JP2021021619A - Metho for calculating air dose rate distribution - Google Patents

Metho for calculating air dose rate distribution Download PDF

Info

Publication number
JP2021021619A
JP2021021619A JP2019137929A JP2019137929A JP2021021619A JP 2021021619 A JP2021021619 A JP 2021021619A JP 2019137929 A JP2019137929 A JP 2019137929A JP 2019137929 A JP2019137929 A JP 2019137929A JP 2021021619 A JP2021021619 A JP 2021021619A
Authority
JP
Japan
Prior art keywords
dose rate
rate distribution
air dose
radiation
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019137929A
Other languages
Japanese (ja)
Other versions
JP7272891B2 (en
Inventor
和明 小迫
Kazuaki Kosako
和明 小迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2019137929A priority Critical patent/JP7272891B2/en
Publication of JP2021021619A publication Critical patent/JP2021021619A/en
Application granted granted Critical
Publication of JP7272891B2 publication Critical patent/JP7272891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

To provide a method for calculating an air dose rate distribution, allowing for appropriate evaluation of the air dose rate distribution of a radiation facility.SOLUTION: A method for calculating an air dose rate distribution of a facility 1 having a radiation shielding body 5 includes the steps of: creating a model of the facility 1; and setting the content of a parent element generating a radionuclide included in the radiation shielding body 5 to be 0.01 to 1.0 mass% with respect to the total mass of the radiation shielding body 5 and directly simulating the behavior of radiation generated from the radionuclide by a Monte Carlo method.SELECTED DRAWING: Figure 1

Description

本発明は、空間線量率分布の計算方法に関する。 The present invention relates to a method for calculating an air dose rate distribution.

放射性核種は、その核種に固有の半減期で崩壊し、より安定した状態の核種に壊変する。この崩壊時に、ガンマ線、X線、β線、中性子等の放射線が放出される。崩壊により放出された放射線は、原子炉や放射線使用施設等(以下、「放射線施設」ともいう。)での残留放射能による人体への被曝原因となる。この被曝は、放射線施設のメンテナンス作業や廃止措置における作業者の放射線安全防護上重要な問題である。 Radionuclides decay with the half-life inherent in the nuclide and transform into more stable nuclides. At the time of this decay, radiation such as gamma rays, X-rays, β rays, and neutrons is emitted. The radiation emitted by the collapse causes exposure to the human body due to residual radioactivity in nuclear reactors, radiation facilities, etc. (hereinafter, also referred to as "radiation facilities"). This exposure is an important issue for the radiation safety protection of workers in the maintenance work and decommissioning of radiation facilities.

放射線施設は、放射線の漏洩を防護するための放射線遮蔽体を有し、放射線遮蔽体で囲まれた内部空間を有する。放射線施設における空間線量率分布は、中性子輸送計算、放射化計算、及び崩壊ガンマ線輸送計算の3段階により計算される(従来法、図5参照)。従来法では、3段階で計算するため、空間線量率分布の計算に非常に時間と手間がかかる。 The radiation facility has a radiation shield to protect against radiation leakage and has an internal space surrounded by the radiation shield. The air dose rate distribution in the radiation facility is calculated by three stages: neutron transport calculation, activation calculation, and decay gamma ray transport calculation (conventional method, see FIG. 5). In the conventional method, since the calculation is performed in three steps, it takes a lot of time and effort to calculate the air dose rate distribution.

こうした問題に対し、中性子輸送計算及び崩壊ガンマ線輸送計算を1回の計算により行う直接法が提案されている(例えば、非特許文献1〜2参照)。直接法によれば、空間線量率分布の計算の効率化が図られている。 To solve these problems, a direct method has been proposed in which the neutron transport calculation and the decay gamma ray transport calculation are performed by a single calculation (see, for example, Non-Patent Documents 1 and 2). According to the direct method, the efficiency of calculation of the air dose rate distribution is improved.

Davide Valenza et al., " Proposal of shutdown dose estimation method by MonteCarlo code", Fusion Engineering and Design 55 (2001) 411−418Davide Valenza et al., "Proposal of shutdown dose estimation method by MonteCarlo code", Fusion Engineering and Design 55 (2001) 411-418 Satoshi Sato et al., " Evaluation of Shutdown Gamma-ray Dose Rates around the Duct Penetration by Three-Dimensional Monte Carlo Decay Gamma-ray Transport Calculation with Variance Reduction Method", Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 1237−1246 (November 2002)Satoshi Sato et al., "Evaluation of Shutdown Gamma-ray Dose Rates around the Duct Penetration by Three-Dimensional Monte Carlo Decay Gamma-ray Transport Calculation with Variance Reduction Method", Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 1237-1246 (November 2002)

廃止措置における空間線量率分布の計算で重要な放射性核種の元になる元素(親元素)は、コバルトやユーロピウム等である。この親元素は、コンクリート等の放射線遮蔽体に不純物として含まれる。
しかしながら、直接法においては、放射線遮蔽体に含まれる親元素量が不純物であるため、成分分析値や標準値を見ても極めて微量であり、親元素が核反応を起こして放射性核種を生成する割合は、シミュレーション上は極めて少ない。このため、現状の直接法では、被曝線量の主因となる微量な親元素の影響を適切に評価できない。
The elements (parent elements) that are important sources of radionuclides in the calculation of air dose rate distribution in decommissioning are cobalt and europium. This parent element is contained as an impurity in a radiation shield such as concrete.
However, in the direct method, since the amount of the parent element contained in the radiation shield is an impurity, the amount is extremely small even when looking at the component analysis value and the standard value, and the parent element causes a nuclear reaction to generate a radionuclide. The ratio is extremely small in the simulation. For this reason, the current direct method cannot appropriately evaluate the effects of trace amounts of parent elements that are the main cause of radiation dose.

そこで、本発明は、放射線施設の空間線量率分布を適切に評価できる空間線量率分布の計算方法を目的とする。 Therefore, an object of the present invention is a method for calculating an air dose rate distribution that can appropriately evaluate the air dose rate distribution of a radiation facility.

上記課題を解決するために、本発明は以下の態様を有する。
[1]放射線遮蔽体を有する施設の空間線量率分布を計算する空間線量率分布の計算方法において、前記施設のモデルを作成する工程と、前記放射線遮蔽体に含まれる放射性核種を生成する親元素の含有量を前記放射線遮蔽体の総質量に対して0.01〜1.0質量%に設定し、前記放射性核種から生成する放射線の挙動をモンテカルロ法により直接シミュレーションする工程と、を有する、空間線量率分布の計算方法。
[2]前記親元素がコバルト、セシウム及びユーロピウムから選ばれる1種以上である、[1]に記載の空間線量率分布の計算方法。
[3]前記放射線遮蔽体がコンクリート及び鋼材から選ばれる1種以上である、[1]又は[2]に記載の空間線量率分布の計算方法。
In order to solve the above problems, the present invention has the following aspects.
[1] Calculation of air dose rate distribution of a facility having a radiation shield In the method of calculating the air dose rate distribution, a step of creating a model of the facility and a parent element that produces a radionuclide contained in the radiation shield A space having a step of setting the content of the radiation to 0.01 to 1.0% by mass with respect to the total mass of the radiation shield and directly simulating the behavior of the radiation generated from the radionuclide by the Monte Carlo method. How to calculate the dose rate distribution.
[2] The method for calculating an air dose rate distribution according to [1], wherein the parent element is one or more selected from cobalt, cesium and europium.
[3] The method for calculating an air dose rate distribution according to [1] or [2], wherein the radiation shield is one or more selected from concrete and steel.

本発明の空間線量率分布の計算方法によれば、放射線施設の空間線量率分布を適切に評価できる。 According to the calculation method of the air dose rate distribution of the present invention, the air dose rate distribution of the radiation facility can be appropriately evaluated.

本発明の空間線量率分布の計算方法の対象の放射線施設の一例である原子炉施設を示す模式図である。It is a schematic diagram which shows the nuclear reactor facility which is an example of the radiation facility which is the object of the calculation method of the air dose rate distribution of this invention. 本発明の空間線量率分布の計算方法の一例を示すフロー図である。It is a flow chart which shows an example of the calculation method of the air dose rate distribution of this invention. 本発明の一実施形態に係る中性子スペクトルの一例を示すグラフである。It is a graph which shows an example of the neutron spectrum which concerns on one Embodiment of this invention. 最適化操作を行わなかった場合の中性子スペクトルの一例を示すグラフである。It is a graph which shows an example of the neutron spectrum when the optimization operation is not performed. 従来の空間線量率分布の計算方法を示すフロー図である。It is a flow chart which shows the calculation method of the conventional air dose rate distribution.

以下、図1及び図2を参照し、本発明の空間線量率分布の計算方法について説明する。本実施形態では、放射線遮蔽体を有する施設(放射線施設)として、原子炉施設における空間線量率分布の計算方法について説明する。 Hereinafter, the calculation method of the air dose rate distribution of the present invention will be described with reference to FIGS. 1 and 2. In this embodiment, a method of calculating the air dose rate distribution in a nuclear reactor facility as a facility having a radiation shield (radiation facility) will be described.

図1に示す原子炉施設1は、基礎スラブ2の上に円筒状のペデスタル3が配設され、このペデスタル3に支持されて原子炉圧力容器4が設けられている。また、原子炉圧力容器4を囲むように放射線遮蔽体5、格納容器6等が配設されている。また、基礎スラブ2、ペデスタル3を含め、特に放射線遮蔽体5や格納容器6は、普通コンクリートや重晶石コンクリートを用いて構築されている。さらに、ステンレス鋼板等を備えて放射線の遮蔽能力を高めるようにしている。また、放射線遮蔽体5で囲まれた各室には、適宜、例えば、蒸気発生器や加圧器、制御機器、配管等の原子炉機器が設けられている。 In the reactor facility 1 shown in FIG. 1, a cylindrical pedestal 3 is arranged on a foundation slab 2, and a reactor pressure vessel 4 is provided supported by the pedestal 3. Further, a radiation shield 5, a containment vessel 6, and the like are arranged so as to surround the reactor pressure vessel 4. Further, the radiation shield 5 and the containment vessel 6 including the foundation slab 2 and the pedestal 3 are constructed by using ordinary concrete or barite concrete. Furthermore, a stainless steel plate or the like is provided to enhance the radiation shielding ability. Further, in each room surrounded by the radiation shield 5, for example, a steam generator, a pressurizer, a control device, a piping, and other nuclear reactor devices are appropriately provided.

本実施形態では、原子炉圧力容器4の領域を炉心構造領域Aとし、この炉心構造領域Aの周り、すなわち、炉心構造領域Aを除いた原子炉建屋(原子炉施設1)の内部領域で原子炉機器や放射線遮蔽体5等が存在する領域を遮蔽体領域Bとしている。
本実施形態において、「放射線遮蔽体を有する施設」とは、遮蔽体領域Bのことを指す。
In the present embodiment, the region of the reactor pressure vessel 4 is defined as the core structural region A, and the atomic atoms are formed around the core structural region A, that is, in the internal region of the reactor building (reactor facility 1) excluding the core structural region A. The region where the reactor equipment, the radiation shield 5, and the like are present is defined as the shield region B.
In the present embodiment, the “facility having a radiation shield” refers to the shield region B.

放射線遮蔽体5としては、例えば、コンクリート及び鋼材から選ばれる1種以上が挙げられる。コンクリートとしては、普通コンクリート(一般構造用コンクリート)、重晶石コンクリート(重量コンクリート)等が挙げられる。鋼材としては、ステンレス鋼板、炭素鋼等が挙げられる。 Examples of the radiation shield 5 include one or more selected from concrete and steel materials. Examples of concrete include ordinary concrete (general structural concrete) and barite concrete (heavy concrete). Examples of the steel material include stainless steel sheets and carbon steel.

原子炉の炉心の状態は、核分裂性燃料の燃焼度、制御棒位置とそれらの配置により決まる。燃料棒は、新品への交換や配置の入れ替え等が行なわれ、かつ、燃焼度は原子炉の運転時間とともに増加するため、同一の状態で維持されることはない。 The state of the core of a nuclear reactor is determined by the burnup of fissile fuel, the position of control rods and their arrangement. The fuel rods are not maintained in the same state because they are replaced with new ones, their arrangements are replaced, and the burnup increases with the operating time of the reactor.

本実施形態の空間線量率分布の計算方法は、原子炉施設1のモデルを作成する工程(モデル作成工程)と、放射線遮蔽体5に含まれる親元素の含有量を放射線遮蔽体5の総質量に対して0.01〜1.0質量%に設定し、放射性核種から生成する放射線の挙動をモンテカルロ法により直接シミュレーションする工程(シミュレーション工程)と、を有する。
本実施形態の空間線量率分布の計算方法について、図2を用いて説明する。本実施形態の空間線量率分布の計算方法では、原子炉体系のモデルを作成し(モデル作成工程)、次いで、中性子及び崩壊ガンマ線の輸送計算をする(シミュレーション工程)。本実施形態のモデル作成工程では、原子炉施設1の運転履歴と、原子炉施設1の幾何形状データ、及び燃焼集合体と制御棒の配置履歴、燃料の燃焼度履歴と、物質組成(燃料組成分布も含む)のデータを予め取得する。このとき、原子炉施設1の炉心(原子炉圧力容器4)からの漏洩中性子が大きく変化する炉心構造を反映するように原子炉体系のモデル化を行う。
In the calculation method of the air dose rate distribution of the present embodiment, the step of creating a model of the reactor facility 1 (model creation step) and the content of the parent element contained in the radiation shield 5 are set to the total mass of the radiation shield 5. It has a step (simulation step) of directly simulating the behavior of radiation generated from a radionuclide by the Monte Carlo method, which is set to 0.01 to 1.0% by mass.
The calculation method of the air dose rate distribution of the present embodiment will be described with reference to FIG. In the calculation method of the air dose rate distribution of the present embodiment, a model of the reactor system is created (model creation step), and then the transport calculation of neutrons and decayed gamma rays is performed (simulation step). In the model creation process of the present embodiment, the operation history of the reactor facility 1, the geometric shape data of the reactor facility 1, the arrangement history of the combustion aggregate and the control rods, the burnup history of the fuel, and the material composition (fuel composition). (Including distribution) data is acquired in advance. At this time, the reactor system is modeled so as to reflect the core structure in which the leaked neutrons from the core (reactor pressure vessel 4) of the reactor facility 1 change significantly.

次に、それらの炉心構造が放射線遮蔽体5で生じる放射能へ与える影響をモンテカルロ法によりシミュレーションする。
このとき、放射線遮蔽体5に含まれる放射性核種(娘核種)を生成する元素(親元素)の含有量を放射線遮蔽体5の総質量に対して0.01〜1.0質量%に設定する(最適化操作)。
一般に、放射線遮蔽体5に含まれる親元素は、放射線遮蔽体5の総質量に対して、0.00001〜0.001質量%(1×10−5〜1×10−3質量%)と微量である。このため、親元素が核反応を起こす割合は、シミュレーション上は極めて少なく、遮蔽体領域Bに対する放射性核種の影響を適切に評価できない。例えば、親元素の含有量が1×10−5質量%とすると、モンテカルロ計算で扱える線源中性子数は10億個程度であるため、全ての線源中性子が親元素と核反応を起こして娘核種を生成したとしても、生成する崩壊ガンマ線の数は100個程度となる。実際には、放射線遮蔽体5に到達する中性子数は線源中性子数よりかなり少なく、親元素と核反応を起こす割合も小さい。加えて、親元素から核反応で娘核種が生成する割合も100%より小さいので、生成する崩壊ガンマ線の数は100個よりもかなり少ないものとなる。
そこで、親元素の含有量を放射線遮蔽体5の総質量に対して0.01〜1.0質量%に設定することで、放射線と親元素とが核反応を起こす確率が上がり、生成する崩壊ガンマ線を増やすことができる。このため、遮蔽体領域Bに対する放射性核種の影響を適切に評価しやすくなる。
Next, the influence of these core structures on the radioactivity generated in the radiation shield 5 is simulated by the Monte Carlo method.
At this time, the content of the element (parent element) that produces the radionuclide (daughter nuclide) contained in the radiation shield 5 is set to 0.01 to 1.0% by mass with respect to the total mass of the radiation shield 5. (Optimization operation).
Generally, the parent element contained in the radiation shield 5 is as small as 0.00001 to 0.001% by mass (1 × 10 -5 to 1 × 10 -3 % by mass) with respect to the total mass of the radiation shield 5. Is. Therefore, the ratio of the parent element causing a nuclear reaction is extremely small in the simulation, and the influence of the radionuclide on the shield region B cannot be properly evaluated. For example, if the content of the parent element is 1 × 10-5 % by mass, the number of source neutrons that can be handled by Monte Carlo calculation is about 1 billion, so all the source neutrons cause a nuclear reaction with the parent element and the daughter. Even if nuclides are generated, the number of decayed gamma rays generated is about 100. In reality, the number of neutrons reaching the radiation shield 5 is much smaller than the number of source neutrons, and the rate of nuclear reaction with the parent element is also small. In addition, since the proportion of daughter nuclides produced by the nuclear reaction from the parent element is also less than 100%, the number of decayed gamma rays generated is considerably less than 100.
Therefore, by setting the content of the parent element to 0.01 to 1.0% by mass with respect to the total mass of the radiation shield 5, the probability that the radiation and the parent element cause a nuclear reaction increases, and the decay generated. Gamma rays can be increased. Therefore, it becomes easy to appropriately evaluate the influence of the radionuclide on the shield region B.

最適化操作において、設定する親元素の含有量は、放射線遮蔽体5の総質量に対して0.01〜1.0質量%であり、0.02〜0.5質量%が好ましく、0.05〜0.3質量%がより好ましい。設定する親元素の含有量が上記下限値以上であると、遮蔽体領域Bに対する放射性核種の影響を適切に評価しやすくなる。設定する親元素の含有量が上記上限値以下であると、遮蔽体領域Bを透過する中性子やガンマ線のエネルギースペクトルが過大に変化することを抑制できる。 In the optimization operation, the content of the parent element to be set is 0.01 to 1.0% by mass, preferably 0.02 to 0.5% by mass, based on the total mass of the radiation shield 5. 05 to 0.3% by mass is more preferable. When the content of the parent element to be set is not more than the above lower limit value, it becomes easy to appropriately evaluate the influence of the radionuclide on the shield region B. When the content of the parent element to be set is not more than the above upper limit value, it is possible to suppress an excessive change in the energy spectrum of neutrons and gamma rays transmitted through the shield region B.

親元素としては、例えば、コバルト、セシウム、ユーロピウム、バリウム、ニッケル、マンガン等が挙げられる。含有量を設定する親元素としては、放射線遮蔽体5に主として含まれ、遮蔽体領域Bに対する親元素の影響を適切に評価しやすい観点から、コバルト、セシウム及びユーロピウムから選ばれる1種以上が好ましい。 Examples of the parent element include cobalt, cesium, europium, barium, nickel, manganese and the like. As the parent element for setting the content, one or more selected from cobalt, cesium and europium are preferable from the viewpoint that they are mainly contained in the radiation shield 5 and the influence of the parent element on the shield region B can be easily evaluated. ..

次に、最適化操作で含有量を調整した親元素から生成する放射性核種の崩壊ガンマ線の挙動をモンテカルロ法により直接シミュレーションする。ここで、モンテカルロ法では、モデル作成工程で取得したデータを用い、中性子スペクトル及び崩壊ガンマ線スペクトルを求める。 Next, the behavior of decay gamma rays of radionuclides generated from the parent element whose content has been adjusted by the optimization operation is directly simulated by the Monte Carlo method. Here, in the Monte Carlo method, the neutron spectrum and the decay gamma ray spectrum are obtained using the data acquired in the model creation process.

次に、最適化操作で調整した親元素の含有量に基づいて、モンテカルロ法により直接シュミレーションした計算結果から、運転履歴と任意の冷却時間のデータを用いて崩壊ガンマ線による空間線量率分布を評価する。 Next, based on the content of the parent element adjusted by the optimization operation, the air dose rate distribution by decay gamma rays is evaluated using the operation history and arbitrary cooling time data from the calculation results directly simulated by the Monte Carlo method. ..

このようにして、本実施形態の空間線量率分布の計算方法では、放射線遮蔽体5に極めて微量に含まれる親元素の含有量を調整することにより、効率的に正確な空間線量率分布を求めることが可能になる。 In this way, in the calculation method of the air dose rate distribution of the present embodiment, the accurate air dose rate distribution is efficiently obtained by adjusting the content of the parent element contained in the radiation shield 5 in an extremely small amount. Will be possible.

また、放射線施設の解体においては、例えば、原子力発電所の原子炉施設の廃止措置を行う際に、本実施形態の空間線量率分布の計算方法を用いることで、原子炉施設の空間線量率分布を効率良く、かつ、正確に評価できる。このため、信頼性と安全性とを確保しながら解体作業を行うことが可能になる。 Further, in the dismantling of the radiation facility, for example, when the reactor facility of the nuclear power plant is decommissioned, the air dose rate distribution of the reactor facility is distributed by using the calculation method of the air dose rate distribution of the present embodiment. Can be evaluated efficiently and accurately. Therefore, the dismantling work can be performed while ensuring reliability and safety.

また、遮蔽体領域Bの解体物を廃棄する際に、解体廃棄物の放射能レベルが正確に判別できるため、放射能レベルに応じて適切に解体廃棄物を処分することが可能になる。すなわち、本来放射性廃棄物としての処分が不要な廃棄物を放射性廃棄物として処分するようなことを確実に防止することも可能になる。 Further, when the dismantled material in the shield region B is disposed of, the radioactivity level of the dismantled waste can be accurately determined, so that the dismantled waste can be appropriately disposed of according to the radioactivity level. That is, it is also possible to reliably prevent the disposal of waste that originally does not need to be disposed of as radioactive waste as radioactive waste.

次に、本発明の空間線量率分布の計算方法を適用するにあたって、最適化操作を行う前後の中性子スペクトルの一例について説明する。
図3は、放射線遮蔽体として普通コンクリートを用い、このコンクリートにウラン235の核分裂中性子が5cmの厚さの水を透過して入射した際の中性子スペクトルである。
図3では、普通コンクリート中の主要な親元素であるコバルト、セシウム、ユーロピウムの含有量を変化させている。
図3の最適化前の中性子スペクトルは、コバルトの含有量が0.0質量%の中性子スペクトルである。
図3の最適化後1の中性子スペクトルは、コバルトの含有量を0.3質量%、セシウムの含有量を0.1質量%、ユーロピウムの含有量を0.05質量%に設定した場合の中性子スペクトルである。
図3の最適化後2の中性子スペクトルは、コバルトの含有量を0.5質量%、セシウムの含有量を0.2質量%、ユーロピウムの含有量を0.05質量%に設定した場合の中性子スペクトルである。
Next, in applying the calculation method of the air dose rate distribution of the present invention, an example of the neutron spectrum before and after the optimization operation will be described.
FIG. 3 shows a neutron spectrum when ordinary concrete is used as a radiation shield and fission neutrons of uranium-235 permeate and enter water having a thickness of 5 cm.
In FIG. 3, the contents of cobalt, cesium, and europium, which are the main parent elements in ordinary concrete, are changed.
The neutron spectrum before optimization in FIG. 3 is a neutron spectrum having a cobalt content of 0.0% by mass.
The neutron spectrum after optimization 1 in FIG. 3 shows the neutrons when the cobalt content is set to 0.3% by mass, the cesium content is set to 0.1% by mass, and the europium content is set to 0.05% by mass. It is a spectrum.
The neutron spectrum of the optimized 2 in FIG. 3 shows the neutrons when the cobalt content is set to 0.5% by mass, the cesium content is set to 0.2% by mass, and the europium content is set to 0.05% by mass. It is a spectrum.

図3に示すように、最適化前後で、0.01〜1eVの熱中性子ピークに差異が見られる。図3に示す程度の差異であれば、中性子スペクトルの変化を抑制できており、遮蔽体領域Bに対する放射性核種の影響を適切に評価できているといえる。
なお、最適化前後の中性子スペクトルの差異は、親元素が存在している領域における1cm当たりの中性子束の数(図3のグラフの縦軸の物理量)の差異の最大値で評価する。図3における中性子束の数の差異の最大値は、40%である。中性子束の数の差異の最大値が40%以下であれば、中性子スペクトルの変化を抑制できていると判断する。中性子束の数の差異の最大値は、40%以下が好ましく、20%以下がより好ましく、10%以下がさらに好ましい。
As shown in FIG. 3, there is a difference in the thermal neutron peak of 0.01 to 1 eV before and after the optimization. If the difference is as shown in FIG. 3, it can be said that the change in the neutron spectrum can be suppressed and the influence of the radionuclide on the shield region B can be appropriately evaluated.
The difference in the neutron spectrum before and after the optimization is evaluated by the maximum value of the difference in the number of neutron fluxes per 1 cm 2 (physical quantity on the vertical axis of the graph in FIG. 3) in the region where the parent element exists. The maximum difference in the number of neutron fluxes in FIG. 3 is 40%. If the maximum value of the difference in the number of neutron fluxes is 40% or less, it is judged that the change in the neutron spectrum can be suppressed. The maximum value of the difference in the number of neutron fluxes is preferably 40% or less, more preferably 20% or less, still more preferably 10% or less.

一方、図4は、放射線遮蔽体として炭素鋼を用い、炭素鋼にウラン235の核分裂中性子が5cmの厚さの水を透過して入射した際の中性子スペクトルである。
図4では、セシウムの含有量を変化させている。
図4の最適化前の中性子スペクトルは、セシウムの含有量が0.0質量%の中性子スペクトルである。
図4の最適化後の中性子スペクトルは、セシウムの含有量を2.0質量%に設定した場合の中性子スペクトルである。
On the other hand, FIG. 4 shows a neutron spectrum when carbon steel is used as a radiation shield and fission neutrons of uranium-235 are transmitted through water having a thickness of 5 cm and incident on the carbon steel.
In FIG. 4, the content of cesium is changed.
The neutron spectrum before optimization in FIG. 4 is a neutron spectrum having a cesium content of 0.0% by mass.
The optimized neutron spectrum in FIG. 4 is a neutron spectrum when the cesium content is set to 2.0% by mass.

図4に示すように、最適化前後で、1〜100eVでの中性子スペクトルに大きな差異が見られる。図4における中性子束の数の差異の最大値は、93%である。このため、本来の核反応とは、部分的に大きく異なる核反応をシミュレートしており、遮蔽体領域Bに対する放射性核種の影響を適切に評価できない。 As shown in FIG. 4, there is a large difference in the neutron spectrum at 1 to 100 eV before and after the optimization. The maximum difference in the number of neutron fluxes in FIG. 4 is 93%. For this reason, a nuclear reaction that is partially different from the original nuclear reaction is simulated, and the effect of the radionuclide on the shield region B cannot be properly evaluated.

このように、放射線の中でも特に中性子のエネルギースペクトルに過度の影響を与えない範囲で親元素量を設定する必要がある。
親元素量を最適化して得られたシミュレーション結果は、親元素の割合を増加した分だけ過大な崩壊ガンマ線が生成する。親元素の増加分は、放射線遮蔽体の主要元素で調整するため、崩壊ガンマ線に与える影響は無視できる。親元素の増加による崩壊ガンマ線の増加は比例するため、親元素の増加割合で生成する崩壊ガンマ線の数を補正すればよい。
In this way, it is necessary to set the amount of the parent element within a range that does not excessively affect the energy spectrum of neutrons in radiation.
In the simulation results obtained by optimizing the amount of parent elements, excessive decay gamma rays are generated by the amount of increase in the proportion of parent elements. Since the increase in the parent element is adjusted by the main elements of the radiation shield, the effect on decay gamma rays can be ignored. Since the increase of decayed gamma rays due to the increase of the parent element is proportional, the number of decayed gamma rays generated by the increase rate of the parent element may be corrected.

以上、本発明に係る空間線量率分布の計算方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although one embodiment of the method for calculating the air dose rate distribution according to the present invention has been described above, the present invention is not limited to the above one embodiment and can be appropriately changed without departing from the spirit of the present invention. ..

本実施形態では、放射線遮蔽体を有する施設として、原子炉施設の例を挙げたが、本発明はこれに限定されず、放射線遮蔽体を有する施設は、例えば、加速器施設や、放射線使用施設であってもよい。 In the present embodiment, an example of a nuclear reactor facility is given as a facility having a radiation shield, but the present invention is not limited to this, and the facility having a radiation shield is, for example, an accelerator facility or a radiation use facility. There may be.

本発明の空間線量率分布の計算方法によれば、従来よりも短時間で効率よく精度の高い空間線量率分布の結果を得ることができる。これは、3段階の計算が1段階になること、最適化した親元素量とすることで微量な放射性核種による崩壊ガンマ線を効率よく得られることによるものと考えられる。
加えて、従来法では、崩壊ガンマ線の発生位置をある領域内で一様な分布として空間線量率分布を計算していたが、本発明の空間線量率分布の計算方法によれば、実際に親元素が存在している位置で崩壊ガンマ線を発生させられるので、位置精度を高められる。
According to the calculation method of the air dose rate distribution of the present invention, it is possible to obtain the result of the air dose rate distribution with high accuracy and efficiency in a shorter time than before. It is considered that this is because the three-step calculation becomes one step and the decayed gamma rays due to a small amount of radionuclides can be efficiently obtained by using the optimized parent element amount.
In addition, in the conventional method, the air dose rate distribution was calculated with the generation position of the decayed gamma rays as a uniform distribution within a certain region, but according to the calculation method of the air dose rate distribution of the present invention, it is actually a parent. Since decay gamma rays can be generated at the position where the element exists, the position accuracy can be improved.

1 原子炉施設
2 基礎スラブ
3 ペデスタル
4 原子炉圧力容器
5 放射線遮蔽体
6 格納容器
A 炉心構造領域
B 遮蔽体領域
1 Reactor facility 2 Foundation slab 3 Pedestal 4 Reactor pressure vessel 5 Radiation shield 6 Containment vessel A Core structure area B Shield area

Claims (3)

放射線遮蔽体を有する施設の空間線量率分布を計算する空間線量率分布の計算方法において、
前記施設のモデルを作成する工程と、
前記放射線遮蔽体に含まれる放射性核種を生成する親元素の含有量を前記放射線遮蔽体の総質量に対して0.01〜1.0質量%に設定し、前記放射性核種から生成する放射線の挙動をモンテカルロ法により直接シミュレーションする工程と、
を有する、空間線量率分布の計算方法。
In the calculation method of the air dose rate distribution for calculating the air dose rate distribution of a facility having a radiation shield,
The process of creating a model of the facility and
The content of the parent element that produces the radionuclide contained in the radiation shield is set to 0.01 to 1.0 mass% with respect to the total mass of the radiation shield, and the behavior of the radiation generated from the radionuclide is set. And the process of directly simulating by the Monte Carlo method,
How to calculate the air dose rate distribution.
前記親元素がコバルト、セシウム及びユーロピウムから選ばれる1種以上である、請求項1に記載の空間線量率分布の計算方法。 The method for calculating an air dose rate distribution according to claim 1, wherein the parent element is one or more selected from cobalt, cesium and europium. 前記放射線遮蔽体がコンクリート及び鋼材から選ばれる1種以上である、請求項1又は2に記載の空間線量率分布の計算方法。 The method for calculating an air dose rate distribution according to claim 1 or 2, wherein the radiation shield is one or more selected from concrete and steel.
JP2019137929A 2019-07-26 2019-07-26 Calculation method of air dose rate distribution Active JP7272891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019137929A JP7272891B2 (en) 2019-07-26 2019-07-26 Calculation method of air dose rate distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019137929A JP7272891B2 (en) 2019-07-26 2019-07-26 Calculation method of air dose rate distribution

Publications (2)

Publication Number Publication Date
JP2021021619A true JP2021021619A (en) 2021-02-18
JP7272891B2 JP7272891B2 (en) 2023-05-12

Family

ID=74574793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019137929A Active JP7272891B2 (en) 2019-07-26 2019-07-26 Calculation method of air dose rate distribution

Country Status (1)

Country Link
JP (1) JP7272891B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102608936B1 (en) * 2023-09-13 2023-11-30 유성훈 Radiation calculation apparatus for nuclear power plant structures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287589A (en) * 2002-03-28 2003-10-10 Taiheiyo Cement Corp Method for controlling spatial dose from concrete
JP2004361240A (en) * 2003-06-04 2004-12-24 Tokyo Electric Power Co Inc:The Dosage calculation system, dosage calculation method, and program
JP2014238358A (en) * 2013-06-10 2014-12-18 清水建設株式会社 Estimation method for quantity of radio-activation of nuclear reactor facility and disassembly method for nuclear reactor facility using the same
JP2017101962A (en) * 2015-11-30 2017-06-08 株式会社東芝 Estimation device and estimation method of radiation source
US20180009711A1 (en) * 2016-07-07 2018-01-11 Ion Beam Applications S.A. Compositions of low activation concrete and use thereof
JP2018141669A (en) * 2017-02-27 2018-09-13 清水建設株式会社 Method for estimating non-radioactivated portion in concrete
JP2018189516A (en) * 2017-05-08 2018-11-29 株式会社東芝 Device, method, and program for calculating surface contamination density distribution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287589A (en) * 2002-03-28 2003-10-10 Taiheiyo Cement Corp Method for controlling spatial dose from concrete
JP2004361240A (en) * 2003-06-04 2004-12-24 Tokyo Electric Power Co Inc:The Dosage calculation system, dosage calculation method, and program
JP2014238358A (en) * 2013-06-10 2014-12-18 清水建設株式会社 Estimation method for quantity of radio-activation of nuclear reactor facility and disassembly method for nuclear reactor facility using the same
JP2017101962A (en) * 2015-11-30 2017-06-08 株式会社東芝 Estimation device and estimation method of radiation source
US20180009711A1 (en) * 2016-07-07 2018-01-11 Ion Beam Applications S.A. Compositions of low activation concrete and use thereof
JP2018141669A (en) * 2017-02-27 2018-09-13 清水建設株式会社 Method for estimating non-radioactivated portion in concrete
JP2018189516A (en) * 2017-05-08 2018-11-29 株式会社東芝 Device, method, and program for calculating surface contamination density distribution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102608936B1 (en) * 2023-09-13 2023-11-30 유성훈 Radiation calculation apparatus for nuclear power plant structures

Also Published As

Publication number Publication date
JP7272891B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
Raj et al. Sodium fast reactors with closed fuel cycle
Galanin THE THEORY OF THERMAL NEUTRON NUCLEAR REACTORS. PART 1
Vojackova et al. Safety analyses of reactor VVER 1000
JP2015064261A (en) Nuclear transformation assembly and fast neutron reactor nuclear power plant system using the same
JP7272891B2 (en) Calculation method of air dose rate distribution
Hamidouche et al. Application of coupled code technique to a safety analysis of a standard MTR research reactor
JP2014238358A (en) Estimation method for quantity of radio-activation of nuclear reactor facility and disassembly method for nuclear reactor facility using the same
Hermawan Neutronic Analysis of SAMOP Reactor Experimental Facility Using SCALE Code System
Yang et al. Fuel cycle scheme design and evaluation for thorium–uranium breeding recycle in CANDU reactors
Matijević et al. Boration modeling of the PWR biological shield using SCALE6. 1 hybrid shielding methodology
Khotiaintseva et al. CALCULATION OF RADIATION FIELDS IN THE VVER-1000 CONCRETE BIOLOGICAL SHIELD USING MONTE CARLO CODE SERPENT a.
Zhang et al. Development and validation of the code COUPLE3. 0 for the coupled analysis of neutron transport and burnup in ADS
Nicolas et al. A dummy core for v&v and education and training purposes at techniatome: in and ex-core calculations
Abdelhady Deriving formula to simulate the radiological behavior during LOCA in open pool type reactor
Preston et al. Possibilities for monitoring the composition of an iPWR core using ex-core neutron detectors
Davis Special isotopes of the FUGEN nuclear reactor
Matijević et al. I2S-LWR Activation Analysis of Heat Exchangers Using Hybrid Shielding Methodology With SCALE6. 1
Khakim et al. Estimation of maximum fast neutron fluence on graphite moderator of TMSR-500
Pascal et al. PHENIX: Interpretation of ECRIX-H transmutation experiment with TRIPOLI4D
CN117790007A (en) Sleeve type MA/UO in pressurized water reactor 2 Transmutation rod
Fang et al. Activation Analysis of the Reactor Pressure Vessel of HTR-PM Reactor Using FLUKA Code
松村太伊知 Study on Quantitative Prediction Method for Evaluating Nuclide Distribution and Energy Spectrum of Radioactive Waste Generated by Severe Accidents
Fu et al. Optimization of the Tritium Production and Discharge in HPR1000
Bekker Ionising Radiation Dose Calculations for the Release of 131I During Accident Conditions at the SAFARI-1 Materials Test Reactor
Weindl Reduction of reactor pressure vessel activation through neutron capture In the biological shield

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230427

R150 Certificate of patent or registration of utility model

Ref document number: 7272891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150