JP2021024766A - Dielectric powder - Google Patents

Dielectric powder Download PDF

Info

Publication number
JP2021024766A
JP2021024766A JP2019146616A JP2019146616A JP2021024766A JP 2021024766 A JP2021024766 A JP 2021024766A JP 2019146616 A JP2019146616 A JP 2019146616A JP 2019146616 A JP2019146616 A JP 2019146616A JP 2021024766 A JP2021024766 A JP 2021024766A
Authority
JP
Japan
Prior art keywords
compound
dielectric powder
less
compound containing
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019146616A
Other languages
Japanese (ja)
Inventor
裕也 小川
Hironari Ogawa
裕也 小川
優行 高井
Masayuki Takai
優行 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Murata Manufacturing Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd, Murata Manufacturing Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP2019146616A priority Critical patent/JP2021024766A/en
Priority to CN202010775364.2A priority patent/CN112341194A/en
Publication of JP2021024766A publication Critical patent/JP2021024766A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Abstract

To provide a dielectric powder that can be atomized by suppressing grain growth when heated.SOLUTION: A dielectric powder contains a perovskite-type compound containing at least Ca and Zr, and a compound containing P. The dielectric powder has a specific surface area of 5 m2/g or more and 40 m2/g or less, and a primary particle diameter of 30 nm or more and 300 nm or less. The primary particle diameter of a Ca compound used to prepare the perovskite-type compound is 20 nm or more and 150 nm or less, and the primary particle diameter of a Zr compound used to prepare the perovskite-type compound is 2 nm or more and 50 nm or less.SELECTED DRAWING: None

Description

本発明は、誘電体粉末に関する。 The present invention relates to a dielectric powder.

積層セラミックコンデンサのように、誘電体粉末を用いて製造される電子部品が知られている。電子部品は、近年小型化が進んでおり、それに伴い、電子部品を製造する際に用いられる誘電体粉末も微小化が求められてきている。 Electronic components manufactured using dielectric powder, such as multilayer ceramic capacitors, are known. In recent years, electronic components have been miniaturized, and along with this, the dielectric powder used in manufacturing electronic components is also required to be miniaturized.

特開2017−178686号公報JP-A-2017-178686

しかしながら、誘電体粉末は、その製造過程で加えられる熱により粒成長してしまい、さらなる微小化が難しいという問題がある。 However, the dielectric powder has a problem that it is difficult to further miniaturize it because the particles grow due to the heat applied in the manufacturing process.

本発明は、上記課題を解決するものであり、加熱されたときの粒成長を抑制して微粒化することができる誘電体粉末を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems, and to provide a dielectric powder capable of suppressing grain growth when heated and atomizing.

本発明の誘電体粉末は、少なくともCaおよびZrを含むペロブスカイト型化合物と、Pを含む化合物とを含むことを特徴とする。 The dielectric powder of the present invention is characterized by containing at least a perovskite-type compound containing Ca and Zr, and a compound containing P.

比表面積は5m2/g以上40m2/g以下であり、かつ、一次粒子径が30nm以上300nm以下であってもよい。 The specific surface area may be 5 m 2 / g or more and 40 m 2 / g or less, and the primary particle diameter may be 30 nm or more and 300 nm or less.

前記ペロブスカイト型化合物を作製するために用いられるCa化合物の一次粒子径は、20nm以上150nm以下であってもよい。 The primary particle size of the Ca compound used to prepare the perovskite-type compound may be 20 nm or more and 150 nm or less.

前記ペロブスカイト型化合物を作製するために用いられるZr化合物の一次粒子径は、2nm以上50nm以下であってもよい。 The primary particle size of the Zr compound used to prepare the perovskite-type compound may be 2 nm or more and 50 nm or less.

前記Pは、前記Zr100モル部に対して0.001モル部以上10モル部以下含まれていてもよい。 The P may be contained in an amount of 0.001 mol or more and 10 mol or less with respect to 100 mol of Zr.

前記ペロブスカイト型化合物を作製するために用いられるCa化合物は、炭酸カルシウムおよび水酸化カルシウムのうちの少なくとも一方であってもよい。 The Ca compound used to prepare the perovskite-type compound may be at least one of calcium carbonate and calcium hydroxide.

前記ペロブスカイト型化合物を作製するために用いられるZr化合物は、酸化ジルコニウムおよび水酸化ジルコニウムのうちの少なくとも一方であってもよい。 The Zr compound used to prepare the perovskite-type compound may be at least one of zirconium oxide and zirconium hydride.

前記Pを含む化合物は、リン酸化合物であってもよい。 The compound containing P may be a phosphoric acid compound.

上記誘電体粉末は、前記Caを含むCa化合物、前記Zrを含むZr化合物、および、Pを含む化合物の混合物を700℃以上1500℃以下の温度で熱処理することによって作製することができる。その場合、前記熱処理の後に粉砕するようにしてもよい。 The dielectric powder can be produced by heat-treating a mixture of the Ca compound containing Ca, the Zr compound containing Zr, and the compound containing P at a temperature of 700 ° C. or higher and 1500 ° C. or lower. In that case, it may be pulverized after the heat treatment.

本発明によれば、加熱時の粒成長を抑制して微粒化することができる誘電体粉末を提供することができる。 According to the present invention, it is possible to provide a dielectric powder capable of suppressing grain growth during heating and atomizing.

以下に本発明の実施形態を示して、本発明の特徴を具体的に説明する。 Embodiments of the present invention will be shown below, and the features of the present invention will be specifically described.

本発明の誘電体粉末は、下記の要件(以下、本発明の要件と呼ぶ)、すなわち、少なくともCaおよびZrを含むペロブスカイト型化合物と、Pを含む化合物とを含むという要件を満たす。少なくともCaおよびZrを含むペロブスカイト型化合物は、例えばCaZrO3である。誘電体粉末がPを含む化合物を含有することにより、加熱による粒成長を抑制することができる。 The dielectric powder of the present invention satisfies the following requirements (hereinafter referred to as the requirements of the present invention), that is, a requirement that a perovskite-type compound containing at least Ca and Zr and a compound containing P are contained. The perovskite-type compound containing at least Ca and Zr is, for example, CaZrO 3 . When the dielectric powder contains a compound containing P, grain growth due to heating can be suppressed.

本発明の誘電体粉末において、比表面積は5m2/g以上40m2/g以下であり、かつ、一次粒子径が30nm以上300nm以下であることが好ましい。微粒化すると、粒子の結晶性が低下する場合があるが、後述するように、比表面積を40m2/g以下とすることにより、結晶性の低下を抑制することができる。 In the dielectric powder of the present invention, the specific surface area is preferably 5 m 2 / g or more and 40 m 2 / g or less, and the primary particle size is preferably 30 nm or more and 300 nm or less. When atomized, the crystallinity of the particles may decrease, but as will be described later, the decrease in crystallinity can be suppressed by setting the specific surface area to 40 m 2 / g or less.

本発明の誘電体粉末において、Pは、Zr100モル部に対して、0.001モル部以上10モル部以下含まれていることが好ましい。 In the dielectric powder of the present invention, P is preferably contained in an amount of 0.001 mol part or more and 10 mol part or less with respect to 100 mol parts of Zr.

上述した誘電体粉末は、例えば、一次粒子径が20nm以上150nm以下であるCa化合物、一次粒子径が2nm以上50nm以下であるZr化合物、および、Pを含む化合物を用いて製造することができる。 The above-mentioned dielectric powder can be produced, for example, using a Ca compound having a primary particle size of 20 nm or more and 150 nm or less, a Zr compound having a primary particle size of 2 nm or more and 50 nm or less, and a compound containing P.

上記Ca化合物は、Caを含む化合物であって、例えば、炭酸カルシウムおよび水酸化カルシウムのうちの少なくとも一方である。また、上記Zr化合物は、Zrを含む化合物であって、例えば、酸化ジルコニウムおよび水酸化ジルコニウムのうちの少なくとも一方である。また、Pを含む化合物は、例えば、リン酸化合物である。 The Ca compound is a compound containing Ca, and is, for example, at least one of calcium carbonate and calcium hydroxide. The Zr compound is a compound containing Zr, and is, for example, at least one of zirconium oxide and zirconium hydride. The compound containing P is, for example, a phosphoric acid compound.

本発明の誘電体粉末は、上述したCaを含むCa化合物、Zrを含むZr化合物、および、Pを含む化合物を混合した混合物を700℃以上1500℃以下の温度で熱処理し、熱処理後に粉砕することによって作製することができる。 The dielectric powder of the present invention is obtained by heat-treating a mixture of the above-mentioned Ca compound containing Ca, Zr compound containing Zr, and a compound containing P at a temperature of 700 ° C. or higher and 1500 ° C. or lower, and then pulverizing the mixture. Can be produced by.

本発明の誘電体粉末は、積層セラミックコンデンサなどの電子部品の製造に用いることができる。 The dielectric powder of the present invention can be used in the manufacture of electronic components such as multilayer ceramic capacitors.

<実施例>
初めに、一次粒子径が20nm以上150nm以下で、比表面積が7m2/g以上60m2/g以下であるCa化合物と、一次粒子径が2nm以上50nm以下で、比表面積が10m2/g以上200m2/g以下であるZr化合物と、Pを含む化合物とを用意した。ここでは、Ca化合物として炭酸カルシウムを用意し、Zr化合物として酸化ジルコニウムを用意した。
<Example>
First, a Ca compound having a primary particle size of 20 nm or more and 150 nm or less and a specific surface area of 7 m 2 / g or more and 60 m 2 / g or less, and a primary particle diameter of 2 nm or more and 50 nm or less and a specific surface area of 10 m 2 / g or more. A Zr compound having a thickness of 200 m 2 / g or less and a compound containing P were prepared. Here, calcium carbonate was prepared as the Ca compound, and zirconium oxide was prepared as the Zr compound.

続いて、用意したCa化合物とZr化合物とを溶媒に投入して溶解させ、スラリーを作製した。溶媒として、純水を用いた。溶媒に投入するCa化合物とZr化合物とのモル比(Ca化合物/Zr化合物)は、0.980以上1.025以下であることが好ましく、0.993以上1.014以下であることがより好ましい。 Subsequently, the prepared Ca compound and Zr compound were put into a solvent and dissolved to prepare a slurry. Pure water was used as the solvent. The molar ratio of the Ca compound to the Zr compound (Ca compound / Zr compound) charged into the solvent is preferably 0.980 or more and 1.025 or less, and more preferably 0.993 or more and 1.014 or less. ..

続いて、作製したスラリーに、Pを含む化合物を添加してボールミルで混合した後、ビーズミルにより粉砕し、攪拌しながら、70℃以上300℃以下の温度で乾燥させた。Pを含む化合物は、リン酸化合物であり、ここではリン酸水素アンモニウムを用いた。ただし、リン酸化合物がリン酸水素アンモニウムに限定されることはなく、リン酸ナトリウム、リン酸カルシウムなどを用いることもできる。 Subsequently, a compound containing P was added to the prepared slurry, mixed with a ball mill, pulverized with a bead mill, and dried at a temperature of 70 ° C. or higher and 300 ° C. or lower while stirring. The compound containing P was a phosphoric acid compound, and here, ammonium hydrogen phosphate was used. However, the phosphoric acid compound is not limited to ammonium hydrogen phosphate, and sodium phosphate, calcium phosphate and the like can also be used.

その後、生成物をふるいにかけてから熱処理、具体的には、700℃以上1500℃以下の温度で焼成した。焼成温度が700℃未満の場合には、合成不足となり、1500℃より高い場合には、粒成長が抑制されにくくなる。 Then, the product was sieved and then heat-treated, specifically, fired at a temperature of 700 ° C. or higher and 1500 ° C. or lower. If the firing temperature is less than 700 ° C., the synthesis becomes insufficient, and if the firing temperature is higher than 1500 ° C., grain growth is less likely to be suppressed.

その後、焼生物を水溶液に混ぜてスラリーにした後、ビーズミルで粉砕することによって、誘電体粉末を得た。この誘電体粉末において、Pは、Zr100モル部に対して0.001部モル以上10モル部以下含まれている。Pの含有量がZr100モル部に対して0.001モル部未満の場合には、焼成時に粒成長が抑制されるという効果が得られにくく、10モル部より多い場合には、結晶性が悪化し、Pを入れすぎているので、ジルコニアとカルシウムが接触しなくなり、ジルコン酸カルシウムを得にくい。したがって、セラミックコンデンサの材料として意味をなさなくなる。 Then, the roasted organism was mixed with an aqueous solution to form a slurry, which was then pulverized with a bead mill to obtain a dielectric powder. In this dielectric powder, P is contained in an amount of 0.001 part mol or more and 10 mol part or less with respect to 100 mol part of Zr. When the P content is less than 0.001 mol part with respect to 100 mol part of Zr, it is difficult to obtain the effect of suppressing grain growth during firing, and when it is more than 10 mol part, the crystallinity deteriorates. However, since P is added too much, zirconia and calcium do not come into contact with each other, making it difficult to obtain calcium zirconate. Therefore, it becomes meaningless as a material for ceramic capacitors.

ここで、試料番号2の誘電体粉末の作製方法において、より詳しい数値を補足しておく。初めに、Ca化合物とZr化合物とを溶媒に投入して溶解させ、スラリーを作製した。溶媒として、純水を用いた。溶媒に投入するCa化合物とZr化合物とのモル比(Ca化合物/Zr化合物)は1.000とした。作製したスラリーに、Pを含む化合物を添加してボールミルで混合した後、ビーズミルにより粉砕し、攪拌しながら、100℃の温度で乾燥させた。Pを含む化合物は、リン酸化合物であり、ここではリン酸水素アンモニウムを用いた。生成物をふるいにかけてから1000℃の温度で焼成し、焼生物を水溶液に混ぜてスラリーにした後、ビーズミルで粉砕することによって、誘電体粉末を得た。 Here, more detailed numerical values will be supplemented in the method for producing the dielectric powder of sample number 2. First, the Ca compound and the Zr compound were put into a solvent and dissolved to prepare a slurry. Pure water was used as the solvent. The molar ratio (Ca compound / Zr compound) of the Ca compound and the Zr compound added to the solvent was 1.000. A compound containing P was added to the prepared slurry, mixed with a ball mill, pulverized with a bead mill, and dried at a temperature of 100 ° C. with stirring. The compound containing P was a phosphoric acid compound, and here, ammonium hydrogen phosphate was used. The product was sieved and then fired at a temperature of 1000 ° C., the calcined organism was mixed with an aqueous solution to form a slurry, and then pulverized with a bead mill to obtain a dielectric powder.

ここでは、Pの添加量の異なる複数種類の誘電体粉末を作製して、比表面積およびX線回折によるCaZrO3の第二ピークの半値幅を測定した。比表面積は、例えば、流動法やBET1点法などにより測定することができる。また、X線回折によるCaZrO3の第二ピークの半値幅は、数値が低い方が結晶性が高いことを意味する。作製した試料番号1〜15の誘電体粉末の比表面積、一次粒子径の平均値、X線回折によるCaZrO3の第二ピークの半値幅、および、Pの添加量を表1に示す。Pの添加量は、Zr100モル部に対するモル量である。 Here, a plurality of types of dielectric powders having different amounts of P added were prepared, and the specific surface area and the half width of the second peak of CaZrO 3 by X-ray diffraction were measured. The specific surface area can be measured by, for example, a flow method or a BET one-point method. Further, the half width of the second peak of CaZrO 3 by X-ray diffraction means that the lower the value, the higher the crystallinity. Table 1 shows the specific surface area of the prepared dielectric powders of Sample Nos. 1 to 15, the average value of the primary particle size, the half width of the second peak of CaZrO 3 by X-ray diffraction, and the amount of P added. The amount of P added is a molar amount with respect to 100 mol parts of Zr.

Figure 2021024766
Figure 2021024766

表1において、試料番号に*が付されていない試料番号2〜15の誘電体粉末は、本発明の要件を満たす誘電体粉末であり、試料番号に*が付されている試料番号1の誘電体粉末は、本発明の要件を満たしていない誘電体粉末である。 In Table 1, the dielectric powders of sample numbers 2 to 15 without * in the sample number are dielectric powders satisfying the requirements of the present invention, and the dielectrics of sample number 1 in which * is added to the sample number. The body powder is a dielectric powder that does not meet the requirements of the present invention.

Pを含有しておらず、本発明の要件を満たしていない試料番号1の誘電体粉末は、焼成時に粒成長が進み、結晶粒が粗大化する。 The dielectric powder of Sample No. 1, which does not contain P and does not satisfy the requirements of the present invention, undergoes grain growth during firing and the crystal grains become coarse.

これに対して、Pを含む化合物を含有しており、本発明の要件を満たす試料番号2〜15の誘電体粉末は、焼成時の粒成長が抑制される。したがって、本発明の要件を満たす誘電体粉末を用いて、積層セラミックコンデンサのような電子部品を製造すると、誘電体層を薄層化することができ、特性の優れた電子部品を製造することができる。 On the other hand, the dielectric powders of sample numbers 2 to 15 containing a compound containing P and satisfying the requirements of the present invention suppress grain growth during firing. Therefore, when an electronic component such as a multilayer ceramic capacitor is manufactured using a dielectric powder satisfying the requirements of the present invention, the dielectric layer can be thinned, and an electronic component having excellent characteristics can be manufactured. it can.

また、本発明の要件を満たす誘電体粉末のうち、比表面積が5m2/g以上40m2/g以下であり、かつ、一次粒子径が30nm以上300nm以下である、試料番号2〜14の誘電体粉末は、X線回折によるCaZrO3の第二ピークの半値幅が1.0未満であり、結晶性が高い。したがって、本発明の要件を満たす誘電体粉末は、比表面積が5m2/g以上40m2/g以下であり、かつ、一次粒子径が30nm以上300nm以下であることが好ましい。 Further, among the dielectric powders satisfying the requirements of the present invention, the dielectrics of sample numbers 2 to 14 having a specific surface area of 5 m 2 / g or more and 40 m 2 / g or less and a primary particle size of 30 nm or more and 300 nm or less. The body powder has a half-value width of the second peak of CaZrO 3 by X-ray diffraction of less than 1.0, and has high crystallinity. Therefore, the dielectric powder satisfying the requirements of the present invention preferably has a specific surface area of 5 m 2 / g or more and 40 m 2 / g or less and a primary particle size of 30 nm or more and 300 nm or less.

一方、表1に示すように、比表面積が40m2/gより大きい試料番号15の誘電体粉末は、X線回折によるCaZrO3の第二ピークの半値幅が1.0より大きく、結晶性が低い。 On the other hand, as shown in Table 1, the dielectric powder of sample number 15 having a specific surface area larger than 40 m 2 / g has a half width of the second peak of CaZrO 3 by X-ray diffraction larger than 1.0 and crystallinity. Low.

本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiment, and various applications and modifications can be added within the scope of the present invention.

Claims (10)

少なくともCaおよびZrを含むペロブスカイト型化合物と、Pを含む化合物とを含むことを特徴とする誘電体粉末。 A dielectric powder comprising a perovskite-type compound containing at least Ca and Zr and a compound containing P. 比表面積が5m2/g以上40m2/g以下であり、かつ、一次粒子径が30nm以上300nm以下であることを特徴とする請求項1に記載の誘電体粉末。 The dielectric powder according to claim 1, wherein the specific surface area is 5 m 2 / g or more and 40 m 2 / g or less, and the primary particle size is 30 nm or more and 300 nm or less. 前記ペロブスカイト型化合物を作製するために用いられるCa化合物の一次粒子径は、20nm以上150nm以下であることを特徴とする請求項1または2に記載の誘電体粉末。 The dielectric powder according to claim 1 or 2, wherein the primary particle size of the Ca compound used for producing the perovskite-type compound is 20 nm or more and 150 nm or less. 前記ペロブスカイト型化合物を作製するために用いられるZr化合物の一次粒子径は、2nm以上50nm以下であることを特徴とする請求項1〜3のいずれかに記載の誘電体粉末。 The dielectric powder according to any one of claims 1 to 3, wherein the primary particle size of the Zr compound used for producing the perovskite-type compound is 2 nm or more and 50 nm or less. 前記Pは、前記Zr100モル部に対して0.001モル部以上10モル部以下含まれていることを特徴とする請求項1〜4のいずれかに記載の誘電体粉末。 The dielectric powder according to any one of claims 1 to 4, wherein P is contained in an amount of 0.001 mol or more and 10 mol or less with respect to 100 mol of Zr. 前記ペロブスカイト型化合物を作製するために用いられるCa化合物は、炭酸カルシウムおよび水酸化カルシウムのうちの少なくとも一方であることを特徴とする請求項1〜5のいずれかに記載の誘電体粉末。 The dielectric powder according to any one of claims 1 to 5, wherein the Ca compound used for producing the perovskite type compound is at least one of calcium carbonate and calcium hydroxide. 前記ペロブスカイト型化合物を作製するために用いられるZr化合物は、酸化ジルコニウムおよび水酸化ジルコニウムのうちの少なくとも一方であることを特徴とする請求項1〜6のいずれかに記載の誘電体粉末。 The dielectric powder according to any one of claims 1 to 6, wherein the Zr compound used for producing the perovskite-type compound is at least one of zirconium oxide and zirconium hydride. 前記Pを含む化合物は、リン酸化合物であることを特徴とする請求項1〜7のいずれかに記載の誘電体粉末。 The dielectric powder according to any one of claims 1 to 7, wherein the compound containing P is a phosphoric acid compound. 前記Caを含むCa化合物、前記Zrを含むZr化合物、および、Pを含む化合物の混合物を700℃以上1500℃以下の温度で熱処理することによって作製されたことを特徴とする請求項1〜8のいずれかに記載の誘電体粉末。 Claims 1 to 8, wherein the mixture of the Ca compound containing Ca, the Zr compound containing Zr, and the compound containing P was prepared by heat treatment at a temperature of 700 ° C. or higher and 1500 ° C. or lower. The dielectric powder according to any one. 前記熱処理の後に粉砕されていることを特徴とする請求項9に記載の誘電体粉末。 The dielectric powder according to claim 9, wherein the dielectric powder is pulverized after the heat treatment.
JP2019146616A 2019-08-08 2019-08-08 Dielectric powder Pending JP2021024766A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019146616A JP2021024766A (en) 2019-08-08 2019-08-08 Dielectric powder
CN202010775364.2A CN112341194A (en) 2019-08-08 2020-08-04 Dielectric powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019146616A JP2021024766A (en) 2019-08-08 2019-08-08 Dielectric powder

Publications (1)

Publication Number Publication Date
JP2021024766A true JP2021024766A (en) 2021-02-22

Family

ID=74357612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146616A Pending JP2021024766A (en) 2019-08-08 2019-08-08 Dielectric powder

Country Status (2)

Country Link
JP (1) JP2021024766A (en)
CN (1) CN112341194A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331761A (en) * 1991-05-02 1992-11-19 Nippon Steel Corp Dielectric ceramic composition
JP2001097772A (en) * 1999-09-30 2001-04-10 Tdk Corp Dielectric porcelain composition, electronic part and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0089550A3 (en) * 1982-03-19 1984-09-26 DRALORIC Electronic GmbH Monolithic condenser, and method of making it
JP3772354B2 (en) * 1994-10-18 2006-05-10 株式会社村田製作所 Manufacturing method of ceramic powder
JP2004299916A (en) * 2003-03-28 2004-10-28 Tdk Corp Method for manufacturing oxide powder having perovskite structure
JP4806893B2 (en) * 2004-01-28 2011-11-02 Tdk株式会社 Method for producing oxide powder having perovskite structure
JP4802490B2 (en) * 2004-12-13 2011-10-26 Tdk株式会社 Electronic component, dielectric ceramic composition and method for producing the same
JP4706398B2 (en) * 2005-08-30 2011-06-22 Tdk株式会社 Method for producing dielectric ceramic composition
JP2007153720A (en) * 2005-12-08 2007-06-21 Tdk Corp Ceramic powder, ceramic electronic component and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331761A (en) * 1991-05-02 1992-11-19 Nippon Steel Corp Dielectric ceramic composition
JP2001097772A (en) * 1999-09-30 2001-04-10 Tdk Corp Dielectric porcelain composition, electronic part and method for producing the same

Also Published As

Publication number Publication date
CN112341194A (en) 2021-02-09

Similar Documents

Publication Publication Date Title
JP4310318B2 (en) Method for producing dielectric ceramic powder, and multilayer ceramic capacitor produced using the ceramic powder
KR101295161B1 (en) Method for manufacturing composite oxide powder
JP4658689B2 (en) Method for producing barium titanate powder, barium titanate powder, and sintered barium titanate
JP5372181B2 (en) Fine barium titanate powder
JP5140925B2 (en) Manufacturing method of barium titanate powder and multilayer ceramic capacitor using the same
JP2007137759A (en) Barium titanate particulate powder and dispersion
JP5765505B1 (en) Method for producing barium titanate powder
JP2021024766A (en) Dielectric powder
JP4806893B2 (en) Method for producing oxide powder having perovskite structure
JP5142468B2 (en) Method for producing barium titanate powder
US7147835B2 (en) Oxide powder for dielectrics, method of manufacturing oxide powder for dielectrics, and multi-layer ceramic capacitor using the same
JP2006206363A (en) Barium titanate powder and method for manufacturing the same
JP4375092B2 (en) Method for producing ceramic composition
JPH0612917A (en) Dielectric porcelain and its manufacture
JP3752812B2 (en) Method for producing barium titanate
JP4671946B2 (en) Barium calcium titanate powder and production method thereof
JP2020152630A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
CN116789450B (en) Non-full tungsten bronze structure high-entropy ferroelectric ceramic material and preparation method and application thereof
JP2004299916A (en) Method for manufacturing oxide powder having perovskite structure
CN114591079B (en) High-voltage low-loss ceramic capacitor medium and preparation method thereof
JPH04220905A (en) Manufacture of sintered body for high frequency dielectric substance
CN108530068B (en) Barium-calcium co-doped substituted La2NiO4Giant dielectric ceramic and preparation method thereof
JP2009182187A (en) Method for manufacturing stacked ceramic capacitor
JP4539042B2 (en) Method for producing oxide powder having perovskite structure
KR100616541B1 (en) Method for Producing A Perovskite Structure Oxide Powder Using A Material To Make A Dielectrics and Multilayer Ceramic Condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231004

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20231228