JP2021021864A - Lens barrel with built-in annular light source - Google Patents

Lens barrel with built-in annular light source Download PDF

Info

Publication number
JP2021021864A
JP2021021864A JP2019139212A JP2019139212A JP2021021864A JP 2021021864 A JP2021021864 A JP 2021021864A JP 2019139212 A JP2019139212 A JP 2019139212A JP 2019139212 A JP2019139212 A JP 2019139212A JP 2021021864 A JP2021021864 A JP 2021021864A
Authority
JP
Japan
Prior art keywords
light source
annular
lens group
led
emitting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019139212A
Other languages
Japanese (ja)
Other versions
JP7248244B2 (en
Inventor
宗柏 李
Tsungpo Lee
宗柏 李
和光 竹澤
Kazumitsu Takezawa
和光 竹澤
宗一郎 内川
Soichiro Uchikawa
宗一郎 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VS TECHNOLOGY CO Ltd
Original Assignee
VS TECHNOLOGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VS TECHNOLOGY CO Ltd filed Critical VS TECHNOLOGY CO Ltd
Priority to JP2019139212A priority Critical patent/JP7248244B2/en
Publication of JP2021021864A publication Critical patent/JP2021021864A/en
Application granted granted Critical
Publication of JP7248244B2 publication Critical patent/JP7248244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a lightweight and compact lens barrel with a built-in annular light source, and to make a bright field/dark field freely changeable with one lens barrel.SOLUTION: A lens barrel with a built-in annular light source is provided in which a first lens group 3, an annular light source 2, a second lens group 4, and a beam splitter 5 are arranged from an objective side in this order, a coaxial light source insertion port 6 is provided in a lateral face of the beam splitter 5, the annular light source 2 is composed of: an annular LED module 13 in which a plurality of LED modules are arranged in a line state on a concentric circle on a substrate 18; reflection walls 14 and 15 made of white resin and partitioning an outer periphery and inner periphery of the annular LED module; and a transparent wall 16 made of transparent resin and partitioning an RGB light emitting unit 11 and a W light emitting unit 12, wherein the RGB light emitting unit 11 is composed of a red LED, green LED and blue LED covered by a transparent resin layer, and the W light emitting unit 12 is adjacent to the RGB light emitting unit and is composed of a white LED covered by a resin layer including a phosphor.SELECTED DRAWING: Figure 1

Description

本願発明は、環状光源を内蔵したレンズ鏡筒、特に、複数のLED素子を高密度に配列した環状光源を内装した光学検査用レンズ鏡筒に関する。 The present invention relates to a lens barrel having a built-in annular light source, particularly a lens barrel for optical inspection having an annular light source in which a plurality of LED elements are arranged at high density.

半導体素子、精密微小部品の検査では、検査サンプルから反射される光を撮像素子で検出することにより検査サンプルの構成部品の配置、欠陥の有無等の検査情報を取得している。検査サンプルから反射される光は、検査装置の光学系、具体的には光源の種類、配置、レンズ群の構成、配置により異なる。このため、取得する検査情報に最適な光学系が求められている。 In the inspection of semiconductor elements and precision minute parts, inspection information such as the arrangement of component parts of the inspection sample and the presence or absence of defects is acquired by detecting the light reflected from the inspection sample with the image sensor. The light reflected from the inspection sample differs depending on the optical system of the inspection device, specifically, the type and arrangement of the light source, the configuration and arrangement of the lens group. Therefore, there is a demand for an optimum optical system for the inspection information to be acquired.

特許文献1には、ビームスプリッターを配置して、光源から伝搬する光路を撮像素子が受光する同軸落射照明について開示されている。しかしながら、ハーフミラーをリボルバー切り替えることにより装置が大型化するという課題がある。
特許文献2には、環状照明を外付けした光学装置について開示されている。しかしながら、環状照明を外付けすると装置が大型化するという課題がある。
特許文献3には、環状照明を内在した光学装置について開示されて、光軸上に直接的に配置された光源から生じるゴーストスポットが解消できる点について開示されている。しかしながら、装置の小型軽量化のための環状照明の高密度化については開示されていない。
Patent Document 1 discloses coaxial epi-illumination in which a beam splitter is arranged and an image sensor receives an optical path propagating from a light source. However, there is a problem that the device becomes large by switching the revolver of the half mirror.
Patent Document 2 discloses an optical device to which an annular illumination is externally attached. However, there is a problem that the device becomes large when the annular lighting is externally attached.
Patent Document 3 discloses an optical device having an annular illumination, and discloses that a ghost spot generated from a light source directly arranged on the optical axis can be eliminated. However, there is no disclosure about increasing the density of annular lighting for reducing the size and weight of the device.

特開2016−085480号公報Japanese Unexamined Patent Publication No. 2016-085480 特開2010−257585号公報JP-A-2010-257585 特開2017−125831号公報Japanese Unexamined Patent Publication No. 2017-125831

本願発明は、環状光源を内蔵した軽量でコンパクトな光学検査用レンズ鏡筒が提供する。また、明暗視野の変更を自在にする光学検査用レンズ鏡筒が提供する。 The present invention provides a lightweight and compact lens barrel for optical inspection with a built-in annular light source. In addition, a lens barrel for optical inspection that allows the light / dark field of view to be freely changed is provided.

本願発明の課題は、以下の態様(1)乃至(4)により解決できる。具体的には、 The problem of the present invention can be solved by the following aspects (1) to (4). In particular,

(態様1) 対物側から、第1レンズ群、環状光源、第2レンズ群、ビームスプリッターを、この順に配置した環状光源を内在したレンズ鏡筒であって、前記第1レンズ群、前記第2レンズ群、前記ビームスプリッターは、共通の光軸を有し、前記ズームスプリッター側面に同軸光源挿入口が設けられ、前記環状光源は、基板上に、透明樹脂層で被覆した赤色LED、緑色LED及び青色LEDからなるRGB発光ユニットと、前記RGB発光ユニットに隣接して、蛍光体を含む樹脂層で被覆した白色LEDからなるW発光ユニットを配置したLEDモジュールを、同心円上に列状に複数配列した環状LEDモジュールと、前記環状LEDモジュールの外周及び内周を仕切る白色樹脂からなる反射壁と、前記RGB発光ユニットと前記W発光ユニットを仕切る透明樹脂からなる透明壁と、で構成されることを特徴とする環状光源を内在したレンズ鏡筒である。
ビームスプリッターと該ズームスプリッター側面に備わる同軸光源挿入口に光源を設置することで、同軸落射照明による明視野光学系検査と環状光源による暗視野光学系検査を適宜切り替えて行うことができる。
また、COB(Chip on Board)で高密度で配列されたLED素子による環状光源を内在することで、十分な光量を確保でき、光源から生じるゴーストスポットがないため、反射率の低い被検査対象物についても細部が明確に確認できからである。
(Aspect 1) A lens barrel containing an annular light source in which a first lens group, an annular light source, a second lens group, and a beam splitter are arranged in this order from the objective side, the first lens group, the second lens group, and the second. The lens group and the beam splitter have a common optical axis, a coaxial light source insertion port is provided on the side surface of the zoom splitter, and the annular light source is a red LED, a green LED and a green LED coated with a transparent resin layer on a substrate. A plurality of LED modules in which an RGB light source unit made of a blue LED and a W light source unit made of a white LED coated with a resin layer containing a phosphor are arranged adjacent to the RGB light source unit are arranged concentrically in a row. It is characterized by being composed of an annular LED module, a reflective wall made of white resin that partitions the outer circumference and the inner circumference of the annular LED module, and a transparent wall made of a transparent resin that partitions the RGB light source unit and the W light source unit. It is a lens barrel containing an annular light source.
By installing a light source in the beam splitter and the coaxial light source insertion port provided on the side surface of the zoom splitter, it is possible to appropriately switch between the bright-field optical system inspection by coaxial epi-illumination and the dark-field optical system inspection by the annular light source.
In addition, a sufficient amount of light can be secured by incorporating an annular light source with LED elements arranged at high density in COB (Chip on Board), and since there is no ghost spot generated from the light source, the object to be inspected having low reflectance. This is because the details can be clearly confirmed.

(態様2) ビームスプリッターの受光素子側に、共通の光軸を有する第3レンズ群を配置した(態様1)に記載した環状光源を内在したレンズ鏡筒である。
第3レンズ群を配置することで、撮像素子から得られる画像のサイズ等を適切に選択できるからである。
(Aspect 2) A lens barrel containing an annular light source according to (Aspect 1) in which a third lens group having a common optical axis is arranged on the light receiving element side of a beam splitter.
This is because the size of the image obtained from the image sensor can be appropriately selected by arranging the third lens group.

(態様3) 対物側から、第1レンズ群、環状光源、第2レンズ群を、この順に配置した環状光源を内在したレンズ鏡筒であって、前記第1レンズ群、前記第2レンズ群は、共通の光軸を有し、前記環状光源は、基板上に、透明樹脂層で被覆した赤色LED、緑色LED及び青色LEDからなるRGB発光ユニットと、前記RGB発光ユニットに隣接して、蛍光体を含む樹脂層で被覆した白色LEDからなるW発光ユニットを配置したLEDモジュールを、同心円上に列状に複数配列した環状LEDモジュールと、前記環状LEDモジュールの外周及び内周を仕切る白色樹脂からなる反射壁と、前記RGB発光ユニットと前記W発光ユニットを仕切る透明樹脂からなる透明壁と、で構成される、ことを特徴とする環状光源を内在したレンズ鏡筒である。
ビームスプリッターを省くことで、小型軽量化が図れるからである。
さらに、
(Aspect 3) A lens barrel containing an annular light source in which a first lens group, an annular light source, and a second lens group are arranged in this order from the objective side, and the first lens group and the second lens group are The annular light source has a common optical axis, and is an RGB light emitting unit composed of a red LED, a green LED, and a blue LED coated with a transparent resin layer on a substrate, and a phosphor adjacent to the RGB light emitting unit. An annular LED module in which a plurality of LED modules in which a W light source unit composed of a white LED coated with a resin layer containing the above is arranged in a row on a concentric circle, and a white resin that partitions the outer circumference and the inner circumference of the annular LED module are formed. It is a lens barrel containing an annular light source, which is composed of a reflection wall and a transparent wall made of a transparent resin that separates the RGB light emitting unit and the W light emitting unit.
This is because the size and weight can be reduced by omitting the beam splitter.
further,

(態様4) 第2レンズ群の受光素子側に、共通の光軸を有する第3レンズ群を配置した(態様3)に記載した環状光源を内在したレンズ鏡筒である。
第3レンズ群を配置することで、撮像素子から得られる画像のサイズ等を適切に選択できるからである。
(Aspect 4) A lens barrel containing an annular light source according to (Aspect 3), in which a third lens group having a common optical axis is arranged on the light receiving element side of the second lens group.
This is because the size of the image obtained from the image sensor can be appropriately selected by arranging the third lens group.

本願発明によれば、実装密度の高いLED素子で構成される環状光源を内蔵した軽量でコンパクトなレンズ鏡筒が提供できる。被検査対象物のエッジを際立たせた暗視野照明画像が得られる。ビームスプリッターを内蔵することで、同軸落射照明画像も得ることができる。このため、1つのレンズ鏡筒で光源を切り替えることで、明暗視野の変更が自在になる。 According to the present invention, it is possible to provide a lightweight and compact lens barrel having a built-in annular light source composed of LED elements having a high mounting density. A dark-field illumination image with the edges of the object to be inspected highlighted can be obtained. By incorporating a beam splitter, a coaxial epi-illumination image can also be obtained. Therefore, the light and dark fields of view can be freely changed by switching the light source with one lens barrel.

本願発明の環状光源を内在したレンズ鏡筒の第1の実施態様を示すA−A´端面図である。It is an end view which shows the 1st Embodiment of the lens barrel containing the annular light source of the present invention. 本願発明の環状光源を内在したレンズ鏡筒の第2の実施態様を示す分解斜視図である。It is an exploded perspective view which shows the 2nd Embodiment of the lens barrel containing the annular light source of this invention. 本願発明の環状光源を内在したレンズ鏡筒の第2の実施態様を示すA−A´分解端面図である。It is an AA'disassembled end view which shows the 2nd Embodiment of the lens barrel containing the annular light source of this invention. 本願発明の環状光源を内在したレンズ鏡筒の第2の実施態様を示すA−A´端面図である。It is an AA'end view which shows the 2nd Embodiment of the lens barrel containing the annular light source of this invention. 本願発明の環状光源を内在したレンズ鏡筒の第4の実施態様を示すA−A´端面図である。It is an AA'end view which shows the 4th Embodiment of the lens barrel containing the annular light source of this invention. 本願発明の環状光源を内在したレンズ鏡筒に備わる環状光源の実施態様を示す平面図及びその部分拡大図である。It is a top view which shows the embodiment of the annular light source provided in the lens barrel containing the annular light source of the present invention, and is a partially enlarged view thereof. 本願発明の環状光源を内在したレンズ鏡筒による環状光源を用いた被写体画像と同軸光源を用いた被写体画像の比較である。It is a comparison of the subject image using the annular light source by the lens barrel containing the annular light source of the present invention and the subject image using the coaxial light source. 本願発明の環状光源を内在したレンズ鏡筒による環状光源を用いた被写体画像と同軸光源を用いた被写体画像の比較である。It is a comparison of the subject image using the annular light source by the lens barrel containing the annular light source of the present invention and the subject image using the coaxial light source.

本願発明を実施するための形態を図1〜図6に基づいて説明する。ただし、図1〜図6は実施形態の一例であり、これに限定されるものではない。 A mode for carrying out the present invention will be described with reference to FIGS. 1 to 6. However, FIGS. 1 to 6 are examples of the embodiment, and the present invention is not limited thereto.

1.レンズ鏡筒
本願発明のレンズ鏡筒1は、開口部17を有する環状光源2を第1レンズ群3と第2レンズ群4との間に備えるレンズ鏡筒である。レンズ鏡筒基端側に設けられた雄ネジ部10を介して撮像素子9に脱着可能となるように構成されている。環状光源2は配線取入れ口8から配線により外部電源を得る。
レンズ鏡筒1は、必要に応じて、第3レンズ群7、ビームスプリッター5、同軸落射照明用光源挿入口6を設けることができる。また、第1レンズ群3、第2レンズ群4、第3レンズ群7は、共通の光軸Oxを有し、いずれも単独レンズまたは複数のレンズの組み合わせで構成されている。
1. 1. Lens barrel The lens barrel 1 of the present invention is a lens barrel in which an annular light source 2 having an opening 17 is provided between the first lens group 3 and the second lens group 4. It is configured so that it can be attached to and detached from the image sensor 9 via a male screw portion 10 provided on the base end side of the lens barrel. The annular light source 2 obtains an external power source by wiring from the wiring intake port 8.
The lens barrel 1 may be provided with a third lens group 7, a beam splitter 5, and a light source insertion port 6 for coaxial epi-illumination, if necessary. Further, the first lens group 3, the second lens group 4, and the third lens group 7 have a common optical axis Ox, and all of them are composed of a single lens or a combination of a plurality of lenses.

図1は、本願発明の環状光源2を内在したレンズ鏡筒1の第1の実施態様を示す端面図である。対物側から第1レンズ群3、環状光源2、第2レンズ群4、ビームスプリッター5、をこの順に配置している。ここで、ビームスプリッター5は、直角プリズムを2つ貼り合わせ、接合面には誘電体多層膜や金属薄膜のコーティングを施したプリズム型のものを好適に用いることができる。ただし、平板型のビームスプリッターも用いることができる。
ビームスプリッター5の役割は、ズームスプリッター側面に設けられた同軸光源挿入口6に光源を接続することにより、同軸落射光源を被検査対象物(図示せず)に照射することである。すなわち、光源から出射された光束は、ビームスプリッター5により透過光と反射光に分割され、反射光は第2レンズ群4、第1レンズ群3を介して被検査対象物に照射される。被検査対象物からの反射光は、第1レンズ群3、第2レンズ群4、ビームスプリッター5を介して撮像素子9に至り、被検査対象物の画像を得る。得られる画像は明視野照明画像となる。
一方、環状光源2から出射された環状の光束は、第1レンズ群を介して被検査対象物に照射される。被検査対象物からの反射光は、第1レンズ群3、第2レンズ群4、ビームスプリッター5を介して撮像素子9に至り、被検査対象物の画像を得る。環状光源2から出射された光束は、被検査対象物に斜めに照射されるため、得られる画像は暗視野照明画像となる。
FIG. 1 is an end view showing a first embodiment of a lens barrel 1 containing an annular light source 2 of the present invention. The first lens group 3, the annular light source 2, the second lens group 4, and the beam splitter 5 are arranged in this order from the objective side. Here, as the beam splitter 5, a prism-type beam splitter 5 can be preferably used in which two right-angled prisms are bonded together and the bonding surface is coated with a dielectric multilayer film or a metal thin film. However, a flat beam splitter can also be used.
The role of the beam splitter 5 is to irradiate an object to be inspected (not shown) with a coaxial epi-illumination light source by connecting a light source to a coaxial light source insertion port 6 provided on the side surface of the zoom splitter. That is, the luminous flux emitted from the light source is split into transmitted light and reflected light by the beam splitter 5, and the reflected light is applied to the object to be inspected via the second lens group 4 and the first lens group 3. The reflected light from the object to be inspected reaches the image sensor 9 via the first lens group 3, the second lens group 4, and the beam splitter 5, and obtains an image of the object to be inspected. The obtained image is a bright field illumination image.
On the other hand, the annular light beam emitted from the annular light source 2 irradiates the object to be inspected via the first lens group. The reflected light from the object to be inspected reaches the image sensor 9 via the first lens group 3, the second lens group 4, and the beam splitter 5, and obtains an image of the object to be inspected. Since the luminous flux emitted from the annular light source 2 obliquely irradiates the object to be inspected, the obtained image becomes a dark field illumination image.

図2から図4は、本願発明の環状光源2を内在したレンズ鏡筒1の第2の実施態様を示す。図2は、分解斜視図であり、図3は、A−A´分解端面図であり、A−A´端面図である。る。
対物側から第1レンズ群3、環状光源2、第2レンズ群4、ビームスプリッター5、第3レンズ群をこの順に配置している。第1レンズ群3、環状光源2、第2レンズ群4、プリズム型ビームスプリッター5の役割は、第1の実施態様と同じである。第3レンズ群は、撮像素子に結像させる被検査対象物の大きさ、鮮明さを調整するために設けたものである。
2 to 4 show a second embodiment of the lens barrel 1 containing the annular light source 2 of the present invention. FIG. 2 is an exploded perspective view, and FIG. 3 is an AA'disassembled end view and an AA'end view. To.
From the objective side, the first lens group 3, the annular light source 2, the second lens group 4, the beam splitter 5, and the third lens group are arranged in this order. The roles of the first lens group 3, the annular light source 2, the second lens group 4, and the prism-type beam splitter 5 are the same as those in the first embodiment. The third lens group is provided to adjust the size and sharpness of the object to be inspected to be imaged on the image sensor.

図5は、本願発明の環状光源2を内在したレンズ鏡筒1の第4の実施態様を示す端面図である。対物側から第1レンズ群3、環状光源2、第2レンズ群4、第3レンズ群7をこの順に配置している。光源を環状光源2のみにしたことにより、軽量化を図ったものである。なお、第4の実施態様から第3レンズ群を除いた第3の実施態様(図示せず)もある。 FIG. 5 is an end view showing a fourth embodiment of the lens barrel 1 containing the annular light source 2 of the present invention. The first lens group 3, the annular light source 2, the second lens group 4, and the third lens group 7 are arranged in this order from the objective side. By using only the annular light source 2 as the light source, the weight is reduced. There is also a third embodiment (not shown) in which the third lens group is excluded from the fourth embodiment.

2.環状光源
図6は、本願発明の環状光源を内在したレンズ鏡筒に備わる環状光源の実施態様を示す平面図及びその部分拡大図である。
レンズ鏡筒1に内在させる環状光源2は、軽量コンパクト化と同時に被検査対象物へ照射するための十分な光量と指向性を有する光源が求められる。このため、本願発明では、実装密度の高いLED光源を採用している。
具体的は、本願発明の環状光源2は、開口部17を有するドーナツ状の基板18上に、透明樹脂層で被覆した赤色LED、緑色LED及び青色LEDからなるRGB発光ユニット11と、RGB発光ユニット11に隣接して、蛍光体を含む樹脂層で被覆した白色LEDからなるW発光ユニット12を配置したLEDモジュールを、同心円上に列状に複数配列した環状LEDモジュール13と、環状LEDモジュール13の外周及び内周を仕切る白色樹脂からなる反射壁14,15と、RGB発光ユニット11とW発光ユニット12を仕切る透明樹脂からなる透明壁16で構成されている。また、
2. 2. Circular light source FIG. 6 is a plan view and a partially enlarged view showing an embodiment of an annular light source provided in a lens barrel containing the annular light source of the present invention.
The annular light source 2 built in the lens barrel 1 is required to be lightweight and compact, and at the same time to have a sufficient amount of light and directivity for irradiating the object to be inspected. Therefore, in the present invention, an LED light source having a high mounting density is adopted.
Specifically, the annular light source 2 of the present invention includes an RGB light emitting unit 11 composed of a red LED, a green LED, and a blue LED coated with a transparent resin layer on a donut-shaped substrate 18 having an opening 17, and an RGB light emitting unit. An annular LED module 13 in which a plurality of LED modules in which a W light emitting unit 12 made of a white LED coated with a resin layer containing a phosphor is arranged adjacent to 11 in a row on a concentric circle and an annular LED module 13 It is composed of reflective walls 14 and 15 made of white resin that partition the outer and inner circumferences, and a transparent wall 16 made of transparent resin that separates the RGB light emitting unit 11 and the W light emitting unit 12. Also,

(2−1)LED素子の実装
本願発明の環境光源2を構成するLED素子(R,G,B,W)は、直接的にアルミ等の金属基板18上に接合剤を介して同心円状に実装される。いわゆるCOB(Chip on Board)である。接合剤を硬化後、LED素子(R,G,B,W)を基板18上の電極とボンディングワイヤーで接合する。
(2-1) Mounting of LED Elements The LED elements (R, G, B, W) constituting the environmental light source 2 of the present invention are concentrically formed on a metal substrate 18 such as aluminum directly via a bonding agent. Will be implemented. It is a so-called COB (Chip on Board). After the bonding agent is cured, the LED elements (R, G, B, W) are bonded to the electrodes on the substrate 18 with bonding wires.

(2−2)発光ユニットの形成
LED素子(R,G,B,W)を実装した基板18上に封止樹脂層を形成するため、外周及び内周に白色樹脂からなる反射壁(内周)14、反射壁(外周)15を形成する。反射壁は、LED素子の光を有効に利用するため反射率の高い白色顔料を含む白色樹脂が好適に用いられる。具体的には、透光性に優れたエポキシ樹脂、アクリル樹脂に反射性のフィラーとして酸化チタン、二酸化ケイ素、二酸化ジルコニウム、アルミナ、窒化ホウ素などの粒子を混合した白色樹脂である。
(2-2) Formation of light emitting unit In order to form a sealing resin layer on a substrate 18 on which LED elements (R, G, B, W) are mounted, a reflective wall made of white resin (inner circumference) is formed on the outer and inner circumferences. ) 14, the reflective wall (outer circumference) 15 is formed. For the reflective wall, a white resin containing a white pigment having high reflectance is preferably used in order to effectively utilize the light of the LED element. Specifically, it is a white resin obtained by mixing particles such as titanium oxide, silicon dioxide, zirconium dioxide, alumina, and boron nitride as a reflective filler with an epoxy resin or acrylic resin having excellent translucency.

反射壁14,15を形成後、LED素子(W)の両端に透明樹脂からなる透明壁16を形成して、LED素子(W)を蛍光樹脂で埋包して、W発光ユニット12を形成する。一方、LED素子(R,G,B)を透明樹脂で埋包して、RGB発光ユニット11を形成する。蛍光樹脂は、透光性樹脂であるエポキシ樹脂に、青色光を受け黄色光を励起光として出射するYAG系蛍光体を含有させたものが好適に用いられる。 After forming the reflective walls 14 and 15, transparent walls 16 made of transparent resin are formed at both ends of the LED element (W), and the LED element (W) is embedded with fluorescent resin to form a W light emitting unit 12. .. On the other hand, the LED elements (R, G, B) are embedded with a transparent resin to form the RGB light emitting unit 11. As the fluorescent resin, an epoxy resin which is a translucent resin containing a YAG-based phosphor that receives blue light and emits yellow light as excitation light is preferably used.

本願発明では、COB(Chip on Board)でLED素子(R,G,B,W)を配置し、かつ、LED素子(R,G,B)に個別の仕切り壁を設けることなく、RGB発光ユニット11とすることで、実装密度の高いLED光源を実現できる。 In the present invention, the RGB light emitting unit is a COB (Chip on Board) in which LED elements (R, G, B, W) are arranged and the LED elements (R, G, B) are not provided with individual partition walls. By setting the value to 11, an LED light source having a high mounting density can be realized.

3.実施例
本願発明のレンズ鏡筒を用いた観察結果を図7及び図8に示す。なお、aは、環状光源照射画像、bは、同軸落射光源照射画像である。
3. 3. Examples The observation results using the lens barrel of the present invention are shown in FIGS. 7 and 8. In addition, a is an annular light source irradiation image, and b is a coaxial epi-illumination light source irradiation image.

(3−1)実施例1
図7上段は、解像チャートの環状光源照射画像(a)と同軸落射光源照射画像(b)である。環状光源照射画像(a)は、同軸落射光源照射画像(b)と異なり、被検査対象物の表面のキズが確認できる暗視野照明画像である。
(3-1) Example 1
The upper part of FIG. 7 is an annular light source irradiation image (a) and a coaxial epi-illumination light source irradiation image (b) of the resolution chart. The annular light source irradiation image (a) is a dark field illumination image in which scratches on the surface of the object to be inspected can be confirmed, unlike the coaxial epi-illumination light source irradiation image (b).

(3−2)実施例2
図7下段は、ICチップの環状光源照射画像(a)と同軸落射光源照射画像(b)である。環状光源照射画像(a)では、光源から生じるゴーストスポットがなく、反射率の低い被検査対象物も細部が明確に確認できる。
(3-2) Example 2
The lower part of FIG. 7 is an annular light source irradiation image (a) and a coaxial epi-illumination light source irradiation image (b) of the IC chip. In the annular light source irradiation image (a), there are no ghost spots generated from the light source, and the details of the object to be inspected having low reflectance can be clearly confirmed.

(3−3)実施例3
図8上段は、ネジの環状光源照射画像(a)と同軸落射光源照射画像(b)である。環状光源照射画像(a)では、被検査対象物のエッジを際立たせた画像が得られ、ネジの細部まで明確に確認できる。
(3-3) Example 3
The upper part of FIG. 8 is an annular light source irradiation image (a) and a coaxial epi-illumination light source irradiation image (b) of the screw. In the annular light source irradiation image (a), an image in which the edge of the object to be inspected is highlighted can be obtained, and the details of the screw can be clearly confirmed.

(3−4)実施例4
図8下段は、コインの環状光源照射画像(a)と同軸落射光源照射画像(b)である。環状光源照射画像(a)では、被検査対象物のエッジを際立たせた画像が得られる。
(3-4) Example 4
The lower part of FIG. 8 is an annular light source irradiation image (a) of a coin and a coaxial epi-illumination light source irradiation image (b). In the annular light source irradiation image (a), an image in which the edge of the object to be inspected is highlighted can be obtained.

本願発明により、環状光源と一体化した軽量コンパクトなレンズ鏡筒を提供できる。 According to the present invention, it is possible to provide a lightweight and compact lens barrel integrated with an annular light source.

1 レンズ鏡筒
2 環状光源部
3 第1レンズ群
4 第2レンズ群
5 ビームスプリッター
6 同軸光源挿入口
7 第3レンズ群
8 環状光源用配線挿入口
9 撮像素子
10 雄ネジ部(レンズ鏡筒基端側)
11 RGB発光ユニット
12 W発光ユニット
13 環状LEDモジュール
14 反射壁(内周)
15 反射壁(外周)
16 透明壁
17 開口部
18 基板
W 白色LED
R 赤色LED
G 緑色LED
B 青色LED
Ox 光軸
1 Lens lens barrel 2 Circular light source 3 1st lens group 4 2nd lens group 5 Beam splitter 6 Coaxial light source insertion port 7 3rd lens group 8 Circular light source wiring insertion port 9 Imaging element 10 Male screw part (lens lens barrel base) End side)
11 RGB light emitting unit 12 W light emitting unit 13 Ring LED module 14 Reflective wall (inner circumference)
15 Reflective wall (outer circumference)
16 Transparent wall 17 Opening 18 Board W White LED
R red LED
G green LED
B blue LED
Ox optical axis

Claims (4)

対物側から、第1レンズ群、環状光源、第2レンズ群、ビームスプリッターを、この順に配置した環状光源を内在したレンズ鏡筒であって、
前記第1レンズ群、前記第2レンズ群、前記ビームスプリッターは、共通の光軸を有し、
前記ズームスプリッター側面に同軸光源挿入口が設けられ、
前記環状光源は、基板上に、透明樹脂層で被覆した赤色LED、緑色LED及び青色LEDからなるRGB発光ユニットと、前記RGB発光ユニットに隣接して、蛍光体を含む樹脂層で被覆した白色LEDからなるW発光ユニットを配置したLEDモジュールを、同心円上に列状に複数配列した環状LEDモジュールと、
前記環状LEDモジュールの外周及び内周を仕切る白色樹脂からなる反射壁と、
前記RGB発光ユニットと前記W発光ユニットを仕切る透明樹脂からなる透明壁と、で構成される、
ことを特徴とする環状光源を内在したレンズ鏡筒。
A lens barrel containing an annular light source in which a first lens group, an annular light source, a second lens group, and a beam splitter are arranged in this order from the objective side.
The first lens group, the second lens group, and the beam splitter have a common optical axis.
A coaxial light source insertion port is provided on the side surface of the zoom splitter.
The annular light source is an RGB light emitting unit composed of a red LED, a green LED and a blue LED coated with a transparent resin layer on a substrate, and a white LED coated with a resin layer containing a phosphor adjacent to the RGB light emitting unit. An annular LED module in which a plurality of LED modules in which a W light source unit composed of the above is arranged in a row on a concentric circle and
A reflective wall made of white resin that partitions the outer and inner circumferences of the annular LED module,
It is composed of a transparent wall made of a transparent resin that separates the RGB light emitting unit and the W light emitting unit.
A lens barrel containing an annular light source.
ビームスプリッターの受光素子側に、共通の光軸を有する第3レンズ群を配置した請求項1に記載した環状光源を内在したレンズ鏡筒。 The lens barrel containing an annular light source according to claim 1, wherein a third lens group having a common optical axis is arranged on the light receiving element side of the beam splitter. 対物側から、第1レンズ群、環状光源、第2レンズ群を、この順に配置した環状光源を内在したレンズ鏡筒であって、
前記第1レンズ群、前記第2レンズ群は、共通の光軸を有し、
前記環状光源は、基板上に、透明樹脂層で被覆した赤色LED、緑色LED及び青色LEDからなるRGB発光ユニットと、前記RGB発光ユニットに隣接して、蛍光体を含む樹脂層で被覆した白色LEDからなるW発光ユニットを配置したLEDモジュールを、同心円上に列状に複数配列した環状LEDモジュールと、
前記環状LEDモジュールの外周及び内周を仕切る白色樹脂からなる反射壁と、
前記RGB発光ユニットと前記W発光ユニットを仕切る透明樹脂からなる透明壁と、で構成される、
ことを特徴とする環状光源を内在したレンズ鏡筒。
A lens barrel containing an annular light source in which the first lens group, the annular light source, and the second lens group are arranged in this order from the objective side.
The first lens group and the second lens group have a common optical axis and have a common optical axis.
The annular light source is an RGB light emitting unit composed of a red LED, a green LED and a blue LED coated with a transparent resin layer on a substrate, and a white LED coated with a resin layer containing a phosphor adjacent to the RGB light emitting unit. An annular LED module in which a plurality of LED modules in which a W light source unit composed of the above is arranged in a row on a concentric circle and
A reflective wall made of white resin that partitions the outer and inner circumferences of the annular LED module,
It is composed of a transparent wall made of a transparent resin that separates the RGB light emitting unit and the W light emitting unit.
A lens barrel containing an annular light source.
第2レンズ群の受光素子側に、共通の光軸を有する第3レンズ群を配置した請求項3に記載した環状光源を内在したレンズ鏡筒。 The lens barrel containing an annular light source according to claim 3, wherein a third lens group having a common optical axis is arranged on the light receiving element side of the second lens group.
JP2019139212A 2019-07-29 2019-07-29 Lens barrel with built-in annular light source Active JP7248244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019139212A JP7248244B2 (en) 2019-07-29 2019-07-29 Lens barrel with built-in annular light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019139212A JP7248244B2 (en) 2019-07-29 2019-07-29 Lens barrel with built-in annular light source

Publications (2)

Publication Number Publication Date
JP2021021864A true JP2021021864A (en) 2021-02-18
JP7248244B2 JP7248244B2 (en) 2023-03-29

Family

ID=74574981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019139212A Active JP7248244B2 (en) 2019-07-29 2019-07-29 Lens barrel with built-in annular light source

Country Status (1)

Country Link
JP (1) JP7248244B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101406A (en) * 2002-09-11 2004-04-02 Tokyo Seimitsu Co Ltd Visual inspection device
JP2007318161A (en) * 2003-02-18 2007-12-06 Sharp Corp Semiconductor light emitting device and portable telephone with camera
JP2009063856A (en) * 2007-09-07 2009-03-26 Shibuya Optical Co Ltd Dark field objective lens device
JP2011013325A (en) * 2009-06-30 2011-01-20 Nikon Corp Microscope
JP2013072971A (en) * 2011-09-27 2013-04-22 Olympus Corp Microscope system and illumination intensity adjustment method
JP2017103416A (en) * 2015-12-04 2017-06-08 シチズン電子株式会社 Led light-emitting module
WO2017210180A1 (en) * 2016-05-31 2017-12-07 Molecular Devices, Llc Imaging system with oblique illumination
JP2018041843A (en) * 2016-09-07 2018-03-15 パナソニックIpマネジメント株式会社 Light-emitting device and illuminating device
US20190058003A1 (en) * 2017-08-18 2019-02-21 Cree, Inc. Light emitting diodes, components and related methods
JP2019068388A (en) * 2017-10-05 2019-04-25 株式会社ヴィーネックス Line light source and light line sensor unit including the same
CN109870790A (en) * 2019-04-17 2019-06-11 东莞市神州视觉科技有限公司 A kind of telecentric lens

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101406A (en) * 2002-09-11 2004-04-02 Tokyo Seimitsu Co Ltd Visual inspection device
JP2007318161A (en) * 2003-02-18 2007-12-06 Sharp Corp Semiconductor light emitting device and portable telephone with camera
JP2009063856A (en) * 2007-09-07 2009-03-26 Shibuya Optical Co Ltd Dark field objective lens device
JP2011013325A (en) * 2009-06-30 2011-01-20 Nikon Corp Microscope
JP2013072971A (en) * 2011-09-27 2013-04-22 Olympus Corp Microscope system and illumination intensity adjustment method
JP2017103416A (en) * 2015-12-04 2017-06-08 シチズン電子株式会社 Led light-emitting module
WO2017210180A1 (en) * 2016-05-31 2017-12-07 Molecular Devices, Llc Imaging system with oblique illumination
JP2018041843A (en) * 2016-09-07 2018-03-15 パナソニックIpマネジメント株式会社 Light-emitting device and illuminating device
US20190058003A1 (en) * 2017-08-18 2019-02-21 Cree, Inc. Light emitting diodes, components and related methods
JP2019068388A (en) * 2017-10-05 2019-04-25 株式会社ヴィーネックス Line light source and light line sensor unit including the same
CN109870790A (en) * 2019-04-17 2019-06-11 东莞市神州视觉科技有限公司 A kind of telecentric lens

Also Published As

Publication number Publication date
JP7248244B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
US7182481B2 (en) Lighting apparatus
US7577353B2 (en) Device and method for optically inspecting a surface
US8115384B2 (en) LED source with hollow collection lens
JP5380052B2 (en) LED lighting device
US20070041199A1 (en) Illuminator, led illuminator, and imaging device with illuminator
JP5097912B2 (en) Light irradiation device
US10984516B2 (en) Image inspection device and illumination device
JP6481471B2 (en) Optical member, light emitting device, and illumination device
TW201430333A (en) Fluorescence imaging module
JP2018146239A (en) Defect inspection apparatus, and manufacturing method of defect inspection apparatus
KR101895593B1 (en) Optical inspection system and optical imaging system
JP2004014367A (en) Light source device and projection display device
US10788657B2 (en) Microscope illumination device and microscope
CN1310523C (en) Light source lamp and projector
KR20160011102A (en) Method of manufacturing the light emitting device package
JP6861364B2 (en) Optical equipment
JP7248244B2 (en) Lens barrel with built-in annular light source
US10831091B2 (en) Projection device and illumination system
SG173070A1 (en) A light detection arrangement and a method for detecting light in a light detection arrangement
JP2009238990A (en) Light source device
JP2005221706A (en) Light source device, projector provided therewith, illuminating device, and liquid crystal display device
US10852522B2 (en) Microscope illumination device and microscope
JP5556733B2 (en) Light irradiation device
JP2016534337A (en) Method for manufacturing a light emitter
TWI730681B (en) Apparatus for determining an orientation of a die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7248244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150