JP2021021629A - Battery internal resistance measurement device and measurement method - Google Patents

Battery internal resistance measurement device and measurement method Download PDF

Info

Publication number
JP2021021629A
JP2021021629A JP2019138182A JP2019138182A JP2021021629A JP 2021021629 A JP2021021629 A JP 2021021629A JP 2019138182 A JP2019138182 A JP 2019138182A JP 2019138182 A JP2019138182 A JP 2019138182A JP 2021021629 A JP2021021629 A JP 2021021629A
Authority
JP
Japan
Prior art keywords
battery group
battery
voltage
discharge current
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019138182A
Other languages
Japanese (ja)
Inventor
羽田 正二
Shoji Haneda
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019138182A priority Critical patent/JP2021021629A/en
Publication of JP2021021629A publication Critical patent/JP2021021629A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Secondary Cells (AREA)

Abstract

To measure internal resistance between both ends of one or more secondary batteries among batteries consisting of n pieces of serially-connected secondary batteries.SOLUTION: A battery internal resistance measurement device comprises: a ripple voltage generation unit for grouping n pieces of secondary batteries into a first battery group on a low potential side and a second battery group on a high potential side to control the first battery group and the second battery group to alternately perform discharge and discharge stop; one or two resistance elements having a predetermined resistance value, which is/are connected such that discharge current of the first battery group or discharge current of the second battery group flows therethrough; a first voltage measurement unit for performing measurement for deriving voltage between both ends of the first battery group; a second voltage measurement unit for performing measurement for deriving voltage between both ends of the second battery group; and a ripple voltage measurement unit for measuring ripple voltage between both ends of one or more secondary batteries in the first battery group or the second battery group.SELECTED DRAWING: Figure 1

Description

本発明は、複数の二次電池を直列接続して構成されたバッテリの内部抵抗の計測装置および計測方法に関する。 The present invention relates to a battery internal resistance measuring device and a measuring method configured by connecting a plurality of secondary batteries in series.

直列接続された複数の二次電池からなるバッテリの良否を判定するために、個々の二次電池の内部抵抗を計測する手法が知られている。特許文献1に記載の二次電池良否判別装置は、直列接続された複数の二次電池からなるバッテリの両端間に充電器および負荷を接続したときに流れる電流Iを計測する一方、個々の二次電池に一定の交流電流を流してその両端間のリップル電圧vrを計測し、vr/Iの除算を行うことで各二次電池の内部抵抗を取得している。 A method of measuring the internal resistance of each secondary battery is known in order to determine the quality of a battery composed of a plurality of secondary batteries connected in series. The secondary battery quality determination device described in Patent Document 1 measures the current I flowing when a charger and a load are connected between both ends of a battery composed of a plurality of secondary batteries connected in series, while individual two. The internal resistance of each secondary battery is obtained by passing a constant AC current through the secondary battery, measuring the ripple voltage vr between both ends, and dividing vr / I.

特開2003−121516号公報Japanese Unexamined Patent Publication No. 2003-121516

しかしながら、バッテリの両端間に流れる電流Iを計測するために、通常、ホール素子やシャント抵抗が用いられている。ホール素子は高価である。また、シャント抵抗は感度が悪く、精確な計測ができない。また、広範囲の電流計測に対応することが困難である。 However, a Hall element or a shunt resistor is usually used to measure the current I flowing between both ends of the battery. Hall elements are expensive. In addition, the shunt resistance has poor sensitivity, and accurate measurement cannot be performed. Moreover, it is difficult to support a wide range of current measurement.

本発明の目的は、直列接続された複数の二次電池からなるバッテリに含まれる個々の二次電池の内部抵抗を、精度よく、簡易かつ低コストに計測するための装置および方法を提供することである。 An object of the present invention is to provide an apparatus and a method for measuring the internal resistance of each secondary battery contained in a battery composed of a plurality of secondary batteries connected in series with high accuracy, easily and at low cost. Is.

上記の目的を達成するべく、本発明は、以下の構成を提供する。
・ 本発明の態様は、直列接続されたn(nは2以上の自然数)個の二次電池からなるバッテリ中の1個または複数個の二次電池の両端間の内部抵抗を計測するための装置であって、
n個の二次電池を低電位側の第1の電池群と高電位側の第2の電池群の2つの電池群に分け、前記第1の電池群と前記第2の電池群に対して放電と放電停止を交互に行わせるように制御するリップル電圧生成部と、
前記第1の電池群の放電電流または前記第2の電池群の放電電流が流れるように接続された、所定の抵抗値をもつ1つまたは2つの抵抗素子と、
前記第1の電池群の両端間電圧を導出するための計測を行う第1の電圧計測部と、
前記第2の電池群の両端間電圧を導出するための計測を行う第2の電圧計測部と、
前記リップル電圧生成部の制御によって生じる、前記第1の電池群または前記第2の電池群の中の1個または複数個の二次電池の両端間のリップル電圧を計測するリップル電圧計測部とを有することを特徴とする。
・ 上記態様において、前記第1の電池群または前記第2の電池群の両端間電圧を前記抵抗素子の抵抗値で除算することにより前記放電電流の値が算出され、計測された前記リップル電圧を前記放電電流の値で除算することにより、前記1個または複数個の二次電池の内部抵抗が算出されることが、好適である。
・ 上記態様において、2つの前記抵抗素子を有し、一方の抵抗素子に前記第1の電池群の放電電流が流れ、他方の抵抗素子に前記第2の電池群の放電電流が流れることが、好適である。
・ 上記態様において、1つの前記抵抗素子を有し、該抵抗素子に前記第1の電池群の放電電流と、前記第2の電池群の放電電流が交互に流れることが、好適である。
・ 上記態様において、前記第1の電圧計測部が、前記第1の電池群の両端間電圧の分圧を計測し、計測された分圧に基づいて前記第1の電池群の両端間電圧が導出されることが、好適である。
・ 上記態様において、前記第2の電圧計測部が、前記バッテリの両端間電圧の分圧を計測し、計測された分圧に基づいて前記バッテリの両端間電圧が導出され、導出された前記バッテリの両端間電圧と前記第1の電池群の両端間電圧とに基づいて前記第2の電池群の両端間電圧が導出されることが、好適である。
・ 上記態様において、前記リップル電圧生成部が、前記第1の電池群の放電電流路の導通と遮断を切り替える第1のスイッチ素子と、前記第2の電池群の放電電流路の導通と遮断を切り替える第2のスイッチ素子とを有することが、好適である。
・ 本発明の別の態様は、直列接続されたn(nは2以上の自然数)個の二次電池からなるバッテリ中の1個または複数個の二次電池の両端間の内部抵抗を計測するための方法であって、
n個の二次電池を低電位側の第1の電池群と高電位側の第2の電池群の2つの電池群に分け、前記第1の電池群と前記第2の電池群に対して放電と放電停止を交互に行わせることにより各二次電池にリップル電圧を生じさせ、
前記第1の電池群の放電電流または前記第2の電池群の放電電流を、所定の抵抗値をもつ1つまたは2つの抵抗素子に流し、
前記第1の電池群の両端間電圧を導出するための計測を行い、
前記第2の電池群の両端間電圧を導出するための計測を行い、
前記第1の電池群または前記第2の電池群の中の1個または複数個の二次電池の両端間のリップル電圧を計測することを特徴とする。
In order to achieve the above object, the present invention provides the following configurations.
An aspect of the present invention is for measuring the internal resistance between both ends of one or a plurality of secondary batteries in a battery composed of n (n is a natural number of 2 or more) secondary batteries connected in series. It ’s a device,
The n secondary batteries are divided into two battery groups, a first battery group on the low potential side and a second battery group on the high potential side, with respect to the first battery group and the second battery group. A ripple voltage generator that controls discharge and discharge stop alternately,
One or two resistance elements having a predetermined resistance value connected so that the discharge current of the first battery group or the discharge current of the second battery group flows.
A first voltage measuring unit that performs measurement for deriving the voltage between both ends of the first battery group, and
A second voltage measuring unit that performs measurement for deriving the voltage between both ends of the second battery group, and
A ripple voltage measuring unit that measures the ripple voltage between both ends of the first battery group or one or a plurality of secondary batteries in the first battery group or the second battery group generated by the control of the ripple voltage generating unit. It is characterized by having.
-In the above embodiment, the value of the discharge current is calculated by dividing the voltage between both ends of the first battery group or the second battery group by the resistance value of the resistance element, and the measured ripple voltage is obtained. It is preferable to calculate the internal resistance of the one or more secondary batteries by dividing by the value of the discharge current.
-In the above embodiment, the two resistance elements are provided, the discharge current of the first battery group flows through one of the resistance elements, and the discharge current of the second battery group flows through the other resistance element. It is suitable.
-In the above embodiment, it is preferable to have one resistance element, and the discharge current of the first battery group and the discharge current of the second battery group alternately flow through the resistance element.
In the above embodiment, the first voltage measuring unit measures the voltage division of the voltage between both ends of the first battery group, and the voltage between both ends of the first battery group is calculated based on the measured voltage division. It is preferable to derive it.
-In the above embodiment, the second voltage measuring unit measures the voltage division of the voltage between both ends of the battery, and the voltage between both ends of the battery is derived based on the measured voltage division, and the derived battery is derived. It is preferable that the voltage between both ends of the second battery group is derived based on the voltage between both ends of the first battery group and the voltage between both ends of the first battery group.
-In the above embodiment, the ripple voltage generation unit switches the continuity and interruption of the discharge current path of the first battery group and the conduction and interruption of the first switch element and the discharge current path of the second battery group. It is preferable to have a second switch element for switching.
-Another aspect of the present invention is to measure the internal resistance between both ends of one or more secondary batteries in a battery consisting of n (n is a natural number of 2 or more) secondary batteries connected in series. Is a way to
The n secondary batteries are divided into two battery groups, a first battery group on the low potential side and a second battery group on the high potential side, with respect to the first battery group and the second battery group. A ripple voltage is generated in each secondary battery by alternately discharging and stopping the discharge.
The discharge current of the first battery group or the discharge current of the second battery group is passed through one or two resistance elements having a predetermined resistance value.
Measurements were made to derive the voltage across the first battery group.
The measurement for deriving the voltage between both ends of the second battery group was performed.
It is characterized in that the ripple voltage between both ends of the first battery group or one or a plurality of secondary batteries in the second battery group is measured.

本発明により、直列接続された複数の二次電池に含まれる個々の二次電池の内部抵抗を、精度よく、簡易かつ低コストに計測するための装置および方法が実現される。 INDUSTRIAL APPLICABILITY According to the present invention, a device and a method for measuring the internal resistance of each secondary battery included in a plurality of secondary batteries connected in series with high accuracy, simplicity and low cost are realized.

図1は、本発明によるバッテリの内部抵抗計測装置の第1の実施形態の構成を示す。FIG. 1 shows the configuration of the first embodiment of the battery internal resistance measuring device according to the present invention. 図2は、図1の計測装置の動作を説明する図である。FIG. 2 is a diagram illustrating the operation of the measuring device of FIG. 図3は、図1の計測装置の動作を説明する図である。FIG. 3 is a diagram illustrating the operation of the measuring device of FIG. 図4は、本発明によるバッテリの内部抵抗計測装置の第2の実施形態の構成を示す。FIG. 4 shows the configuration of the second embodiment of the battery internal resistance measuring device according to the present invention. 図5は、図4の計測装置の動作を説明する図である。FIG. 5 is a diagram illustrating the operation of the measuring device of FIG. 図6は、図4の計測装置の動作を説明する図である。FIG. 6 is a diagram illustrating the operation of the measuring device of FIG.

以下、例として示した図面を参照して本発明の実施形態を説明する。
(1)第1の実施形態
(1−1)回路構成
図1は、本発明によるバッテリの内部抵抗計測装置の第1の実施形態の構成を示す。図1は、計測対象であるバッテリBも示している。バッテリBは、直列接続されたn(nは2以上の自然数)個の二次電池b〜bにより構成されている。各二次電池b〜bは、例えば、鉛蓄電池またはリチウムイオンバッテリ等である。なお、各二次電池b〜bは、単セルでもよく、組電池(複数の単セルを1つのパッケージに収容したもの)でもよい。原理的には、単セルと組電池が混在していてもよい。図示の例は、各二次電池b〜bが組電池の場合である。バッテリBを構成する各二次電池b〜bは、劣化と判定されたとき、別の二次電池と交換可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings shown as examples.
(1) Circuit Configuration of First Embodiment (1-1) FIG. 1 shows the configuration of the first embodiment of the internal resistance measuring device for a battery according to the present invention. FIG. 1 also shows the battery B to be measured. The battery B is composed of n (n is a natural number of 2 or more) secondary batteries b 1 to b n connected in series. Each secondary battery b 1 to b n is, for example, a lead storage battery, a lithium ion battery, or the like. Each of the secondary batteries b 1 to b n may be a single cell or an assembled battery (a plurality of single cells are housed in one package). In principle, a single cell and an assembled battery may be mixed. In the illustrated example, each secondary battery b 1 to b n is an assembled battery. Each of the secondary batteries b 1 to b n constituting the battery B can be replaced with another secondary battery when it is determined to be deteriorated.

本発明によるバッテリの内部抵抗計測装置10の計測対象は、典型的にはバッテリBを構成する各二次電池b〜bの内部抵抗である。原理的には、1個の二次電池の内部抵抗を計測できるだけでなく、直列接続された複数個(例えば2個、3個)の二次電池の両端間の内部抵抗(各二次電池の内部抵抗の和)を計測することもできる。 The measurement target of the battery internal resistance measuring device 10 according to the present invention is typically the internal resistance of each of the secondary batteries b 1 to b n constituting the battery B. In principle, not only can the internal resistance of one secondary battery be measured, but also the internal resistance between both ends of a plurality of (for example, two or three) secondary batteries connected in series (of each secondary battery). The sum of internal resistances) can also be measured.

図1では、バッテリBは、充電器(図示せず)により充電中であり、充電電圧+Vin、−Vinを高電位端と低電位端にそれぞれ印加されている。内部抵抗計測装置10は、バッテリBの充電中であっても計測できる。また、内部抵抗計測装置10は、バッテリBが負荷(図示せず)に対して放電中であっても計測できる。 In FIG. 1, the battery B is being charged by a charger (not shown), and charging voltages + Vin and −Vin are applied to the high potential end and the low potential end, respectively. The internal resistance measuring device 10 can measure even while the battery B is being charged. Further, the internal resistance measuring device 10 can measure even when the battery B is discharging with respect to a load (not shown).

内部抵抗計測装置10による計測方法では、バッテリBのn個の二次電池b〜bが、低電位側の第1の電池群B1と、高電位側の第2の電池群B2の2つの電池群に分けられる。第1の電池群B1は二次電池b〜bを含み、第2の電池群B2は二次電池bk+1〜bを含む。ここで、kは1以上かつn−1以下の自然数である。2つの電池群B1、B2に含まれる二次電池の数は同じでなくともよく、原理的には、双方の電池群が少なくとも1つの二次電池を含んでいればよい。 In the measurement method using the internal resistance measuring device 10, the n secondary batteries b 1 to b n of the battery B are 2 of the first battery group B1 on the low potential side and the second battery group B2 on the high potential side. It is divided into two battery groups. The first battery group B1 includes the secondary batteries b 1 to b k , and the second battery group B 2 includes the secondary batteries b k + 1 to b n . Here, k is a natural number of 1 or more and n-1 or less. The number of secondary batteries included in the two battery groups B1 and B2 does not have to be the same, and in principle, both battery groups may include at least one secondary battery.

内部抵抗計測装置10は、計測時に電池群B1の両端および電池群B2の両端に接続される端子1、端子2および端子3を有する。端子1は電池群B1の低電位端に、端子2は電池群B1の高電位端と電池群B2の低電位端に、端子3は電池群B2の高電位端に接続される。ここでは、端子1の電位を基準電位とする。 The internal resistance measuring device 10 has terminals 1, terminals 2 and terminals 3 connected to both ends of the battery group B1 and both ends of the battery group B2 at the time of measurement. The terminal 1 is connected to the low potential end of the battery group B1, the terminal 2 is connected to the high potential end of the battery group B1 and the low potential end of the battery group B2, and the terminal 3 is connected to the high potential end of the battery group B2. Here, the potential of the terminal 1 is used as the reference potential.

端子1と端子2の間には、抵抗素子R1とスイッチ素子Q1が直列接続されている。抵抗素子R1とスイッチ素子Q1は、電池群B1の放電電流路を構成する。抵抗素子R1は、計測レンジに応じて適切に選択された所定の抵抗値を有する。スイッチ素子Q1は、一例としてNチャネルMOSFETであり、ドレインが抵抗素子R1にソースが端子1に接続されている。スイッチ素子Q1の制御端であるゲートに所定の制御信号vaが印加されることにより、ドレインソース間の電流路すなわち電池群B1の放電電流路の導通と遮断が切り替えられる。 A resistance element R1 and a switch element Q1 are connected in series between the terminals 1 and 2. The resistance element R1 and the switch element Q1 form a discharge current path of the battery group B1. The resistance element R1 has a predetermined resistance value appropriately selected according to the measurement range. The switch element Q1 is an N-channel MOSFET as an example, and the drain is connected to the resistance element R1 and the source is connected to the terminal 1. By applying a predetermined control signal va to the gate which is the control end of the switch element Q1, the conduction and interruption of the current path between the drain sources, that is, the discharge current path of the battery group B1 is switched.

端子2と端子3の間には、抵抗素子R2とスイッチ素子Q2が直列接続されている。抵抗素子R2とスイッチ素子Q2は、電池群B2の放電電流路を構成する。抵抗素子R2は、計測レンジに応じて適切に選択された所定の抵抗値を有する。抵抗素子R2の抵抗値は、抵抗素子R1の抵抗値と同じでも異なっていてもよい。スイッチ素子Q2は、一例としてNチャネルMOSFETであり、ドレインが抵抗素子R2にソースが端子2に接続されている。スイッチ素子Q2の制御端であるゲートに所定の制御信号vbが印加されることにより、ドレインソース間の電流路すなわち電池群B2の放電電流路の導通と遮断が切り替えられる。 A resistance element R2 and a switch element Q2 are connected in series between the terminals 2 and 3. The resistance element R2 and the switch element Q2 form a discharge current path of the battery group B2. The resistance element R2 has a predetermined resistance value appropriately selected according to the measurement range. The resistance value of the resistance element R2 may be the same as or different from the resistance value of the resistance element R1. The switch element Q2 is an N-channel MOSFET as an example, and the drain is connected to the resistance element R2 and the source is connected to the terminal 2. By applying a predetermined control signal vb to the gate which is the control end of the switch element Q2, the conduction and interruption of the current path between the drain sources, that is, the discharge current path of the battery group B2 is switched.

スイッチ素子Q1とQ2は、電池群B1とB2に対して放電と放電停止を交互に行わせるように制御することによってバッテリBにリップル電圧を生じさせるリップル電圧生成部に相当する。ここで「交互に」とは、各電池群B1、B2において放電と放電停止が繰り返されること、および、電池群B1が放電のときは電池群B2が放電停止でありまたその逆となること、の両方の意味を含む。その場合、抵抗素子R1には電池群B1の放電電流が流れ、抵抗素子R2には電池群B2の放電電流が流れる。 The switch elements Q1 and Q2 correspond to a ripple voltage generating unit that generates a ripple voltage in the battery B by controlling the battery groups B1 and B2 to alternately discharge and stop discharging. Here, "alternately" means that discharge and discharge stop are repeated in each of the battery groups B1 and B2, and that when the battery group B1 is discharged, the battery group B2 is discharged and vice versa. Includes both meanings of. In that case, the discharge current of the battery group B1 flows through the resistance element R1, and the discharge current of the battery group B2 flows through the resistance element R2.

さらに、端子1と端子2の間には、分圧用抵抗素子r1とr2が直列接続されている。分圧用抵抗素子r1とr2は、電池群B1の両端間電圧の分圧を計測するために設けられ、分圧用抵抗素子r1とr2の接続点から第1の分圧V1が取得される。 Further, the voltage dividing resistor elements r1 and r2 are connected in series between the terminals 1 and 2. The voltage dividing resistor elements r1 and r2 are provided to measure the voltage dividing of the voltage between both ends of the battery group B1, and the first voltage dividing V1 is acquired from the connection point of the voltage dividing resistor elements r1 and r2.

分圧用抵抗素子r1とr2は、電池群B1の両端間電圧を導出するために計測を行う第1の電圧計測部に相当する。 The voltage dividing resistor elements r1 and r2 correspond to the first voltage measuring unit that performs measurement in order to derive the voltage between both ends of the battery group B1.

さらに、端子1と端子3の間には、分圧用抵抗素子r3とr4が直列接続されている。分圧用抵抗素子r3とr4は、バッテリBの両端間電圧の分圧を計測するために設けられ、分圧用抵抗素子r3とr4の接続点から第2の分圧V2が取得される。 Further, a voltage dividing resistor element r3 and r4 are connected in series between the terminal 1 and the terminal 3. The voltage dividing resistor elements r3 and r4 are provided to measure the voltage dividing of the voltage between both ends of the battery B, and the second voltage dividing V2 is acquired from the connection point of the voltage dividing resistor elements r3 and r4.

上述した分圧用抵抗素子r1とr2と、分圧用抵抗素子r3とr4とは、電池群B2の両端間電圧を導出するための計測を行う第2の電圧計測部に相当する。 The voltage dividing resistor elements r1 and r2 and the voltage dividing resistor elements r3 and r4 described above correspond to a second voltage measuring unit that performs measurement for deriving the voltage between both ends of the battery group B2.

内部抵抗計測装置10はさらに、電池群B1の中の各二次電池b〜bの両端間のリップル電圧を計測するための電圧計M〜Mと、電池群B2の中の各二次電池bk+1〜bの両端間のリップル電圧を計測するための電圧計Mk+1〜Mとを有する。ここでのリップル電圧は、電池群B1とB2に対して一定の周波数で放電と放電停止を交互に行わせることによって、バッテリBに生じる交流電圧成分、すなわち各二次電池b〜bに生じる交流電圧成分を意味する。電圧計M〜Mは、リップル電圧計測部に相当する。電圧計M〜Mは、図示のように内部抵抗計測装置10に組み込まれてもよく、外部装置としてもよい。 The internal resistance measuring device 10 further includes voltmeters M 1 to M k for measuring the ripple voltage between both ends of each of the secondary batteries b 1 to b k in the battery group B 1 , and each in the battery group B 2. It has a voltmeter M k + 1 to M n for measuring the ripple voltage between both ends of the secondary battery b k + 1 to b n . The ripple voltage here causes the AC voltage components generated in the battery B, that is, the secondary batteries b 1 to b n , by alternately discharging and stopping the discharge at a constant frequency for the battery groups B1 and B2. It means the generated AC voltage component. Voltmeters M 1 to M n correspond to a ripple voltage measuring unit. The voltmeters M 1 to M n may be incorporated in the internal resistance measuring device 10 as shown in the figure, or may be an external device.

図示の例では、n個の二次電池b〜bの各々に対応してn個の電圧計M〜Mを設けている。しかしながら、電圧計は少なくとも1つあればよく、1つの電圧計を用いて二次電池b〜bの各々の両端間のリップル電圧を順次計測していくこともできる。リップル電圧の計測対象は、必ずしも1個の二次電池でなくともよく、必要に応じて電池群B1または電池群B2の中の複数個の直列接続された二次電池の両端間を計測してもよい。 In the illustrated example, n voltmeters M 1 to M n are provided corresponding to each of the n secondary batteries b 1 to b n . However, only one voltmeter is required, and one voltmeter can be used to sequentially measure the ripple voltage between both ends of the secondary batteries b 1 to b n . The target for measuring the ripple voltage does not necessarily have to be one secondary battery, and if necessary, the distance between both ends of a plurality of series-connected secondary batteries in the battery group B1 or the battery group B2 is measured. May be good.

詳細は後述するが、任意の数の二次電池の両端間のリップル電圧を計測することにより、当該両端間にある1個または複数個の二次電池の内部抵抗を算出することができる。1個の二次電池のリップル電圧を計測した場合、当該二次電池の内部抵抗を算出でき、複数個の二次電池のリップル電圧を計測した場合、それらの二次電池の内部抵抗の和を算出できる。 Although details will be described later, the internal resistance of one or a plurality of secondary batteries between both ends can be calculated by measuring the ripple voltage between both ends of an arbitrary number of secondary batteries. When the ripple voltage of one secondary battery is measured, the internal resistance of the secondary battery can be calculated, and when the ripple voltage of multiple secondary batteries is measured, the sum of the internal resistances of those secondary batteries is calculated. Can be calculated.

図示しないが、内部抵抗計測装置10は、計測値に基づいて所定の演算を行う演算処理部と、制御信号va、vbを生成する信号発生部とを有する。さらに、計測結果を表示する表示部を有することもできる。演算処理部、信号発生部および表示部等は、内部抵抗計測装置10に組み込まれてもよく、外部装置として接続されてもよい。 Although not shown, the internal resistance measuring device 10 has a calculation processing unit that performs a predetermined calculation based on the measured value, and a signal generation unit that generates control signals va and vb. Further, it may have a display unit for displaying the measurement result. The arithmetic processing unit, the signal generation unit, the display unit, and the like may be incorporated in the internal resistance measuring device 10 or may be connected as an external device.

(1−2)回路動作
図2および図3を参照して、図1に示した内部抵抗計測装置10の動作およびバッテリの内部抵抗の導出方法を説明する。図2および図3は、内部抵抗計測装置10を計測のためにバッテリBに接続した状態を示している。
(1-2) Circuit Operation With reference to FIGS. 2 and 3, the operation of the internal resistance measuring device 10 shown in FIG. 1 and the method of deriving the internal resistance of the battery will be described. 2 and 3 show a state in which the internal resistance measuring device 10 is connected to the battery B for measurement.

図1に示したスイッチ素子Q1の制御信号vaと、スイッチ素子Q2の制御信号vbは、例えば、同じ周波数で位相の180°異なるPWM信号である。その場合、デューティ比は50%未満とし、スイッチ素子Q1とQ2が同時に導通しないようにする。このような制御信号va、vbを用いることによって、スイッチ素子Q1とQ2は交互に導通または遮断することになる。 The control signal va of the switch element Q1 and the control signal vb of the switch element Q2 shown in FIG. 1 are, for example, PWM signals having the same frequency but different phases by 180 °. In that case, the duty ratio is set to less than 50% so that the switch elements Q1 and Q2 do not conduct at the same time. By using such control signals va and vb, the switch elements Q1 and Q2 are alternately conducted or cut off.

図2は、スイッチ素子Q1が導通(オン)かつスイッチ素子Q2が遮断(オフ)のときに回路に流れる電流を矢印付きの線で示している。 In FIG. 2, the current flowing through the circuit when the switch element Q1 is conductive (on) and the switch element Q2 is cut off (off) is shown by a line with an arrow.

スイッチ素子Q1が導通すると、電池群B1の両端間電圧V3により抵抗素子R1とスイッチ素子Q1からなる電流路に放電電流i1が流れる。スイッチ素子Q2は遮断されているので電池群B2は放電停止状態であり、抵抗素子R2には電流は流れない。 When the switch element Q1 becomes conductive, the discharge current i1 flows in the current path including the resistance element R1 and the switch element Q1 due to the voltage V3 between both ends of the battery group B1. Since the switch element Q2 is cut off, the battery group B2 is in the discharge stopped state, and no current flows through the resistance element R2.

また、電池群B1の両端間電圧V3により、分圧用抵抗素子r1とr2からなる電流路に計測用電流i2が流れる。抵抗r1とr2の接続点から電圧V3の分圧V1が取得される。また、バッテリBの両端間電圧V4により分圧用抵抗素子r3とr4からなる電流路に計測用電流i3が流れる。抵抗r3とr4の接続点から電圧V4の分圧V2が取得される。 Further, due to the voltage V3 between both ends of the battery group B1, the measurement current i2 flows in the current path including the voltage dividing resistor elements r1 and r2. The voltage divider V1 of the voltage V3 is acquired from the connection point of the resistors r1 and r2. Further, the measurement current i3 flows in the current path including the voltage dividing resistance elements r3 and r4 due to the voltage V4 between both ends of the battery B. The voltage divider V2 of the voltage V4 is acquired from the connection point of the resistors r3 and r4.

計測用電流i2とi3は、スイッチ素子Q1、Q2のオンオフに関係なく常に流れている。計測用電流i2とi3は、内部抵抗の計測精度に影響しないように、放電電流i1に比べて十分に小さくなるように抵抗r1〜r4が選択されている。 The measurement currents i2 and i3 are always flowing regardless of whether the switch elements Q1 and Q2 are on or off. The resistances r1 to r4 are selected so that the measurement currents i2 and i3 are sufficiently smaller than the discharge current i1 so as not to affect the measurement accuracy of the internal resistance.

放電電流i1は、電池群B1の各二次電池b〜bを流れる電流である。以下の式1のように、放電電流i1は、電池群B1の両端間電圧V3を抵抗素子R1の抵抗値で除算することにより算出される。
i1=V3/R1 ・・・式1
Discharge current i1 is a current flowing through each of the secondary batteries b 1 ~b k groups of cells B1. As shown in Equation 1 below, the discharge current i1 is calculated by dividing the voltage V3 between both ends of the battery group B1 by the resistance value of the resistance element R1.
i1 = V3 / R1 ・ ・ ・ Equation 1

電池群B1の両端間電圧V3と、分圧V1は以下の関係がある。
V3=((r1+r2)/r2)*V1 ・・・式2
The voltage V3 between both ends of the battery group B1 and the partial pressure V1 have the following relationship.
V3 = ((r1 + r2) / r2) * V1 ・ ・ ・ Equation 2

式1と式2から放電電流i1は、以下のように表される。
i1=(((r1+r2)/r2)*V1)/R1 ・・・式3
From Equations 1 and 2, the discharge current i1 is expressed as follows.
i1 = (((r1 + r2) / r2) * V1) / R1 ... Equation 3

抵抗素子R1、r1、r2は回路定数であり、分圧V1は計測値である。したがって、式3は、分圧V1を計測すれば放電電流i1の値を算出できることを意味する。 The resistance elements R1, r1 and r2 are circuit constants, and the partial pressure V1 is a measured value. Therefore, Equation 3 means that the value of the discharge current i1 can be calculated by measuring the partial pressure V1.

次に、図3は、スイッチ素子Q1が遮断(オフ)かつスイッチ素子Q2が導通(オン)のときに回路に流れる電流を矢印付きの線で示している。 Next, in FIG. 3, the current flowing through the circuit when the switch element Q1 is cut off (off) and the switch element Q2 is conductive (on) is shown by a line with an arrow.

スイッチ素子Q2が導通すると、電池群B2の両端間電圧により抵抗素子R2とスイッチ素子Q2からなる電流路に放電電流i4が流れる。電池群B2の両端間電圧は、バッテリBの両端間電圧V4から電池群B1の両端間電圧V3を引いた値である。スイッチ素子Q1は遮断されているので電池群B1は放電停止状態であり、抵抗素子R1には電流は流れない。 When the switch element Q2 becomes conductive, the discharge current i4 flows in the current path including the resistance element R2 and the switch element Q2 due to the voltage between both ends of the battery group B2. The voltage between both ends of the battery group B2 is a value obtained by subtracting the voltage V3 between both ends of the battery group B1 from the voltage V4 between both ends of the battery B. Since the switch element Q1 is cut off, the battery group B1 is in the discharge stopped state, and no current flows through the resistance element R1.

また、分圧用抵抗素子r1とr2からなる電流路に計測用電流i2が流れる。抵抗r1とr2の接続点から電圧V3の分圧V1が取得される。また、バッテリBの両端間電圧V4により分圧用抵抗素子r3とr4からなる電流路に計測用電流i3が流れる。抵抗r3とr4の接続点から電圧V4の分圧V2が取得される。 Further, the measurement current i2 flows in the current path including the voltage dividing resistance elements r1 and r2. The voltage divider V1 of the voltage V3 is acquired from the connection point of the resistors r1 and r2. Further, the voltage V4 between both ends of the battery B causes the measurement current i3 to flow in the current path including the voltage dividing resistor elements r3 and r4. The voltage divider V2 of the voltage V4 is acquired from the connection point of the resistors r3 and r4.

放電電流i4は、電池群B2の各二次電池bk+1〜bを流れる電流である。以下の式4に示すように、放電電流i4は、電池群B2の両端間電圧V4−V3を抵抗素子R2の抵抗値で除算することにより算出される。
i4=(V4−V3)/R2 ・・・式4
The discharge current i4 is a current flowing through each of the secondary batteries b k + 1 to b n of the battery group B2. As shown in Equation 4 below, the discharge current i4 is calculated by dividing the voltage V4-V3 between both ends of the battery group B2 by the resistance value of the resistance element R2.
i4 = (V4-V3) / R2 ・ ・ ・ Equation 4

電池群B2の両端間電圧V4−V3と、分圧V1および分圧V2は以下の関係がある。
V4−V3=((r3+r4)/r4)*V2−((r1+r2)/r2)*V1
・・・式5
The voltage V4-V3 between both ends of the battery group B2 and the partial pressure V1 and the partial pressure V2 have the following relationship.
V4-V3 = ((r3 + r4) / r4) * V2-((r1 + r2) / r2) * V1
... Equation 5

式4と式5から放電電流i4は、以下のように表される。
i4=(((r3+r4)/r4)*V2−((r1+r2)/r2)*V1)/R2
・・・式6
From Equations 4 and 5, the discharge current i4 is expressed as follows.
i4 = (((r3 + r4) / r4) * V2-((r1 + r2) / r2) * V1) / R2
... Equation 6

抵抗素子R2、r1、r2、r3、r4は回路定数あり、分圧V1、V2は計測値である。したがって、式6は、分圧V1、V2を計測すれば放電電流i4の値を算出できることを意味する。 The resistance elements R2, r1, r2, r3, and r4 have circuit constants, and the partial pressures V1 and V2 are measured values. Therefore, Equation 6 means that the value of the discharge current i4 can be calculated by measuring the partial pressures V1 and V2.

図2と図3に示した電池群B1とB2の交互の放電と放電停止を繰り返す一方で、電圧計M〜Mにより、二次電池b〜bの各々のリップル電圧vr〜vrを計測する。 While repeating the alternating discharge and discharge stop of the battery groups B1 and B2 shown in FIGS. 2 and 3, the ripple voltages vr 1 to each of the secondary batteries b 1 to b n are measured by the voltmeters M 1 to M n. Measure vr n .

計測されたリップル電圧vr〜vrと、式3の電流i1および式6の電流i4を用いて、二次電池b〜bの各々の内部抵抗ri〜riを、以下のようにそれぞれ算出できる。
ri=vr/i1

ri=vr/i1
rik+1=vrk+1/i4

ri=vr/i4 ・・・式7
すなわち、二次電池の内部抵抗は、当該電池のリップル電圧を、当該電池を流れる電流の値で除算することにより得られる。
A ripple voltage vr 1 to VR n that is measured, using the current i4 of the current i1 and formula 6 of the formula 3, the internal resistance ri 1 to Ri n of each of the secondary battery b 1 ~b n, as follows Can be calculated for each.
ri 1 = vr 1 / i1
:
ri k = vr k / i1
rik + 1 = vr k + 1 / i4
:
ri n = vr n / i4 ··· formula 7
That is, the internal resistance of the secondary battery is obtained by dividing the ripple voltage of the battery by the value of the current flowing through the battery.

上述した式1〜7のような演算は、図示しないが、内部抵抗計測装置10に組み込まれるかまたは外部装置として接続される適宜の演算処理部により行うことができる。そのような演算処理部は、演算機能を担うCPUと適宜の記憶装置とを有する。記憶装置には、回路定数である各抵抗素子の抵抗値が記憶されている。 Although not shown, calculations such as the above-mentioned equations 1 to 7 can be performed by an appropriate calculation processing unit incorporated in the internal resistance measuring device 10 or connected as an external device. Such an arithmetic processing unit has a CPU that has an arithmetic function and an appropriate storage device. The storage device stores the resistance value of each resistance element, which is a circuit constant.

式7のように各二次電池の内部抵抗ri〜riが算出された後、各二次電池の劣化の判定を行うことができる。規定の値を超える内部抵抗を示す二次電池は、劣化していると判定され、交換することができる。 After the internal resistance ri 1 to Ri n of each of the secondary batteries as in Equation 7 is calculated, it is possible to determine deterioration of the secondary battery. A secondary battery that exhibits an internal resistance exceeding the specified value is determined to be deteriorated and can be replaced.

本発明の内部抵抗計測装置10では、バッテリBを流れる電流を直接計測しない。その替わりに、2つの電池群B1とB2のそれぞれの両端間電圧を分圧計測によって導出し、リップル電圧生成部により生じた各二次電池のリップル電圧を計測し、それらの計測値と回路定数である抵抗素子の抵抗値とを用いて各二次電池の内部抵抗を算出することができる。よって、本発明では、電流を計測するためのホール素子やシャント抵抗が不要である。また、バッテリBまたはそれに含まれる二次電池b〜bの安定した電圧計測のみを行えばよいので、非常に高精度な計測が可能となる。 The internal resistance measuring device 10 of the present invention does not directly measure the current flowing through the battery B. Instead, the voltage between both ends of the two battery groups B1 and B2 is derived by voltage division measurement, the ripple voltage of each secondary battery generated by the ripple voltage generator is measured, and their measured values and circuit constants are measured. The internal resistance of each secondary battery can be calculated by using the resistance value of the resistance element. Therefore, in the present invention, a Hall element or a shunt resistor for measuring the current is unnecessary. Further, since it is only necessary to perform stable voltage measurement of the battery B or the secondary batteries b 1 to b n contained therein, extremely high-precision measurement becomes possible.

なお、1つの内部抵抗計測装置10を用いて多様なバッテリを計測する場合、広範囲の放電電流i1、i4の値に対応する必要がある。その場合、抵抗素子R1、R2の抵抗値を変更することにより、広い計測レンジに対応することができる。一例として、異なる抵抗値を有する複数の抵抗素子を機械的スイッチにより切り替え可能とし、それらの中から適切な抵抗値をもつ抵抗素子R1、R2をそれぞれ選択することによって最適な計測を行うことができる。 When measuring various batteries using one internal resistance measuring device 10, it is necessary to correspond to a wide range of discharge currents i1 and i4. In that case, a wide measurement range can be supported by changing the resistance values of the resistance elements R1 and R2. As an example, a plurality of resistance elements having different resistance values can be switched by a mechanical switch, and optimum measurement can be performed by selecting resistance elements R1 and R2 having appropriate resistance values from them. ..

(2)第2の実施形態
(2−1)回路構成
図4は、本発明によるバッテリの内部抵抗計測装置の第2の実施形態の構成を示す。第2の実施形態については、主として第1の実施形態と異なる点について説明し、共通する点については説明を省略する場合がある。図4では、第1の実施形態と同じ構成要素については、同じ符号で示している。
(2) Circuit Configuration of Second Embodiment (2-1) FIG. 4 shows the configuration of a second embodiment of the internal resistance measuring device for a battery according to the present invention. Regarding the second embodiment, the points different from those of the first embodiment will be mainly described, and the common points may be omitted. In FIG. 4, the same components as those in the first embodiment are indicated by the same reference numerals.

第2の実施形態の内部抵抗計測装置20は、第1の実施形態における2つの抵抗素子R1、R2に替えて、所定の抵抗値を有する1つの抵抗素子R3を設けている。 The internal resistance measuring device 20 of the second embodiment is provided with one resistance element R3 having a predetermined resistance value instead of the two resistance elements R1 and R2 of the first embodiment.

端子1と端子2の間には、抵抗素子R3とスイッチ素子Q1が直列接続されている。また、端子2と端子3の間には、抵抗素子R3とスイッチ素子Q2が直列接続されている。抵抗素子R3は、電池群B1の放電電流路と、電池群B2の放電電流路の双方に兼用されている。 A resistance element R3 and a switch element Q1 are connected in series between the terminals 1 and 2. Further, a resistance element R3 and a switch element Q2 are connected in series between the terminal 2 and the terminal 3. The resistance element R3 is used for both the discharge current path of the battery group B1 and the discharge current path of the battery group B2.

スイッチ素子Q1とQ2は、電池群B1とB2に対して放電と放電停止を交互に行わせることによりバッテリBにリップル電圧を生じさせるリップル電圧生成部に相当する。その場合、抵抗素子R3に、電池群B1の放電電流と、電池群B2の放電電流が交互に(但し反対向きに)流れることになる。その他の構成は、第1の実施形態と同じである。 The switch elements Q1 and Q2 correspond to a ripple voltage generating unit that generates a ripple voltage in the battery B by alternately discharging and stopping the discharge of the battery groups B1 and B2. In that case, the discharge current of the battery group B1 and the discharge current of the battery group B2 flow alternately (but in opposite directions) to the resistance element R3. Other configurations are the same as in the first embodiment.

(2−2)回路動作
図5および図6を参照して、図4に示した内部抵抗計測装置20の動作およびバッテリの内部抵抗の導出方法を説明する。図5および図6は、計測のために内部抵抗計測装置20をバッテリBに接続した状態を示している。
(2-2) Circuit Operation With reference to FIGS. 5 and 6, the operation of the internal resistance measuring device 20 shown in FIG. 4 and the method of deriving the internal resistance of the battery will be described. 5 and 6 show a state in which the internal resistance measuring device 20 is connected to the battery B for measurement.

図4に示したスイッチ素子Q1の制御信号vaと、スイッチ素子Q2の制御信号vbは、第1の実施形態と同様である。スイッチ素子Q1とQ2は交互に導通または遮断する。 The control signal va of the switch element Q1 and the control signal vb of the switch element Q2 shown in FIG. 4 are the same as those in the first embodiment. The switch elements Q1 and Q2 alternately conduct or cut off.

図5は、スイッチ素子Q1が導通(オン)かつスイッチ素子Q2が遮断(オフ)のときに回路に流れる電流を矢印付きの線で示している。 In FIG. 5, the current flowing through the circuit when the switch element Q1 is conductive (on) and the switch element Q2 is cut off (off) is shown by a line with an arrow.

スイッチ素子Q1が導通すると、電池群B1の両端間電圧V3により抵抗素子R3とスイッチ素子Q1からなる電流路に放電電流i1が流れる。スイッチ素子Q2は遮断されているので電池群B2は放電停止状態である。計測用電流i2とi3は、第1の実施形態と同様であり、分圧V1および分圧V2が取得される。 When the switch element Q1 becomes conductive, the discharge current i1 flows in the current path including the resistance element R3 and the switch element Q1 due to the voltage V3 between both ends of the battery group B1. Since the switch element Q2 is shut off, the battery group B2 is in the discharge stopped state. The measurement currents i2 and i3 are the same as those in the first embodiment, and the partial pressure V1 and the partial pressure V2 are acquired.

放電電流i1は、電池群B1の各二次電池b〜bを流れる電流である。以下の式11のように、放電電流i1は、電池群B1の両端間電圧V3を抵抗素子R3の抵抗値で除算することにより算出される。
i1=V3/R3 ・・・式11
Discharge current i1 is a current flowing through each of the secondary batteries b 1 ~b k groups of cells B1. As shown in Equation 11 below, the discharge current i1 is calculated by dividing the voltage V3 between both ends of the battery group B1 by the resistance value of the resistance element R3.
i1 = V3 / R3 ・ ・ ・ Equation 11

電池群B1の両端間電圧V3と、分圧V1は以下の関係がある。
V3=((r1+r2)/r2)*V1 ・・・式12
The voltage V3 between both ends of the battery group B1 and the partial pressure V1 have the following relationship.
V3 = ((r1 + r2) / r2) * V1 ・ ・ ・ Equation 12

式11と式12から放電電流i1は、以下のように表される。
i1=(((r1+r2)/r2)*V1)/R3 ・・・式13
From Equations 11 and 12, the discharge current i1 is expressed as follows.
i1 = (((r1 + r2) / r2) * V1) / R3 ・ ・ ・ Equation 13

抵抗素子R3、r1、r2は回路定数であり、分圧V1は計測値である。したがって、式13は、分圧V1を計測すれば放電電流i1の値を算出できることを意味する。 The resistance elements R3, r1 and r2 are circuit constants, and the partial pressure V1 is a measured value. Therefore, Equation 13 means that the value of the discharge current i1 can be calculated by measuring the partial pressure V1.

次に、図6は、スイッチ素子Q1が遮断(オフ)かつスイッチ素子Q2が導通(オン)のときに回路に流れる電流を矢印付きの線で示している。 Next, FIG. 6 shows the current flowing through the circuit when the switch element Q1 is cut off (off) and the switch element Q2 is conductive (on) by a line with an arrow.

スイッチ素子Q2が導通すると、電池群B2の両端間電圧により抵抗素子R3とスイッチ素子Q2からなる電流路に放電電流i4が流れる。電池群B2の両端間電圧は、バッテリBの両端間電圧V4から電池群B1の両端間電圧V3を引いたものである。スイッチ素子Q1は遮断されているので電池群B1は放電停止状態である。計測用電流i2とi3は、第1の実施形態と同様であり、分圧V1および分圧V2が取得される。 When the switch element Q2 becomes conductive, the discharge current i4 flows in the current path including the resistance element R3 and the switch element Q2 due to the voltage between both ends of the battery group B2. The voltage between both ends of the battery group B2 is obtained by subtracting the voltage V3 between both ends of the battery group B1 from the voltage V4 between both ends of the battery B. Since the switch element Q1 is shut off, the battery group B1 is in the discharge stopped state. The measurement currents i2 and i3 are the same as those in the first embodiment, and the partial pressure V1 and the partial pressure V2 are acquired.

放電電流i4は、電池群B2の各二次電池bk+1〜bを流れる電流である。以下の式14に示すように、放電電流i4は、電池群B2の両端間電圧V4−V3を抵抗素子R3の抵抗値で除算することにより算出される。
i4=(V4−V3)/R3 ・・・式14
The discharge current i4 is a current flowing through each of the secondary batteries b k + 1 to b n of the battery group B2. As shown in the following equation 14, the discharge current i4 is calculated by dividing the voltage V4-V3 between both ends of the battery group B2 by the resistance value of the resistance element R3.
i4 = (V4-V3) / R3 ・ ・ ・ Equation 14

電池群B2の両端間電圧V4−V3と、分圧V1および分圧V2は以下の関係がある。
V4−V3=((r3+r4)/r4)*V2−((r1+r2)/r2)*V1
・・・式15
The voltage V4-V3 between both ends of the battery group B2 and the partial pressure V1 and the partial pressure V2 have the following relationship.
V4-V3 = ((r3 + r4) / r4) * V2-((r1 + r2) / r2) * V1
... Equation 15

式14と式15から放電電流i4は、以下のように表される。
i4=(((r3+r4)/r4)*V2−((r1+r2)/r2)*V1)/R3
・・・式16
From equations 14 and 15, the discharge current i4 is expressed as follows.
i4 = (((r3 + r4) / r4) * V2-((r1 + r2) / r2) * V1) / R3
... Equation 16

抵抗素子R3、r1、r2、r3、r4は回路定数あり、分圧V1、V2は計測値である。したがって、式16は、分圧V1、V2を計測すれば放電電流i4の値を算出できることを意味する。 The resistance elements R3, r1, r2, r3, and r4 have circuit constants, and the partial pressures V1 and V2 are measured values. Therefore, Equation 16 means that the value of the discharge current i4 can be calculated by measuring the partial pressures V1 and V2.

図5と図6に示した電池群B1とB2の交互の放電と放電停止を繰り返す一方で、電圧計M〜Mにより、二次電池b〜bの各々のリップル電圧vr〜vrを計測する。 While repeating the alternating discharge and discharge stop of the battery groups B1 and B2 shown in FIGS. 5 and 6, the ripple voltages vr 1 to each of the secondary batteries b 1 to b n are measured by the voltmeters M 1 to M n. Measure vr n .

計測されたリップル電圧vr〜vrと、式13の電流i1および式16の電流i4を用いて、二次電池b〜bの各々の内部抵抗ri〜riを、以下のようにそれぞれ算出できる。
ri=vr/i1

ri=vr/i1
rik+1=vrk+1/i4

ri=vr/i4 ・・・式17
すなわち、二次電池の内部抵抗は、当該電池のリップル電圧を、当該電池を流れる電流の値で除算することにより得られる。
A ripple voltage vr 1 to VR n that is measured, using the current i4 of the current i1 and formula 16 of the formula 13, the internal resistance ri 1 to Ri n of each of the secondary battery b 1 ~b n, as follows Can be calculated for each.
ri 1 = vr 1 / i1
:
ri k = vr k / i1
rik + 1 = vr k + 1 / i4
:
ri n = vr n / i4 ··· formula 17
That is, the internal resistance of the secondary battery is obtained by dividing the ripple voltage of the battery by the value of the current flowing through the battery.

第1の実施形態について説明した本発明の効果は、第2の実施形態にも適用される。また、図示した本発明の構成は例示であり、本発明の主旨に沿う範囲において多様な変形が可能である。 The effects of the present invention described for the first embodiment also apply to the second embodiment. In addition, the illustrated configuration of the present invention is an example, and various modifications can be made within a range in line with the gist of the present invention.

1、2、3 端子
R1、R2、R3 抵抗素子
r1、r2、r3、r4 分圧用抵抗素子
Q1、Q2 スイッチ素子
B バッテリ
B1 第1の電池群
B2 第2の電池群
〜b 二次電池
〜M 電圧計
1, 2, 3 terminals R1, R2, R3 Resistance element r1, r2, r3, r4 Pressure division resistance element Q1, Q2 Switch element B Battery B1 First battery group B2 Second battery group b 1 to b n Secondary Battery M 1 to M n voltmeter

Claims (8)

直列接続されたn(nは2以上の自然数)個の二次電池からなるバッテリ中の1個または複数個の二次電池の両端間の内部抵抗を計測するための装置であって、
n個の二次電池を低電位側の第1の電池群と高電位側の第2の電池群の2つの電池群に分け、前記第1の電池群と前記第2の電池群に対して放電と放電停止を交互に行わせるように制御するリップル電圧生成部と、
前記第1の電池群の放電電流または前記第2の電池群の放電電流が流れるように接続された、所定の抵抗値をもつ1つまたは2つの抵抗素子と、
前記第1の電池群の両端間電圧を導出するための計測を行う第1の電圧計測部と、
前記第2の電池群の両端間電圧を導出するための計測を行う第2の電圧計測部と、
前記リップル電圧生成部の制御によって生じる、前記第1の電池群または前記第2の電池群の中の1個または複数個の二次電池の両端間のリップル電圧を計測するリップル電圧計測部とを有することを特徴とするバッテリの内部抵抗計測装置。
A device for measuring the internal resistance between both ends of one or a plurality of secondary batteries in a battery consisting of n (n is a natural number of 2 or more) secondary batteries connected in series.
The n secondary batteries are divided into two battery groups, a first battery group on the low potential side and a second battery group on the high potential side, with respect to the first battery group and the second battery group. A ripple voltage generator that controls discharge and discharge stop alternately,
One or two resistance elements having a predetermined resistance value connected so that the discharge current of the first battery group or the discharge current of the second battery group flows.
A first voltage measuring unit that performs measurement for deriving the voltage between both ends of the first battery group, and
A second voltage measuring unit that performs measurement for deriving the voltage between both ends of the second battery group, and
A ripple voltage measuring unit that measures the ripple voltage between both ends of the first battery group or one or a plurality of secondary batteries in the first battery group or the second battery group generated by the control of the ripple voltage generating unit. An internal resistance measuring device for a battery, characterized by having.
前記第1の電池群または前記第2の電池群の両端間電圧を前記抵抗素子の抵抗値で除算することにより前記放電電流の値が算出され、計測された前記リップル電圧を前記放電電流の値で除算することにより、前記1個または複数個の二次電池の内部抵抗が算出されることを特徴とする請求項1に記載のバッテリの内部抵抗計測装置。 The value of the discharge current is calculated by dividing the voltage between both ends of the first battery group or the second battery group by the resistance value of the resistance element, and the measured ripple voltage is the value of the discharge current. The battery internal resistance measuring device according to claim 1, wherein the internal resistance of the one or a plurality of secondary batteries is calculated by dividing by. 2つの前記抵抗素子を有し、一方の抵抗素子に前記第1の電池群の放電電流が流れ、他方の抵抗素子に前記第2の電池群の放電電流が流れることを特徴とする請求項1または2に記載のバッテリの内部抵抗計測装置。 The first aspect of the invention is characterized in that the two resistance elements are provided, the discharge current of the first battery group flows through one of the resistance elements, and the discharge current of the second battery group flows through the other resistance element. Or the battery internal resistance measuring device according to 2. 1つの前記抵抗素子を有し、該抵抗素子に前記第1の電池群の放電電流と、前記第2の電池群の放電電流が交互に流れることを特徴とする請求項1または2に記載のバッテリの内部抵抗計測装置。 The invention according to claim 1 or 2, wherein the resistance element has one, and the discharge current of the first battery group and the discharge current of the second battery group alternately flow through the resistance element. Battery internal resistance measuring device. 前記第1の電圧計測部が、前記第1の電池群の両端間電圧の分圧を計測し、計測された分圧に基づいて前記第1の電池群の両端間電圧が導出されることを特徴とする請求項1〜4のいずれかに記載のバッテリの内部抵抗計測装置。 The first voltage measuring unit measures the voltage division of the voltage between both ends of the first battery group, and the voltage between both ends of the first battery group is derived based on the measured voltage division. The internal resistance measuring device for a battery according to any one of claims 1 to 4. 前記第2の電圧計測部が、前記バッテリの両端間電圧の分圧を計測し、計測された分圧に基づいて前記バッテリの両端間電圧が導出され、導出された前記バッテリの両端間電圧と前記第1の電池群の両端間電圧とに基づいて前記第2の電池群の両端間電圧が導出されることを特徴とする請求項5に記載のバッテリの内部抵抗計測装置。 The second voltage measuring unit measures the voltage division of the voltage between both ends of the battery, and the voltage between both ends of the battery is derived based on the measured voltage division, and the voltage between both ends of the battery is derived. The internal resistance measuring device for a battery according to claim 5, wherein the voltage between both ends of the second battery group is derived based on the voltage between both ends of the first battery group. 前記リップル電圧生成部が、前記第1の電池群の放電電流路の導通と遮断を切り替える第1のスイッチ素子と、前記第2の電池群の放電電流路の導通と遮断を切り替える第2のスイッチ素子とを有することを特徴とする請求項1〜6のいずれかに記載のバッテリの内部抵抗計測装置。 The ripple voltage generation unit switches between a first switch element that switches the continuity and interruption of the discharge current path of the first battery group and a second switch that switches the continuity and interruption of the discharge current path of the second battery group. The battery internal resistance measuring device according to any one of claims 1 to 6, further comprising an element. 直列接続されたn(nは2以上の自然数)個の二次電池からなるバッテリ中の1個または複数個の二次電池の両端間の内部抵抗を計測するための方法であって、
n個の二次電池を低電位側の第1の電池群と高電位側の第2の電池群の2つの電池群に分け、前記第1の電池群と前記第2の電池群に対して放電と放電停止を交互に行わせることにより各二次電池にリップル電圧を生じさせ、
前記第1の電池群の放電電流または前記第2の電池群の放電電流を、所定の抵抗値をもつ1つまたは2つの抵抗素子に流し、
前記第1の電池群の両端間電圧を導出するための計測を行い、
前記第2の電池群の両端間電圧を導出するための計測を行い、
前記第1の電池群または前記第2の電池群の中の1個または複数個の二次電池の両端間のリップル電圧を計測することを特徴とする二次電池の内部抵抗計測方法。
A method for measuring the internal resistance between both ends of one or a plurality of secondary batteries in a battery consisting of n (n is a natural number of 2 or more) secondary batteries connected in series.
The n secondary batteries are divided into two battery groups, a first battery group on the low potential side and a second battery group on the high potential side, with respect to the first battery group and the second battery group. A ripple voltage is generated in each secondary battery by alternately discharging and stopping the discharge.
The discharge current of the first battery group or the discharge current of the second battery group is passed through one or two resistance elements having a predetermined resistance value.
Measurements were made to derive the voltage across the first battery group.
The measurement for deriving the voltage between both ends of the second battery group was performed.
A method for measuring the internal resistance of a secondary battery, which comprises measuring the ripple voltage between both ends of the first battery group or one or a plurality of secondary batteries in the second battery group.
JP2019138182A 2019-07-26 2019-07-26 Battery internal resistance measurement device and measurement method Pending JP2021021629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138182A JP2021021629A (en) 2019-07-26 2019-07-26 Battery internal resistance measurement device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138182A JP2021021629A (en) 2019-07-26 2019-07-26 Battery internal resistance measurement device and measurement method

Publications (1)

Publication Number Publication Date
JP2021021629A true JP2021021629A (en) 2021-02-18

Family

ID=74574763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138182A Pending JP2021021629A (en) 2019-07-26 2019-07-26 Battery internal resistance measurement device and measurement method

Country Status (1)

Country Link
JP (1) JP2021021629A (en)

Similar Documents

Publication Publication Date Title
JP6763376B2 (en) Battery control device, power storage system, control method and computer-readable medium
JP7471337B2 (en) Monitoring system for series-connected battery cells
CN105974317B (en) Battery remaining power prediction device and battery pack
JP5003333B2 (en) Insulation resistance measuring method and apparatus
JP6382453B2 (en) Battery monitoring device
CN105634051B (en) Remaining battery level predicting device and battery pack
CN105203958B (en) Battery monitor and cell apparatus
JP6365431B2 (en) Calibration method for charge / discharge test equipment
KR20220153292A (en) BMS and Battery System
JP2007085843A (en) Failure detector for electric current sensor and its method
JP2016211923A (en) Charging amount estimation method and charging amount estimation device
JP2017223580A (en) Charging/discharging device
KR101734724B1 (en) Apparatus for detecting electric leakage of electric vehicle
JP2021021629A (en) Battery internal resistance measurement device and measurement method
JP6337836B2 (en) Calibration method for charge / discharge test equipment
JP2007181365A (en) Ac voltage applying circuit and method to battery group
CN116888484A (en) Method and device for detecting insulation resistance of direct-current voltage source attached to split-type intermediate circuit in parallel operation of power grid
JP3904875B2 (en) Method for measuring internal impedance of storage battery
JP7467337B2 (en) Integrated circuit, battery monitoring device, and battery monitoring system
CN117269803B (en) Passive measurement system and method for battery cluster resistance detection system of electric energy storage system
JP5981320B2 (en) Impedance measuring apparatus and impedance measuring method
RU2747043C1 (en) Device for automatic control of insulation resistance of dc power supply network
JP7475320B2 (en) Earth leakage detection method
US20220413017A1 (en) Measuring method for determining the current through a shunt resistor
RU2474834C1 (en) Circuit to control sensitivity of three-phase electronic devices for power metering