JP2021023054A - Ac output power source - Google Patents

Ac output power source Download PDF

Info

Publication number
JP2021023054A
JP2021023054A JP2019138884A JP2019138884A JP2021023054A JP 2021023054 A JP2021023054 A JP 2021023054A JP 2019138884 A JP2019138884 A JP 2019138884A JP 2019138884 A JP2019138884 A JP 2019138884A JP 2021023054 A JP2021023054 A JP 2021023054A
Authority
JP
Japan
Prior art keywords
inverter
current
transformer
alternating current
output power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019138884A
Other languages
Japanese (ja)
Other versions
JP6612482B1 (en
Inventor
増田 正
Tadashi Masuda
正 増田
明弘 石山
Akihiro Ishiyama
明弘 石山
淳 芦田
Atsushi Ashida
淳 芦田
翔太 廣滝
Shota Hirotaki
翔太 廣滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Co Ltd
Original Assignee
Origin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Co Ltd filed Critical Origin Co Ltd
Priority to JP2019138884A priority Critical patent/JP6612482B1/en
Application granted granted Critical
Publication of JP6612482B1 publication Critical patent/JP6612482B1/en
Priority to CN202010441490.4A priority patent/CN111509993B/en
Publication of JP2021023054A publication Critical patent/JP2021023054A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling

Abstract

To provide an AC output power source capable of reducing the number of circuit stages.SOLUTION: The AC output power source includes: a rectifier 11 for rectifying an input alternating current 10 into a direct current; an inverter 12 for inverting a direct current from the rectifier 11 into an alternating current with higher frequency than the input alternating current 10; and a transformer 13 whose primary side and secondary side are isolated from each other and which outputs the alternating current inverted by the inverter 12 input into the primary side to a load 22 connected directly to the secondary side.SELECTED DRAWING: Figure 2

Description

本開示は、負荷に交流電力を供給する交流出力電源に関する。 The present disclosure relates to an AC output power source that supplies AC power to a load.

UVランプのような負荷に交流電力を供給する交流出力電源が知られている(例えば、特許文献1を参照。)。図1は特許文献1に記載される交流出力電源を説明する図である。 An AC output power source that supplies AC power to a load such as a UV lamp is known (see, for example, Patent Document 1). FIG. 1 is a diagram illustrating an AC output power supply described in Patent Document 1.

特開平07−106087号公報Japanese Unexamined Patent Publication No. 07-106087

特許文献1のような交流出力電源は、商用交流を直流に変換する整流器11、その直流を高周波の交流に変換するインバータ12、その交流を昇圧するための絶縁トランス13、その出力を再度直流に変換する整流器14、及びその直流を所望周波数の矩形波の交流に変換するインバータ15を備えている。このように、従来の交流出力電源は、多くの回路を多段に接続する構成のため、コスト、サイズ、重量、価格、及び制御の面で課題があった。 The AC output power supply as in Patent Document 1 includes a rectifier 11 that converts commercial AC to DC, an inverter 12 that converts the DC to high-frequency AC, an insulating transformer 13 for boosting the AC, and the output to DC again. It includes a rectifier 14 for conversion and an inverter 15 for converting the direct current into an alternating current of a rectangular wave having a desired frequency. As described above, the conventional AC output power supply has problems in terms of cost, size, weight, price, and control because it is configured to connect many circuits in multiple stages.

そこで、本発明は、前記課題を解決するために、回路段数を低減できる交流出力電源を提供することを目的とする。 Therefore, an object of the present invention is to provide an AC output power supply capable of reducing the number of circuit stages in order to solve the above problems.

上記目的を達成するために、本発明に係る交流出力電源は、整流器及びインバータをトランスの商用電源側のみに配置することとした。 In order to achieve the above object, in the AC output power supply according to the present invention, the rectifier and the inverter are arranged only on the commercial power supply side of the transformer.

具体的には、本発明に係る交流出力電源は、
入力される交流を直流に整流する整流器と、
前記整流器からの直流を前記入力される交流より周波数が高い交流に変換するインバータと、
一次側と二次側とが絶縁しており、前記一次側に入力された交流を前記二次側に直接接続される負荷に出力するトランスと、
前記インバータが変換した交流を前記トランスの前記一次側に入力するインダクタンス手段を有する回路と、
を備える。
Specifically, the AC output power supply according to the present invention is
A rectifier that rectifies the input alternating current to direct current,
An inverter that converts direct current from the rectifier into alternating current with a higher frequency than the input alternating current,
A transformer in which the primary side and the secondary side are insulated and the alternating current input to the primary side is output to a load directly connected to the secondary side.
A circuit having an inductance means that inputs the alternating current converted by the inverter to the primary side of the transformer, and
To be equipped.

また、本発明に係る他の交流出力電源は、
入力される交流を直流に整流する整流器と、
前記整流器からの直流を前記入力される交流より周波数が高い交流に変換するインバータと、
一次側に入力された交流を二次側に直接接続される非接地の負荷に出力する単巻巻線型のトランスと、
前記インバータが変換した交流を前記トランスの前記一次側に入力するインダクタンス手段を有する回路と、
を備える。
Further, the other AC output power supply according to the present invention is
A rectifier that rectifies the input alternating current to direct current,
An inverter that converts direct current from the rectifier into alternating current with a higher frequency than the input alternating current,
A single-winding type transformer that outputs the AC input to the primary side to an ungrounded load directly connected to the secondary side,
A circuit having an inductance means that inputs the alternating current converted by the inverter to the primary side of the transformer, and
To be equipped.

本交流出力電源は、負荷側の整流器及びインバータを廃止したため、コスト、サイズ、重量、価格、及び制御の面を改善することができる。従って、本発明は、回路段数を低減できる交流出力電源を提供することができる。 Since this AC output power supply eliminates the rectifier and inverter on the load side, it is possible to improve the cost, size, weight, price, and control aspects. Therefore, the present invention can provide an AC output power supply capable of reducing the number of circuit stages.

本発明は、接続する回路段数を低減できる交流出力電源を提供することができる。 The present invention can provide an AC output power supply that can reduce the number of circuit stages to be connected.

本発明に関連する交流出力電源を説明する図である。It is a figure explaining the AC output power source which concerns on this invention. 本発明に係る交流出力電源を説明する図である。It is a figure explaining the AC output power source which concerns on this invention. 本発明に係る交流出力電源が備えるインバータの回路を説明する図である。It is a figure explaining the circuit of the inverter included in the AC output power source which concerns on this invention. 本発明に係る交流出力電源が備えるインバータが出力するトランス電流の波形を説明する図である。It is a figure explaining the waveform of the transformer current output by the inverter provided in the AC output power source which concerns on this invention. 本発明に係る交流出力電源が備えるインバータが出力するトランス電流の波形を説明する図である。It is a figure explaining the waveform of the transformer current output by the inverter provided in the AC output power source which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In this specification and drawings, the components having the same reference numerals shall indicate the same components.

図2は、本実施形態の交流出力電源を説明する図である。本交流出力電源は、
入力される交流10を直流に整流する整流器11と、
整流器11からの直流を入力される交流10より周波数が高い交流に変換するインバータ12と、
一次側と二次側とが絶縁しており、インダクタンス手段L1を有する回路21を介して前記一次側に入力されたインバータ12が変換した交流を、前記二次側に直接接続される負荷22に出力するトランス13と、
を備える。
FIG. 2 is a diagram illustrating an AC output power supply of the present embodiment. This AC output power supply is
A rectifier 11 that rectifies the input alternating current 10 to direct current,
An inverter 12 that converts direct current from the rectifier 11 into alternating current with a higher frequency than the input alternating current 10.
The primary side and the secondary side are insulated, and the alternating current converted by the inverter 12 input to the primary side via the circuit 21 having the inductance means L1 is transferred to the load 22 directly connected to the secondary side. The output transformer 13 and
To be equipped.

交流10は、例えば50Hz、100Vの商用電源である。整流器11は、交流10を直流に変換してインバータ12へ出力する。インバータ12は、直流を交流に変換して出力する。図3はインバータ12の回路を説明する図である。インバータ12は、4つのスイッチ(SW A〜D)がブリッジ接続され、これらのスイッチを所定のタイミングでオン又はオフすることで直流から交流に変換することができる。 The AC 10 is, for example, a commercial power source of 50 Hz and 100 V. The rectifier 11 converts alternating current 10 into direct current and outputs it to the inverter 12. The inverter 12 converts direct current into alternating current and outputs it. FIG. 3 is a diagram illustrating a circuit of the inverter 12. In the inverter 12, four switches (SW A to D) are bridge-connected, and direct current can be converted to alternating current by turning these switches on or off at predetermined timings.

UVランプ等のランプ負荷は、電極の磨耗を避けるために直流より交流で駆動することが好ましい。そして、交流の波形がゼロボルト(ゼロアンペア)を継続するとランプの立ち消え(消灯)が発生することがあり、これを防止するためにゼロクロスのある交流波形は矩形波、台形波、三角波、又は正弦波が良いとされる。図3のインバータ12は、インダクタンス手段L1を有する回路21に接続されており、4つのスイッチ(SW A〜D)を駆動することで交流を容易に形成できる。 The lamp load such as a UV lamp is preferably driven by alternating current rather than direct current in order to avoid wear of the electrodes. If the AC waveform continues to be zero volt (zero amperes), the lamp may turn off (turn off), and to prevent this, the AC waveform with zero cross is a square wave, trapezoidal wave, triangular wave, or sine wave. Is said to be good. The inverter 12 of FIG. 3 is connected to a circuit 21 having an inductance means L1 and can easily form an alternating current by driving four switches (SW A to D).

また負荷22のUVランプが地絡している場合、もしくは対接地抵抗が低い場合、商用電源10と出力する交流19とを絶縁する必要がある。このため、トランス13は複巻巻線のトランスとする。なお、負荷22のUVランプがアースに対して十分に絶縁されている(非接地の)場合、トランス13は単巻巻線のトランスでもよい。 Further, when the UV lamp of the load 22 has a ground fault or the ground resistance is low, it is necessary to insulate the commercial power supply 10 and the output AC 19. Therefore, the transformer 13 is a double-wound transformer. When the UV lamp of the load 22 is sufficiently insulated from the ground (non-grounded), the transformer 13 may be a transformer with a single winding.

インバータ12の出力は交流であるため、配線23が長くなった場合(例えば、100m)、配線23に存在するインダクタンス(図2にて“L2”で表現)による下式の電圧降下Vが発生する。電圧降下Vが大きいと負荷22に所望の電力(電圧)を供給できなくなる。
(式1)
V=2πfLI
ここで、fは周波数、Lはインダクタンス(L2)、Iは電流である。
Since the output of the inverter 12 is alternating current, when the wiring 23 becomes long (for example, 100 m), the following voltage drop V is generated due to the inductance existing in the wiring 23 (represented by “L2” in FIG. 2). .. If the voltage drop V is large, the desired power (voltage) cannot be supplied to the load 22.
(Equation 1)
V = 2πfLI
Here, f is a frequency, L is an inductance (L2), and I is a current.

式1のように、インバータ12が出力する交流の周波数が低い方が配線23のインダクタンス成分による電圧降下Vを小さくすることができる。例えば、交流19の周波数を50Hz〜500Hz程度とすることが望ましい。一方、トランス13は磁束密度の関係上、周波数が高い方がサイズを小さくできる。これらを考慮すれば、インバータ12が出力する交流の周波数は300Hz〜500Hz程度が望ましい。 As shown in Equation 1, the lower the AC frequency output by the inverter 12, the smaller the voltage drop V due to the inductance component of the wiring 23. For example, it is desirable that the frequency of the alternating current 19 is about 50 Hz to 500 Hz. On the other hand, the size of the transformer 13 can be reduced as the frequency is higher due to the magnetic flux density. Considering these, the AC frequency output by the inverter 12 is preferably about 300 Hz to 500 Hz.

(定常時の動作)
次に、UVランプが点灯し、定常状態になっているときのインバータ12の動作について説明する。インバータ12は、トランス13の前記一次側を流れるトランス電流が交互に順方向と逆方向に流れるようにスイッチングし、且つ前記トランス電流が順方向に流れているとき又は逆方向に流れているときに前記トランス電流の電流値に脈流を与えるようにスイッチングし、一定の電力が前記負荷に供給されるように定電力制御を行うことを特徴とする。
(Operation in steady state)
Next, the operation of the inverter 12 when the UV lamp is lit and is in a steady state will be described. The inverter 12 switches so that the transformer current flowing through the primary side of the transformer 13 alternately flows in the forward direction and the reverse direction, and when the transformer current is flowing in the forward direction or in the reverse direction. It is characterized in that switching is performed so as to give a pulsating flow to the current value of the transformer current, and constant power control is performed so that a constant power is supplied to the load.

図4は、UVランプが定常状態になっているときのトランス電流iLの波形を説明する図である。インバータ12は、UVランプが定常状態になっているとき、トランス電流iLが図4のような波形となるようにスイッチ(SW A〜D)を低周波スイッチング制御(例500Hz)と高周波スイッチング制御(例50kHz)を組み合わせてオンオフ制御する。 FIG. 4 is a diagram illustrating a waveform of a transformer current iL when the UV lamp is in a steady state. In the inverter 12, the switches (SW A to D) are controlled by low frequency switching (eg 500 Hz) and high frequency switching (eg, 500 Hz) so that the transformer current iL has the waveform shown in FIG. 4 when the UV lamp is in the steady state. Example 50kHz) is combined to control on / off.

インバータ12は、高周波スイッチング制御を行うとき、トランス電流を一方向に流しつつ、50kHz程度の脈流が発生するようにスイッチングを行う。例えば、インバータ12は、スイッチSW AとDもしくはBとCがオンの期間(電圧印加期間)を4μ秒、スイッチSW AとCもしくはBとDがオンの期間(還流期間)を16μ秒とする。 When performing high-frequency switching control, the inverter 12 switches so that a pulsating current of about 50 kHz is generated while flowing a transformer current in one direction. For example, in the inverter 12, the period when the switches SW A and D or B and C are on (voltage application period) is 4 μsec, and the period when the switches SW A and C or B and D are on (reflux period) is 16 μsec. ..

インバータ12は、低周波スイッチング制御を行うとき、トランス電流の方向が500Hz程度で逆転するようにスイッチングを行う。例えば、インバータ12は、電圧印加期間を100μ秒とすることでトランス電流の方向を逆転させることができる。なお、インバータ12は、電圧印加期間と次の電圧印加期間との間で上述した高周波スイッチング制御が行う。 When performing low frequency switching control, the inverter 12 switches so that the direction of the transformer current is reversed at about 500 Hz. For example, the inverter 12 can reverse the direction of the transformer current by setting the voltage application period to 100 μsec. The inverter 12 performs the high-frequency switching control described above between the voltage application period and the next voltage application period.

本実施形態の交流出力電源は、高周波スイッチング制御が入っているため、従来のサイリスタによる低周波(50〜60Hz程度)のみの交流出力電源に比べ、入力や負荷変動に対する応答、あるいは出力指令に対して高速に応答することができる。また、本実施形態の交流出力電源は、異常時の過電力、過電圧、ないし過電流が発生したときも高速に停止させたり、保護することができる。 Since the AC output power supply of the present embodiment includes high-frequency switching control, it responds to input and load fluctuations or outputs commands as compared with the conventional AC output power supply having only a low frequency (about 50 to 60 Hz) by a thyristor. Can respond at high speed. Further, the AC output power supply of the present embodiment can be stopped or protected at high speed even when an overpower, an overvoltage, or an overcurrent occurs at an abnormal time.

(起動時の動作1)
続いて、UVランプを点灯するときのインバータ12の動作について説明する。インバータ12は、負荷22に定常時より高い電圧を印加するとき(起動時)、変換した交流の周波数を前記定常時の周波数から、前記インバータと前記トランスとの間を接続するインダクタンス手段L1を有する回路21に含まれるインダクタンス成分と容量Cとの共振周波数へ近づけ、所望の電圧がトランス13の二次側から出力されるようにスイッチングする定電圧制御を行う。容量Cは、コンデンサ等の部品や他の部品に内蔵される容量成分、又はその組み合わせであってもよい。
(Operation at startup 1)
Subsequently, the operation of the inverter 12 when the UV lamp is turned on will be described. The inverter 12 has an inductance means L1 that connects the converted AC frequency from the steady-state frequency to between the inverter and the transformer when a voltage higher than the steady state is applied to the load 22 (at startup). Constant voltage control is performed to bring the inductance component included in the circuit 21 closer to the resonance frequency of the capacitance C and switch so that a desired voltage is output from the secondary side of the transformer 13. The capacitance C may be a component such as a capacitor, a capacitance component built in another component, or a combination thereof.

UVランプが冷えている場合、UVランプを点灯(着火=イグニッション)させるために定常時より高電圧が必要となる。例えば、定常時トランス13の二次側で800Vの出力電圧が必要である場合、点灯時には1500Vが必要となる。本実施形態の交流出力電源は、トランス電流の周波数を、インダクタンス手段L1を有する回路21内のインダクタンスLと容量Cとによって求められる共振周波数(f=1/(2π√(LC))に近づけるようにインバータ12のスイッチングを制御する。トランス電流の周波数を共振周波数を近づける(例20kHz)ことで、トランス13の巻数比を上げることなく共振効果により所望の高電圧を発生させることができる。本実施形態の交流出力電源は、UVランプが着火するまで一定の高電圧を印加することができる(定電圧制御)。 When the UV lamp is cold, a higher voltage than the steady state is required to turn on the UV lamp (ignition = ignition). For example, when an output voltage of 800 V is required on the secondary side of the steady-state transformer 13, 1500 V is required at the time of lighting. The AC output power supply of the present embodiment brings the frequency of the transformer current close to the resonance frequency (f = 1 / (2π√ (LC)) obtained by the inductance L and the capacitance C in the circuit 21 having the inductance means L1. By controlling the switching of the inverter 12 to bring the frequency of the transformer current closer to the resonance frequency (eg 20 kHz), a desired high voltage can be generated by the resonance effect without increasing the turns ratio of the transformer 13. The AC output power supply of the form can apply a constant high voltage until the UV lamp ignites (constant voltage control).

(起動時の動作2)
続いて、UVランプを着火直後のインバータ12の動作について説明する。インバータ12は、負荷22のインピーダンスが定常時より低下したとき(着火直後)に、インダクタンス手段を有する回路21に存在するインダクタンス手段L1に対して電圧が順方向に印加される時間と逆方向に印加される時間を調整し、所望の電流がトランス13の二次側から出力されるようにスイッチングする定電流制御を行うことを特徴とする。
(Operation at startup 2)
Subsequently, the operation of the inverter 12 immediately after the UV lamp is ignited will be described. When the impedance of the load 22 is lower than the steady state (immediately after ignition), the inverter 12 applies the voltage to the inductance means L1 existing in the circuit 21 having the inductance means in the direction opposite to the time when the voltage is applied in the forward direction. It is characterized in that constant current control is performed by adjusting the time to be performed and switching so that a desired current is output from the secondary side of the transformer 13.

UVランプは着火直後にインピーダンスが極めて小さくなる特性を有する。インバータ12が負荷のインピーダンスが極めて小さい期間に前述の定常時の制御(図4)を行うと大電流が流れる恐れがある。このような場合、インバータ12は、高周波スイッチング制御時に位相シフト制御を行い、定電流制御を行う。図5(A)は、インバータ12が行う定電流制御時のトランス電流iLの波形を説明する図である。図5(B)は、区間35のトランス電流iLの波形を拡大した図である。 The UV lamp has a characteristic that the impedance becomes extremely small immediately after ignition. If the inverter 12 performs the above-mentioned steady-state control (FIG. 4) while the load impedance is extremely small, a large current may flow. In such a case, the inverter 12 performs phase shift control and constant current control during high frequency switching control. FIG. 5A is a diagram illustrating a waveform of a transformer current iL during constant current control performed by the inverter 12. FIG. 5B is an enlarged view of the waveform of the transformer current iL in the section 35.

位相シフト制御では、インダクタLに正電圧がかかる正電圧期間T1と負電圧がかかる負電圧期間T2を制御することができる。例えば、スイッチSW AとDが同時にオンの期間を正電圧期間T1、スイッチSW BとCが同時にオンの期間を負電圧期間T2とすれば、正電圧期間T1を拡張することでトランス電流を増加、負電圧期間T2を拡張することでトランス電流を減少させることができる(図5(B)参照。)。このように、インバータ12が正電圧期間T1と負電圧期間T2を調整することで負荷22のインピーダンスが極めて小さい期間においても定電流制御を行うことができる。 In the phase shift control, it is possible to control a positive voltage period T1 in which a positive voltage is applied to the inductor L and a negative voltage period T2 in which a negative voltage is applied. For example, if the period in which the switches SW A and D are on at the same time is the positive voltage period T1 and the period in which the switches SW B and C are on at the same time is the negative voltage period T2, the transformer current is increased by extending the positive voltage period T1. , The transformer current can be reduced by extending the negative voltage period T2 (see FIG. 5 (B)). In this way, by adjusting the positive voltage period T1 and the negative voltage period T2 by the inverter 12, constant current control can be performed even during a period in which the impedance of the load 22 is extremely small.

(UVランプの点灯動作)
負荷22がUVランプであるときのインバータ12は次のように動作する。インバータ12は、UVランプの着火前は前記定電圧制御を行い、UVランプの着火直後は前記定電流制御を行い、UVランプの着火し、一定時間が経過した後は前記定電力制御を行う。
(UV lamp lighting operation)
When the load 22 is a UV lamp, the inverter 12 operates as follows. The inverter 12 performs the constant voltage control before the ignition of the UV lamp, the constant current control immediately after the ignition of the UV lamp, the ignition of the UV lamp, and the constant power control after a certain period of time elapses.

インバータ12は、定電圧制御から定電流制御へ、定電流制御から定電力制御へは、予め決められた時間で移行してもよい。例えば、インバータ12は、800Vでの定電圧制御を10m秒継続した後、50Aでの定電流制御へ移行し、50Aの定電流制御を10m秒継続した後、10kWでの定電流制御へ移行する。 The inverter 12 may shift from constant voltage control to constant current control and from constant current control to constant power control at a predetermined time. For example, the inverter 12 continues constant voltage control at 800 V for 10 msec and then shifts to constant current control at 50 A, and after continuing constant current control at 50 A for 10 msec, shifts to constant current control at 10 kW. ..

また、負荷22への電流や電圧、あるいはトランス電流やトランス13の一次側の電圧を計測器(不図示)でモニタし、インバータ12は、モニタされた値によって定電圧制御から定電流制御へ、定電流制御から定電力制御へ移行してもよい。 Further, the current and voltage to the load 22 or the transformer current and the voltage on the primary side of the transformer 13 are monitored by a measuring instrument (not shown), and the inverter 12 changes from constant voltage control to constant current control according to the monitored value. The constant current control may be shifted to the constant power control.

10:入力される交流
11:整流器
12:インバータ
13:トランス
14:整流器
15:インバータ
19:出力される交流
21:インダクタンス手段を有する回路
22:負荷
23:電源出力端と負荷までの配線
24:電源出力端
10: Input AC 11: Rectifier 12: Inverter 13: Transformer 14: Rectifier 15: Inverter 19: Output AC 21: Circuit with inductance means 22: Load 23: Power supply output end and wiring to load 24: Power supply Output end

Claims (7)

入力される交流を直流に整流する整流器と、
前記整流器からの直流を前記入力される交流より周波数が高い交流に変換するインバータと、
一次側と二次側とが絶縁しており、前記一次側に入力された交流を前記二次側に直接接続される負荷に出力するトランスと、
前記インバータが変換した交流を前記トランスの前記一次側に入力するインダクタンス手段を有する回路と、
を備える交流出力電源。
A rectifier that rectifies the input alternating current to direct current,
An inverter that converts direct current from the rectifier into alternating current with a higher frequency than the input alternating current,
A transformer in which the primary side and the secondary side are insulated and the alternating current input to the primary side is output to a load directly connected to the secondary side.
A circuit having an inductance means that inputs the alternating current converted by the inverter to the primary side of the transformer, and
AC output power supply with.
入力される交流を直流に整流する整流器と、
前記整流器からの直流を前記入力される交流より周波数が高い交流に変換するインバータと、
一次側に入力された交流を二次側に直接接続される非接地の負荷に出力する単巻巻線型のトランスと、
前記インバータが変換した交流を前記トランスの前記一次側に入力するインダクタンス手段を有する回路と、
を備える交流出力電源。
A rectifier that rectifies the input alternating current to direct current,
An inverter that converts direct current from the rectifier into alternating current with a higher frequency than the input alternating current,
A single-winding type transformer that outputs the AC input to the primary side to an ungrounded load directly connected to the secondary side,
A circuit having an inductance means that inputs the alternating current converted by the inverter to the primary side of the transformer, and
AC output power supply with.
前記インバータは、前記変換した交流の周波数が300Hz以上500Hz以下となるようにスイッチングすることを特徴とする請求項1又は2に記載の交流出力電源。 The AC output power supply according to claim 1 or 2, wherein the inverter switches so that the frequency of the converted AC is 300 Hz or more and 500 Hz or less. 前記インバータは、前記トランスの前記一次側を流れるトランス電流が交互に順方向と逆方向に流れるようにスイッチングし、且つ前記トランス電流が順方向に流れているとき又は逆方向に流れているときに前記トランス電流の電流値に脈流を与えるようにスイッチングし、一定の電力が前記負荷に供給されるように定電力制御を行うことを特徴とする請求項1から3のいずれかに記載の交流出力電源。 The inverter switches so that the transformer current flowing through the primary side of the transformer alternately flows in the forward direction and the reverse direction, and when the transformer current flows in the forward direction or in the reverse direction. The alternating current according to any one of claims 1 to 3, wherein the current value of the transformer current is switched so as to give a pulsating current, and constant power control is performed so that a constant power is supplied to the load. Output power supply. 前記インバータは、前記負荷に定常時より高い電圧を印加するとき、前記変換した交流の周波数を前記定常時の周波数から前記インダクタンス手段を有する回路の共振周波数へ近づけ、所望の電圧が前記トランスの前記二次側から出力されるようにスイッチングする定電圧制御を行うことを特徴とする請求項1から4のいずれかに記載の交流出力電源。 When a voltage higher than the steady state is applied to the load, the inverter brings the converted AC frequency closer to the resonance frequency of the circuit having the inductance means from the steady state frequency, and the desired voltage is the said of the transformer. The AC output power supply according to any one of claims 1 to 4, wherein constant voltage control for switching so as to be output from the secondary side is performed. 前記インバータは、前記負荷のインピーダンスが定常時より低下したときに、前記インバータと前記トランスとの間に接続される前記インダクタンス手段を有する回路に存在する前記インダクタンス手段に対して電圧が順方向に印加される時間と逆方向に印加される時間を調整し、所望の電流が前記トランスの前記二次側から出力されるようにスイッチングする定電流制御を行うことを特徴とする請求項1から5のいずれかに記載の交流出力電源。 In the inverter, when the impedance of the load is lower than the steady state, a voltage is applied in the forward direction to the inductance means existing in the circuit having the inductance means connected between the inverter and the transformer. Claims 1 to 5, wherein the constant current control is performed by adjusting the time applied in the direction opposite to the time to be applied and switching so that a desired current is output from the secondary side of the transformer. The AC output power supply described in either. 前記負荷がUVランプであるとき、
前記インバータは、前記UVランプの着火前は前記定電圧制御を行い、前記UVランプの着火直後は前記定電流制御を行い、前記UVランプの着火し、一定時間が経過した後は前記定電力制御を行うことを特徴とする請求項6に記載の交流出力電源。
When the load is a UV lamp
The inverter performs the constant voltage control before the ignition of the UV lamp, the constant current control immediately after the ignition of the UV lamp, the ignition of the UV lamp, and the constant power control after a certain period of time elapses. The AC output power source according to claim 6, further comprising the above.
JP2019138884A 2019-07-29 2019-07-29 AC output power supply Active JP6612482B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019138884A JP6612482B1 (en) 2019-07-29 2019-07-29 AC output power supply
CN202010441490.4A CN111509993B (en) 2019-07-29 2020-05-22 AC output power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138884A JP6612482B1 (en) 2019-07-29 2019-07-29 AC output power supply

Publications (2)

Publication Number Publication Date
JP6612482B1 JP6612482B1 (en) 2019-11-27
JP2021023054A true JP2021023054A (en) 2021-02-18

Family

ID=68692086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138884A Active JP6612482B1 (en) 2019-07-29 2019-07-29 AC output power supply

Country Status (2)

Country Link
JP (1) JP6612482B1 (en)
CN (1) CN111509993B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736997B2 (en) * 1999-08-25 2006-01-18 高周波熱錬株式会社 Pulse width modulation controlled converter
JP3635538B2 (en) * 2002-07-05 2005-04-06 株式会社京三製作所 DC power supply for plasma generation
JP4434204B2 (en) * 2004-04-21 2010-03-17 三菱電機株式会社 Power supply
WO2008047430A1 (en) * 2006-10-19 2008-04-24 Mitsubishi Electric Corporation Power converter
US9266441B2 (en) * 2011-01-19 2016-02-23 Technova Inc. Contactless power transfer system
CN206038836U (en) * 2016-08-31 2017-03-22 中国石油化工股份有限公司 Series resonance high -voltage insulation test device
CN208424229U (en) * 2018-05-22 2019-01-22 东南大学 A kind of constant-current type static dust-removing power circuit

Also Published As

Publication number Publication date
CN111509993B (en) 2022-04-19
CN111509993A (en) 2020-08-07
JP6612482B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP5762617B2 (en) DC / DC converter
JP4253341B2 (en) Discharge lamp lighting control device
WO2014054787A1 (en) Converter and bi-directional converter
JP4030550B2 (en) Power supply
JP6482009B2 (en) Multi-input converter and bidirectional converter
JP4434204B2 (en) Power supply
JP6612482B1 (en) AC output power supply
JP2001211658A (en) Halogen power converter having complementary switch
JP5069573B2 (en) High pressure discharge lamp lighting device, lighting fixture
JP2008048484A (en) Driving method of dc/ac converter
JP2014075944A (en) Bidirectional converter
JP4148073B2 (en) Induction heating device
KR101559986B1 (en) Lamp driving device
JPH06124790A (en) High pressure electric discharge lamp lighting device and electric discharge lamp lighting device
JP6736205B1 (en) AC output power supply
TWI509958B (en) Dynamic frequency adjustment power control device
JP4371314B2 (en) Electronic ballast for discharge lamp
TWI410165B (en) Light-emitting diode backlight module power supply circuit
JP3111505B2 (en) Discharge lamp lighting device
JP6484654B2 (en) Converter and converter control method
JPH11146645A (en) Power supply equipment
JPH05501477A (en) Circuit that heats and starts fluorescent tubes
JP2005327607A (en) Phase control type light modulation system
JP3480328B2 (en) Power supply
JP2003230280A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190806

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191030

R150 Certificate of patent or registration of utility model

Ref document number: 6612482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250