JP2021026921A - Active material, electrode for lithium sulfur battery, and lithium sulfur battery - Google Patents

Active material, electrode for lithium sulfur battery, and lithium sulfur battery Download PDF

Info

Publication number
JP2021026921A
JP2021026921A JP2019144915A JP2019144915A JP2021026921A JP 2021026921 A JP2021026921 A JP 2021026921A JP 2019144915 A JP2019144915 A JP 2019144915A JP 2019144915 A JP2019144915 A JP 2019144915A JP 2021026921 A JP2021026921 A JP 2021026921A
Authority
JP
Japan
Prior art keywords
active material
lithium
sulfur battery
experimental example
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019144915A
Other languages
Japanese (ja)
Other versions
JP7366396B2 (en
Inventor
松田 厚範
Atsunori Matsuda
厚範 松田
浩行 武藤
Hiroyuki Muto
浩行 武藤
フ フイ フク グエン
Huu Huy Phuc Nguyen
フ フイ フク グエン
麗子 松田
Reiko Matsuda
麗子 松田
隆貴 前田
Takaki Maeda
隆貴 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2019144915A priority Critical patent/JP7366396B2/en
Publication of JP2021026921A publication Critical patent/JP2021026921A/en
Application granted granted Critical
Publication of JP7366396B2 publication Critical patent/JP7366396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an active material which is suitable as a constituent of an electrode of an all-solid type lithium ion battery or lithium sulfur battery, and an electrode for a lithium sulfur battery and a lithium sulfur battery which include the active material.SOLUTION: An active material according to the present invention comprises a compound in which Li atoms in Li2S are partially substituted with a polyvalent atom originating from a Group II element, Group III element or Group XIII element of the periodic table, wherein the compound has a diffraction pattern of Li2S substantially according to X-ray diffraction.SELECTED DRAWING: Figure 1

Description

本発明は、リチウム硫黄電池を構成する正極電極等の構成材料として好適な活物質、リチウム硫黄電池用電極及びリチウム硫黄電池に関する。 The present invention relates to an active material suitable as a constituent material such as a positive electrode constituting a lithium-sulfur battery, an electrode for a lithium-sulfur battery, and a lithium-sulfur battery.

携帯電話等の端末機器、電気自動車等に向けて、充放電容量の高い二次電池の開発が盛んに行われている。充放電が可能な二次電池としては、リチウムイオン電池が実用化されているが、充放電容量が170mAh/g程度である。そこで、近年、理論容量が約1670mAh/gと高い硫黄を含む正極活物質を用いたリチウム硫黄電池が注目されている。特に、電解質として固体電解質を用いた全固体型リチウム硫黄電池は、液体電解質を用いたリチウム硫黄電池で課題となる多硫化リチウムの電解質溶液への溶出がないため、充放電容量の維持や長寿命化に適している。また、可燃性の有機溶媒を使用しないことから液漏れや発火のおそれがなく、安全性の観点からも期待されている。
しかしながら、硫黄は絶縁性を有するため、正極電極における電子伝導性及びリチウムイオン伝導性が非常に低く、上記の理論容量が十分に発揮できない傾向にあり、活物質として、他の化合物を硫黄とともに併用する試みがなされている。例えば、特許文献1には、硫黄、及び硫黄原子を含む化合物の少なくとも1つ、導電性物質、並びに、リチウム原子、リン原子及び硫黄原子を含む固体電解質を含む電極材料が開示されており、硫黄原子を含む化合物として、硫化リチウム及び多硫化リチウム(Li、Li、Li)が例示され、これを活物質として用いることが記載されている。
Secondary batteries with high charge / discharge capacity are being actively developed for terminal devices such as mobile phones and electric vehicles. As a secondary battery capable of charging and discharging, a lithium ion battery has been put into practical use, and the charging / discharging capacity is about 170 mAh / g. Therefore, in recent years, a lithium-sulfur battery using a positive electrode active material containing sulfur having a theoretical capacity as high as about 1670 mAh / g has been attracting attention. In particular, an all-solid-state lithium-sulfur battery using a solid electrolyte as an electrolyte does not elute lithium polysulfide into an electrolyte solution, which is a problem in lithium-sulfur batteries using a liquid electrolyte, so that the charge / discharge capacity can be maintained and the service life can be extended. Suitable for conversion. In addition, since no flammable organic solvent is used, there is no risk of liquid leakage or ignition, and it is expected from the viewpoint of safety.
However, since sulfur has insulating properties, the electron conductivity and lithium ion conductivity of the positive electrode are very low, and the above theoretical capacity tends to be insufficiently exhibited. Therefore, other compounds are used together with sulfur as an active material. Attempts have been made. For example, Patent Document 1 discloses an electrode material containing sulfur and at least one of compounds containing a sulfur atom, a conductive substance, and a solid electrolyte containing a lithium atom, a phosphorus atom, and a sulfur atom. Lithium sulfide and lithium polysulfide (Li 2 S 2 , Li 2 S 4 , Li 2 S 8 ) are exemplified as the compound containing an atom, and it is described that this is used as an active material.

また、リチウムイオン電池用の活物質としては、例えば、特許文献2〜3に記載された技術が知られている。特許文献2には、構成元素として、Li、Mo及びSを含む、リチウムイオン電池用正極活物質が開示されている。特許文献3には、多硫化リチウムと、遷移金属硫化物(チタン硫化物、モリブデン硫化物、バナジウム硫化物、コバルト硫化物、ニッケル硫化物、鉄硫化物、クロム硫化物、マンガン硫化物、亜鉛硫化物等)と、を混合することにより硫化遷移金属リチウム系正極活物質を得る工程(A)を含むリチウムイオン電池用硫化遷移金属リチウム系正極活物質の製造方法が開示されている。 Further, as an active material for a lithium ion battery, for example, the techniques described in Patent Documents 2 to 3 are known. Patent Document 2 discloses a positive electrode active material for a lithium ion battery containing Li, Mo and S as constituent elements. Patent Document 3 describes lithium polysulfide and transition metal sulfides (titanium sulfide, molybdenum sulfide, vanadium sulfide, cobalt sulfide, nickel sulfide, iron sulfide, chromium sulfide, manganese sulfide, zinc sulfide). A method for producing a sulfide transition metal lithium-based positive electrode active material for a lithium ion battery is disclosed, which comprises a step (A) of obtaining a sulfide transition metal lithium-based positive electrode active material by mixing the product and the like.

国際公開2013−76955号公報International Publication No. 2013-76955 特開2015−76180号公報JP 2015-76180 特開2017−142950号公報JP-A-2017-142950

特許文献2、3の実施例で開示されているリチウム硫黄電池の充放電容量は、理論値の1/10程度にとどまっており、高い充電容量が得られていない。
本発明の課題は、充電容量の高いリチウム硫黄電池を与える活物質及びリチウム硫黄電池用電極並びにリチウム硫黄電池を提供することである。
The charge / discharge capacity of the lithium-sulfur battery disclosed in Examples of Patent Documents 2 and 3 is only about 1/10 of the theoretical value, and a high charge capacity has not been obtained.
An object of the present invention is to provide an active material for providing a lithium-sulfur battery having a high charge capacity, an electrode for a lithium-sulfur battery, and a lithium-sulfur battery.

本発明は、以下に示される。
[1]LiSにおける一部のLi原子が周期表の第2族元素、第3族元素又は第13族元素に由来する多価原子で置換された化合物であって、X線回折により、実質的にLiSの回折パターンを有する化合物を含むことを特徴とする活物質。
[2]リチウム硫黄電池に用いられる上記[1]に記載の活物質。
[3]上記[1]又は[2]に記載の活物質を含むことを特徴とするリチウム硫黄電池用電極。
[4]上記[3]に記載のリチウム硫黄電池用電極を備えることを特徴とするリチウム硫黄電池。
The present invention is shown below.
[1] A compound in which a part of the Li atoms are substituted with polyvalent atom derived from the second group elements of the periodic table, the group 3 element or Group 13 element in the Li 2 S, the X-ray diffraction, active material, characterized in that substantially comprises a compound having the diffraction pattern of Li 2 S.
[2] The active material according to the above [1] used in a lithium-sulfur battery.
[3] An electrode for a lithium-sulfur battery, which comprises the active material according to the above [1] or [2].
[4] A lithium-sulfur battery comprising the electrode for a lithium-sulfur battery according to the above [3].

本発明の活物質は、充電容量の高いリチウム硫黄電池を与える電極(好ましくは正極電極)の形成に好適である。また、電気伝導性が高く優れた電池性能を発揮する固体電池を与えることができる。 The active material of the present invention is suitable for forming an electrode (preferably a positive electrode) that provides a lithium-sulfur battery having a high charge capacity. Further, it is possible to provide a solid-state battery having high electrical conductivity and exhibiting excellent battery performance.

実験例1−1〜1−4で得られた活物質A1〜A4のX線回折像である。5 is an X-ray diffraction image of the active materials A1 to A4 obtained in Experimental Examples 1-1 to 1-4. 実験例1−5〜1−8で得られた活物質A5〜A8のX線回折像である。5 is an X-ray diffraction image of the active materials A5 to A8 obtained in Experimental Examples 1-5 to 1-8. 実験例1−9で得られた活物質A9のX線回折像である。It is an X-ray diffraction image of the active material A9 obtained in Experimental Example 1-9. 実験例1−10〜1−13で得られた活物質A10〜A13のX線回折像である。6 is an X-ray diffraction image of the active materials A10 to A13 obtained in Experimental Examples 1-10 to 1-13. 実験例1−14で得られた活物質A14のX線回折像である。It is an X-ray diffraction image of the active material A14 obtained in Experimental Example 1-14. 実験例2−1〜2−4で得られたリチウム硫黄電池の充電特性を示すグラフである。It is a graph which shows the charging characteristic of the lithium-sulfur battery obtained in Experimental Examples 2-1 to 2-4. 実験例2−5〜2−8で得られたリチウム硫黄電池の充電特性を示すグラフである。It is a graph which shows the charging characteristic of the lithium-sulfur battery obtained in Experimental Example 2-5-2-8. 実験例2−9で得られたリチウム硫黄電池の充電特性を示すグラフを示すグラフである。It is a graph which shows the graph which shows the charging characteristic of the lithium-sulfur battery obtained in Experimental Example 2-9. 実験例2−10〜2−13で得られたリチウム硫黄電池の充電特性を示すグラフである。It is a graph which shows the charging characteristic of the lithium-sulfur battery obtained in Experimental Example 2-10-2-13. 実験例2−14で得られたリチウム硫黄電池の充電特性を示すグラフである。It is a graph which shows the charging characteristic of the lithium-sulfur battery obtained in Experimental Example 2-14. 〔実施例〕で作製した全固体形リチウム硫黄電池を含む充電試験用測定セルを示す概略断面図である。It is the schematic sectional drawing which shows the measurement cell for charge test containing the all-solid-state lithium-sulfur battery produced in [Example].

本発明の活物質は、LiSにおける一部のLi原子が周期表の第2族元素、第3族元素又は第13族元素に由来する多価原子で置換された化合物(以下、「化合物(A)」という)を含む。本発明の活物質は、リチウム硫黄電池の要素を構成する成分として有用である。 Active material of the present invention, a Group 2 element of some Li atoms of the periodic table in the Li 2 S, compounds substituted with a polyvalent atom derived from the third group element or a Group 13 element (hereinafter, "Compound (A) ") is included. The active material of the present invention is useful as a component constituting an element of a lithium-sulfur battery.

上記化合物(A)に含まれる原子は、少なくとも、Li原子、S原子、及び、周期表の第2族元素、第3族元素又は第13族元素に由来する多価原子である。
上記第2族元素は、好ましくはMg、Ca、Sr、Ba等であり、特に好ましくはMg及びCaである。
第3族元素は、好ましくはSc、Y、La等であり、特に好ましくはYである。
第13族元素は、好ましくはB、Al、Ga、In等であり、特に好ましくはAlである。
The atoms contained in the compound (A) are at least Li atoms, S atoms, and polyvalent atoms derived from Group 2 elements, Group 3 elements, or Group 13 elements in the periodic table.
The Group 2 elements are preferably Mg, Ca, Sr, Ba and the like, and particularly preferably Mg and Ca.
The Group 3 element is preferably Sc, Y, La or the like, and particularly preferably Y.
The Group 13 element is preferably B, Al, Ga, In or the like, and particularly preferably Al.

上記化合物(A)は、下記一般式(1)で表すことができる。
Li2−atS (1)
(式中、Mは、周期表の第2族元素、第3族元素又は第13族元素に由来する原子であり、aは原子Mの価数であり、0<t≦0.200である。)
The compound (A) can be represented by the following general formula (1).
Li 2-at M t S (1)
(In the formula, M is an atom derived from a Group 2 element, a Group 3 element or a Group 13 element in the periodic table, and a is a valence of the atom M, where 0 <t ≦ 0.200. .)

上記一般式(1)で表される化合物のうち、導電率に優れ、充電容量の高いリチウム硫黄電池が得られる好ましい化合物は、以下に例示される。
(ア)原子MがMg又はCaであり、好ましくは1.60≦(2−at)<2.00及び0<t≦0.200、より好ましくは1.70≦(2−at)≦1.90及び0.050≦t≦0.150である化合物
(イ)原子MがAlであり、好ましくは1.40≦(2−at)<2.00及び0<t≦0.200、より好ましくは1.50≦(2−at)≦1.90及び0.033≦t≦0.167である化合物
Among the compounds represented by the general formula (1), preferable compounds from which a lithium-sulfur battery having excellent conductivity and high charge capacity can be obtained are exemplified below.
(A) The atom M is Mg or Ca, preferably 1.60 ≦ (2-at) <2.00 and 0 <t ≦ 0.200, more preferably 1.70 ≦ (2-at) ≦ 1. .90 and 0.050 ≦ t ≦ 0.150 Compound (a) Atom M is Al, preferably 1.40 ≦ (2-at) <2.00 and 0 <t ≦ 0.200. Compounds preferably 1.50 ≦ (2-at) ≦ 1.90 and 0.033 ≦ t ≦ 0.167

上記化合物(A)は、更に、他の原子を含むことができる。他の原子としては、ハロゲン原子、水素原子、酸素原子等が挙げられ、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子が好ましい。
上記化合物(A)がハロゲン原子を含む場合、下記一般式(2)で表すことができる。この化合物は、一部のS原子がハロゲン原子で置換された化合物である。
Li2−au(1−au/2)au (2)
(式中、Mは、周期表の第2族元素、第3族元素又は第13族元素に由来する原子であり、Xはハロゲン原子であり、aは原子Mの価数であり、0<u≦0.200である。)
The compound (A) can further contain other atoms. Examples of other atoms include halogen atoms, hydrogen atoms, oxygen atoms and the like, and halogen atoms such as chlorine atom, bromine atom and iodine atom are preferable.
When the compound (A) contains a halogen atom, it can be represented by the following general formula (2). This compound is a compound in which some S atoms are replaced with halogen atoms.
Li 2-au Muu S (1-au / 2) X au (2)
(In the formula, M is an atom derived from a Group 2 element, a Group 3 element or a Group 13 element in the periodic table, X is a halogen atom, a is the valence of the atom M, and 0 < u ≦ 0.200.)

上記一般式(2)で表される化合物のうち、導電率に優れ、充電容量の高いリチウム硫黄電池が得られる好ましい化合物は、以下に例示される。
(ア)原子MがMg又はCaであり、好ましくは1.60≦(2−au)<2.00及び0<u≦0.200、より好ましくは1.70≦(2−au)≦1.90及び0.050≦u≦0.150である化合物
(イ)原子MがYであり、好ましくは1.40≦(2−au)<2.00及び0<u≦0.200、より好ましくは1.50≦(2−au)≦1.90及び0.033≦u≦0.167である化合物
Among the compounds represented by the general formula (2), preferable compounds from which a lithium-sulfur battery having excellent conductivity and high charge capacity can be obtained are exemplified below.
(A) The atom M is Mg or Ca, preferably 1.60 ≦ (2-au) <2.00 and 0 <u ≦ 0.200, more preferably 1.70 ≦ (2-au) ≦ 1. .90 and 0.050 ≦ u ≦ 0.150 Compound (a) Atom M is Y, preferably 1.40 ≦ (2-au) <2.00 and 0 <u ≦ 0.200. Compounds preferably 1.50 ≦ (2-au) ≦ 1.90 and 0.033 ≦ u ≦ 0.167

本発明において、上記化合物(A)をX線回折(以下、「XRD」ともいう)測定に供した場合には、実質的にLiSの回折パターンを有する。即ち、X線源としてCuKα線を用いたXRD測定により得られるX線回折像において、回折角2θ=26.99±0.1°、31.27±0.1°、44.81±0.1°、及び、53.09±0.1°の位置に回折ピークが見られる。 In the present invention, the compound (A) X-ray diffraction when subjected to (hereinafter also referred to as "XRD") measurements, having a diffraction pattern of the substantially Li 2 S. That is, in the X-ray diffraction image obtained by XRD measurement using CuKα ray as the X-ray source, the diffraction angle 2θ = 26.99 ± 0.1 °, 31.27 ± 0.1 °, 44.81 ± 0. Diffraction peaks can be seen at 1 ° and 53.09 ± 0.1 °.

上記化合物(A)の導電率(交流インピーダンス法、70℃)は、好ましくは1.0×10−9S/cm以上、より好ましくは1.0×10−8S/cm以上である。但し、上限は、通常、1.0×10−1S/cmである。 The conductivity (AC impedance method, 70 ° C.) of the compound (A) is preferably 1.0 × 10 -9 S / cm or more, more preferably 1.0 × 10 -8 S / cm or more. However, the upper limit is usually 1.0 × 10 -1 S / cm.

本発明の活物質に含まれる化合物(A)は、1種のみであってよいし、2種以上であってもよい。 The compound (A) contained in the active material of the present invention may be only one kind or two or more kinds.

上記化合物(A)は、LiSと、周期表の第2族元素、第3族元素若しくは第13族元素に由来する多価原子を含む硫化物又はハロゲン化物とを接触反応させることにより製造することができる。必要に応じて、ハロゲン化リチウムLiX(塩化リチウム、臭化リチウム、ヨウ化リチウム等)を用いることができる。 The compound (A), producing a Li 2 S, Group 2 elements of the periodic table, by contacting reacting a sulfide or halide containing multivalent atoms derived from the third group element or a Group 13 element can do. If necessary, lithium halogenated LiX (lithium chloride, lithium bromide, lithium iodide, etc.) can be used.

上記化合物原料は、これらの反応性の観点から、微細な粒状であることが好ましい。粒子の最大長さの上限は、好ましくは100μm、より好ましくは50μmである。但し、下限は、通常、0.01μmである。 From the viewpoint of these reactivity, the compound raw material is preferably finely granular. The upper limit of the maximum length of the particles is preferably 100 μm, more preferably 50 μm. However, the lower limit is usually 0.01 μm.

上記化合物(A)を製造するための接触反応の際には、ボールミル(遊星型ボールミル等)、振動ミル、ターボミル、メカノフュージョン、ディスクミル等を用いることができる。尚、化合物原料の使用方法は、特に限定されず、全ての原料の全量を用いてこれらを接触反応させてよいし、段階的に原料の種類又は供給量を変化させつつ接触反応させてもよい。
上記接触反応における反応系の雰囲気は、特に限定されず、窒素ガス、アルゴンガス等の不活性ガス、乾燥空気等からなるものとすることができる。
In the contact reaction for producing the compound (A), a ball mill (planetary ball mill or the like), a vibration mill, a turbo mill, a mechanofusion, a disc mill or the like can be used. The method of using the compound raw material is not particularly limited, and the contact reaction may be carried out using all the raw materials, or the contact reaction may be carried out while gradually changing the type or supply amount of the raw materials. ..
The atmosphere of the reaction system in the contact reaction is not particularly limited, and may consist of an inert gas such as nitrogen gas or argon gas, dry air, or the like.

上記接触反応は、溶剤の存在下で行うものであってもよい。溶剤としては、アルコール類、カルボン酸類、カルボン酸エステル類、エーテル類、アルデヒド類、ケトン類、炭酸エステル類、ニトリル類、アミド類、ニトロ類、リン酸エステル類、ハロゲン化炭化水素類等が挙げられる。
溶剤の存在下で接触反応を行った場合、通常、化合物(A)を含むサスペンジョンが得られるので、その後、溶剤を除去することによって、化合物(A)を含む固体組成物を得ることができる。この固体組成物をそのまま、本発明の活物質として用いることができる。
The contact reaction may be carried out in the presence of a solvent. Examples of the solvent include alcohols, carboxylic acids, carboxylic acid esters, ethers, aldehydes, ketones, carbonic acid esters, nitriles, amides, nitros, phosphoric acid esters, halogenated hydrocarbons and the like. Be done.
When the contact reaction is carried out in the presence of a solvent, a suspension containing the compound (A) is usually obtained. Therefore, by removing the solvent thereafter, a solid composition containing the compound (A) can be obtained. This solid composition can be used as it is as the active material of the present invention.

本発明の活物質は、化合物(A)のみからなるものであってよい。本発明の活物質は、上記のように、リチウム硫黄電池用の電極の構成成分として有用であり、リチウム硫黄電池が所期の性能を有する限りにおいて、本発明の活物質は、化合物(A)と、他の化合物とからなるものであってもよい。他の化合物を含む場合、その含有割合の上限は、化合物(A)を100質量部とした場合に、通常、49質量部である。 The active material of the present invention may consist only of compound (A). As described above, the active material of the present invention is useful as a constituent component of an electrode for a lithium-sulfur battery, and as long as the lithium-sulfur battery has the desired performance, the active material of the present invention is compound (A). And other compounds may be used. When other compounds are contained, the upper limit of the content ratio is usually 49 parts by mass when the compound (A) is 100 parts by mass.

本発明の活物質は、正極電極の構成成分として好適であり、正極電極を構成可能な他の化合物としては、Li系硫化物、複合酸化物、複合水酸化物等からなる固体電解質が好ましい。
本発明の活物質が、化合物(A)と他の化合物とからなる場合、互いに分離可能な混合物の形態、及び、両者が一体化した形態(一方が他方を被覆する形態を含む)のいずれでもよい。
Active material of the present invention is suitable as a constituent of the positive electrode, other compounds capable of constituting the positive electrode, Li x P y S z type sulfides, complex oxide, a composite hydroxides Solid electrolytes are preferred.
When the active material of the present invention is composed of compound (A) and another compound, it may be in either a form of a mixture separable from each other or a form in which both are integrated (including a form in which one covers the other). Good.

本発明の活物質の導電率(交流インピーダンス法、70℃)は、好ましくは1.0×10−9S/cm以上、より好ましくは1.0×10−8S/cm以上である。但し、上限は、通常、1.0×10−1S/cmである。 The conductivity of the active material of the present invention (AC impedance method, 70 ° C.) is preferably 1.0 × 10 -9 S / cm or more, more preferably 1.0 × 10 -8 S / cm or more. However, the upper limit is usually 1.0 × 10 -1 S / cm.

本発明の活物質は、リチウム硫黄電池の電極の構成材料として好適である。リチウム硫黄電池は、通常、正極電極と、負極電極と、正極電極及び負極電極の間に配された電解質層とを備える(図示せず)。更に、正極電極の集電を行う正極集電体と、負極電極の集電を行う負極集電体とを備えることができる。化合物(A)を含む本発明の活物質は、このような構成を有するリチウム硫黄電池の正極電極の構成材料として特に好適である。 The active material of the present invention is suitable as a constituent material for electrodes of lithium-sulfur batteries. A lithium-sulfur battery usually includes a positive electrode, a negative electrode, and an electrolyte layer arranged between the positive electrode and the negative electrode (not shown). Further, a positive current collector that collects electricity from the positive electrode and a negative current collector that collects electricity from the negative electrode can be provided. The active material of the present invention containing the compound (A) is particularly suitable as a constituent material for a positive electrode of a lithium-sulfur battery having such a configuration.

本発明のリチウム硫黄電池用電極のうち、正極電極は、化合物(A)以外に、更に、バインダー、固体電解質、導電助剤等を含むことができる。 Among the electrodes for lithium-sulfur batteries of the present invention, the positive electrode may further contain a binder, a solid electrolyte, a conductive auxiliary agent, and the like in addition to the compound (A).

上記バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(PHFP)、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデン・ヘキサフルオロプロピレン共重合体等の含フッ素樹脂;ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂;エチレン・プロピレン・非共役ジエン系ゴム(EPDM等)、スルホン化EPDM、天然ブチルゴム(NBR)等が挙げられる。 Examples of the binder include fluororesins such as polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), polyvinylidene fluoride (PVdF), and vinylidene fluoride / hexafluoropropylene copolymer; polyolefins such as polypropylene and polyethylene. Based resins: ethylene / propylene / non-conjugated diene rubber (EPDM, etc.), sulfonated EPDM, natural butyl rubber (NBR), etc. may be mentioned.

上記固体電解質は、特に限定されないが、好ましくは、LiPS、Li11、Li7−zPS6−z(X:Cl,Br,I、0≦z≦1.5)、LiX(X:Cl,Br,I)等の硫化物系の固体電解質である。
上記導電助剤としては、炭素材料、金属粉末、金属化合物等からなるものを用いることができ、これらのうち、炭素材料が好ましく用いられる。炭素材料としては、グラフェン等の板状導電性物質;カーボンナノファイバー、カーボンナノチューブ等の線状導電性物質;ケッチェンブラック、アセチレンブラック、デンカブラック(商品名)、サーマルブラック、チャンネルブラック等のカーボンブラック、黒鉛等の粒状導電性物質等が挙げられる。
The solid electrolyte is not particularly limited, but is preferably Li 3 PS 4 , Li 7 P 3 S 11 , Li 7-z PS 6-z X z (X: Cl, Br, I, 0 ≦ z ≦ 1. 5), Li 7 P 2 S 8 X (X: Cl, Br, I) and other sulfide-based solid electrolytes.
As the conductive auxiliary agent, those made of a carbon material, a metal powder, a metal compound, or the like can be used, and among these, a carbon material is preferably used. As carbon materials, plate-like conductive substances such as graphene; linear conductive substances such as carbon nanofibers and carbon nanotubes; carbon such as Ketjen black, acetylene black, denca black (trade name), thermal black, and channel black. Examples thereof include granular conductive substances such as black and graphite.

上記正極電極は、化合物(A)と、固体電解質と、導電助剤とを含むことが好ましい。この場合、固体電解質及び導電助剤の含有割合は、化合物(A)の含有量を100質量部とすると、それぞれ、好ましくは20〜100質量部及び10〜50質量部、より好ましくは20〜60質量部及び15〜30質量部である。 The positive electrode preferably contains the compound (A), a solid electrolyte, and a conductive auxiliary agent. In this case, the content ratio of the solid electrolyte and the conductive auxiliary agent is preferably 20 to 100 parts by mass and 10 to 50 parts by mass, more preferably 20 to 60 parts by mass, respectively, assuming that the content of the compound (A) is 100 parts by mass. It is a mass part and 15 to 30 parts by mass.

上記正極電極の通電方向の厚さは、特に限定されないが、通常、5μm以上、好ましくは20μm〜0.5mmである。 The thickness of the positive electrode in the energizing direction is not particularly limited, but is usually 5 μm or more, preferably 20 μm to 0.5 mm.

本発明のリチウム硫黄電池用電極のうち、負極電極は、負極活物質を含み、この負極活物質としては、炭素材料;リチウム、インジウム、アルミニウム、ケイ素等の金属又はこれらを含む合金;Sn、MoO、WO、LiCoO(LiCoO等)、LiMnNiCoO(LiNi1/3Co1/3Mn1/3等)、LiCuP(LiCuPO等)等の酸化物(複合酸化物)系材料等が挙げられる。上記負極電極は、更に、バインダー、導電助剤、固体電解質等を含むことができる。 Among the electrodes for lithium sulfur batteries of the present invention, the negative electrode contains a negative electrode active material, and the negative electrode active material includes a carbon material; a metal such as lithium, indium, aluminum, silicon, or an alloy containing these; Sn x O. y , MoO x , WO x , Li x CoO y (LiCoO 2 etc.), Li x Mn y Ni z Co w O (LiNi 1/3 Co 1/3 Mn 1/3 O 2 etc.), Li x CuP x O Examples thereof include oxide (composite oxide) -based materials such as y (LiCuPO 4, etc.). The negative electrode may further contain a binder, a conductive auxiliary agent, a solid electrolyte, and the like.

上記負極電極の通電方向の厚さは、特に限定されないが、通常、1μm以上、好ましくは10μm〜0.5mmである。 The thickness of the negative electrode in the energizing direction is not particularly limited, but is usually 1 μm or more, preferably 10 μm to 0.5 mm.

電解質層は、固体電解質を含むものであれば、特に限定されないが、実質的に固体電解質からなるものであることが好ましい。固体電解質としては、(MoS,CuS,TiS,WS)、Li、Li等の硫化物;MoO、WO、VO、LiCoO、LiMnO、LiNiO、LiVO、LiMnNiCoO、LiFeP、LiMnP、LiNiP、LiCuP(LiCuPO等)等の酸化物又は複合酸化物;セレン化物等が挙げられる。 The electrolyte layer is not particularly limited as long as it contains a solid electrolyte, but it is preferably substantially made of a solid electrolyte. Examples of the solid electrolyte include sulfides such as (MoS x , CuS x , TiS x , WS x ), Li x S y , Li x P y S z; MoO x , WO x , VO x , Li x CoO y , Li. x MnO y , Li x NiO y , Li x VO y , Li x Mn y Ni z Co w O, Li x FeP x O y , Li x MnP x O y , Li x NiP x O y , Li x CuP x O Oxides or composite oxides such as y (LiCuPO 4, etc.); serene products and the like can be mentioned.

上記電解質層の通電方向の厚さは、特に限定されないが、通常、1μm以上、好ましくは10μm〜0.5mmである。 The thickness of the electrolyte layer in the energizing direction is not particularly limited, but is usually 1 μm or more, preferably 10 μm to 0.5 mm.

正極集電体又は負極集電体は、例えば、ステンレス鋼、金、白金、銅、亜鉛、ニッケル、スズ、アルミニウム又はこれらの合金等からなるものとすることができ、板状体、箔状体、網目状体等を有することができる。 The positive electrode current collector or the negative electrode current collector can be made of, for example, stainless steel, gold, platinum, copper, zinc, nickel, tin, aluminum, or an alloy thereof, and is a plate-like body or a foil-like body. , A mesh-like body and the like can be provided.

本発明のリチウム硫黄電池は、上記本発明のリチウム硫黄電池用電極を備える。充電容量の観点から、上記化合物(A)と、固体電解質と、導電助剤とを含む正極電極を備えるリチウム硫黄電池であることが特に好ましい。 The lithium-sulfur battery of the present invention includes the above-mentioned electrode for the lithium-sulfur battery of the present invention. From the viewpoint of charge capacity, a lithium-sulfur battery including a positive electrode containing the compound (A), a solid electrolyte, and a conductive auxiliary agent is particularly preferable.

1.製造原料
活物質の製造に用いた原料は、以下の通りである。
(1)硫化リチウム(LiS)粉体
三津和化学薬品社製「LiS」(商品名)を用いた。純度は99.9%、粒子径は約50μmである。
(2)硫化マグネシウム(MgS)粉体
高純度化学研究所社製「MgS」(商品名)を用いた。純度は99.9%、粒子径は数十μmである。
(3)塩化カルシウム(CaCl)粉体
Aldrich社製「CaCl」(商品名)を用いた。純度は99.9%、粒子径は10メッシュ以下である。
(4)硫化カルシウム(CaS)粉体
高純度化学研究所社製「CaS」(商品名)を用いた。純度は99.9%、粒子径は約50μmである。
(5)硫化アルミニウム(Al)粉体
高純度化学研究所社製「Al」(商品名)を用いた。純度は98%、粒子径は約50μmである。
(6)塩化イットリウム(YCl)粉体
高純度化学研究所社製「YCl」(商品名)を用いた。純度は99.9%、粒子径は数mmである。
1. 1. Raw materials for production The raw materials used for the production of active materials are as follows.
(1) Lithium sulfide (Li 2 S) powder "Li 2 S" (trade name) manufactured by Mitsuwa Chemical Co., Ltd. was used. The purity is 99.9% and the particle size is about 50 μm.
(2) Magnesium sulfide (MgS) powder "MgS" (trade name) manufactured by High Purity Chemical Laboratory Co., Ltd. was used. The purity is 99.9% and the particle size is several tens of μm.
(3) Calcium chloride (CaCl 2 ) powder "CaCl 2 " (trade name) manufactured by Aldrich was used. The purity is 99.9% and the particle size is 10 mesh or less.
(4) Calcium sulfide (CaS) powder "CaS" (trade name) manufactured by High Purity Chemical Laboratory Co., Ltd. was used. The purity is 99.9% and the particle size is about 50 μm.
(5) Aluminum sulfide (Al 2 S 3 ) powder “Al 2 S 3 ” (trade name) manufactured by High Purity Chemical Laboratory Co., Ltd. was used. The purity is 98% and the particle size is about 50 μm.
(6) Yttrium chloride (YCl 3 ) powder “YCl 3 ” (trade name) manufactured by High Purity Chemical Laboratory Co., Ltd. was used. The purity is 99.9% and the particle size is several mm.

2.活物質の製造及び評価
上記の原料を用いて活物質を製造し、以下の方法で導電率を測定した。
<導電率の測定方法>
活物質を、一軸油圧プレス機を用いて、円板形状の試験片(サイズ:半径5mm×高さ0.3mm)とし、アルゴンガス雰囲気下、測定用ユニット(ガラス容器)に入れた状態で、調温器に接続したリボンヒーター及び断熱材を測定用ユニット(ガラス容器)の周りに巻き付け、SOLATRON社製IMPEDANCE ANALYZER「S1260」(型式名)を用いて、室温から徐々に加熱し、70℃で導電率を測定した。尚、導電率は、試験片を70℃に保持し始めてから1時間静置した後、測定した。
2. 2. Production and evaluation of active material An active material was produced using the above raw materials, and the conductivity was measured by the following method.
<Measurement method of conductivity>
The active material was made into a disk-shaped test piece (size: radius 5 mm x height 0.3 mm) using a uniaxial hydraulic press machine, and placed in a measurement unit (glass container) in an argon gas atmosphere. Wrap the ribbon heater and heat insulating material connected to the temperature controller around the measuring unit (glass container), and gradually heat from room temperature using SOLATRON IMPEDANCE ANALYZER "S1260" (model name) at 70 ° C. The conductivity was measured. The conductivity was measured after allowing the test piece to stand for 1 hour after starting to hold the test piece at 70 ° C.

実験例1−1(LiS含有活物質A1の製造)
硫化リチウム(LiS)粉体を直径15mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、回転数600rpmの条件で、メカニカルミリングを10時間行い、活物質A1を得た。
得られた活物質A1の導電率を測定したところ、70℃において、2×10−10S/cmであった。尚、室温では導電率が低く、安定した測定値が得られないことから、70℃で測定した。
Experimental Example 1-1 (Production of Active Material A1 Containing Li 2 S)
Lithium sulfide (Li 2 S) powder Frisch Co. planetary ball mill with zirconia balls having a diameter of 15 mm: put in (container zirconia), at a rotational speed 600 rpm, the mechanical milling for 10 hours, an active material A1 Obtained.
The conductivity of the obtained active material A1 was measured and found to be 2 × 10 -10 S / cm at 70 ° C. Since the conductivity is low at room temperature and stable measured values cannot be obtained, the measurement was performed at 70 ° C.

実験例1−2(Li1.9Mg0.05S含有活物質A2の製造)
Li、Mg及びSのモル比が1.9:0.05:1となるように、硫化リチウム(LiS)粉体と、硫化マグネシウム(MgS)粉体とを秤量し、これらを混合した。次いで、混合粉末を直径15mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、回転数600rpmの条件で、メカニカルミリングを10時間行い、活物質A2を得た。
得られた活物質A2のX線回折測定を行ったところ、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図1参照)。また、X線回折像にはLiS以外のピークは見られず、活物質A2は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A2の導電率を測定したところ、70℃において、8.0×10−9S/cmであった。
Experimental Example 1-2 (Production of active material A2 containing Li 1.9 Mg 0.05 S)
Li, the molar ratio of Mg and S 1.9: 0.05: to be 1, were weighed and (2 S Li) powder lithium sulfide, and magnesium sulfide (MgS) powder were mixed together .. Next, the mixed powder was placed in a planetary ball mill manufactured by Frisch (container: manufactured by zirconia) together with zirconia balls having a diameter of 15 mm, and mechanical milling was performed for 10 hours under the condition of a rotation speed of 600 rpm to obtain an active material A2.
X-ray diffraction measurement of the obtained active material A2 was carried out, but shifted to a lower angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 1). Also, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A2 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A2 was measured, it was 8.0 × 10 -9 S / cm at 70 ° C.

実験例1−3(Li1.8Mg0.1S含有活物質A3の製造)
Li、Mg及びSのモル比が1.8:0.1:1となるように、硫化リチウム(LiS)粉体と、硫化マグネシウム(MgS)粉体とを用いた以外は、実験例1−2と同じ操作を行い、活物質A3を得た。
得られた活物質A3のX線回折測定を行ったところ、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図1参照)。また、X線回折像にはLiS以外のピークは見られず、活物質A3は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A3の導電率を測定したところ、70℃において、9.2×10−8S/cmであった。
Experimental Example 1-3 (Production of active material A3 containing Li 1.8 Mg 0.1 S)
Li, the molar ratio of Mg and S 1.8: 0.1: to be 1, except for using a lithium (Li 2 S) powder sulfide, magnesium sulfide (MgS) powder, Experiment The same operation as in 1-2 was performed to obtain the active material A3.
X-ray diffraction measurement of the obtained active material A3 was carried out, but shifted to a lower angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 1). Also, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A3 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A3 was measured, it was 9.2 × 10-8 S / cm at 70 ° C.

実験例1−4(Li1.7Mg0.15S含有活物質A4の製造)
Li、Mg及びSのモル比が1.7:0.15:1となるように、硫化リチウム(LiS)粉体と、硫化マグネシウム(MgS)粉体とを用いた以外は、実験例1−2と同じ操作を行い、活物質A4を得た。
得られた活物質A4のX線回折測定を行ったところ、わずかにMgSの回折パターンが見られ、また、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図1参照)。また、X線回折像におけるLiSとMgSとのピーク強度比から、活物質A4は、固溶限界に達している固溶体からなると推定した。
また、この活物質A4の導電率を測定したところ、70℃において、5.1×10−8S/cmであった。
Experimental Example 1-4 (Production of active material A4 containing Li 1.7 Mg 0.15 S)
Li, the molar ratio of Mg and S 1.7: 0.15: to be 1, except for using a lithium (Li 2 S) powder sulfide, magnesium sulfide (MgS) powder, Experiment The same operation as in 1-2 was performed to obtain the active material A4.
It was subjected to X-ray diffraction measurement of the obtained active material A4, slightly observed diffraction pattern of MgS, Although shifted to a lower angle side, a compound having a diffraction pattern of the substantially Li 2 S Was confirmed to include (see FIG. 1). Further, the peak intensity ratio of the Li 2 S and MgS in the X-ray diffraction pattern, the active material A4 was estimated to consist of solid solution has reached the solubility limit.
The conductivity of the active material A4 was measured and found to be 5.1 × 10-8 S / cm at 70 ° C.

実験例1−5(Li1.9Ca0.050.95Cl0.1含有活物質A5の製造)
Li、Ca、S及びClのモル比が1.9:0.05:0.95:0.1となるように、硫化リチウム(LiS)粉体と、塩化カルシウム(CaCl)粉体とを秤量し、これらを混合した。次いで、混合粉末を直径15mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、回転数600rpmの条件で、10時間メカニカルミリングを行い、活物質A5を得た。
得られた活物質A5のX線回折測定を行ったところ、高角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図2参照)。尚、図2において×印を付けたピークは、ピーク位置の検証のため混合したSiに由来するものである。従って、X線回折像にはLiS以外のピークは見られず、活物質A5は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A5の導電率を測定したところ、70℃において、2.4×10−6S/cmであった。
Experimental Example 1-5 (Production of active material A5 containing Li 1.9 Ca 0.05 S 0.95 Cl 0.1)
Li, Ca, the molar ratio of the S and Cl 1.9: 0.05: 0.95: so that 0.1, and lithium sulfide (Li 2 S) powder, calcium chloride (CaCl 2) powder And were weighed and these were mixed. Next, the mixed powder was placed in a planetary ball mill manufactured by Frisch (container: manufactured by zirconia) together with zirconia balls having a diameter of 15 mm, and mechanical milling was performed for 10 hours under the condition of a rotation speed of 600 rpm to obtain an active material A5.
X-ray diffraction measurement of the obtained active material A5 was carried out, but is shifted to a high angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 2). The peaks marked with x in FIG. 2 are derived from Si mixed for verification of the peak position. Therefore, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A5 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A5 was measured, it was 2.4 × 10 -6 S / cm at 70 ° C.

実験例1−6(Li1.8Ca0.10.9Cl0.2含有活物質A6の製造)
Li、Ca、S及びClのモル比が1.8:0.1:0.9:0.2となるように、硫化リチウム(LiS)粉体と、塩化カルシウム(CaCl)粉体とを用いた以外は、実験例1−5と同じ操作を行い、活物質A6を得た。
得られた活物質A6のX線回折測定を行ったところ、高角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図2参照)。尚、図2において×印を付けたピークは、ピーク位置の検証のため混合したSiに由来するものである。従って、X線回折像にはLiS以外のピークは見られず、活物質A6は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A6の導電率を測定したところ、70℃において、1.0×10−5S/cmであった。
Experimental Example 1-6 (Production of active material A6 containing Li 1.8 Ca 0.1 S 0.9 Cl 0.2)
Li, Ca, the molar ratio of the S and Cl 1.8: 0.1: 0.9: so that 0.2, and lithium sulfide (Li 2 S) powder, calcium chloride (CaCl 2) powder The same operation as in Experimental Example 1-5 was performed except that the active material A6 was obtained.
X-ray diffraction measurement of the obtained active material A6 was subjected to, but shifted to the high angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 2). The peaks marked with x in FIG. 2 are derived from Si mixed for verification of the peak position. Therefore, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A6 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A6 was measured, it was 1.0 × 10-5 S / cm at 70 ° C.

実験例1−7(Li1.7Ca0.150.85Cl0.3含有活物質A7の製造)
Li、Ca、S及びClのモル比が1.7:0.15:0.85:0.3となるように、硫化リチウム(LiS)粉体と、塩化カルシウム(CaCl)粉体とを用いた以外は、実験例1−5と同じ操作を行い、活物質A7を得た。
得られた活物質A7のX線回折測定を行ったところ、高角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図2参照)。尚、図2において×印を付けたピークは、ピーク位置の検証のため混合したSiに由来するものである。従って、X線回折像にはLiS以外のピークは見られず、活物質A7は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A7の導電率を測定したところ、70℃において、5.2×10−5S/cmであった。
Experimental Example 1-7 (Production of active material A7 containing Li 1.7 Ca 0.15 S 0.85 Cl 0.3)
Lithium sulfide (Li 2 S) powder and calcium chloride (CaCl 2 ) powder so that the molar ratio of Li, Ca, S and Cl is 1.7: 0.15: 0.85: 0.3. The same operation as in Experimental Example 1-5 was performed except that the active material A7 was obtained.
X-ray diffraction measurement of the obtained active material A7 was subjected to, but shifted to the high angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 2). The peaks marked with x in FIG. 2 are derived from Si mixed for verification of the peak position. Therefore, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A7 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A7 was measured, it was 5.2 × 10-5 S / cm at 70 ° C.

実験例1−8(Li1.6Ca0.20.8Cl0.4含有活物質A8の製造)
Li、Ca、S及びClのモル比が1.6:0.2:0.8:0.4となるように、硫化リチウム(LiS)粉体と、塩化カルシウム(CaCl)粉体とを用いた以外は、実験例1−5と同じ操作を行い、活物質A8を得た。
得られた活物質A8のX線回折測定を行ったところ、わずかにLiClの回折パターンが見られ、また、高角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図2参照)。また、X線回折像におけるLiSとLiClとのピーク強度比から、活物質A8は、固溶限界に達している固溶体からなると推定した。
Experimental Example 1-8 (Production of active material A8 containing Li 1.6 Ca 0.2 S 0.8 Cl 0.4)
Li, Ca, the molar ratio of the S and Cl 1.6: 0.2: 0.8: to 0.4, and lithium sulfide (Li 2 S) powder, calcium chloride (CaCl 2) powder The same operation as in Experimental Example 1-5 was carried out except that the active material A8 was obtained.
Was subjected to X-ray diffraction measurement of the obtained active material A8, slightly observed diffraction pattern of LiCl, also although shifted to a higher angle side, a compound having a diffraction pattern of the substantially Li 2 S Was confirmed to include (see FIG. 2). Further, the peak intensity ratio of the Li 2 S and LiCl in X-ray diffraction pattern, the active material A8 was estimated to consist of solid solution has reached the solubility limit.

実験例1−9(Li1.9Ca0.05S含有活物質A9の製造)
Li、Ca及びSのモル比が1.9:0.05:1となるように、硫化リチウム(LiS)粉体と、硫化カルシウム(CaS)粉体とを秤量し、これらを混合した。次いで、混合粉末を直径15mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、回転数600rpmの条件で、メカニカルミリングを10時間行い、活物質A9を得た。
得られた活物質A9のX線回折測定を行ったところ、わずかにCaSの回折パターンが見られ、また、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図3参照)。また、X線回折像におけるLiSとCaSとのピーク強度比から、活物質A9は、固溶限界に達している固溶体からなると推定した。
また、この活物質A9の導電率を測定したところ、70℃において値が安定せず、10−8〜10−9S/cmであった。
Experimental Example 1-9 (Production of active material A9 containing Li 1.9 Ca 0.05 S)
Li, the molar ratio of Ca and S of 1.9: 0.05: to be 1, were weighed and (2 S Li) powder lithium sulfide, and calcium sulfide (CaS) powder were mixed together .. Next, the mixed powder was placed in a planetary ball mill manufactured by Frisch (container: manufactured by zirconia) together with zirconia balls having a diameter of 15 mm, and mechanical milling was performed for 10 hours under the condition of a rotation speed of 600 rpm to obtain an active material A9.
It was subjected to X-ray diffraction measurement of the obtained active material A9, slightly observed diffraction pattern of the CaS, Although shifted to a lower angle side, a compound having a diffraction pattern of the substantially Li 2 S Was confirmed to include (see FIG. 3). Further, the peak intensity ratio of the Li 2 S and CaS in X-ray diffraction pattern, the active material A9 was estimated to consist of solid solution has reached the solubility limit.
Moreover, when the conductivity of this active material A9 was measured, the value was not stable at 70 ° C. and was 10-8 to 10-9 S / cm.

実験例1−10(Li1.9Al0.033S含有活物質A10の製造)
Li、Al及びSのモル比が1.9:0.033:1となるように、硫化リチウム(LiS)粉体と、硫化アルミニウム(Al)粉体とを秤量し、これらを混合した。次いで、混合粉末を直径15mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、回転数600rpmの条件で、メカニカルミリングを10時間行い、活物質A10を得た。
得られた活物質A10のX線回折測定を行ったところ、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図4参照)。また、X線回折像にはLiS以外のピークは見られず、活物質A10は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A10の導電率を測定したところ、70℃において、3.0×10−6S/cmであった。
Experimental Example 1-10 (Production of active material A10 containing Li 1.9 Al 0.033 S)
Lithium sulfide (Li 2 S) powder and aluminum sulfide (Al 2 S 3 ) powder were weighed so that the molar ratio of Li, Al and S was 1.9: 0.033: 1. Was mixed. Next, the mixed powder was placed in a planetary ball mill manufactured by Frisch (container: manufactured by zirconia) together with zirconia balls having a diameter of 15 mm, and mechanical milling was performed for 10 hours under the condition of a rotation speed of 600 rpm to obtain an active material A10.
X-ray diffraction measurement of the obtained active material A10 was subjected to, but shifted to a lower angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 4). Also, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A10 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A10 was measured, it was 3.0 × 10 -6 S / cm at 70 ° C.

実験例1−11(Li1.8Al0.067S含有活物質A11の製造)
Li、Al及びSのモル比が1.8:0.067:1となるように、硫化リチウム(LiS)粉体と、硫化アルミニウム(Al)粉体とを用いた以外は、実験例1−10と同じ操作を行い、活物質A11を得た。
得られた活物質A11のX線回折測定を行ったところ、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図4参照)。また、X線回折像にはLiS以外のピークは見られず、活物質A11は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A11の導電率を測定したところ、70℃において、1.4×10−5S/cmであった。
Experimental Example 1-11 (Production of active material A11 containing Li 1.8 Al 0.067 S)
Except for the use of lithium sulfide (Li 2 S) powder and aluminum sulfide (Al 2 S 3 ) powder so that the molar ratio of Li, Al and S is 1.8: 0.067: 1. , The same operation as in Experimental Example 1-10 was carried out to obtain active material A11.
X-ray diffraction measurement of the obtained active material A11 was subjected to, but shifted to a lower angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 4). Also, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A11 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A11 was measured, it was 1.4 × 10-5 S / cm at 70 ° C.

実験例1−12(Li1.7Al0.1S含有活物質A12の製造)
Li、Al及びSのモル比が1.7:0.1:1となるように、硫化リチウム(LiS)粉体と、硫化アルミニウム(Al)粉体とを用いた以外は、実験例1−10と同じ操作を行い、活物質A12を得た。
得られた活物質A12のX線回折測定を行ったところ、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図4参照)。また、X線回折像にはLiS以外のピークは見られず、活物質A12は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A12の導電率を測定したところ、70℃において、7.9×10−6S/cmであった。
Experimental Example 1-12 (Production of active material A12 containing Li 1.7 Al 0.1 S)
Except for the use of lithium sulfide (Li 2 S) powder and aluminum sulfide (Al 2 S 3 ) powder so that the molar ratio of Li, Al and S is 1.7: 0.1: 1. , The same operation as in Experimental Example 1-10 was carried out to obtain active material A12.
X-ray diffraction measurement of the obtained active material A12 was subjected to, but shifted to a lower angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 4). Also, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A12 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A12 was measured, it was 7.9 × 10 -6 S / cm at 70 ° C.

実験例1−13(Li1.5Al0.167S含有活物質A13の製造)
Li、Al及びSのモル比が1.5:0.167:1となるように、硫化リチウム(LiS)粉体と、硫化アルミニウム(Al)粉体とを用いた以外は、実験例1−10と同じ操作を行い、活物質A13を得た。
得られた活物質A13のX線回折測定を行ったところ、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図4参照)。また、X線回折像にはLiS以外のピークは見られず、活物質A13は、固溶限界に達していない固溶体からなると推定した。
また、この活物質A13の導電率を測定したところ、70℃において、4.9×10−5S/cmであった。
Experimental Example 1-13 (Production of active material A13 containing Li 1.5 Al 0.167 S)
Except for the use of lithium sulfide (Li 2 S) powder and aluminum sulfide (Al 2 S 3 ) powder so that the molar ratio of Li, Al and S is 1.5: 0.167: 1. , The same operation as in Experimental Example 1-10 was carried out to obtain active material A13.
X-ray diffraction measurement of the obtained active material A13 was subjected to, but shifted to a lower angle side, it was confirmed to contain a compound having a diffraction pattern of the substantially Li 2 S (see FIG. 4). Also, peaks other than Li 2 S in the X-ray diffraction pattern is not observed, the active material A13 was estimated to consist of solid solution does not reach the solubility limit.
Moreover, when the conductivity of this active material A13 was measured, it was 4.9 × 10 -5 S / cm at 70 ° C.

実験例1−14(Li1.50.1670.75Cl0.5含有活物質A14の製造)
Li、Y、S及びClのモル比が1.5:0.167:0.75:0.5となるように、硫化リチウム(LiS)粉体と、塩化イットリウム(YCl)粉体とを秤量し、これらを混合した。次いで、混合粉末を直径15mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、回転数600rpmの条件で、メカニカルミリングを10時間行い、活物質A14を得た。
得られた活物質A14のX線回折測定を行ったところ、わずかにLiYSの回折パターンが見られ、また、低角度側にシフトしているものの、実質的にLiSの回折パターンを有する化合物を含むことを確認した(図5参照)。また、X線回折像におけるLiSとLiYSとのピーク強度比から、活物質A14は、固溶限界に達している固溶体からなると推定した。
また、この活物質A14の導電率を測定したところ、70℃において、2.0×10−5S/cmであった。
Experimental Example 1-14 (Production of active material A14 containing Li 1.5 Y 0.167 S 0.75 Cl 0.5)
Li, Y, the molar ratio of the S and Cl 1.5: 0.167: 0.75: so that 0.5, (2 S Li) and a powder of lithium sulfide, yttrium chloride (YCl 3) powder And were weighed and these were mixed. Next, the mixed powder was placed in a planetary ball mill manufactured by Frisch (container: manufactured by zirconia) together with zirconia balls having a diameter of 15 mm, and mechanical milling was performed for 10 hours under the condition of a rotation speed of 600 rpm to obtain an active material A14.
Was subjected to X-ray diffraction measurement of the obtained active material A14, was slightly observed diffraction pattern of LiYS 2, Although shifted to a lower angle side, it has a diffraction pattern substantially Li 2 S It was confirmed that it contained a compound (see FIG. 5). Further, the peak intensity ratio of the Li 2 S and LiYS 2 in X-ray diffraction pattern, the active material A14 was estimated to consist of solid solution has reached the solubility limit.
Moreover, when the conductivity of this active material A14 was measured, it was 2.0 × 10-5 S / cm at 70 ° C.

3.正極電極及びリチウム硫黄電池の製造並びに評価
上記の実験例の活物質を含む正極用複合物を作製し、その後、この正極用複合物を用いて、正極電極を備えるリチウム硫黄電池を作製した。
次いで、得られたリチウム硫黄電池を含む図11の測定セルを作製し、充電試験を行った。
3. 3. Manufacture and Evaluation of Positive Electrode and Lithium-Sulfur Battery A positive electrode composite containing the active material of the above experimental example was prepared, and then a lithium-sulfur battery equipped with a positive electrode was prepared using this positive electrode composite.
Next, the measurement cell of FIG. 11 containing the obtained lithium-sulfur battery was prepared and a charging test was performed.

実験例2−1
以下の方法で、実験例1−2のLi1.9Mg0.05S含有活物質A2、固体電解質であるLiI、及び、電子導電助剤であるカーボンナノファイバーの質量比が50:40:10である正極用複合物を得た。
はじめに、Li1.9Mg0.05S含有活物質A2となるように秤量した、硫化リチウム(LiS)粉体と、硫化マグネシウム(MgS)粉体と、これらにより形成されるLi1.9Mg0.05S含有活物質A2に対する使用量の比を、それぞれ、80%及び20%としたLiI及びカーボンナノファイバー(直径:0.1μm、長さ:20μm)とを混合した。その後、混合粉末を直径4mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、回転数510rpmの条件で、メカニカルミリングを10時間行い、正極用複合物を得た。
次に、固体電解質であるLiI粉末を、一軸油圧プレス機を用いて加圧成形し、円板形状の予備成形体(半径:5mm、厚さ:0.5mm)とした。そして、この電解質層用の予備成形体をポリエーテルエーテルケトン(PEEK)製の筒状体の内部に収容した状態で、その一方の表面側の全体に、上記で得られた正極用複合物約5mgを充填し、一軸油圧プレス機を用いて加圧成形を行った。更に、電解質層用予備成形体の他方の面に、Li−In合金箔(厚さ0.1mm、直径5mm)を張り付け、正極用複合物からなる正極電極21(厚さ約30μm)と、LiIからなる電解質層25と、Li−In合金からなる負極電極23とを備える全固体形のリチウム硫黄電池20を得た。
その後、このリチウム硫黄電池20を収納した筒状体の両側から、それぞれステンレス−ニッケルの導通部を挿入し、治具で固定して、図11に示す測定セル10を得た。そして、この測定セル10をガラス容器(図示せず)に封入し、ガラス容器内の気体をアルゴンガスに置換して、充電試験を行った。充電試験は、測定セル10を含むガラス容器を、60℃に設定した電気炉に入れ、NAGANO社製充放電装置「BTS−2004H」(型式名)を用い、0.1−3.0V vs Li−In、Cレート:0.1Cの条件で行った。その結果を図6に示す。
Experimental Example 2-1
In the following way, Li 1.9 Mg 0.05 S-containing active material A2 of Example 1-2, a solid electrolyte Li 7 P 2 S 8 I, and the mass of the carbon nanofibers is an electron conductive aid A positive electrode composite having a ratio of 50:40:10 was obtained.
First , lithium sulfide (Li 2 S) powder and magnesium sulfide (Mg S) powder, which are weighed so as to be Li 1.9 Mg 0.05 S-containing active material A2, and Li 1. formed by these. Li 7 P 2 S 8 I and carbon nanofibers (diameter: 0.1 μm, length: 20 μm) in which the ratio of the amount used to the active material A2 containing 9 Mg 0.05 S was 80% and 20%, respectively. Was mixed. Then, the mixed powder was placed in a planetary ball mill manufactured by Frisch (container: manufactured by zirconia) together with zirconia balls having a diameter of 4 mm, and mechanical milling was performed for 10 hours under the condition of a rotation speed of 510 rpm to obtain a composite for a positive electrode.
Next, the Li 7 P 2 S 8 I powder, which is a solid electrolyte, was pressure-molded using a uniaxial hydraulic press to obtain a disk-shaped preformed body (radius: 5 mm, thickness: 0.5 mm). .. Then, in a state where the preformed body for the electrolyte layer is housed inside a tubular body made of polyetheretherketone (PEEK), the entire surface side of one of them is covered with the positive electrode composite obtained above. It was filled with 5 mg and pressure-molded using a uniaxial hydraulic press. Further, a Li-In alloy foil (thickness 0.1 mm, diameter 5 mm) is attached to the other surface of the preformed body for the electrolyte layer, and a positive electrode 21 (thickness about 30 μm) made of a positive electrode composite and Li an electrolyte layer 25 composed of 7 P 2 S 8 I, to give a lithium-sulfur battery 20 of the all-solid-state form and a negative electrode 23 consisting of Li-an in alloy.
Then, stainless-nickel conductive portions were inserted from both sides of the tubular body containing the lithium-sulfur battery 20, and fixed with a jig to obtain a measurement cell 10 shown in FIG. Then, the measurement cell 10 was sealed in a glass container (not shown), the gas in the glass container was replaced with argon gas, and a charging test was performed. In the charging test, a glass container containing the measurement cell 10 was placed in an electric furnace set at 60 ° C., and a charging / discharging device “BTS-2004H” (model name) manufactured by NAGANO was used to perform 0.1-3.0 V vs Li. -In, C rate: 0.1 C. The result is shown in FIG.

実験例2−2〜2−4
実験例2−1と同様にして、実験例1−1のLiS含有活物質A1、実験例1−3のLi1.8Mg0.1S含有活物質A3又は実験例1−4のLi1.7Mg0.15S含有活物質A4と、固体電解質であるLiIと、電子導電助剤であるカーボンナノファイバーとの質量比が50:40:10である、実験例2−2〜2−4の正極用複合物を得た。
その後、これらの正極用複合物を用いて、実験例2−1と同様にして、正極電極21を含むリチウム硫黄電池20を得た。そして、実験例2−1と同様にして充電試験を行った。その結果を図6に示す。
Experimental Examples 2-2-2-4
In the same manner as in Experimental Example 2-1 of Li 2 S-containing active material A1 of Experimental Example 1-1, Li 1.8 Mg 0.1 S-containing active material A3 of Experimental Example 1-3, or Experimental Example 1-4. The mass ratio of the active material A4 containing Li 1.7 Mg 0.15 S, the solid electrolyte Li 7 P 2 S 8 I, and the carbon nanofibers as the electron conductive auxiliary agent is 50:40:10. The positive electrode composite of Experimental Example 2-2-2-4 was obtained.
Then, using these positive electrode composites, a lithium-sulfur battery 20 including a positive electrode electrode 21 was obtained in the same manner as in Experimental Example 2-1. Then, a charging test was conducted in the same manner as in Experimental Example 2-1. The result is shown in FIG.

図6より、Li原子の一部がMg原子で置換されたLiS系化合物を含む電極を用いると、充電容量が向上したリチウム硫黄電池が得られたことが分かる。 6 that the use of electrodes in which a part of the Li atoms contains Li 2 S-based compounds substituted with Mg atoms, it can be seen that the lithium-sulfur battery charge capacity is improved was obtained.

実験例2−5〜2−8
実験例2−1と同様にして、実験例1−5のLi1.9Ca0.050.95Cl0.1含有活物質A5、実験例1−6のLi1.8Ca0.10.9Cl0.2含有活物質A6、実験例1−7のLi1.7Ca0.150.85Cl0.3含有活物質A7又は実験例1−8のLi1.6Ca0.20.8Cl0.4含有活物質A8と、固体電解質であるLi5.5PS4.5Cl1.5と、電子導電助剤であるカーボンナノファイバーとの質量比が50:40:10である、実験例2−5〜2−8の正極用複合物を得た。
その後、これらの正極用複合物を用いて、実験例2−1と同様にして、正極電極21を含むリチウム硫黄電池20を得た。そして、実験例2−1と同様にして充電試験(但し、試験温度:30℃)を行った。その結果を図7に示す。
Experimental Examples 2-5 to 2-8
In the same manner as in Experimental Example 2-1: Li 1.9 Ca 0.05 S 0.95 Cl 0.1- containing active material A5 of Experimental Example 1-5, Li 1.8 Ca 0. of Experimental Example 1-6. 1 S 0.9 Cl 0.2- containing active material A6, Li of Experimental Example 1-7 1.7 Ca 0.15 S 0.85 Cl 0.3- containing active material A7 or Li of Experimental Example 1-8 1. 6 Ca 0.2 S 0.8 Cl 0.4- containing active material A8, Li 5.5 PS 4.5 Cl 1.5 , which is a solid electrolyte, and carbon nanofibers, which is an electron-conducting aid. The positive electrode composite of Experimental Example 2-5 to 2-8 was obtained at 50:40:10.
Then, using these positive electrode composites, a lithium-sulfur battery 20 including a positive electrode electrode 21 was obtained in the same manner as in Experimental Example 2-1. Then, a charging test (provided that the test temperature was 30 ° C.) was carried out in the same manner as in Experimental Example 2-1. The result is shown in FIG.

図7より、Li原子の一部がCa原子で置換されたLiS系化合物を含む電極を用いると、充電容量が向上したリチウム硫黄電池が得られたことが分かる。 7 that when using the electrode containing Li 2 S-based compounds partially substituted by Ca atoms of Li atoms, it can be seen that the lithium-sulfur battery charge capacity is improved was obtained.

実験例2−9
実験例2−1と同様にして、実験例1−9のLi1.9Ca0.05S含有活物質A9と、固体電解質であるLiIと、電子導電助剤であるカーボンナノファイバーとの質量比が50:40:10である正極用複合物を得た。
その後、この正極用複合物を用いて、実験例2−1と同様にして、正極電極21を含むリチウム硫黄電池20を得た。そして、実験例2−1と同様にして充電試験(但し、試験温度:60℃)を行った。その結果を図8に示す。
Experimental Example 2-9
In the same manner as in Experimental Example 2-1 the Li 1.9 Ca 0.05 S-containing active material A9 of Experimental Example 1-9, the solid electrolyte Li 7 P 2 S 8 I, and the electron conductive auxiliary agent. A positive electrode composite having a mass ratio of 50:40:10 with carbon nanofibers was obtained.
Then, using this positive electrode composite, a lithium-sulfur battery 20 including a positive electrode electrode 21 was obtained in the same manner as in Experimental Example 2-1. Then, a charging test (provided that the test temperature: 60 ° C.) was performed in the same manner as in Experimental Example 2-1. The result is shown in FIG.

図8より、Li原子の一部がCa原子で置換されたLiS系化合物を含む電極を用いると、充電容量が向上したリチウム硫黄電池が得られたことが分かる。 From FIG. 8, using an electrode containing Li 2 S-based compounds partially substituted by Ca atoms of Li atoms, it can be seen that the lithium-sulfur battery charge capacity is improved was obtained.

実験例2−10〜2−13
実験例2−1と同様にして、実験例1−10のLi1.9Al0.033S含有活物質A10、実験例1−11のLi1.8Al0.067S含有活物質A11、実験例1−12のLi1.7Al0.1S含有活物質A12又は実験例1−13のLi1.5Al0.167S含有活物質A13と、固体電解質であるLi5.5PS4.5Cl1.5と、電子導電助剤であるカーボンナノファイバーとの質量比が50:40:10である、実験例2−10〜2−13の正極用複合物を得た。
その後、これらの正極用複合物を用いて、実験例2−1と同様にして、正極電極21を含むリチウム硫黄電池20を得た。そして、実験例2−1と同様にして充電試験(但し、試験温度:60℃)を行った。その結果を図9に示す。
Experimental Examples 2-10-2-13
In the same manner as in Experimental Example 2-1: Li 1.9 Al 0.033 S-containing active material A10 in Experimental Example 1-10, Li 1.8 Al 0.067 S-containing active material A11 in Experimental Example 1-11, Li 1.7 Al 0.1 S-containing active material A12 of Experimental Example 1-12 or Li 1.5 Al 0.167 S-containing active material A13 of Experimental Example 1-13 and Li 5.5 PS which is a solid electrolyte. A positive electrode composite of Experimental Example 2-10 to 2-13 having a mass ratio of 4.5 Cl 1.5 to carbon nanofibers as an electron conductive additive was obtained at 50:40:10.
Then, using these positive electrode composites, a lithium-sulfur battery 20 including a positive electrode electrode 21 was obtained in the same manner as in Experimental Example 2-1. Then, a charging test (provided that the test temperature: 60 ° C.) was performed in the same manner as in Experimental Example 2-1. The result is shown in FIG.

図9より、Li原子の一部がAl原子で置換されたLiS系化合物を含む電極を用いると、充電容量が向上したリチウム硫黄電池が得られたことが分かる。 From 9, using an electrode containing Li 2 S-based compounds partially substituted by Al atoms Li atoms, it can be seen that the lithium-sulfur battery charge capacity is improved was obtained.

実験例2−14
実験例2−1と同様にして、実験例1−14のLi1.50.1670.75Cl0.5含有活物質A14と、固体電解質であるLi5.5PS4.5Cl1.5と、電子導電助剤であるカーボンナノファイバーとの質量比が50:40:10である正極用複合物を得た。
その後、この正極用複合物を用いて、実験例2−1と同様にして、正極電極21を含むリチウム硫黄電池20を得た。そして、実験例2−1と同様にして充電試験(但し、試験温度:30℃)を行った。その結果を図10に示す。
Experimental Example 2-14
In the same manner as in Experimental Example 2-1: Li 1.5 Y 0.167 S 0.75 Cl 0.5- containing active material A14 of Experimental Example 1-14 and Li 5.5 PS 4.5 which is a solid electrolyte. A composite for a positive electrode having a mass ratio of Cl 1.5 and carbon nanofibers as an electron conductive auxiliary agent of 50:40:10 was obtained.
Then, using this positive electrode composite, a lithium-sulfur battery 20 including a positive electrode electrode 21 was obtained in the same manner as in Experimental Example 2-1. Then, a charging test (provided that the test temperature was 30 ° C.) was carried out in the same manner as in Experimental Example 2-1. The result is shown in FIG.

図10より、Li原子の一部がY原子で置換されたLiS系化合物を含む電極を用いると、充電容量が向上したリチウム硫黄電池が得られたことが分かる。 Than 10, the use of electrodes that includes a portion that Li 2 S-based compounds substituted with Y atoms Li atoms, it can be seen that the lithium-sulfur battery charge capacity is improved was obtained.

本発明の固体電解質は、パソコン、カメラ等の家電製品や、電力貯蔵装置、携帯電話機等の携帯型電子機器又は通信機器、パワーツール等の電動工具等の電源、更には、電気自動車(EV)、ハイブリッド電気自動車(HEV)等に搭載される大型電池を構成するリチウム硫黄電池の構成材料、即ち、リチウム硫黄電池用電極又は電解質層の構成材料として好適である。 The solid electrolyte of the present invention can be used as a power source for home appliances such as personal computers and cameras, portable electronic devices or communication devices such as power storage devices and mobile phones, electric tools such as power tools, and electric vehicles (EVs). , Is suitable as a constituent material of a lithium sulfur battery constituting a large battery mounted on a hybrid electric vehicle (HEV) or the like, that is, as a constituent material of an electrode for a lithium sulfur battery or an electrolyte layer.

10:充電試験用測定セル
20:リチウム硫黄電池
21:正極電極
23:負極電極
25:電解質層
27:PEEK製筒状体
31:押さえ板
33:押さえピン
35:締め付けネジ
37:カプトン(登録商標)テープ
10: Measurement cell for charge test 20: Lithium-sulfur battery 21: Positive electrode 23: Negative electrode 25: Electrolyte layer 27: PEEK tubular body 31: Press plate 33: Press pin 35: Tightening screw 37: Kapton (registered trademark) tape

Claims (4)

LiSにおける一部のLi原子が周期表の第2族元素、第3族元素又は第13族元素に由来する多価原子で置換された化合物であって、X線回折により、実質的にLiSの回折パターンを有する化合物を含むことを特徴とする活物質。 A compound in which a part of the Li atoms are substituted with polyvalent atom derived from the second group elements of the periodic table, the group 3 element or Group 13 element in the Li 2 S, the X-ray diffraction, essentially active material which comprises a compound having the diffraction pattern of li 2 S. リチウム硫黄電池に用いられる請求項1に記載の活物質。 The active material according to claim 1, which is used in a lithium-sulfur battery. 請求項1又は2に記載の活物質を含むことを特徴とするリチウム硫黄電池用電極。 An electrode for a lithium-sulfur battery, which comprises the active material according to claim 1 or 2. 請求項3に記載のリチウム硫黄電池用電極を備えることを特徴とするリチウム硫黄電池。 A lithium-sulfur battery including the electrode for a lithium-sulfur battery according to claim 3.
JP2019144915A 2019-08-06 2019-08-06 Active materials, electrodes for lithium-sulfur batteries, and lithium-sulfur batteries Active JP7366396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019144915A JP7366396B2 (en) 2019-08-06 2019-08-06 Active materials, electrodes for lithium-sulfur batteries, and lithium-sulfur batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019144915A JP7366396B2 (en) 2019-08-06 2019-08-06 Active materials, electrodes for lithium-sulfur batteries, and lithium-sulfur batteries

Publications (2)

Publication Number Publication Date
JP2021026921A true JP2021026921A (en) 2021-02-22
JP7366396B2 JP7366396B2 (en) 2023-10-23

Family

ID=74664775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144915A Active JP7366396B2 (en) 2019-08-06 2019-08-06 Active materials, electrodes for lithium-sulfur batteries, and lithium-sulfur batteries

Country Status (1)

Country Link
JP (1) JP7366396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117577931A (en) * 2024-01-16 2024-02-20 中国第一汽车股份有限公司 Solid electrolyte, preparation method thereof and solid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096372A (en) * 2009-10-27 2011-05-12 National Institute Of Advanced Industrial Science & Technology Electrode active material for lithium ion secondary battery, and method of manufacturing the same
JP2016058296A (en) * 2014-09-11 2016-04-21 古河機械金属株式会社 Positive electrode active material for lithium ion battery, positive electrode material, positive electrode, and lithium ion battery
JP2017054633A (en) * 2015-09-08 2017-03-16 古河機械金属株式会社 Positive electrode active material for lithium ion battery, positive electrode material, positive electrode, and lithium ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096372A (en) * 2009-10-27 2011-05-12 National Institute Of Advanced Industrial Science & Technology Electrode active material for lithium ion secondary battery, and method of manufacturing the same
JP2016058296A (en) * 2014-09-11 2016-04-21 古河機械金属株式会社 Positive electrode active material for lithium ion battery, positive electrode material, positive electrode, and lithium ion battery
JP2017054633A (en) * 2015-09-08 2017-03-16 古河機械金属株式会社 Positive electrode active material for lithium ion battery, positive electrode material, positive electrode, and lithium ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117577931A (en) * 2024-01-16 2024-02-20 中国第一汽车股份有限公司 Solid electrolyte, preparation method thereof and solid battery
CN117577931B (en) * 2024-01-16 2024-05-14 中国第一汽车股份有限公司 Solid electrolyte, preparation method thereof and solid battery

Also Published As

Publication number Publication date
JP7366396B2 (en) 2023-10-23

Similar Documents

Publication Publication Date Title
US10879562B2 (en) Solid electrolyte, preparation method thereof, and all-solid-state battery employing the same
EP3327835B1 (en) Positive electrode active material and battery
JP5552974B2 (en) Sulfide solid electrolyte material, method for producing sulfide solid electrolyte material, and lithium solid state battery
JP2021516654A (en) A method for producing a carbon nanostructure containing molybdenum disulfide, a positive electrode for a lithium secondary battery containing the carbon nanostructure containing molybdenum disulfide produced thereby, and a lithium secondary battery provided with the positive electrode.
WO2013151110A1 (en) Negative electrode for power storage device, method for forming the same, and power storage device
JP2012505143A (en) Transition metal sulfide compounds containing lithium
JP6595031B2 (en) Solid electrolyte material, lithium ion battery, and method for producing solid electrolyte material
JP5958256B2 (en) Nonaqueous electrolyte secondary battery
WO2021261558A1 (en) Solid electrolyte and solid electrolyte battery
JP4140222B2 (en) Negative electrode, non-aqueous electrolyte secondary battery, and negative electrode manufacturing method
JP7010011B2 (en) Sulfide solid electrolyte
JP6723707B2 (en) Positive electrode active material for lithium ion battery, positive electrode material, positive electrode, and lithium ion battery
JP2015146239A (en) Solid electrolyte material, lithium ion battery and method for producing solid electrolyte material
JP5205788B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and method for producing nonaqueous electrolyte secondary battery
JP7030322B2 (en) Composite particles for lithium-ion batteries and their manufacturing methods
WO2020184464A1 (en) Solid electrolyte, electrode for lithium ion battery, and lithium ion battery
JP7366396B2 (en) Active materials, electrodes for lithium-sulfur batteries, and lithium-sulfur batteries
US20200168897A1 (en) Cathode mixture, all solid state battery, and method for producing cathode mixture
KR100788257B1 (en) Lithium secondary battery comprising electrode composition for high voltage
JP5774444B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2011100607A (en) Active material for nonaqueous secondary battery, and nonaqueous secondary battery
JP7005693B2 (en) Positive electrode active material for lithium-ion batteries, positive electrode materials, positive electrodes, and lithium-ion batteries
KR101044577B1 (en) Lithium Secondary Battery
JP6626182B2 (en) Anode material for lithium ion battery, anode for lithium ion battery, and lithium ion battery
JP4456668B2 (en) Nonaqueous secondary battery and its positive electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7366396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150