JP2015064261A - Nuclear transformation assembly and fast neutron reactor nuclear power plant system using the same - Google Patents

Nuclear transformation assembly and fast neutron reactor nuclear power plant system using the same Download PDF

Info

Publication number
JP2015064261A
JP2015064261A JP2013197633A JP2013197633A JP2015064261A JP 2015064261 A JP2015064261 A JP 2015064261A JP 2013197633 A JP2013197633 A JP 2013197633A JP 2013197633 A JP2013197633 A JP 2013197633A JP 2015064261 A JP2015064261 A JP 2015064261A
Authority
JP
Japan
Prior art keywords
fuel
assembly
transmutation
pins
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013197633A
Other languages
Japanese (ja)
Other versions
JP6039524B2 (en
Inventor
幸治 藤村
Koji Fujimura
幸治 藤村
克之 川島
Katsuyuki Kawashima
克之 川島
聡 糸岡
Satoshi Itooka
聡 糸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013197633A priority Critical patent/JP6039524B2/en
Priority to FR1457898A priority patent/FR3011118B1/en
Publication of JP2015064261A publication Critical patent/JP2015064261A/en
Application granted granted Critical
Publication of JP6039524B2 publication Critical patent/JP6039524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/18Moderator or core structure; Selection of materials for use as moderator characterised by the provision of more than one active zone
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/022Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders characterised by the design or properties of the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/326Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/02Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes in nuclear reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/06Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation
    • G21G1/08Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation accompanied by nuclear fission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nuclear transformation assembly capable of improving nuclear transformation efficiency of long-lived radioactive wastes such as minor actinide (MA), and a fast neutron reactor nuclear power plant system using the nuclear transformation assembly.SOLUTION: Nuclear transformation assemblies 5 that are loaded into a reactor core 22 of a fast neutron reactor and in each of which a plurality of fuel pins 6, 7, and 8 containing long-lived elements and a plurality of moderator pins 9 containing a neutron moderator are bundled together and contained in a wrapper tube 11 are each configured so that the plurality of fuel pins 6, 7, and 8 is arranged such that a cross-sectional area of fuel elements of the long-lived elements loaded into the fuel pins 6, 7, and 8 are smaller as being closer to a center of the nuclear transformation assembly 5. The fuel pins 6, 7, and 8 are arranged so as to satisfy d1≤d2≤d3, where d1 is a bore diameter of a hollow portion of each of the fuel pins 6 arranged in an outer circumferential portion of the nuclear transformation assembly 5, d3 is a bore diameter of a hollow portion of each of the fuel pins 8 arranged generally in a central portion of the nuclear transformation assembly 5, and d2 is a bore diameter of a hollow portion of each of the fuel pins 7 arranged between the fuel pins 6 and the fuel pins 8.

Description

本発明は、高速炉に装荷され長寿命廃棄物の核変換を行う核変換用集合体およびそれを用いた高速炉原子力発電システムに関する。   The present invention relates to a transmutation assembly loaded in a fast reactor and transmuting long-lived waste, and a fast reactor nuclear power generation system using the assembly.

高速炉の燃料集合体、炉心に関しては、平川直弘、岩崎智彦著「原子炉物理入門」(東北大学出版会、2003年10月30日、p279〜286)に記載されている。一般的に、高速増殖炉は、原子炉容器内に炉心を配置しており、冷却材である液体ナトリウムを原子炉容器内に充填している。その炉心に装荷される燃料集合体は、プルトニウムを富化した劣化ウラン(U−238)を封入した複数の燃料棒、束ねられた複数の燃料棒を取り囲むラッパ管、これらの燃料棒の下端部、及び燃料棒の下方に位置する中性子遮蔽体を支持するエントランスノズル、及び燃料棒の上方に位置する冷却材流出部を有する。   The fuel assemblies and cores of fast reactors are described in Naohiro Hirakawa and Tomohiko Iwasaki, “Introduction to Reactor Physics” (Tohoku University Press, October 30, 2003, p 279-286). Generally, in a fast breeder reactor, a reactor core is disposed in a reactor vessel, and liquid sodium which is a coolant is filled in the reactor vessel. The fuel assembly loaded in the core includes a plurality of fuel rods encapsulating plutonium-enriched depleted uranium (U-238), a trumpet tube surrounding the bundled fuel rods, and lower ends of these fuel rods. , And an entrance nozzle that supports the neutron shield located below the fuel rod, and a coolant outlet that is located above the fuel rod.

高速増殖炉の炉心は、内側炉心領域及びこの内側炉心領域を取り囲む外側炉心領域を有する炉心燃料領域、炉心燃料領域を取り囲むブランケット燃料領域及びブランケット領域を取り囲む遮蔽体領域を有する。標準的な均質炉心の場合、外側炉心領域に装荷される燃料集合体のPu富化度は、内側炉心領域に装荷される燃料集合体のPu富化度よりも高くなっている。この結果、炉心の半径方向における出力分布が平坦化される。   The fast breeder reactor core has a core fuel region having an inner core region and an outer core region surrounding the inner core region, a blanket fuel region surrounding the core fuel region, and a shield region surrounding the blanket region. In the case of a standard homogeneous core, the Pu enrichment of the fuel assemblies loaded in the outer core region is higher than the Pu enrichment of the fuel assemblies loaded in the inner core region. As a result, the power distribution in the radial direction of the core is flattened.

燃料集合体の各燃料棒に収納される核燃料物質の形態としては、金属燃料、窒化物燃料及び酸化物燃料がある。これらのうち、酸化物燃料が最も実績が豊富である。   Examples of the form of nuclear fuel material stored in each fuel rod of the fuel assembly include metal fuel, nitride fuel, and oxide fuel. Of these, oxide fuels have the greatest track record.

Pu及び劣化ウランのそれぞれの酸化物を混合した混合酸化物燃料、すなわち、MOX燃料のペレットが、燃料棒内で軸方向の中央部において80〜100cm程度の高さに充填される。さらに、燃料棒内には、劣化ウランで作られた複数の二酸化ウランペレットを充填した軸方向ブランケット領域が、MOX燃料の充填領域の上方及び下方にそれぞれ配置されている。内側炉心領域に装荷される内側炉心燃料集合体及び外側炉心領域に装荷される外側炉心燃料集合体は、そのように、MOX燃料の複数のペレットを充填した複数の燃料棒を有する。外側炉心燃料集合体のPu富化度は、内側炉心燃料集合体のそれよりも高くなっている。   A mixed oxide fuel obtained by mixing the oxides of Pu and depleted uranium, that is, a pellet of MOX fuel, is filled in a fuel rod at a height of about 80 to 100 cm in the center in the axial direction. Further, in the fuel rod, axial blanket regions filled with a plurality of uranium dioxide pellets made of deteriorated uranium are respectively arranged above and below the MOX fuel filling region. The inner core fuel assembly loaded in the inner core region and the outer core fuel assembly loaded in the outer core region thus have a plurality of fuel rods filled with a plurality of pellets of MOX fuel. The Pu enrichment of the outer core fuel assembly is higher than that of the inner core fuel assembly.

炉心燃料領域を取り囲むブランケット燃料領域には、劣化ウランで作られた複数の二酸化ウランペレットを充填した複数の燃料棒を有するブランケット燃料集合体が装荷される。炉心燃料領域に装荷された燃料集合体内で生じる核分裂反応で発生した中性子のうち、炉心燃料領域から漏れた中性子が、ブランケット燃料領域に装荷されたブランケット燃料集合体の各燃料棒内のU−238に吸収される。この結果、ブランケット燃料集合体の各燃料棒内で核分裂性核種であるPu−239が新たに生成される。   A blanket fuel assembly having a plurality of fuel rods filled with a plurality of uranium dioxide pellets made of deteriorated uranium is loaded in the blanket fuel region surrounding the core fuel region. Among the neutrons generated by the fission reaction generated in the fuel assembly loaded in the core fuel region, the neutrons leaking from the core fuel region are U-238 in each fuel rod of the blanket fuel assembly loaded in the blanket fuel region. To be absorbed. As a result, Pu-239 which is a fissile nuclide is newly generated in each fuel rod of the blanket fuel assembly.

また、高速増殖炉の起動時、停止時及び原子炉出力の調節時には、制御棒が用いられる。制御棒は、炭化ホウ素(BC)ペレットをステンレス製の被覆管に封入した複数の中性子吸収棒を有し、これらの中性子吸収棒を、内側炉心燃料集合体及び外側炉心燃料集合体と同様に、横断面が正六角形をしたラッパ管に収納されて構成される。制御棒は、主炉停止系及び後備炉停止系の独立した2系統の構成となっており、主炉停止系及び後備炉停止系のいずれか一方のみで高速増殖炉の緊急停止が可能になる。 Control rods are used when the fast breeder reactor is started, stopped, and when the reactor power is adjusted. The control rod has a plurality of neutron absorber rods in which boron carbide (B 4 C) pellets are sealed in a stainless steel cladding tube, and these neutron absorber rods are similar to the inner core fuel assembly and the outer core fuel assembly. The cross section is housed in a trumpet having a regular hexagonal shape. The control rod has two independent systems, the main reactor shutdown system and the after-furnace reactor shutdown system, and the fast breeder reactor can be stopped urgently by either one of the main reactor shutdown system or the after-furnace reactor shutdown system. .

一方、原子炉の使用済燃料の再処理で発生する高レベル放射性廃棄物(HLW:High Level Radioactive Waste)のうち、マイナーアクチニド(MA:Minor Actinide)は超長期間放射能を有しており、このMAをリサイクルして高速炉で核変換することによってHLWの有害度を減らし、かつ減衰速度を増大することにより、地層処分場の負荷を減らし、環境負荷低減をはかる研究が行われている。その中で、高速炉の炉心領域に、MAを含む燃料ピンと中性子減速材ピンより構成される核変換用のターゲット集合体を装荷して核変換効率向上をはかる炉心概念が、K. Fujimura, et al., “Fast Reactor Core Concepts for Minor Actinide Transmutation Using Solid Moderator”, Proceedings of GLOBAL2011, (2011年12月、幕張メッセ)に記載されている。   On the other hand, among high-level radioactive waste (HLW) generated by reprocessing spent fuel in the reactor, minor actinide (MA) has radioactivity for a very long period of time. Recycling this MA and transmuting it in a fast reactor reduces the harmfulness of HLW and increases the decay rate, thereby reducing the load on the geological repository and reducing the environmental burden. Among them, K. Fujimura, et al. Has proposed a core concept for improving transmutation efficiency by loading a target assembly for transmutation composed of fuel pins containing MA and neutron moderator pins into the core region of the fast reactor. al., “Fast Reactor Core Concepts for Minor Actinide Transmutation Using Solid Moderator”, Proceedings of GLOBAL 2011, (December 2011, Makuhari Messe).

平川直弘、岩崎智彦著「原子炉物理入門」、東北大学出版会、pp.279―286、2003年10月30日。Naohiro Hirakawa and Tomohiko Iwasaki, “Introduction to Reactor Physics”, Tohoku University Press, pp. 279-286, October 30, 2003.

K. Fujimura, et al., “Fast Reactor Core Concepts for Minor Actinide Transmutation Using Solid Moderator”, Proceedings of GLOBAL2011, Makuhari, Japan, Dec.11-16, 2011, Paper No. 357422.K. Fujimura, et al., “Fast Reactor Core Concepts for Minor Actinide Transmutation Using Solid Moderator”, Proceedings of GLOBAL2011, Makuhari, Japan, Dec.11-16, 2011, Paper No. 357422.

しかしながら、非特許文献2では、MA核変換用のターゲット集合体の中性子スペクトルが柔らかくなり(中性子の平均エネルギーが低下)、低エネルギーでの中性子吸収断面積がU−238より数倍大きなNp−237やAm−241等のMAを含む燃料ピン内の中性子束が急激に減衰する自己遮蔽効果が顕在化して、MAの核変換効率が低下する可能性がある。   However, in Non-Patent Document 2, the neutron spectrum of the target assembly for MA transmutation becomes soft (the average energy of neutrons decreases), and the neutron absorption cross section at low energy is Np-237 several times larger than U-238. There is a possibility that the transmutation efficiency of MA may be reduced due to the manifestation of the self-shielding effect in which the neutron flux in the fuel pin containing MA such as Am or 241 rapidly attenuates.

本発明は、マイナーアクチニド等の長寿命放射性廃棄物の核変換効率を向上可能な核変換用集合体及びそれを用いた高速炉原子力発電システムを提供する。   The present invention provides a transmutation assembly capable of improving the transmutation efficiency of long-lived radioactive waste such as minor actinides, and a fast reactor nuclear power generation system using the same.

上記課題を解決するため、本発明は、高速炉の炉心に装荷され、長寿命元素を含む燃料ピンと中性子減速材を含む減速材ピンを複数束ねてラッパ管に収容してなる核変換用集合体であって、核変換用集合体の中心に向かうに従い前記燃料ピンに充填された長寿命元素の燃料要素の断面積が小さくなるよう複数の燃料ピンを配置することを特徴とする。   In order to solve the above-described problems, the present invention provides a transmutation assembly loaded in a trumpet tube, which is loaded on a core of a fast reactor and bundles a plurality of moderator pins including a fuel pin containing a long-life element and a neutron moderator. A plurality of fuel pins are arranged so that the cross-sectional area of the long-life element fuel element filled in the fuel pins decreases toward the center of the nuclear transmutation assembly.

本発明によれば、マイナーアクチニド等の長寿命放射性廃棄物の核変換効率を向上可能な核変換用集合体及びそれを用いた高速炉原子力発電システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the assembly for transmutation which can improve the transmutation efficiency of long-lived radioactive wastes, such as a minor actinide, and a fast reactor nuclear power generation system using the same can be provided.

これにより、マイナーアクチニド(MA)等の長寿命放射性廃棄物の核変換率を向上でき、地層処分される高レベル廃棄物の有害度減衰期間を数百年程度に短縮され環境負荷低減がはかれる。   As a result, the transmutation rate of long-lived radioactive waste such as minor actinides (MA) can be improved, the harmfulness decay period of high-level waste disposed of in geological formation is shortened to several hundred years, and the environmental load can be reduced.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施例に係る核変換用集合体と、それを装荷する高速炉の炉心の横断面図である。It is a transverse cross section of the core for transmutation concerning one example of the present invention, and the core of the fast reactor which loads it. 本発明の実施例に係る核変換用集合体を用いた高速炉原子力発電システムの全体構成図である。1 is an overall configuration diagram of a fast reactor nuclear power generation system using a nuclear transmutation assembly according to an embodiment of the present invention. 本発明の一実施例に係る核変換用集合体と、それを装荷する高速炉の炉心の横断面図である。It is a transverse cross section of the core for transmutation concerning one example of the present invention, and the core of the fast reactor which loads it. 本発明の一実施例に係る核変換用集合体の横断面図である。It is a cross-sectional view of the assembly for transmutation which concerns on one Example of this invention. 比較例であるケース1の核変換用集合体横断面図と、Am241およびAm243の原子数密度の燃焼変化を示す図である。FIG. 4 is a transverse cross-sectional view of a nuclear transmutation assembly in case 1 which is a comparative example, and a diagram showing a combustion change in the atomic number density of Am241 and Am243. 比較例であるケース2の核変換用集合体横断面図と、Am241およびAm243の原子数密度の燃焼変化を示す図である。It is a cross-sectional view of the assembly for transmutation of Case 2 as a comparative example, and a diagram showing the combustion change in the atomic number density of Am241 and Am243. ケース3の核変換用集合体横断面図と、Am241およびAm243の原子数密度の燃焼変化を示す図である。FIG. 4 is a transverse cross-sectional view of the nuclear transmutation assembly in case 3 and a diagram showing combustion changes in the atomic number density of Am241 and Am243. 本発明の一実施例に係る核変換用集合体の横断面図と核変換用集合体近傍の半径方向出力分布図である。It is a cross-sectional view of the assembly for transmutation concerning one Example of this invention, and the radial direction output distribution map of the assembly for transmutation. 本発明の一実施例に係る核変換用集合体を炉心燃料領域と放射線遮蔽体領域の間に装荷した高速炉炉心の横断面図である。1 is a cross-sectional view of a fast reactor core in which a transmutation assembly according to an embodiment of the present invention is loaded between a core fuel region and a radiation shield region.

本発明の高速炉原子力発電システムは、図2に示されるように、原子炉容器21、原子炉容器21内に収納された核分裂性物質を含む炉心22、原子炉容器21から一次冷却系配管23を介して順に接続された中間熱交換器24及び一次主循環ポンプ25、中間熱交換器24より二次冷却系配管26を介して順に接続された蒸気発生器28及び二次主循環ポンプ27を有する。また、蒸気発生器28にて発生した蒸気を高圧タービン30a及び低圧タービン30bに送る主蒸気系配管29a、高圧タービン30a及び低圧タービン30bを経由した後の蒸気を凝縮して水に戻す復水器32、復水器32にて凝縮した水を蒸気発生器28に戻す給復水系配管29b、高圧タービン30a及び低圧タービン30bの軸に連結された発電機31、復水器32の下流側で給復水系配管29bに連結された給水ポンプ33及び給水加熱器34とから構成されている。   As shown in FIG. 2, the fast reactor nuclear power generation system of the present invention includes a reactor vessel 21, a core 22 containing a fissile material housed in the reactor vessel 21, and a primary cooling system pipe 23 from the reactor vessel 21. The intermediate heat exchanger 24 and the primary main circulation pump 25 connected in order via the intermediate heat exchanger 24, the steam generator 28 and the secondary main circulation pump 27 connected in order from the intermediate heat exchanger 24 via the secondary cooling system pipe 26 Have. Further, a main steam system pipe 29a that sends the steam generated by the steam generator 28 to the high-pressure turbine 30a and the low-pressure turbine 30b, a condenser that condenses the steam after passing through the high-pressure turbine 30a and the low-pressure turbine 30b and returns it to water. 32, a water supply condensate system pipe 29b for returning the water condensed in the condenser 32 to the steam generator 28, a generator 31 connected to the shafts of the high pressure turbine 30a and the low pressure turbine 30b, and a downstream side of the condenser 32 The feed water pump 33 and the feed water heater 34 are connected to the condensate system pipe 29b.

そして、本発明の高速炉原子力発電システムでは、炉心22にて加熱された一次系冷却材(例えば、液体ナトリウム)を中間熱交換器24に通して二次系冷却材(例えば、液体ナトリウム)を加熱し、さらに二次系冷却材を蒸気発生器28に通して主蒸気系配管29aに蒸気を発生させ、この蒸気を高圧タービン30a及び低圧タービン30bに導いて、発電機31により発電を行う。発電に使用された蒸気は、沸騰水型(BWR)又は加圧水型(PWR)軽水炉原子力発電システムと同様に、復水器32で凝縮されて水となり、その後、給水ポンプ33及び給水加熱器34を通ってそれぞれ加熱及び昇圧され、蒸気発生器28に給水される。   In the fast reactor nuclear power generation system of the present invention, the primary system coolant (for example, liquid sodium) heated in the core 22 is passed through the intermediate heat exchanger 24 to provide the secondary system coolant (for example, liquid sodium). Then, the secondary system coolant is passed through the steam generator 28 to generate steam in the main steam system pipe 29a. The steam is guided to the high-pressure turbine 30a and the low-pressure turbine 30b, and the generator 31 generates power. The steam used for power generation is condensed in the condenser 32 to become water in the same manner as in the boiling water type (BWR) or pressurized water type (PWR) light water reactor nuclear power generation system, and then the feed water pump 33 and the feed water heater 34 are supplied. The water is heated and pressurized through the steam generator 28 and supplied to the steam generator 28.

炉心22には、後述する複数の炉心燃料集合体、制御棒及び核変換用集合体が収容されている。炉心22を収納する原子炉容器21内は一次冷却材で満たされ、一次冷却材は、炉心22の下部より炉心22内に入り炉心燃料集合体及び核変換用集合体に沿って上昇し、一次主循環ポンプ25により原子炉容器21の外部に設けられた中間熱交換器24へと一次冷却配管23を介して流入する。これによりループ型の高速炉を構成している。なお、本明細書ではループ型の高速炉を例に説明するが、これに限られず、原子炉容器21、一次主循環ポンプ25及び中間熱交換器24を1つのタンクに収容するタンク型の高速炉にも適用できる。   The core 22 accommodates a plurality of core fuel assemblies, control rods, and a transmutation assembly which will be described later. The reactor vessel 21 containing the core 22 is filled with the primary coolant, and the primary coolant enters the core 22 from the lower part of the core 22 and rises along the core fuel assembly and the transmutation assembly. The main circulation pump 25 flows into the intermediate heat exchanger 24 provided outside the reactor vessel 21 through the primary cooling pipe 23. This constitutes a loop type fast reactor. In this specification, a loop type fast reactor will be described as an example. However, the present invention is not limited to this, and a tank type fast reactor in which the reactor vessel 21, the primary main circulation pump 25, and the intermediate heat exchanger 24 are accommodated in one tank. It can also be applied to furnaces.

炉心22は、内側炉心領域1、外側炉心領域2及び外側炉心領域2を囲む放射線遮蔽体領域からなり、内側炉心領域1及び外側炉心領域2、または外側炉心領域2と放射線遮蔽体領域との間に複数の核変換用集合体を装荷している。   The core 22 includes a radiation shield region surrounding the inner core region 1, the outer core region 2, and the outer core region 2, and is located between the inner core region 1 and the outer core region 2, or between the outer core region 2 and the radiation shield region. Are loaded with multiple transmutation assemblies.

核変換用集合体は、長寿命元素が充填された燃料ピンと中性子減速材が充填された減速材ピンを複数束ねてラッパ管に収容しており、核変換用集合体の中心に向かうに従い充填された長寿命元素の燃料要素の断面積が小さくなるよう、複数の燃料ピンが配置されている。ここで、燃料ピンに充填される長寿命元素として、原子炉の使用済燃料から取り出された、テクネチウム99(Tc−99)、ヨウ素99(I−99)等の長寿命の核分裂生成物(FP:Fission Product)、また、使用済燃料の再処理で発生する高レベル放射性廃棄物(HLW)に含まれる長寿命元素のうち、再処理により分離・回収されるネプチニウム(Np)、アメリシウム(Am)、キュリウム(Cm)等のマイナーアクチニド(MA:Minor Actinide)を用いる。また、中性子減速材として、例えば、水素化ジルコニウム(Zr−H)を用いている。   The transmutation assembly includes a fuel tube filled with a long-life element and a moderator pin filled with a neutron moderator bundled in a trumpet tube and is packed toward the center of the transmutation assembly. A plurality of fuel pins are arranged so that the cross-sectional area of the long-lived element fuel element is reduced. Here, long-lived fission products (FP) such as technetium 99 (Tc-99) and iodine 99 (I-99) extracted from the spent fuel of the nuclear reactor as long-life elements filled in the fuel pins. : Nationium (Np) and Americium (Am) separated and recovered by reprocessing among long-lived elements contained in high-level radioactive waste (HLW) generated by reprocessing spent fuel Minor Actinide (MA) such as curium (Cm) is used. Further, for example, zirconium hydride (Zr—H) is used as the neutron moderator.

本発明では、核変換用集合体の中心に向かうに従い充填された長寿命元素の燃料要素の断面積が小さくなるよう燃料ピンを配置することにより、自己遮蔽効果による核変換用集合体内部での核変換率の低下を抑制し、MA等の長寿命元素の核変換率を向上することができる。これにより、地層処分される高レベル放射性廃棄物の有害度減衰期間を200万年から数百年程度へと短縮することが可能となる。   In the present invention, the fuel pin is arranged so that the cross-sectional area of the long-lived element fuel element filled becomes smaller toward the center of the transmutation assembly. A decrease in the nuclear conversion rate can be suppressed, and the nuclear conversion rate of long-lived elements such as MA can be improved. This makes it possible to shorten the harmfulness decay period of high-level radioactive waste to be disposed of from 2 million years to several hundred years.

以下、図面を用いて本発明の核変換用集合体を装荷する高速炉の炉心について詳細に説明する。   Hereinafter, the core of a fast reactor loaded with the nuclear transmutation assembly of the present invention will be described in detail with reference to the drawings.

図1に本発明の実施例に係る核変換用集合体を装荷する高速炉の炉心を示す。図1(a)に示されるように、本実施例の高速炉の炉心22は、高速炉の原子炉容器22内に配置され、内側炉心領域1、内側炉心領域1を取り囲む外側炉心領域2を有する炉心燃料領域、第1放射線遮蔽体領域3及び第2放射線遮蔽体領域4を有する。炉心22の半径方向において、第1放射線遮蔽体領域3が炉心領域を取り囲んで炉心燃料領域と隣り合っており、第2放射線遮蔽体領域4が第1放射線遮蔽体領域3を取り囲んでいる。この炉心22は半径方向及び軸方向(図1(a)における図面に対し奥行方向)においてブランケット燃料を配置していない。内側炉心領域1には、原子炉の起動時、停止時及び出力の調節時に用いる制御棒10が配されている。制御棒10は、炭化ホウ素(BC)ペレットをステンレス製の被覆管に封入した複数の中性子吸収棒を有し、これらの中性子吸収棒を横断面が正六角形をしたラッパ管に収納して構成される。制御棒10は、主炉停止系及び後備炉停止系の独立した2系統の構成となっているが、図1(a)ではこれらを区別せず記載している。 FIG. 1 shows a core of a fast reactor in which a transmutation assembly according to an embodiment of the present invention is loaded. As shown in FIG. 1 (a), the core 22 of the fast reactor according to the present embodiment is disposed in the reactor vessel 22 of the fast reactor, and includes an inner core region 1 and an outer core region 2 surrounding the inner core region 1. It has a core fuel region, a first radiation shield region 3 and a second radiation shield region 4. In the radial direction of the core 22, the first radiation shield region 3 surrounds the core region and is adjacent to the core fuel region, and the second radiation shield region 4 surrounds the first radiation shield region 3. The core 22 has no blanket fuel disposed in the radial direction and the axial direction (the depth direction with respect to the drawing in FIG. 1A). The inner core region 1 is provided with control rods 10 that are used when the reactor is started, stopped, and when the output is adjusted. The control rod 10 has a plurality of neutron absorber rods in which boron carbide (B 4 C) pellets are sealed in a stainless steel cladding tube, and these neutron absorber rods are accommodated in a trumpet tube having a regular hexagonal cross section. Composed. The control rod 10 has two independent systems of a main furnace stop system and a post-furnace stop system, but these are shown in FIG. 1A without distinction.

炉心22が適用される高速炉は、冷却材として液体ナトリウムを用いる。液体ナトリウムは原子炉容器21内に充填されている。炉心22の炉心燃料領域(内側炉心領域1及び外側炉心領域2を含む)には、プルトニウム酸化物(PuO2)及び劣化ウランの酸化物(UO2)を混合した混合酸化物(以下、MOX(Mixed Oxide)燃料という)を含む複数の炉心燃料集合体が装荷されている。 The fast reactor to which the core 22 is applied uses liquid sodium as a coolant. Liquid sodium is filled in the reactor vessel 21. In the core fuel region (including the inner core region 1 and the outer core region 2) of the core 22, a mixed oxide (hereinafter referred to as MOX (hereinafter referred to as MOX)) in which plutonium oxide (PuO 2 ) and deteriorated uranium oxide (UO 2 ) are mixed. A plurality of core fuel assemblies including a mixed oxide) are loaded.

本実施例では、上述のマイナーアクチニド(Minor Actinide, MA)を含むMAピンを混入した核変換用集合体5が装荷されている。非特許文献2で示されるように、高速炉の炉心領域に、MAを含むピンと中性子減速材である水素化ジルコニウム(Zr−H)を含むピンとで構成されるMA核変換用集合体を装荷することによって、MAの核変換率や核変換量を増加できる。本発明では、中性子減速材の装荷によって、特に核変換用集合体の中央部程顕著となる、MAピンにおける自己遮蔽効果を緩和するため、長寿命元素であるMAを含む燃料ピンの一部を中空ピンとし、核変換用集合体中心に近い程、中空ピンの口径を大きくすることによって、MA核変換率を増大して、マイナーアクチニド(MA)等の長寿命放射性廃棄物の核変換率を向上でき、地層処分される高レベル廃棄物の有害度減衰期間を200万年から数百年程度へと短縮され環境負荷低減がはかれる。   In this embodiment, a transmutation assembly 5 in which an MA pin containing the above-mentioned minor actinide (MA) is mixed is loaded. As shown in Non-Patent Document 2, an MA transmutation assembly comprising a pin containing MA and a pin containing zirconium hydride (Zr-H) as a neutron moderator is loaded in the core region of the fast reactor. As a result, the transmutation rate and transmutation amount of MA can be increased. In the present invention, in order to alleviate the self-shielding effect in the MA pin, which is particularly noticeable in the central portion of the transmutation assembly by loading the neutron moderator, a part of the fuel pin containing MA, which is a long-lived element, is used. The closer to the center of the nuclear transmutation assembly, the larger the hollow pin diameter, the greater the MA transmutation rate, and the transmutation rate of long-lived radioactive waste such as minor actinides (MA). It can be improved, and the harmfulness decay period of high-level waste to be disposed of from geological disposal is shortened from 2 million years to several hundred years, thereby reducing the environmental load.

核変換用集合体5は、長寿命元素としてのMAが充填された円柱状の燃料ピン6、7、8と水素化ジルコニウム(Zr−H)等の中性子減速材が充填された減速材ピン9を複数束ねてラッパ管11に収容することで構成されている。燃料ピン6、7、8の内部には円筒状の中空部が形成されており、核変換用集合体5内でラッパ管11に近い位置、すなわち、核変換用集合体5の外周部に配置する燃料ピン6の中空部の口径をd1とし、核変換用集合体5内の略中心部に配置する燃料ピン8の中空部の口径をd3とし、核変換用集合体5の中心部からの距離が燃料ピン6と燃料ピン8の間に配置される燃料ピン7の中空部の口径をd2とした時に、d1≦d2≦d3の関係が成り立つよう燃料ピン6、7、8を配置する。すなわち、核変換用集合体5の中心に向かうに従い中空部の口径が大となるよう燃料ピンを配置している。   The transmutation assembly 5 includes cylindrical fuel pins 6, 7, 8 filled with MA as a long-life element, and a moderator pin 9 filled with a neutron moderator such as zirconium hydride (Zr—H). Are bundled and accommodated in the trumpet tube 11. A cylindrical hollow portion is formed inside the fuel pins 6, 7, and 8, and is disposed in the transmutation assembly 5 at a position close to the trumpet tube 11, that is, at the outer periphery of the transmutation assembly 5. The diameter of the hollow portion of the fuel pin 6 is d1, and the diameter of the hollow portion of the fuel pin 8 disposed at the substantially central portion in the nuclear conversion assembly 5 is d3. The fuel pins 6, 7, and 8 are arranged so that the relationship of d 1 ≦ d 2 ≦ d 3 is established, where d 2 is the diameter of the hollow portion of the fuel pin 7 that is disposed between the fuel pin 6 and the fuel pin 8. That is, the fuel pins are arranged so that the diameter of the hollow portion increases toward the center of the transmutation assembly 5.

連続エネルギーモンテカルロ法コードによる燃焼計算を用いて次の3ケースの解析を実施した。ケース1の核変換用集合体45として、図5(a)に示す(内部の構造は省略して1/3のみ示した)通り、ラッパ管11内に、10wt%AmO−UOの組成を有するMA酸化物ピン41のみを91本配置し、各MA酸化物ピン41を中実の円筒形状としその外径を同一としている。また、ケース2の核変換用集合体55として、図6(a)に示す通り、ラッパ管11内に、10wt%AmO−UOの組成を有するMA酸化物ピン41と水素化ジルコニウム(Zr−H)が充填された減速材ピン9を配置し、各MA酸化物ピン41を43本配置し、減速材ピン9を中実の円筒形状とし48本配置している。また、ケース3の核変換用集合体65として、図7(a)に示す通り、ラッパ管11内に、10wt%AmO−UOの組成を有するMA酸化物ピン61、62と水素化ジルコニウム(Zr−H)が充填された減速材ピン9を配置している。MA酸化物ピン61は、中実の円筒形状を有し、核変換用集合体65の外周部側に24本配置され、MA酸化物ピン62は、その内部に円筒状の中空部を備え核変換用集合体65の中心側に19本配置している。MA酸化物ピン62のペレットの中空面積割合を50%としている。すなわち、核変換集合体65の外周側に配置されるMA酸化物ピン61に対し中心側に配置されるMA酸化物ピン62の燃料要素の断面積を50%としている。新燃料に含まれるAmの同位体原子数割合は、Am−241/Am−243=80/20[%]である。 The following three cases were analyzed using combustion calculation with a continuous energy Monte Carlo code. As shown in FIG. 5A (only the inner structure is omitted and only 1/3 is shown) as the transmutation assembly 45 of case 1, the composition of 10 wt% AmO 2 -UO 2 is formed in the trumpet 11. Only 91 MA oxide pins 41 having the same shape are arranged, and each MA oxide pin 41 has a solid cylindrical shape and the same outer diameter. Further, as the transmutation assembly 55 of case 2, as shown in FIG. 6A, the MA oxide pin 41 having a composition of 10 wt% AmO 2 -UO 2 and zirconium hydride (Zr) The moderator pins 9 filled with -H) are arranged, 43 pieces of each MA oxide pin 41 are arranged, and the moderator pins 9 are arranged in a solid cylindrical shape and 48 pieces are arranged. Further, as the transmutation assembly 65 of the case 3, as shown in FIG. 7 (a), MA oxide pins 61 and 62 having a composition of 10 wt% AmO 2 -UO 2 and zirconium hydride in the trumpet tube 11 A moderator pin 9 filled with (Zr-H) is disposed. The MA oxide pins 61 have a solid cylindrical shape and are arranged on the outer peripheral side of the nuclear transmutation assembly 65, and the MA oxide pins 62 have a cylindrical hollow portion therein and a core. Nineteen are arranged on the center side of the conversion assembly 65. The hollow area ratio of the pellets of the MA oxide pin 62 is 50%. That is, the cross-sectional area of the fuel element of the MA oxide pin 62 disposed on the center side with respect to the MA oxide pin 61 disposed on the outer peripheral side of the transmutation assembly 65 is 50%. The ratio of the number of isotope atoms of Am contained in the new fuel is Am-241 / Am-243 = 80/20 [%].

Figure 2015064261
Figure 2015064261

ケース1の解析結果のうち、Am−241とAm−243の原子数密度の1サイクル(600日)燃焼による変化を図5(b)に示す。図5(b)において縦軸に原子数密度[×10-24個/cm3]、横軸に燃焼日数を示し、グラフ44、46はそれぞれ核変換用集合体45における中心位置および中心から径方向外周側に向かい4列目の位置のMA酸化物ピン41(中実ピン)におけるAm−241の原子数密度を示している。また、グラフ47、48はそれぞれ核変換用集合体45における中心位置および中心から径方向外周側へ4列目の位置のMA酸化物ピン41(中実ピン)におけるAm−243の原子数密度を示している。図5(b)より、核変換用集合体45内の位置の違いによるMA核種の燃焼変化の違いはないことが分かる。 Among the analysis results of Case 1, FIG. 5B shows changes in the atomic number densities of Am-241 and Am-243 due to one cycle (600 days) combustion. In FIG. 5 (b), the vertical axis represents the atomic number density [× 10 −24 / cm 3 ], the horizontal axis represents the number of days of combustion, and the graphs 44 and 46 represent the center position and diameter from the center in the transmutation assembly 45, respectively. The atomic number density of Am-241 in the MA oxide pin 41 (solid pin) at the position of the fourth row facing the outer periphery in the direction is shown. Graphs 47 and 48 respectively show the atomic position density of Am-243 in the MA oxide pin 41 (solid pin) at the position of the fourth row from the center position to the radially outer peripheral side from the center in the transmutation assembly 45. Show. From FIG. 5 (b), it can be seen that there is no difference in the combustion change of the MA nuclide due to the difference in position in the nuclear transmutation assembly 45.

なお、式(1)で定義される、1サイクルの燃焼に伴うMA核種の核変換率は、Am−241が約39%、Am−243が約32%である。
MA核種の核変換率=(新燃料の原子数密度−600日燃焼時の原子数密度)/新燃料の原子数密度×100 [%] ・・・(1)
また、ケース2の解析結果のうち、Am−241とAm−243の原子数密度の1サイクル(600日)燃焼による変化を図6(b)に示す。図6(b)においてグラフ54、56はそれぞれ核変換用集合体55における中心位置および中心から径方向外周側に向かい4列目の位置のMA酸化物ピン41(中実ピン)におけるAm−241の原子数密度を示している。また、グラフ57、58はそれぞれ核変換用集合体55における中心位置および中心から径方向外周側に向かい4列目の位置のMA酸化物ピン41(中実ピン)におけるAm−243の原子数密度を示している。式(1)に基づくAm−241の核変換率は、中心に配置されたMA酸化物ピン41(中実ピン)が70%、中心から径方向外周側へ向かい4列目に配置されたMA酸化物ピン41が80%である。同様にAm−243の核変換率は、中心に配置された酸化物ピン41が57%、中心から径方向外周側へ向かい4列目に配置されたMA酸化物41が63%である。以上から、核変換用集合体55の中心に近い位置程、MA核種の核変換率が小さくなっていることが分かる。これは、核変換用集合体55には、水素化ジルコニウム(Zr−H)が充填された減速材ピン9の本数が約50%装荷され、核変換用集合体55の中心に近づくほど中性子スペクトルが柔らかくなる(中性子スペクトルの平均エネルギーが小さくなる)ことに起因する。すなわち、例え、核変換用集合体55の中心に配置されたMA酸化物ピン41と中心から径方向外周側へ向かい4列目に配置されたMA酸化物ピン41の外径が同一であったとしても、中心に配置されたMA酸化物ピン41に到達する中性子の平均エネルギーが小さいため、中心に配置されたMA酸化物ピン41の自己遮蔽効果がより大きくなることによる。
In addition, the transmutation rate of the MA nuclide associated with one cycle of combustion defined by the formula (1) is about 39% for Am-241 and about 32% for Am-243.
Nuclear conversion rate of MA nuclide = (atomic density of new fuel-atomic number density at 600 days combustion) / atomic density of new fuel x 100 [%] (1)
Moreover, the change by 1 cycle (600 days) combustion of the atomic number density of Am-241 and Am-243 among the analysis results of case 2 is shown in FIG.6 (b). In FIG. 6B, graphs 54 and 56 respectively show the center position in the transmutation assembly 55 and Am-241 in the MA oxide pin 41 (solid pin) in the fourth row from the center toward the radially outer peripheral side. The atomic number density of is shown. Graphs 57 and 58 respectively show the center position in the transmutation assembly 55 and the atomic density of Am-243 in the MA oxide pin 41 (solid pin) in the fourth row from the center toward the radially outer side. Is shown. The transmutation rate of Am-241 based on the formula (1) is 70% of the MA oxide pin 41 (solid pin) arranged in the center, and the MA arranged in the fourth row from the center to the radially outer side. The oxide pin 41 is 80%. Similarly, the transmutation rate of Am-243 is 57% for the oxide pin 41 disposed at the center and 63% for the MA oxide 41 disposed in the fourth row from the center toward the radially outer side. From the above, it can be seen that the nearer the center of the nuclear transmutation assembly 55, the smaller the transmutation rate of the MA nuclide. This is because the transmutation assembly 55 is loaded with about 50% of the moderator pins 9 filled with zirconium hydride (Zr—H), and the neutron spectrum becomes closer to the center of the transmutation assembly 55. Is caused by softening (the average energy of the neutron spectrum becomes small). That is, for example, the outer diameters of the MA oxide pins 41 arranged in the center of the transmutation assembly 55 and the MA oxide pins 41 arranged in the fourth row from the center toward the radially outer side are the same. However, since the average energy of the neutrons reaching the MA oxide pin 41 arranged at the center is small, the self-shielding effect of the MA oxide pin 41 arranged at the center becomes larger.

ケース3は、本実施例になる核変換用集合体を簡略化した解析モデルである。解析結果のうち、Am−241とAm−243の原子数密度の1サイクル(600日)燃焼による変化を図7(b)に示す。図7(b)において、グラフ64は核変換用集合体65における中心位置に配置されたMA酸化物ピン62(中空ピン)におけるAm−241の原子数密度を示し、グラフ66は中心から径方向外周側へ向かい4列目に配置されたMA酸化物ピン61(中実ピン)におけるAm−241の原子数密度を示している。また、グラフ67は中心位置に配置されたMA酸化物ピン62(中空ピン)におけるAm−243の原子数密度を示し、グラフ68は中心から径方向外周側へ向かい4列目に配置されたMA酸化物ピン61(中実ピン)におけるAm−243の原子数密度を示している。式(1)に基づくAm−241の核変換率は、中心に配置されたMA酸化物ピン62(中空ピン)が79%、中心から径方向外周側へ4列目に配置されたMA酸化物ピン61(中実ピン)が82%である。同様にAm−243の核変換率は、中心に配置されたMA酸化物ピン62(中空ピン)が60%、中心から径方向外周側へ向かい4列目に配置されたMA酸化物ピン61(中実ピン)が64%である。以上から、核変換用集合体65の中心に近い位置と周辺に近い位置の違いによるMA核種の核変換率の差異はケース2の核変換用集合体55の場合より小さくなっており、かつAm−241、Am−243いずれも増大していることが分かる。これは、核変換用集合体65中心に近いMA酸化物ピン62を中空ピンとすることで、MA酸化物ピン62の自己遮蔽効果を低減したことに起因する。   Case 3 is an analysis model obtained by simplifying the transmutation assembly according to the present embodiment. Among the analysis results, changes in the atomic number densities of Am-241 and Am-243 due to one cycle (600 days) combustion are shown in FIG. In FIG. 7B, a graph 64 shows the atom number density of Am-241 in the MA oxide pin 62 (hollow pin) arranged at the center position in the transmutation assembly 65, and the graph 66 shows a radial direction from the center. The atomic number density of Am-241 in the MA oxide pin 61 (solid pin) arranged in the fourth row toward the outer peripheral side is shown. Graph 67 shows the atomic number density of Am-243 in the MA oxide pin 62 (hollow pin) arranged at the center position, and graph 68 shows the MA arranged in the fourth row from the center toward the radially outer peripheral side. The atomic number density of Am-243 in the oxide pin 61 (solid pin) is shown. The transmutation rate of Am-241 based on the formula (1) is 79% of the MA oxide pin 62 (hollow pin) arranged in the center, and the MA oxide arranged in the fourth row from the center to the radially outer side. The pin 61 (solid pin) is 82%. Similarly, the transmutation rate of Am-243 is 60% for the MA oxide pin 62 (hollow pin) disposed in the center, and the MA oxide pin 61 (in the fourth row from the center toward the radially outer side). Solid pin) is 64%. From the above, the difference in the transmutation rate of the MA nuclide due to the difference between the position near the center of the transmutation assembly 65 and the position near the periphery is smaller than that in the transmutation assembly 55 of Case 2, and Am. It can be seen that both -241 and Am-243 are increased. This is because the MA oxide pin 62 close to the center of the transmutation assembly 65 is a hollow pin, thereby reducing the self-shielding effect of the MA oxide pin 62.

本実施例によれば、MA等の長寿命元素が充填され、その中心に円筒形状の中空部を備えた燃料ピン6、7、8の中空部の口径を、核変換用集合体5の中心へ向かうに従い大きくすることで、自己遮蔽効果が低減され、MA等の長寿命元素の核変換率を向上することができる。これにより、地層処分される高レベル放射性廃棄物の有害度減衰期間を200万年から数百年程度へと短縮することが可能となる。   According to the present embodiment, the diameters of the hollow portions of the fuel pins 6, 7, 8, which are filled with a long-lived element such as MA and have a cylindrical hollow portion at the center, are set to the center of the transmutation assembly 5. By enlarging as it goes, the self-shielding effect is reduced, and the transmutation rate of long-lived elements such as MA can be improved. This makes it possible to shorten the harmfulness decay period of high-level radioactive waste to be disposed of from 2 million years to several hundred years.

図3に本実施例に係る核変換用集合体を装荷する高速炉の炉心を示す。図1と同様の構成要素に同一の符号を付している。実施例1では、長寿命元素としてのMAが充填された円柱状の燃料ピン6、7、8の内部に円筒状の中空部を形成し、中空部の口径を、核変換用集合体5の中心に向かうに従い大とする構成としたが、本実施例では、燃料ピンをMA等の長寿命元素が充填された中実の円筒形状とし、核変換用集合体5内での燃料ピンの配置位置に応じて、燃料ピンの外径を異なるようにした点が実施例1と異なる。   FIG. 3 shows the core of a fast reactor in which the transmutation assembly according to this embodiment is loaded. Constituent elements similar to those in FIG. In Example 1, a cylindrical hollow portion is formed inside columnar fuel pins 6, 7, 8 filled with MA as a long-life element, and the diameter of the hollow portion is changed to that of the transmutation assembly 5. In the present embodiment, the fuel pin has a solid cylindrical shape filled with a long-life element such as MA, and the fuel pin is disposed in the transmutation assembly 5. The difference from the first embodiment is that the outer diameter of the fuel pin is made different depending on the position.

本実施例においては、図3に示す高速炉の炉心22は、実施例1の高速炉の炉心22と同様である。   In the present embodiment, the fast reactor core 22 shown in FIG. 3 is the same as the fast reactor core 22 of the first embodiment.

本実施例では、炉心22に装荷する核変換用集合体5は、長寿命元素としてのMAが充填された中実の燃料ピン16、17、18と水素化ジルコニウム(Zr−H)等の中性子減速材が充填された減速材ピン9を複数束ねてラッパ管11に収容することで構成されている。核変換用集合体5内の略中心部に配置する燃料ピン18の直径(外径)をD3、核変換用集合体5の外周部(ラッパ管11に最も近い位置)に配置する燃料ピン16の直径をD1、それらの間の位置に配置する燃料ピン17の直径をD2とした場合に、D1≧D2≧D3の関係が成り立つよう燃料ピン16、17、18を配置している。   In this embodiment, the transmutation assembly 5 loaded on the core 22 is made of solid fuel pins 16, 17, 18 filled with MA as a long-life element and neutrons such as zirconium hydride (Zr-H). It is configured by bundling a plurality of moderator pins 9 filled with a moderator and accommodating them in a trumpet tube 11. The diameter (outer diameter) of the fuel pin 18 disposed substantially at the center in the transmutation assembly 5 is D3, and the fuel pin 16 disposed in the outer peripheral portion of the transmutation assembly 5 (position closest to the trumpet tube 11). The fuel pins 16, 17, and 18 are arranged so that the relationship of D 1 ≧ D 2 ≧ D 3 is established, where D 1 is the diameter of the fuel pin 17 and D 2 is the diameter of the fuel pin 17 disposed between them.

本実施例によれば、核変換用集合体5内の中心に向かうに従い燃料ピンの直径(外径)が小さくなるよう、燃料ピンを配置することにより、核変換用集合体5の中心部側の燃料ピンの自己遮蔽効果を低減できる。これにより、MA等の長寿命元素の核変換率を向上でき、地層処分される高レベル放射性廃棄物の有害度減衰期間を200万年から数百年程度へと短縮することが可能となる。   According to the present embodiment, the fuel pin is arranged so that the diameter (outer diameter) of the fuel pin becomes smaller toward the center in the transmutation assembly 5, so that the center side of the transmutation assembly 5 is arranged. The self-shielding effect of the fuel pin can be reduced. As a result, the transmutation rate of long-lived elements such as MA can be improved, and the harmfulness decay period of high-level radioactive waste to be geologically disposed can be shortened from 2 million years to several hundred years.

また、本実施例においては、実施例1に示した燃料ピンを中空にする工程が不要となり、燃料製造工程を簡素化できる。但し、通常の高速炉の燃料集合体において、燃料ピンの間隔を保持するために使用されるワイヤスペーサの利用が困難となるため、外径の異なる燃料ピンの間隔を保持できるようグリッドスペーサを使用した核変換用集合体構造とする必要がある。   Further, in this embodiment, the process of making the fuel pin shown in the first embodiment hollow is not necessary, and the fuel manufacturing process can be simplified. However, in a normal fast reactor fuel assembly, it is difficult to use the wire spacers used to maintain the space between the fuel pins. Therefore, a grid spacer is used so that the space between the fuel pins having different outer diameters can be maintained. It is necessary to make the aggregate structure for transmutation.

図4に本実施例に係る核変換用集合体を示す。図3と同様の構成要素に同一の符号を付している。実施例2においては、核変換用集合体5の略中心部に配置される燃料ピン18が1本であるのに対し、本実施例では、略中心部(中央部)に複数の燃料ピン18を配置する点が異なる。すなわち、核変換用集合体5の略中心部における燃料ピンの配置密度を高くした点が実施例2異なる。   FIG. 4 shows a transmutation assembly according to the present embodiment. The same components as those in FIG. 3 are denoted by the same reference numerals. In the second embodiment, there is one fuel pin 18 arranged at the substantially central portion of the transmutation assembly 5, whereas in this embodiment, a plurality of fuel pins 18 are provided at the substantially central portion (central portion). Is different. That is, the second embodiment is different from the second embodiment in that the arrangement density of the fuel pins in the substantially central portion of the transmutation assembly 5 is increased.

図4に示される長寿命元素としてのMA等が充填された中実の円筒形状の燃料ピン16、17、18の直径(外径)の関係は実施例2と同様である。本実施例では、核変換用集合体5の略中心部に燃料ピン18を3本配することで、核変換用集合体5内の略中心部での配置密度を、外周部付近及び外周部と中央部との間の領域に配置される燃料ピン17,18の配置密度よりも高くしている。   The relationship between the diameters (outer diameters) of the solid cylindrical fuel pins 16, 17, 18 filled with MA or the like as the long-life element shown in FIG. 4 is the same as that of the second embodiment. In the present embodiment, by arranging three fuel pins 18 at the substantially central portion of the nuclear transmutation assembly 5, the arrangement density at the approximate central portion in the transmutation assembly 5 can be determined in the vicinity of the outer peripheral portion and the outer peripheral portion. It is made higher than the arrangement density of the fuel pins 17 and 18 arrange | positioned in the area | region between the center part.

本実施例によれば、実施例2に比べ、核変換用集合体5に装荷できる長寿命元素としてのMA等の核種の重量を増加でき、核変換可能なMAの重量を増加できる。   According to the present embodiment, compared to the second embodiment, the weight of a nuclide such as MA as a long-life element that can be loaded on the nuclear transmutation assembly 5 can be increased, and the weight of the transmutable MA can be increased.

また、本実施例においても、核変換用集合体5の中心部側の燃料ピンの自己遮蔽効果を低減でき、地層処分される高レベル放射性廃棄物の有害度減衰期間を数百年程度に短縮ことが可能となる。   Also in this embodiment, the self-shielding effect of the fuel pin on the center side of the transmutation assembly 5 can be reduced, and the harmfulness decay period of the high-level radioactive waste to be disposed of is shortened to several hundred years. It becomes possible.

図8に核変換用集合体付近におる出力密度及び本実施例の核変換用集合体を示す。本実施例では、核変換用集合体5の外周部付近に燃料ピン6のみを配置する点が実施例1と異なる。   FIG. 8 shows the power density in the vicinity of the transmutation assembly and the transmutation assembly of this example. The present embodiment is different from the first embodiment in that only the fuel pin 6 is arranged near the outer periphery of the transmutation assembly 5.

図8(a)は、中心位置に核変換用集合体5を1体配置し、それを取り囲む位置に炉心燃料集合体を3体配置した場合を想定し2次元RZ体系でモデル化し、縦軸に出力密度[W/cm3]、横軸に中心からの半径方向の距離をとり、中心からの距離に応じた出力密度の分布を示している。図8(a)においてグラフ74は平衡サイクル初期、グラフ75は平衡サイクル末期における半径方向の出力密度の分布を示している。炉心燃料集合体の中で、核変換用集合体に面した位置で、出力密度が局所的に大きくなっている。これは、核変換用集合体に装荷された水素化ジルコニウム(Zr−H)によって減速された中性子が炉心燃料集合体内に漏れ出た際に、炉心燃料集合体におけるPu−239等の核分裂核種の核分裂が促進された結果により生じたものである。すなわち、核変換用集合体から減速された中性子が燃料集合体内に漏れ出ることにより、燃料集合体の核変換用集合体に面する領域での中性子線束が急激に上昇したことに起因する。 FIG. 8 (a) shows a case where a single nuclear transmutation assembly 5 is arranged at the central position and three core fuel assemblies are arranged at positions surrounding it. Shows the output density [W / cm 3 ], the horizontal axis is the distance from the center in the radial direction, and the output density distribution according to the distance from the center is shown. In FIG. 8A, a graph 74 shows the distribution of the power density in the radial direction at the beginning of the equilibrium cycle, and a graph 75 shows the distribution of the power density in the radial direction at the end of the equilibrium cycle. In the core fuel assembly, the power density is locally increased at a position facing the transmutation assembly. This is because when neutrons decelerated by zirconium hydride (Zr-H) loaded in the transmutation assembly leak into the core fuel assembly, fission nuclides such as Pu-239 in the core fuel assembly This is the result of accelerated fission. That is, this is because the neutron beam in the region facing the nuclear transmutation assembly of the fuel assembly suddenly increases due to the neutrons decelerated from the transmutation assembly leaking into the fuel assembly.

この様な局所的な出力ピークを抑性するために、本実施例では、図8(b)に示す核変換用集合体の構造とする。すなわち、ラッパ管11に隣接する最外周位置には長寿命元素としてのMA等が充填された燃料ピン6のみを配置する。燃料ピン6、7、8の中空径の大きさの関係は実施例1と同様である。   In order to suppress such a local output peak, in this embodiment, the structure of the nuclear transmutation assembly shown in FIG. That is, only the fuel pin 6 filled with MA or the like as a long-life element is disposed at the outermost peripheral position adjacent to the trumpet tube 11. The relationship between the hollow diameters of the fuel pins 6, 7, and 8 is the same as that in the first embodiment.

本実施例によれば、隣接する炉心燃料集合体における局所出力ピークの発生を回避しつつ高速炉の炉心に核変換用集合体5を装荷することができるので、実施例1、2の核変換用集合体と比べて、炉心内の装荷位置の自由度が大きく、最適な位置に装荷できるので、核変換率、核変換量を、実施例1、2と比べて増加することができる。   According to the present embodiment, the transmutation assembly 5 can be loaded on the core of the fast reactor while avoiding the occurrence of local power peaks in the adjacent core fuel assemblies. Compared with the assembly for assembly, the degree of freedom of the loading position in the core is greater and can be loaded at the optimum position, so that the transmutation rate and the transmutation amount can be increased as compared with the first and second embodiments.

なお、本実施例では燃料ピン6、7、8を実施例1と同様の中空ピンの構成としたが、これに限られず、実施例2のように中実の円筒形状としてもよい。   In this embodiment, the fuel pins 6, 7, and 8 have the same hollow pin configuration as in the first embodiment. However, the present invention is not limited to this, and a solid cylindrical shape may be used as in the second embodiment.

また、本実施例においても、核変換用集合体5の中心部側の燃料ピンの自己遮蔽効果を低減でき、地層処分される高レベル放射性廃棄物の有害度減衰期間を数百年程度に短縮ことが可能となる。   Also in the present embodiment, the self-shielding effect of the fuel pin on the center side of the transmutation assembly 5 can be reduced, and the harmfulness decay period of the high-level radioactive waste disposed in the geological layer is shortened to several hundred years. It becomes possible.

図9に本実施例に係る燃料集合体を装荷する高速炉の炉心を示す。実施例1から実施例4では、核変換用集合体を高速炉の炉心の内側燃料領域1、外側燃料領域2に配置する構成としたが、本実施例では、核変換用集合体5を外側燃料領域2と放射線遮蔽領域との間に装荷する構成とした点が異なる。   FIG. 9 shows the core of a fast reactor in which the fuel assembly according to this embodiment is loaded. In the first to fourth embodiments, the transmutation assemblies are arranged in the inner fuel region 1 and the outer fuel region 2 of the fast reactor core. However, in this embodiment, the transmutation assembly 5 is disposed outside. The difference is that the fuel region 2 and the radiation shielding region are loaded.

本実施例では、図9(b)に示されるように、実施例1と同様の核変換用集合体5を、外側炉心領域2と放射線遮蔽体領域81の間に装荷する。これによって、中性子減速材が充填された減速材ピン9を含む核変換用集合体5を炉心燃料領域に装荷した場合と比べて、炉心性能や出力分布への影響を小さく抑えつつ、より多くの核変換用集合体5を装荷することができる。   In the present embodiment, as shown in FIG. 9B, the transmutation assembly 5 similar to that of the first embodiment is loaded between the outer core region 2 and the radiation shield region 81. As a result, as compared with the case where the nuclear transmutation assembly 5 including the moderator pin 9 filled with the neutron moderator is loaded in the core fuel region, the influence on the core performance and power distribution is suppressed to a smaller level. The transmutation assembly 5 can be loaded.

なお、本実施例において、外側炉心領域2と放射線遮蔽体領域81の間に装荷する核変換用集合体5を実施例1と同様の構成としたが、これに限られず、上述の実施例2から実施例4のいずれかの核変換用集合体5の構成としてもよい。   In this embodiment, the transmutation assembly 5 loaded between the outer core region 2 and the radiation shield region 81 has the same configuration as that of the first embodiment. However, the present invention is not limited to this. To any one of the transmutation assemblies 5 of the fourth embodiment.

以上に述べた実施例1〜5においては、長寿命元素としてMAを想定したが、余剰Puの削減を目的とした超ウラン元素(TRU;TRans−Uranium)核変換炉の場合のTRUや、高レベル放射性廃棄物である長寿命のTc−99(テクネチウム−99)やI−129(ヨウ素―129)等の核分裂生成物(FP;Fission Product)を核変換の対象としても、同様の効果が得られる。   In Examples 1 to 5 described above, MA is assumed as a long-life element, but TRU in the case of a transuranium element (TRU; TRans-Uranium) transmutation reactor for the purpose of reducing excess Pu, The same effect can be obtained even if fission products (FP) such as Tc-99 (Technetium-99) and I-129 (Iodine-129), which are high-level radioactive wastes, are subjected to transmutation. It is done.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.

1 内側炉心領域
2 外側炉心領域
3 第1放射線遮蔽体領域
4 第2放射線遮蔽体領域
5 核変換用集合体
6、7、8 燃料ピン
9 減速材ピン
10 制御棒
11 ラッパ管
21 原子炉容器
22 炉心
23 一次冷却系配管
24 中間熱交換器
25 一次主循環ポンプ
26 二次冷却系配管
27 二次主循環ポンプ
28 蒸気発生器
29a 主蒸気系配管
29b 給復水系配管
30a 高圧タービン
30b 低圧タービン
31 発電機
32 復水器
33 給水ポンプ
34 給水加熱器
DESCRIPTION OF SYMBOLS 1 Inner core area | region 2 Outer core area | region 3 1st radiation shield body area | region 4 2nd radiation shield body area | region 5 Assembly for transmutation 6, 7, 8 Fuel pin 9 Moderator pin 10 Control rod 11 Trumpet tube 21 Reactor vessel 22 Core 23 Primary cooling system piping 24 Intermediate heat exchanger 25 Primary main circulation pump 26 Secondary cooling system piping 27 Secondary main circulation pump 28 Steam generator 29a Main steam system piping 29b Supply / condensation system piping 30a High pressure turbine 30b Low pressure turbine 31 Power generation Machine 32 condenser 33 feed water pump 34 feed water heater

Claims (10)

高速炉の炉心に装荷され、長寿命元素を含む燃料ピンと中性子減速材を含む減速材ピンを複数束ねてラッパ管に収容してなる核変換用集合体であって、
前記核変換用集合体の中心に向かうに従い前記燃料ピンに充填された長寿命元素の燃料要素の断面積が小さくなるよう前記複数の燃料ピンを配置することを特徴とする核変換用集合体。
A nuclear transmutation assembly loaded in the core of a fast reactor and bundled with a plurality of moderator pins containing a long-life element and a neutron moderator, and contained in a trumpet tube,
The transmutation assembly, wherein the plurality of fuel pins are arranged so that a cross-sectional area of a long-life element fuel element filled in the fuel pin becomes smaller toward the center of the transmutation assembly.
請求項1に記載の核変換用集合体であって、
前記燃料ピンは、内部に長寿命元素が充填され、その中心に円筒状の中空部を備えた形状を有し、
前記核変換用集合体の中心に向かうに従い前記中空部の口径が大となるよう前記複数の燃料ピンを配置することを特徴とする核変換用集合体。
The assembly for transmutation according to claim 1,
The fuel pin is filled with a long-life element inside, and has a shape with a cylindrical hollow portion at the center thereof,
The transmutation assembly, wherein the plurality of fuel pins are arranged so that the diameter of the hollow portion increases toward the center of the transmutation assembly.
請求項1に記載の核変換用集合体であって、
前記燃料ピンは、内部に長寿命元素が充填された中実の円筒形状を有し、
前記核変換用集合体の中心に向かうに従い前記燃料ピンの外径が小さくなるよう、前記複数の燃料ピンを配置することを特徴とする核変換用集合体。
The assembly for transmutation according to claim 1,
The fuel pin has a solid cylindrical shape filled with a long-life element inside,
The transmutation assembly, wherein the plurality of fuel pins are arranged so that an outer diameter of the fuel pin becomes smaller toward a center of the transmutation assembly.
請求項3に記載の核変換用集合体であって、
前記核変換用集合体の中央部における前記燃料ピンの配置密度を、外周部における前記燃料ピンの配置密度よりも高くすることを特徴とする核変換用集合体。
The assembly for transmutation according to claim 3,
A transmutation assembly characterized in that an arrangement density of the fuel pins in a central portion of the transmutation assembly is higher than an arrangement density of the fuel pins in an outer peripheral portion.
請求項2または3に記載の核変換用集合体であって、
前記核変換用集合体の最外周部に前記燃料ピンのみを配置することを特徴とする核変換用集合体。
The assembly for transmutation according to claim 2 or 3,
Only the fuel pins are arranged on the outermost peripheral portion of the nuclear transmutation assembly.
請求項1ないし4のいずれか1項に記載の核変換用集合体であって、
前記燃料ピンに含まれる長寿命元素は、原子炉の使用済燃料から取り出されたテクネチウム、ヨウ素、または再処理により回収されるマイナーアクチニドであることを特徴とする核変換用集合体。
The assembly for transmutation according to any one of claims 1 to 4,
The long-lived element contained in the fuel pin is technetium, iodine extracted from spent nuclear fuel, or a minor actinide recovered by reprocessing.
内側炉心領域、外側炉心領域及び前記外側炉心領域を囲む放射線遮蔽体領域からなる高速炉の炉心であって、
前記内側炉心領域及び外側炉心領域の所定の位置、または前記外側炉心領域と放射線遮蔽体領域の間に、長寿命元素を含む燃料ピンと中性子減速材を含む減速材ピンを複数束ねてラッパ管に収容する核変換用集合体を配置し、
前記核変換用集合体は、中心に向かうに従い燃料要素の断面積が小さくなるよう前記複数の燃料ピンを収容することを特徴とする高速炉の炉心。
A fast reactor core comprising an inner core region, an outer core region and a radiation shield region surrounding the outer core region,
A plurality of fuel pins containing long-life elements and moderator pins containing neutron moderators are bundled together in a predetermined position in the inner core region and the outer core region, or between the outer core region and the radiation shield region, and accommodated in a wrapper tube. Place a transmutation assembly
A core of a fast reactor, wherein the transmutation assembly accommodates the plurality of fuel pins such that a cross-sectional area of the fuel element decreases toward the center.
請求項7に記載の高速炉の炉心であって、
前記燃料ピンは、内部に長寿命元素が充填され、その中心に円筒状の中空部を備えた形状を有し、
前記核変換用集合体の中心に向かうに従い前記中空部の口径が大となるよう前記複数の燃料ピンを配置することを特徴とする高速炉の炉心。
A core of the fast reactor according to claim 7,
The fuel pin is filled with a long-life element inside, and has a shape with a cylindrical hollow portion at the center thereof,
A core of a fast reactor, wherein the plurality of fuel pins are arranged such that the diameter of the hollow portion increases toward the center of the transmutation assembly.
核分裂物質を含む炉心を収容し、一次冷却材で満たされた原子炉容器と、
前記原子炉容器にて加熱された一次冷却材を通流し、二次冷却材と熱交換する中間熱交換器と、
前記中間熱交換器にて加熱された二次冷却材を通流し蒸気を発生する蒸気発生器と、
前記蒸気発生器からの蒸気を高圧タービン及び発電機に接続された低圧タービンへ導入する主蒸気配管を備え、
前記原子炉容器に収容される炉心は、内側炉心領域、外側炉心領域及び放射線遮蔽体領域からなり、前記内側炉心領域及び外側炉心領域の所定の位置、または前記外側炉心領域と放射線遮蔽体領域の間に、長寿命元素が充填された燃料ピンと中性子減速材が充填された減速材ピンを複数束ねてラッパ管に収容する核変換用集合体を配置し、
前記核変換用集合体は、中心に向かうに従い前記充填された長寿命元素の燃料要素の断面積が小さくなるよう前記複数の燃料ピンを収容することを特徴とする高速炉原子力発電システム。
A reactor vessel containing a nuclear reactor containing fission material and filled with a primary coolant;
An intermediate heat exchanger for passing the primary coolant heated in the reactor vessel and exchanging heat with the secondary coolant;
A steam generator for generating steam through the secondary coolant heated in the intermediate heat exchanger;
A main steam pipe for introducing the steam from the steam generator into a high pressure turbine and a low pressure turbine connected to a generator;
The core accommodated in the reactor vessel includes an inner core region, an outer core region, and a radiation shield region, and a predetermined position of the inner core region and the outer core region, or the outer core region and the radiation shield region. In between, arrange a nuclear transmutation assembly that bundles multiple fuel pins filled with long-life elements and moderator pins filled with neutron moderator and accommodates them in a trumpet tube,
The fast reactor nuclear power generation system characterized in that the transmutation assembly accommodates the plurality of fuel pins such that a cross-sectional area of the filled long-life element is reduced toward the center.
請求項9に記載の高速炉原子力発電システムであって、
前記燃料ピンは、内部に長寿命元素が充填され、その中心に円筒状の中空部を備えた形状を有し、
前記核変換用集合体の中心に向かうに従い前記中空部の口径が大となるよう前記複数の燃料ピンを配置することを特徴とする高速炉原子力発電システム。
The fast reactor nuclear power generation system according to claim 9,
The fuel pin is filled with a long-life element inside, and has a shape with a cylindrical hollow portion at the center thereof,
The fast reactor nuclear power generation system, wherein the plurality of fuel pins are arranged so that the diameter of the hollow portion increases toward the center of the nuclear transmutation assembly.
JP2013197633A 2013-09-25 2013-09-25 Transmutation assembly and fast reactor nuclear power generation system using the same Active JP6039524B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013197633A JP6039524B2 (en) 2013-09-25 2013-09-25 Transmutation assembly and fast reactor nuclear power generation system using the same
FR1457898A FR3011118B1 (en) 2013-09-25 2014-08-20 TRANSMUTATION ASSEMBLY AND RAPID REACTOR NUCLEAR POWER PLANT USING THE SAME.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013197633A JP6039524B2 (en) 2013-09-25 2013-09-25 Transmutation assembly and fast reactor nuclear power generation system using the same

Publications (2)

Publication Number Publication Date
JP2015064261A true JP2015064261A (en) 2015-04-09
JP6039524B2 JP6039524B2 (en) 2016-12-07

Family

ID=52632963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197633A Active JP6039524B2 (en) 2013-09-25 2013-09-25 Transmutation assembly and fast reactor nuclear power generation system using the same

Country Status (2)

Country Link
JP (1) JP6039524B2 (en)
FR (1) FR3011118B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405476A (en) * 2015-10-30 2016-03-16 西安交通大学 Rapid neutron reactor capable of realizing conversion of proliferation and combustion functions
CN108470589A (en) * 2018-05-02 2018-08-31 中国科学技术大学 It is a kind of can transmuting simultaneously time actinium series nucleic and long-lived fission product the fast critical reactor core of hot mixing power spectrum
CN113593730A (en) * 2021-07-12 2021-11-02 西南科技大学 Non-uniform MA transmutation rod for fast neutron reactor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477355B (en) * 2020-04-16 2022-07-01 中国原子能科学研究院 Reactor core fuel assembly and arrangement method thereof, micro neutron source reactor and reactor core thereof
CN113488204B (en) * 2021-07-12 2023-07-25 西南科技大学 Sleeve type MA transmutation rod for fast neutron reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382994A (en) * 1989-08-25 1991-04-08 Hitachi Ltd Fuel assembly and reactor core
JPH041593A (en) * 1990-04-17 1992-01-07 Hitachi Ltd Fuel assembly
JPH08122487A (en) * 1994-10-20 1996-05-17 Toshiba Corp Reprocessing method of spent fuel and annihilationmethod of element having long half-life
JP2000098073A (en) * 1998-09-28 2000-04-07 Japan Nuclear Cycle Development Inst States Of Projects Assembly for annihilating radioactive substance with long half-life period
JP2002055187A (en) * 2000-08-09 2002-02-20 Japan Nuclear Cycle Development Inst States Of Projects Fuel assembly for fast reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109089A (en) * 1977-03-03 1978-09-22 Toshiba Corp Fuel assembly
US5737375A (en) * 1994-08-16 1998-04-07 Radkowsky Thorium Power Corporation Seed-blanket reactors
KR100851870B1 (en) * 2006-10-16 2008-08-13 한국원자력연구원 Liquid-Metal-Cooled Fast Reactor Core comprising Nuclear Fuel Assembly with Nuclear Fuel Rods with Varying Fuel Cladding Thickness in each of the Reactor Core Regions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382994A (en) * 1989-08-25 1991-04-08 Hitachi Ltd Fuel assembly and reactor core
JPH041593A (en) * 1990-04-17 1992-01-07 Hitachi Ltd Fuel assembly
JPH08122487A (en) * 1994-10-20 1996-05-17 Toshiba Corp Reprocessing method of spent fuel and annihilationmethod of element having long half-life
JP2000098073A (en) * 1998-09-28 2000-04-07 Japan Nuclear Cycle Development Inst States Of Projects Assembly for annihilating radioactive substance with long half-life period
JP2002055187A (en) * 2000-08-09 2002-02-20 Japan Nuclear Cycle Development Inst States Of Projects Fuel assembly for fast reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405476A (en) * 2015-10-30 2016-03-16 西安交通大学 Rapid neutron reactor capable of realizing conversion of proliferation and combustion functions
CN105405476B (en) * 2015-10-30 2016-11-23 西安交通大学 A kind of fast neutron reactor being capable of propagation and burning power and energy
CN108470589A (en) * 2018-05-02 2018-08-31 中国科学技术大学 It is a kind of can transmuting simultaneously time actinium series nucleic and long-lived fission product the fast critical reactor core of hot mixing power spectrum
CN108470589B (en) * 2018-05-02 2024-05-17 中国科学技术大学 Fast-heating mixed energy spectrum critical reactor core capable of simultaneously transmuting minor actinides and long-service-life fission products
CN113593730A (en) * 2021-07-12 2021-11-02 西南科技大学 Non-uniform MA transmutation rod for fast neutron reactor
CN113593730B (en) * 2021-07-12 2023-08-29 西南科技大学 Heterogeneous MA transmutation rod for fast neutron reactor

Also Published As

Publication number Publication date
FR3011118A1 (en) 2015-03-27
JP6039524B2 (en) 2016-12-07
FR3011118B1 (en) 2018-07-27

Similar Documents

Publication Publication Date Title
Liu et al. Minor actinide transmutation characteristics in AP1000
JP6039524B2 (en) Transmutation assembly and fast reactor nuclear power generation system using the same
Csom et al. Thorium as an alternative fuel for SCWRs
JP6568348B2 (en) Fast reactor fuel assemblies and cores loaded with them
Mittag et al. Burning plutonium and minimizing radioactive waste in existing PWRs
Şahin et al. Utilization of TRISO fuel with reactor grade plutonium in CANDU reactors
JP6753760B2 (en) Fast reactor core
JP2013050366A (en) Fast reactor core
JP2016109585A (en) Fast reactor core and fast reactor
Rose et al. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor
JP5749597B2 (en) Fast breeder reactor core
JP5586264B2 (en) Fast breeder reactor core and fast breeder reactor fuel assembly
JP2016080667A (en) Fuel assembly for fast reactor and fast reactor core
Setiawan et al. Evaluation on transmutation of minor actinides discharged from PWR spent fuel in the RSG-GAS research reactor
Darnowski et al. Minor actinides impact on basic safety parameters of medium-sized sodium-cooled fast reactor
JPH05312981A (en) Reactor core
Elsheikh Environmental Impacts of Molten Salt Reactors
JP5410653B2 (en) Fast reactor core and fast reactor fuel handling method
JP2012154861A (en) Core of hybrid type nuclear reactor
JP7447046B2 (en) Operation method of light water reactor uranium fuel assembly and nuclear fuel cycle
Hino et al. Application of the resource-renewable boiling water reactor for TRU management and long-term energy supply
Hibi et al. Core design of ma-transmutation fast reactor with zirconium hydride target
Galahom Analyze the effect of void fraction on the main operating parameters of the VVER-1200
Dwijayanto et al. Transmutation of Transuranic Elements as Solid Coating in Molten Salt Reactor Fuel Channel
Ding et al. Development and Application of Cobalt Adjuster Rod for 60Co Medical Radioactive Sources Production in CANDU-6 Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161104

R150 Certificate of patent or registration of utility model

Ref document number: 6039524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150