、左方向への移動距離が距離Dを超えたと判定された場合(ステップS303で「YES」と判定された場合)には、ステップS304を実行する。
ステップS304において、制御部14は、保持部11が軸線2を右方向へ所定の距離だけ移動させるよう制御する。続いて、ステップS305において、制御部14は、センサ12により検出された軸方向力が所定の第1の閾値よりも小さいか否かを判定する。そして、軸方向力が第1の閾値よりも小さくないと判定された場合(ステップS305で「NO」と判定された場合)には、ステップS306を実行する。一方、軸方向力が第1の閾値よりも小さいと判定された場合(ステップS305で「YES」と判定された場合)にはステップS307を実行し、孔探索が完了した旨の信号を出力するとともに、軸と孔の組み付けを行う。また、ステップS306において、制御部14は、右方向への移動距離が距離Dの2倍の距離2Dを超えたか否かを判定する。そして、右方向への移動距離が距離2Dを超えていないと判定された場合(ステップS306で「NO」と判定された場合)には、ステップS304に戻る。一方、右方向への移動距離が距離2Dを超えたと判定された場合(ステップS306で「YES」と判定された場合)には、今回のフローでは孔探索に成功しなかったことを意味し、フローを終了する。
また、上下ずれ状態等のその他の単軸ずれ状態におけるずれ補正については、左右ずれ状態の場合と類似する。
上記のように、具体的なずれの向きが特定されない単軸ずれ状態では、力制御範囲に基づき能動的探索を行うことで、効率的且つ正確な孔探索が可能になる。また、軸と孔との具体的接触状態を判定不可能な場合に孔探索方法を適用することができ、且つ、密集して配置される複数の孔を対象として孔探索を行う際に、挿入エラーの発生を回避可能となる。
また、S102において、接触状態が、互いに直交する2つの回動軸に対応する回動方向のずれが軸端21と標的孔31との間に存在する双方向ずれ状態であると判定された場合、例えば、図5の(e)、(f)、(g)、(h)のいずれかに示す状態であると判定された場合には、一方の回動軸方向に軸線2を移動させ、所定の距離だけ移動させたあとに、ステップ102の処理に基づいて接触状態を再び判定する。これを、標的孔31に対して軸端21が当該回動軸と直交する方向にのみずれた接触状態であると判定されるまで繰り返す。
以下に、ずれ補正の詳細なステップについて具体的に説明する。図10は、双方向ずれ状態時のずれ補正ステップを示すフローチャートである。まず、ステップS401において、制御部14は、保持部11が軸線2を上方向へ所定の距離だけ移動させるよう制御する。当該上方向への移動は、具体的に上ずれなのか下ずれなのかを判定不可能なために実施される能動的探索動作であり、保持部11が軸線2をまず下方向へ移動させるよう制御してもよい。続いて、ステップS402において、ステップS102と同様の方式で、軸線2を左右に回動させて軸端21と標的孔31との接触状態を判定する。具体的には、図7Aの上3行に基づいて、接触状態が左ずれ、右ずれ又は左右ずれのいずれかであるか否かを判定する。続いて、ステップS403において、制御部14は、ステップS402で判定した接触状態が、左ずれ、右ずれ又は左右ずれのいずれかであるか否かを判定する。即ち、左右方向のずれのみが存在するか否かを判定する。そして、左右方向のずれのみが存在するのではないと判定された場合(ステップS403で「NO」と判定された場合)には、ステップS404を実行する。一方で、左右方向のずれのみが存在すると判定された場合(ステップS403で「YES」と判定された場合)には、ステップS409を実行し、接触状態を左右方向のずれのみに変換する旨の信号を出力する。そして、接触状態が具体的に左ずれ、右ずれ又は左右ずれのいずれであるかに基づき、対応するずれ補正アルゴリズムに従ってずれ補正を行う。また、ステップS404において、制御部14は、上方向への移動距離が距離Dを超えたか否かを判定する。そして、上方向への移動距離が距離Dを超えていないと判定された場合(ステップS404で「NO」と判定された場合)には、ステップS401に戻る。一方、上方向への移動距離が距離Dを超えたと判定された場合(ステップS404で「YES」と判定された場合)には、ステップS405を実行する。
ステップS405において、制御部14は、保持部11が軸線2を下方向へ所定の距離だけ移動させるよう制御する。続いて、ステップS406において、軸線2を左右に回動させて軸端21と標的孔31との接触状態を判定する。次に、ステップS407において、制御部14は、ステップS406で判定した接触状態が、左ずれ、右ずれ又は左右ずれのいずれかであるか否かを判定する。即ち、左右方向のずれのみが存在するか否かを判定する。そして、左右方向のずれのみが存在するのではないと判定された場合(ステップS407で「NO」と判定された場合)には、ステップS408を実行する。一方で、左右方向のずれのみが存在すると判定された場合(ステップS407で「YES」と判定された場合)には、ステップS409を実行し、接触状態を左右方向のずれのみに変換する旨の信号を出力する。そして、接触状態が具体的に左ずれ、右ずれ又は左右ずれのいずれであるかに基づき、対応するずれ補正アルゴリズムに従ってずれ補正を行う。また、ステップS408において、制御部14は、下方向への移動距離が距離2Dを超えたか否かを判定する。そして下方向への移動距離が距離2Dを超えていないと判定された場合(ステップS408で「NO」と判定された場合)には、ステップS405に戻る。一方、下方向への移動距離が距離2Dを超えたと判定された場合(ステップS408で「YES」と判定された場合)には、今回のフローでは孔探索に成功しなかったことを意味し、フローを終了する。
なお、上下方向に軸線2を移動させるとともに、左右方向に軸線2を回動させることで接触状態を判定し、接触状態を左右方向のずれのみが存在するよう変換する場合を例示して説明したが、左右方向に軸線2を移動させるとともに、上下方向に軸線2を回動させることで接触状態を判定し、接触状態を上下方向のずれのみが存在するよう変換してもよい。
上記より、互いに直交する2つの方向のずれが同時に存在する双方向ずれであると判定された場合には、能動的探索動作の実行過程に動的力信号に基づく接触状態の判定を組み合わせることで、能動的探索動作に必要な試行回数が減少するため、接触状態を効率よく一方向ずれ状態又は単軸ずれ状態に変換可能となる。また、その後、一方向ずれ状態又は単軸ずれ状態の場合のアルゴリズムに従ってずれ補正を実行可能である。これにより、ずれ補正を複雑な接触状態に適用可能となり、正確且つ効果的に孔探索を完了させられる。また、軸と孔との具体的接触状態を判定不可能な場合に孔探索方法を適用することができ、且つ、密集して配置される複数の孔を対象として孔探索を行う際に、挿入エラーの発生を回避可能となる。
上記の説明では、軸端21及び孔端の形状が四角形の場合を例示して説明した。しかし、軸端21及び孔端の形状はこれに限らず、孔端の形状と軸端21の形状が一致しており、且つ、上記の孔探索方法を利用して孔探索及び組み付けを実行できればよい。
(第1変形例)
第1変形例の孔探索方法では、円形の軸端及び孔端を対象として孔探索を行う。なお、第1変形例のうち上記実施形態と同一の部分については、具体的な説明を省略又は簡略化する。第1変形例は、軸端及び孔端の形状を円形に変更した点で上記実施形態と異なる。
円形の軸端及び標的孔を対象として、まず、ステップS101において、標的孔を取り囲む力制御範囲内に軸端が位置するよう、保持部11が保持する軸線を制御する。当該力制御範囲は、例えば標的孔と同心であり、且つ半径が標的孔よりも大きな範囲とする。また、アルゴリズムの安定性を高めるために、好ましくは、力制御範囲を、軸端の円心と標的孔の円心との位置ずれが軸端の半径よりも小さくなるよう設定し、より好ましくは、軸端の円心と標的孔の円心との位置ずれが軸端の半径の0.4倍よりも小さくなるよう設定する。
ステップS102において、軸端の円心を通過し、且つ互いに直交する2つの回動軸周りに軸線を回動させて、当該2つの回動軸各々の方向における軸端と標的孔とのずれを判定する。当該2つの回動軸は、例えばyz平面における左右方向(y方向)の回動軸と、上下方向(z方向)の回動軸である。
図11は、円形の軸端21と孔31の端との接触状態を示す図である。図11に示すように、軸端21の円心Oを回動中心とし、軸を順に左右回動及び上下回動させてから、左回動時と右回動時、上回動時と下回動時の力の変化規則をそれぞれ比較して接触状態を特定する。式(1)で示す仮想変位の原理に基づけば、円形の軸端が、標的孔の外側部分において、軸の回動による探索過程で障害物である孔と孔の間の仕切りと接触した場合には、比較的大きな仮想変位が発生するため、軸端に作用する軸方向力も比較的大きくなる。また、円形の軸端のうち孔内の部分の方向に向かって回動させた場合には、仮想変位が比較的小さくなるため、発生する軸方向力も比較的小さくなる。このように、例えば、yz平面の左右方向(y方向)と上下方向(z方向)の軸を回動軸として回動させることで、y方向又はz方向における特定方向の一方向ずれ状態と、y方向又はz方向における不特定方向の単軸ずれ状態、y方向及びz方向の双方にずれが存在する双方向ずれ状態を判定可能となる。
また、軸と孔の円心位置のずれが軸端の半径よりも小さい場合には、軸端の円形の辺縁と回動軸とが交差する4つの交点のうち少なくとも1つが常に標的孔に入り込んでいる。孔の外側に位置するその他の交点は、軸の回動による探索過程において、孔の外側で障害物と接触して比較的大きな仮想変位を発生させるため、軸方向力も比較的大きくなる。これに対し、標的孔に入り込んだ交点の方向に向かって回動させた場合には、仮想変位が比較的小さくなるため、発生する作用力も比較的小さくなる。これにより、回動過程で発生する軸方向力が比較的小さくなる側を孔の中心方向、即ちずれ補正方向とみなすことができる。
ステップS103では、ステップS102で判定した接触状態に基づいて、ずれが存在すると判定された方向とは逆方向に軸線を移動させて孔探索を完了する。また、複数の方向にずれが存在すると判定された場合には、複数回にわたる接触状態の判定とずれ補正を行うことで、最終的に軸と孔との位置合わせを実現し、孔探索を完了する。
(第2変形例)
第2変形例の孔探索方法では、凸多角形の軸端及び孔端を対象として孔探索を行う。なお、第2変形例のうち上記実施形態又は第1変形例と同一の部分については、具体的な説明を省略又は簡略化する。第2変形例は、軸端及び孔端の形状を凸多角形に変更した点で上記実施形態と異なる。
まず、ステップS101において、標的孔を取り囲む力制御範囲内に軸端が位置するよう、保持部11が保持する軸線を制御する。また、アルゴリズムの安定性を高めるために、好ましくは、当該凸多角形の軸端の少なくとも1つの辺が完全に孔内に位置するよう力制御範囲を設定する。
ステップS102では、軸端の中心を通過し、且つ互いに直交する2つの回動軸周りに軸線を回動させるだけでなく、軸端の中心を通過し、且つ凸多角形の各辺とそれぞれ平行な複数の回動軸周りに軸線を回動させることで、当該複数の回動軸の各々と直交する方向における軸端と標的孔とのずれを判定する。また、軸端が軸対称形状である凸多角形の軸と孔(例えば、六角形、八角形等)の場合には、半分の辺長方向及びその逆方向にのみ回動させて探索すればよい。これは、半分の辺長方向の逆方向が、残り半分の辺長が位置する方向となるためである。
以下に、六角形の軸端及び孔端の場合を例示して説明する。図12は、六角形の軸端を示す図である。図12に示すように、六角形軸の6つの頂点を、それぞれP1、P2、P3、P4、P5、P6とする。六角形の軸線には6本の辺が存在し、それぞれをP12、P23、P34、P45、P56、P61と称する。また、六角形軸の軸端の中心を通過する3本の回動軸を考える。このうち、2つの頂点P1とP4の接続線を回動軸L1、2つの頂点P2とP5の接続線を回動軸L2、2つの頂点P3とP6の接続線を回動軸L3と称する。各回動軸の垂直方向には2つの辺が存在する。例えば、回動軸L1の垂直方向には2つの辺P23とP56が存在し、回動軸L2の垂直方向には2つの辺P34とP61が存在し、回動軸L3の垂直方向には2つの辺P12とP45が存在する。軸端が孔の表面に接触したあと、ずれの向きを識別する際には、軸線を回動軸L1、L2、L3周りに3回ずつ回動させて力の変化規則を観察し、接触状態を判定する。
軸線を回動軸L1、L2、L3周りに3回ずつ回動させる際に、いずれかの回動軸周りの回動過程において、時計回りの回動時と反時計回りの回動時との動的力情報の違いが比較的大きい場合には、当該回動軸の垂直方向に位置ずれが存在することを意味する。式(1)で示す仮想変位の原理によれば、いずれかの回動軸周りに軸線を回動させる際に、回動軸の垂直方向におけるいずれかの辺が孔内に位置し、回動軸の垂直方向における他方の辺が孔の外側の仕切り上に位置する場合には、一方向への回動時に軸方向力が減少し、他方への回動時に軸方向力が増大する。例えば、図6A又は図6Bに示すような軸方向力の変化曲線が発生した場合には、当該回動軸と直交する方向にずれが存在することを意味する。上記より、当該複数の回動軸の各々と直交する方向におけるずれを判定可能である。
ステップS103では、ステップS102で判定した接触状態に基づいて、ずれが存在すると判定された方向とは逆方向に軸線を移動させて孔探索を完了する。また、複数の方向にずれが存在すると判定された場合には、複数回にわたる接触状態の判定とずれ補正を行うことで、最終的に軸と孔との位置合わせを実現し、孔探索を完了する。
以上、図面を参照して本発明の実施形態につき説明した。上記で説明した実施形態は本発明の具体例にすぎず、本発明を理解するためのものであって、本発明の範囲を限定するものではない。当業者は、本発明の技術思想に基づいて、実施形態につき各種の変形、組み合わせ及び要素の合理的省略を実施可能であり、これらにより得られる方式もまた本発明の範囲に含まれる。
1 孔探索装置、2 軸線、3 孔アレイ、11 保持部、12 センサ、13 カメラ、14 制御部、21 軸端、31 標的孔、41 力制御範囲

Claims (10)

  1. 複数の孔端のうちの標的孔に対する軸端の孔探索方法であって、
    前記標的孔を取り囲む力制御範囲内に前記軸端が位置するよう、前記軸端を制御する孔探索ステップと、
    前記軸端に位置し、且つ前記軸端の中心点を通過する少なくとも1つの回動軸周りに前記軸端を回動させ、前記軸端に作用する軸方向力の変化を測定するとともに、前記軸方向力の変化に基づいて前記軸端と前記標的孔との接触状態を判定する接触状態判定ステップと、
    前記接触状態に基づいて、前記軸端に対し特定軌道のずれ補正を行うずれ補正ステップと、を含むことを特徴とする孔探索方法。
  2. 前記ずれ補正ステップにおいて、前記軸方向力を検出し、前記軸方向力が所定の第1の閾値よりも小さくなるまで、前記軸端に対し特定軌道のずれ補正を行う請求項1に記載の孔探索方法。
  3. 前記少なくとも1つの回動軸は、第1回動軸と、前記第1回動軸と直交する第2回動軸を含み、
    前記接触状態には、前記軸端と前記標的孔との前記第1回動軸の方向におけるずれ及び前記第2回動軸の方向におけるずれが含まれ、
    前記ずれ補正ステップにおいて、前記軸端に対し、前記ずれの向きに対応するずれ補正を行う請求項2に記載の孔探索方法。
  4. 前記接触状態判定ステップにおいて、
    前記軸端が未回動のときの前記軸方向力が前記第1の閾値よりも小さい場合には、ずれなし状態であると判定し、
    前記第1回動軸又は前記第2回動軸周りに前記軸端を2つの方向にそれぞれ回動させたとき、一方向への回動時に前記軸方向力が減少し、且つ他の方向への回動時に前記軸方向力が増大した場合には、前記接触状態が、前記標的孔に対して前記軸端が前記他の方向の側にのみずれている一方向ずれ状態であると判定し、
    前記第1回動軸又は前記第2回動軸周りに前記軸端を2つの方向にそれぞれ回動させたとき、2つの方向への回動時の前記軸方向力が、いずれも前記第1の閾値よりも大きな所定の第2の閾値を超えなかった場合には、前記接触状態が、前記標的孔に対して前記軸端が前記2つの方向のうちのいずれかの方向の側にのみずれてはいるが、ずれの向きが特定されない単軸ずれ状態であると判定し、
    前記第1回動軸及び前記第2回動軸周りに前記軸端を2つの方向にそれぞれ回動させたとき、前記軸方向力がいずれも前記第2の閾値を超えた場合には、前記接触状態が、前記第1回動軸の方向のずれと前記第2回動軸の方向のずれが存在する双方向ずれ状態であると判定する請求項3に記載の孔探索方法。
  5. 前記接触状態が前記一方向ずれ状態の場合には、前記ずれ補正ステップにおいて、前記ずれの向きとは逆方向に前記軸端を移動させるずれ補正を行う請求項4に記載の孔探索方法。
  6. 前記接触状態が前記単軸ずれ状態の場合には、前記ずれ補正ステップにおいて、前記ずれの存在方向に前記軸端を所定の距離だけ両側へとそれぞれ移動させるずれ補正を行い、前記所定の距離は、最大で、前記ずれの存在方向における前記力制御範囲の辺縁と前記標的孔の辺縁との間隔と等しく、前記間隔は前記軸端のサイズに基づき特定される請求項4に記載の孔探索方法。
  7. 前記接触状態が前記双方向ずれ状態の場合には、前記ずれ補正ステップにおいて、前記第1回動軸の方向に前記軸端を所定の距離だけ移動させたあとに前記接触状態判定ステップに基づいて前記接触状態を再び判定する移動判定ステップを実行し、前記移動判定ステップを、前記接触状態が、前記標的孔に対して前記軸端が前記第2回動軸の方向にのみずれた状態であると判定されるまで繰り返す請求項4に記載の孔探索方法。
  8. 前記孔探索方法は、凸多角形の前記軸端及び前記孔端を対象とし、
    前記少なくとも1つの回動軸は、前記軸端の中心点を通過し、且つ前記凸多角形の各辺と平行な複数の回動軸を含み、
    前記接触状態は、前記複数の回動軸の各々と直交する方向における前記軸端と前記標的孔とのずれを含み、
    前記ずれ補正ステップにおいて、前記軸端に対し、前記ずれの向きに対応するずれ補正を行う請求項1〜7のいずれか1項に記載の孔探索方法。
  9. 前記孔探索方法は、円形の前記軸端及び前記孔端を対象とし、
    前記少なくとも1つの回動軸は、前記軸端の円心を通過し、且つ互いに直交する2つの回動軸を含み、
    前記接触状態は、前記2つの回動軸の各々の方向における前記軸端と前記標的孔とのずれを含み、
    前記ずれ補正ステップにおいて、前記軸端に対し、前記ずれの向きに対応するずれ補正を行う請求項1〜7のいずれか1項に記載の孔探索方法。
  10. 複数の孔端のうちの標的孔に対する軸端の孔探索装置であって、
    前記軸端を回動可能に保持する保持部と、
    前記軸端に作用する軸方向力を測定するセンサと、
    前記標的孔を取り囲む力制御範囲内に前記軸端が位置するよう前記軸端を制御する制御部であって、前記軸端に位置し、且つ前記軸端の中心点を通過する少なくとも1つの回動軸周りに前記軸端を回動させ、前記軸端に作用する軸方向力の変化を測定するとともに、前記軸方向力の変化に基づいて前記軸端と前記標的孔との接触状態を判定し、前記接触状態に基づいて、前記軸端に対し特定軌道のずれ補正を行う制御部と、を含むことを特徴とする孔探索装置。
JP2020132341A 2019-08-15 2020-08-04 孔探索方法及び孔探索装置 Active JP7026176B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910752183.5 2019-08-15
CN201910752183.5A CN112388264A (zh) 2019-08-15 2019-08-15 寻孔方法及寻孔装置

Publications (2)

Publication Number Publication Date
JP2021030435A true JP2021030435A (ja) 2021-03-01
JP7026176B2 JP7026176B2 (ja) 2022-02-25

Family

ID=74601138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020132341A Active JP7026176B2 (ja) 2019-08-15 2020-08-04 孔探索方法及び孔探索装置

Country Status (2)

Country Link
JP (1) JP7026176B2 (ja)
CN (1) CN112388264A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147724B (zh) * 2021-12-20 2024-04-16 上海景吾智能科技有限公司 机器人力控轴孔装配方法及系统
CN116216305B (zh) * 2022-12-29 2023-11-07 长园视觉科技(珠海)有限公司 上下料控制方法、控制器、上下料设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168927A (ja) * 1994-12-19 1996-07-02 Fujitsu Ltd 部品組み立て装置
DE19531832A1 (de) * 1995-08-29 1997-03-06 Univ Dresden Tech Verfahren zur Ermittlung und geregelten Kompensation von Positions- und Orientierungsfehlern beim Fügen von Bauteilen durch Längspressen und Vorrichtung hierzu
JP2008307634A (ja) * 2007-06-14 2008-12-25 Fanuc Ltd 嵌合装置
JP2012143842A (ja) * 2011-01-13 2012-08-02 Sharp Corp 探索装置、自動組付け装置、探索方法、およびプログラム
JP2019034398A (ja) * 2017-08-10 2019-03-07 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム
US20190137954A1 (en) * 2017-11-09 2019-05-09 International Business Machines Corporation Decomposed perturbation approach using memory based learning for compliant assembly tasks
JP2019084650A (ja) * 2017-11-09 2019-06-06 キヤノン株式会社 ロボット装置及び組立品の製造方法
CN110076780A (zh) * 2019-05-30 2019-08-02 中国科学院自动化研究所 基于视觉和力反馈位姿调节的机器人装配方法及系统
JP2020142324A (ja) * 2019-03-06 2020-09-10 三菱電機株式会社 ロボット装置および自動補正方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168927A (ja) * 1994-12-19 1996-07-02 Fujitsu Ltd 部品組み立て装置
DE19531832A1 (de) * 1995-08-29 1997-03-06 Univ Dresden Tech Verfahren zur Ermittlung und geregelten Kompensation von Positions- und Orientierungsfehlern beim Fügen von Bauteilen durch Längspressen und Vorrichtung hierzu
JP2008307634A (ja) * 2007-06-14 2008-12-25 Fanuc Ltd 嵌合装置
JP2012143842A (ja) * 2011-01-13 2012-08-02 Sharp Corp 探索装置、自動組付け装置、探索方法、およびプログラム
JP2019034398A (ja) * 2017-08-10 2019-03-07 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム
US20190137954A1 (en) * 2017-11-09 2019-05-09 International Business Machines Corporation Decomposed perturbation approach using memory based learning for compliant assembly tasks
JP2019084650A (ja) * 2017-11-09 2019-06-06 キヤノン株式会社 ロボット装置及び組立品の製造方法
JP2020142324A (ja) * 2019-03-06 2020-09-10 三菱電機株式会社 ロボット装置および自動補正方法
CN110076780A (zh) * 2019-05-30 2019-08-02 中国科学院自动化研究所 基于视觉和力反馈位姿调节的机器人装配方法及系统

Also Published As

Publication number Publication date
JP7026176B2 (ja) 2022-02-25
CN112388264A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US11254008B2 (en) Method and device of controlling robot system
US10201901B2 (en) Robot apparatus, method for controlling robot, program, and recording medium
EP3433061B1 (en) Automatic calibration method for robot system and corresponding robot system
KR102271941B1 (ko) 비전을 갖는 자동화 기계가공 헤드 및 방법
US6529852B2 (en) Method and device for the improvement of the pose accuracy of effectors on mechanisms and for the measurement of objects in a workspace
US9727053B2 (en) Information processing apparatus, control method for information processing apparatus, and recording medium
JP7026176B2 (ja) 孔探索方法及び孔探索装置
EP3137954B1 (en) Method for calibrating tool centre point for industrial robot system
US9352467B2 (en) Robot programming apparatus for creating robot program for capturing image of workpiece
US20180243911A1 (en) Robot and robot system
CN106272416A (zh) 基于力觉和视觉的机器人细长轴精密装配系统及方法
JP5549223B2 (ja) ロボットの制御装置および制御方法、ロボットシステム
US20080027580A1 (en) Robot programming method and apparatus with both vision and force
JP2005300230A (ja) 計測装置
US20160288333A1 (en) Robot, robot control device, and robotic system
US11230011B2 (en) Robot system calibration
EP3476550B1 (en) Robot system, robot controller, and method for withdrawing robot
US9457475B2 (en) Robotic placement and manipulation with enhanced accuracy
US20200254625A1 (en) Through-beam auto teaching
WO2019049488A1 (ja) ロボットの診断方法
JP5787646B2 (ja) ロボットシステム及び部品の製造方法
JP2890874B2 (ja) ロボットアーム相対姿勢補正方法
KR101695248B1 (ko) 센서 캘리브레이션 장치
Zhang et al. Vision-guided robot alignment for scalable, flexible assembly automation
JP5516974B2 (ja) 視覚センサのマウント装置と方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7026176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150