JP2021021520A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2021021520A
JP2021021520A JP2019137507A JP2019137507A JP2021021520A JP 2021021520 A JP2021021520 A JP 2021021520A JP 2019137507 A JP2019137507 A JP 2019137507A JP 2019137507 A JP2019137507 A JP 2019137507A JP 2021021520 A JP2021021520 A JP 2021021520A
Authority
JP
Japan
Prior art keywords
hot water
storage tank
heat
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019137507A
Other languages
Japanese (ja)
Other versions
JP7262337B2 (en
Inventor
善隆 柴田
Yoshitaka Shibata
善隆 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2019137507A priority Critical patent/JP7262337B2/en
Publication of JP2021021520A publication Critical patent/JP2021021520A/en
Application granted granted Critical
Publication of JP7262337B2 publication Critical patent/JP7262337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a cogeneration system capable of suppressing generation of excessive heat by storing waste heat of a power generation part in a heat storage tank in which a latent heat storage material is accommodated, and utilizing the waste heat for heating, further, storing high-temperature heat effectively available for heating and making low a temperature of hot water distributed to a waste heat recovery and heat exchange unit.SOLUTION: A flow passage 27 for warming and a heated passage 28 for heating are provided inside of a heat storage tank J in which a latent heat storage material is accommodated. A flow rate control unit V which changes and controls a ratio of a flowing quantity for warming to flow through the flow passage 27 for warming to an outgoing passage 9a for hot water storage of a hot water distribution passage 9 and a flowing quantity to flow though a hot water storage tank 8 to the outgoing passage 9a for hot water storage in hot water flowing through a returning passage 9b for hot water storage of the hot water distribution passage 9, executes temperature control processing for maintaining a temperature of hot water in the outgoing passage 9a for hot water storage at a preset cooling temperature.SELECTED DRAWING: Figure 1

Description

本発明は、燃料の供給により作動する発電部と、湯水を貯湯する密閉型の貯湯槽と、前記発電部の排熱を回収する排熱回収熱交換部を経由する形態で、前記貯湯槽の底部と上部とを接続する湯水流動用の湯水循環路と、前記貯湯槽の底部から取出した湯水を当該貯湯槽の上部に戻す形態で、前記湯水循環路を通して湯水を循環させる湯水循環ポンプと、運転制御部とが設けられ、
前記運転制御部が、前記発電部の作動状態において前記貯湯槽に温度成層を形成する状態で貯湯すべく、前記湯水循環路を通して前記貯湯槽の上部に供給される湯水の温度が目標温度になるように前記湯水循環路を通して流動する湯水循環量を調整する形態で、前記湯水循環ポンプの作動を制御する排熱回収式貯湯処理を実行するように構成された熱電併給システムに関する。
The present invention is in the form of passing through a power generation unit that operates by supplying fuel, a closed type hot water storage tank that stores hot water, and an exhaust heat recovery heat exchange unit that recovers exhaust heat of the power generation unit. A hot water circulation path for connecting the bottom and the top, a hot water circulation pump for circulating hot water through the hot water circulation path in a form of returning the hot water taken out from the bottom of the hot water storage tank to the upper part of the hot water storage tank, and a hot water circulation pump. An operation control unit is provided,
In order for the operation control unit to store hot water in a state where a temperature stratification is formed in the hot water storage tank in the operating state of the power generation unit, the temperature of hot water supplied to the upper part of the hot water storage tank through the hot water circulation path becomes the target temperature. The present invention relates to a combined heat and power system configured to execute an exhaust heat recovery type hot water storage process that controls the operation of the hot water circulation pump in a form of adjusting the amount of hot water circulating through the hot water circulation path.

かかる熱電併給システムは、一般家庭等に設置されて、発電部にて発電した電力を電気負荷に供給し、かつ、発電部の排熱を回収して貯湯槽の湯水を加熱することにより、貯湯槽の湯水を給湯栓等の湯水消費部に供給できるようにしたものである。
ちなみに、発電部としては、燃料電池(例えば、固体酸化物形燃料電池等)やエンジン駆動式発電機がある。
Such a combined heat and power system is installed in a general household or the like to supply the electric power generated by the power generation unit to an electric load, and recovers the exhaust heat of the power generation unit to heat the hot water in the hot water storage tank to store hot water. The hot water in the tank can be supplied to the hot water consumption part such as a hot water tap.
Incidentally, the power generation unit includes a fuel cell (for example, a solid oxide fuel cell, etc.) and an engine-driven generator.

かかる熱電併給システムの従来例として、湯水循環路における排熱回収熱交換部と貯湯槽の上部とを接続する貯湯用戻り路から分岐した暖房用加熱路が、貯湯槽を迂回して、湯水循環路における貯湯槽の底部と排熱回収熱交換部とを接続する貯湯用往き路に接続される状態で設けられ、当該暖房用加熱路に、暖房用加熱路を流動する湯水と暖房用端末に暖房用熱媒を循環供給する暖房用循環路を流動する暖房用熱媒とを熱交換する暖房用熱交換部が設けられ、貯湯用戻り路を流動する湯水を貯湯槽に流動させる状態と貯湯用戻り路を流動する湯水を暖房用熱交換部に流動させる状態とに切換える三方弁が設けられた熱電併給システムがある(例えば、特許文献1参照。)。 As a conventional example of such a combined heat and power system, a heating heating path branched from a hot water storage return path connecting an exhaust heat recovery heat exchange unit and an upper part of a hot water storage tank in a hot water circulation path bypasses the hot water storage tank and circulates hot water. It is provided in a state of being connected to a hot water storage outbound path that connects the bottom of the hot water storage tank and the exhaust heat recovery heat exchange section in the road, and in the heating heating path, the hot water flowing through the heating heating path and the heating terminal. A heating heat exchange section is provided to exchange heat with the heating heat medium that flows through the heating circulation path that circulates and supplies the heating heat medium, and the hot water that flows through the hot water storage return path flows into the hot water storage tank. There is a combined heat and power system provided with a three-way valve that switches the hot water flowing through the return path to a state in which it flows to the heat exchange section for heating (see, for example, Patent Document 1).

つまり、特許文献1は、貯湯用戻り路を流動する目標温度(例えば、65℃)の湯水を暖房用熱交換部に流動させる状態に切換えることにより、暖房用循環路を流動する暖房用熱媒を加熱することにより、発電部の排熱を利用する形態で暖房運転を行えるようにしたものである。
ちなみに、特許文献1においては、湯水冷却用のラジエータが貯湯用往き路に設けられて、湯水の温度が設定冷却温度よりも高いときには、ラジエータを作動させて、湯水の温度を低下させるように構成されている。
That is, Patent Document 1 describes a heating heat medium that flows through a heating circulation path by switching to a state in which hot water having a target temperature (for example, 65 ° C.) flowing through the hot water storage return path is allowed to flow through the heating heat exchange section. By heating the above, the heating operation can be performed in the form of utilizing the exhaust heat of the power generation unit.
Incidentally, in Patent Document 1, a radiator for cooling hot water is provided on the outbound route for storing hot water, and when the temperature of hot water is higher than the set cooling temperature, the radiator is operated to lower the temperature of hot water. Has been done.

また、熱電併給システムの別の従来例として、潜熱蓄熱式の蓄熱槽が、融点が高温の高温側潜熱蓄熱材を収納した下側の高温側タンク部分と、融点が低温の低温側潜熱蓄熱材を収納した上側の低温側タンク部分とに区分けされた状態で設けられ、湯水循環路における貯湯槽の底部と排熱回収熱交換部とを接続する貯湯用往き路から分岐した蓄熱用分岐路が、湯水を蓄熱槽の下部側から上部側を通して流動させた後に貯湯用往き路に戻す状態に配管された状態で設けられ、貯湯槽の底部から排出される湯水を、蓄熱槽を経由せずに排熱回収熱交換部に流動させる状態と蓄熱槽を経由して排熱回収熱交換部に流動させる状態とに切換える弁が設けられ、貯湯槽の上部に接続した出湯路から分岐した被加熱用分岐路が、湯水を蓄熱槽の上部側から下部側を通して流動させた後に出湯路に戻す状態に配管された状態で設けられ、貯湯槽の上部から出湯される湯水を、蓄熱槽を経由せずに出湯路を通して流動させる状態と蓄熱槽を経由させながら出湯路を通して流動させる状態とに切換える弁が設けられた熱電併給システムがある(例えば、特許文献2参照。)。 Further, as another conventional example of the combined heat and power system, the latent heat storage type heat storage tank has a lower high temperature side tank portion containing a high temperature side latent heat storage material having a high melting point and a low temperature side latent heat storage material having a low melting point. A heat storage branch path branched from the hot water storage outbound path that connects the bottom of the hot water storage tank and the exhaust heat recovery heat exchange section in the hot water circulation path is provided in a state of being separated from the upper low temperature side tank part that stores the heat storage. , It is installed in a state where hot water is flowed from the lower side to the upper side of the heat storage tank and then returned to the outbound route for hot water storage, and the hot water discharged from the bottom of the hot water storage tank does not go through the heat storage tank. A valve is provided to switch between the state of flowing to the exhaust heat recovery heat exchange section and the state of flowing to the exhaust heat recovery heat exchange section via the heat storage tank, and for heating, which is branched from the hot water outlet connected to the upper part of the hot water storage tank. A branch path is provided in a state where hot water is flowed from the upper side to the lower side of the heat storage tank and then returned to the hot water passage, and the hot water discharged from the upper part of the hot water tank does not pass through the heat storage tank. There is a combined heat and power system provided with a valve for switching between a state of flowing through a hot water passage and a state of flowing through a hot water passage while passing through a heat storage tank (see, for example, Patent Document 2).

つまり、特許文献2においては、貯湯槽の貯湯量が満杯になったときに、貯湯槽の底部から排出される高温の湯水を、蓄熱槽を通して流動させることによって、蓄熱槽に蓄熱するようにしたものであり、そして、貯湯槽の貯湯量が無くなったときに、貯湯槽の上部から出湯される低温の湯水を、蓄熱槽を経由して流動させて加熱しながら出湯路を通して流動させるようにしたものである。 That is, in Patent Document 2, when the amount of hot water stored in the hot water storage tank is full, the high-temperature hot water discharged from the bottom of the hot water storage tank is allowed to flow through the heat storage tank to store heat in the heat storage tank. And when the amount of hot water stored in the hot water storage tank is exhausted, the low-temperature hot water discharged from the upper part of the hot water storage tank is made to flow through the hot water channel while being heated by flowing through the heat storage tank. It is a thing.

特許第5551971号公報Japanese Patent No. 5551971 特開2010‐186668号公報JP-A-2010-186668

特許文献1の熱電併給システムにおいては、暖房のための排熱利用が、暖房運転中に発生する排熱のみに限られることになり、そして、一般家庭に設置される発電部(燃料電池等)の排熱量はそれほど多くないため、暖房負荷の全てを発電部(燃料電池等)の排熱にて賄うことが難しいものとなる。 In the combined heat and power system of Patent Document 1, the use of exhaust heat for heating is limited to the exhaust heat generated during the heating operation, and the power generation unit (fuel cell, etc.) installed in a general household. Since the amount of exhaust heat is not so large, it is difficult to cover all of the heating load with the exhaust heat of the power generation unit (fuel cell, etc.).

特許文献1の熱電併給システムにおいては、このような状況でありながらも、発電部としての燃料電池(特に固体酸化物形燃料電池)を耐久性確保のために、24時間の連続運転を行うようにすると、貯湯槽の貯湯量が満杯になる熱余りが生じて、貯湯用往き路のラジエータを作動させて、放熱する必要がある場合が生じる虞がある。 In the combined heat and power system of Patent Document 1, even in such a situation, the fuel cell (particularly the solid oxide fuel cell) as the power generation unit should be continuously operated for 24 hours in order to ensure the durability. If this is the case, there is a possibility that a surplus of heat will be generated to fill the amount of hot water stored in the hot water storage tank, and it may be necessary to operate the radiator of the hot water storage outbound route to dissipate heat.

ちなみに、暖房利用のために排熱を蓄熱することが考えられるが、この場合において、湯水を用いて蓄熱すると、蓄熱槽のサイズが大きくなる不都合を生じるものとなる。 By the way, it is conceivable to store the exhaust heat for the use of heating, but in this case, if the heat is stored using hot water, the size of the heat storage tank becomes large, which causes a disadvantage.

特許文献2の熱電併給システムにおいては、潜熱蓄熱材を収納する蓄熱槽を設けるものであるから、蓄熱槽の小型化を図りながらも、発電部の排熱の蓄熱量を多くできるものである。
しかしながら、蓄熱槽が、低温側と高温側との2種類の潜熱蓄熱材を備えるものであるから、蓄熱槽の構成が複雑で高価となる不都合があった。
In the combined heat and power system of Patent Document 2, since a heat storage tank for storing the latent heat storage material is provided, it is possible to increase the amount of heat stored in the exhaust heat of the power generation unit while reducing the size of the heat storage tank.
However, since the heat storage tank includes two types of latent heat storage materials, one on the low temperature side and the other on the high temperature side, there is a disadvantage that the configuration of the heat storage tank is complicated and expensive.

すなわち、潜熱蓄熱材が融けて液体になるまで蓄熱するためには、湯水が潜熱蓄熱材の融点よりも高温で入りかつ当該融点よりも高温で出る必要がある。
これに対して、排熱回収熱交換部に流動する湯水の温度は、排熱回収性能を確保する必要上、設定冷却温度(例えば、40℃)以下に抑える必要がある。
したがって、貯湯槽の貯湯量が満杯になったときに、貯湯槽の底部から排出される高温の湯水を、蓄熱槽を通して流動させる場合には、低温側と高温側との2種類の潜熱蓄熱材を備えさせる必要があり、蓄熱槽の構成が複雑で高価となるものであった。
That is, in order to store heat until the latent heat storage material melts and becomes a liquid, it is necessary for hot water to enter at a temperature higher than the melting point of the latent heat storage material and exit at a temperature higher than the melting point.
On the other hand, the temperature of the hot water flowing in the exhaust heat recovery heat exchange section needs to be suppressed to the set cooling temperature (for example, 40 ° C.) or less in order to secure the exhaust heat recovery performance.
Therefore, when the hot water discharged from the bottom of the hot water tank is made to flow through the heat storage tank when the amount of hot water stored in the hot water tank is full, there are two types of latent heat storage materials, the low temperature side and the high temperature side. It was necessary to equip the heat storage tank with a complicated and expensive heat storage tank.

ちなみに、仮に、一種類の潜熱蓄熱材を備えさせようとすると、低温側の潜熱蓄熱材を備えさせることになるが、この場合には、使い勝手の悪い低い温度しか得られなくなるのであり、使い勝手の良い高い温度を得るためには、低温側と高温側との2種類の潜熱蓄熱材を備えさせる必要がある。 By the way, if one kind of latent heat storage material is to be provided, the latent heat storage material on the low temperature side will be provided, but in this case, only a low temperature that is not easy to use can be obtained, and it is easy to use. In order to obtain a good high temperature, it is necessary to provide two types of latent heat storage materials, a low temperature side and a high temperature side.

尚、特許文献2の熱電併給システムにおいては、暖房への蓄熱利用は記載されていないが、仮に、暖房用端末に暖房用熱媒を循環供給する暖房用循環路を流動する暖房用熱媒を、蓄熱槽を通過させて加熱することを想定すると、蓄熱槽に戻る暖房用熱媒の温度が低温側の潜熱蓄熱材の融点よりも高いときに、暖房用熱媒から低温側の潜熱蓄熱材に熱が供給される(熱が奪われる)不都合が発生する虞がある。 In the combined heat and power system of Patent Document 2, the use of heat storage for heating is not described, but tentatively, a heating heat medium that flows through a heating circulation path that circulates and supplies a heating heat medium to a heating terminal is used. Assuming that the heating is performed through the heat storage tank, when the temperature of the heating heat medium returning to the heat storage tank is higher than the melting point of the latent heat storage material on the low temperature side, the latent heat storage material on the low temperature side from the heating heat medium There is a possibility that inconvenience may occur in which heat is supplied (heat is taken away).

本発明は、上記実情に鑑みて為されたものであって、その目的は、潜熱蓄熱材を収納した蓄熱槽に発電部の排熱を蓄熱して暖房に利用することにより、熱余りが発生することを抑制し、しかも、蓄熱槽の潜熱蓄熱材として一つの種類を用いながらも、暖房に有効に利用できる高温の熱を蓄熱し且つ排熱回収熱交換部に流動する湯水の温度を低温にすることができる熱電併給システムを提供する点にある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to store heat exhausted from a power generation unit in a heat storage tank containing a latent heat storage material and use it for heating, thereby generating heat surplus. While using one type of latent heat storage material for the heat storage tank, it stores high-temperature heat that can be effectively used for heating and lowers the temperature of hot water flowing to the exhaust heat recovery heat exchange section. The point is to provide a combined heat and power system that can be used.

本発明の熱電併給システムは、燃料の供給により作動する発電部と、湯水を貯湯する密閉型の貯湯槽と、前記発電部の排熱を回収する排熱回収熱交換部を経由する形態で、前記貯湯槽の底部と上部とを接続する湯水流動用の湯水循環路と、前記貯湯槽の底部から取出した湯水を当該貯湯槽の上部に戻す形態で、前記湯水循環路を通して湯水を循環させる湯水循環ポンプと、運転制御部とが設けられ、
前記運転制御部が、前記発電部の作動状態において前記貯湯槽に温度成層を形成する状態で貯湯すべく、前記湯水循環路を通して前記貯湯槽の上部に供給される湯水の温度が目標温度になるように前記湯水循環路を通して流動する湯水循環量を調整する形態で、前記湯水循環ポンプの作動を制御する排熱回収式貯湯処理を実行するように構成されたものであって、その特徴構成は、
潜熱蓄熱材を収納した蓄熱槽の内部に、加熱用流動路及び暖房用被加熱路の夫々が当該蓄熱槽の一端部から他端部に亘って位置する状態で設けられ、
暖房用熱媒を暖房用端末に循環供給する暖房用循環路が、暖房用戻り路を前記暖房用被加熱路の一端部側の暖房用入口と接続し、かつ、暖房用往き路を前記暖房用被加熱路の他端部側の暖房用出口と接続する状態で設けられ、
前記湯水循環路における前記排熱回収熱交換部と前記貯湯槽の上部とを接続する貯湯用戻り路から分岐した戻り側分岐路が、前記加熱用流動路の他端部側の加熱用入口に接続され、かつ、前記湯水循環路における前記貯湯槽の底部と前記排熱回収熱交換部とを接続する貯湯用往き路に合流する往き側合流路が、前記加熱用流動路の一端部側の加熱用出口に接続され、
前記貯湯用戻り路を流動する湯水のうちで、前記加熱用流動路を経由して前記貯湯用往き路に流動させる加熱用流動量と、前記貯湯槽を経由して前記貯湯用往き路に流動させる貯湯用流動量との割合を変更調節する流量調節部が、前記往き側合流路を流動する湯水の温度が設定冷却温度以下のときには、前記貯湯用流動量が零となるようにし、かつ、前記往き側合流路を流動する湯水の温度が前記設定冷却温度を超えるときには、前記貯湯用往き路における前記往き側合流路の合流箇所よりも下流側の湯水の温度を前記設定冷却温度に維持すべく、前記加熱用流動量と前記貯湯用流動量との割合を調節する温度制御処理を実行するように構成されている点にある。
The combined heat and power system of the present invention passes through a power generation unit that operates by supplying fuel, a closed hot water storage tank that stores hot water, and an exhaust heat recovery heat exchange unit that recovers exhaust heat from the power generation unit. Hot water circulation path for flowing hot water that connects the bottom and top of the hot water storage tank, and hot water that circulates hot water through the hot water circulation path in the form of returning the hot water taken out from the bottom of the hot water storage tank to the upper part of the hot water storage tank. A circulation pump and an operation control unit are provided,
The temperature of the hot water supplied to the upper part of the hot water storage tank through the hot water circulation path is the target temperature so that the operation control unit stores hot water in a state where the hot water storage tank is formed with a temperature stratification in the operating state of the power generation unit. In this way, the amount of hot water circulating through the hot water circulation path is adjusted, and the waste heat recovery type hot water storage process that controls the operation of the hot water circulation pump is executed. ,
Inside the heat storage tank containing the latent heat storage material, each of the heating flow path and the heated passage for heating is provided so as to be located from one end to the other end of the heat storage tank.
The heating circulation path that circulates and supplies the heating heat medium to the heating terminal connects the heating return path to the heating inlet on one end side of the heating heated path, and connects the heating outbound path to the heating. It is provided in a state of being connected to the heating outlet on the other end side of the heated passage.
The return side branch path branched from the hot water storage return path connecting the exhaust heat recovery heat exchange section and the upper part of the hot water storage tank in the hot water circulation path serves as a heating inlet on the other end side of the heating flow path. The forward side junction flow path that is connected and joins the hot water storage outbound path that connects the bottom of the hot water storage tank and the exhaust heat recovery heat exchange section in the hot water circulation path is on one end side of the heating flow path. Connected to the heating outlet,
Of the hot water flowing through the hot water storage return path, the amount of hot water that flows to the hot water storage outbound path via the heating flow path and the amount of hot water that flows to the hot water storage outbound path via the hot water storage tank. When the temperature of the hot water flowing in the forward side joint flow path is equal to or lower than the set cooling temperature, the flow rate adjusting unit for changing and adjusting the ratio with the flow rate for hot water storage makes the flow rate for hot water storage zero. When the temperature of the hot water flowing in the outgoing side junction flow path exceeds the set cooling temperature, the temperature of the hot water water downstream from the confluence of the outgoing side junction flow path in the hot water storage outbound passage is maintained at the set cooling temperature. Therefore, the temperature control process for adjusting the ratio between the heating flow rate and the hot water storage flow rate is configured to be executed.

すなわち、蓄熱槽の蓄熱量が少ないとき(潜熱蓄熱材が融けていないとき等)には、湯水循環路の貯湯用戻り路を流動する湯水の全量を蓄熱槽の加熱用流動路を通流させても、当該加熱用流動路の加熱用出口に接続された往き側合流路を流動する湯水の温度が設定冷却温度以下になり、そして、潜熱蓄熱材が融け始める等、蓄熱槽の蓄熱量が増加するに伴って、往き側合流路を流動する湯水の温度が漸次上昇し、その後、湯水の温度が設定冷却温度を超える程度に上昇することになる。 That is, when the amount of heat stored in the heat storage tank is small (such as when the latent heat storage material is not melted), the entire amount of hot water flowing through the hot water storage return path of the hot water circulation path is allowed to flow through the heating flow path of the heat storage tank. However, the amount of heat stored in the heat storage tank is such that the temperature of the hot water flowing in the forward-side joint flow path connected to the heating outlet of the heating flow path becomes lower than the set cooling temperature, and the latent heat storage material begins to melt. As the temperature increases, the temperature of the hot water flowing in the forward side joint flow path gradually rises, and then the temperature of the hot water rises to the extent that it exceeds the set cooling temperature.

従って、蓄熱槽の蓄熱量が少ないときには、流量調節部の作動によって、湯水循環路の貯湯用戻り路を流動する湯水の全量が蓄熱槽の加熱用流動路を通流されて、蓄熱槽の蓄熱が進められる。
その後、蓄熱槽の蓄熱量が増加するのに伴って、往き側合流路を流動する湯水の温度が設定冷却温度を超える程度に上昇すると、流量調節部の温度制御処理によって、加熱用流動路を経由して貯湯用往き路に流動させる加熱用流動量と、貯湯槽を経由して貯湯用往き路に流動させる貯湯用流動量との割合が変更調節されて、貯湯用往き路における往き側合流路の合流箇所よりも下流側の湯水の温度が設定冷却温度に維持され、かつ、貯湯槽での貯湯が進められることになる。
Therefore, when the amount of heat stored in the heat storage tank is small, the total amount of hot water flowing through the hot water storage return path of the hot water circulation path is passed through the heating flow path of the heat storage tank by the operation of the flow rate adjusting unit, and the heat storage of the heat storage tank is performed. Is advanced.
After that, as the amount of heat stored in the heat storage tank increases, when the temperature of the hot water flowing in the forward-side joint flow path rises to a extent that exceeds the set cooling temperature, the temperature control process of the flow rate control unit opens the heating flow path. The ratio of the amount of heating flow that flows to the hot water storage outbound route via the hot water storage tank and the amount of hot water storage flow that flows to the hot water storage outbound route via the hot water storage tank is changed and adjusted, and joins the outbound side in the hot water storage outbound route. The temperature of the hot water on the downstream side of the confluence of the roads is maintained at the set cooling temperature, and the hot water is stored in the hot water storage tank.

そして、暖房用循環路を流動する暖房用熱媒が、蓄熱槽の内部の暖房用被加熱路を流動して加熱されて、加熱された暖房用熱媒が暖房用端末に循環供給されることにより、蓄熱槽に蓄熱された熱を利用して暖房が行われることになる。
また、貯湯槽で貯湯された湯水を利用して出湯(給湯)することができる。
Then, the heating heat medium flowing through the heating circulation path is heated by flowing through the heating heating path inside the heat storage tank, and the heated heating heat medium is circulated and supplied to the heating terminal. As a result, heating is performed using the heat stored in the heat storage tank.
In addition, hot water can be discharged (hot water supply) using the hot water stored in the hot water storage tank.

このように、発電部の排熱を蓄熱槽に蓄熱して暖房に利用しながら、貯湯槽にて貯湯するものであるから、発電部の排熱が蓄熱槽での蓄熱と貯湯槽での貯湯とに用いられることによって、発電部の排熱を蓄熱槽での蓄熱や貯湯槽での貯湯に利用できない状態になる、いわゆる熱余りが発生することを極力抑制できる。 In this way, the exhaust heat of the power generation unit is stored in the heat storage tank and used for heating, and the hot water is stored in the hot water storage tank. Therefore, the exhaust heat of the power generation unit is the heat storage in the heat storage tank and the hot water storage in the hot water storage tank. By using the above, it is possible to suppress the generation of so-called heat surplus, in which the exhaust heat of the power generation unit cannot be used for heat storage in the heat storage tank or hot water storage in the hot water storage tank.

しかも、蓄熱槽の内部に、暖房用被加熱路を蓄熱槽の一端部から他端部に亘って位置する状態で設けて、暖房用循環路を流動する暖房用熱媒を、暖房用被加熱路の一端部側の暖房用入口から他端部側の暖房用出口に向けて流動させ、かつ、蓄熱槽の内部に、加熱用流動路を蓄熱槽の一端部から他端部に亘って位置する状態で設けて、貯湯用戻り路からの湯水を、加熱用流動路の他端部側の加熱用入口から一端部側の加熱用出口に向けて流動させるようにし、加えて、蓄熱槽を通過した湯水と貯湯槽の底部からの湯水を混合させるものであるから、蓄熱槽に収納する潜熱蓄熱材として一つの種類を用いながらも、暖房に有効に利用できる高温の熱を蓄熱し且つ排熱回収熱交換部に流動する湯水の温度を低温にすることができる。 Moreover, a heating passage is provided inside the heat storage tank in a state of being located from one end to the other end of the heat storage tank, and a heating heat medium flowing through the heating circulation path is heated for heating. The heating flow path is located inside the heat storage tank from the heating inlet on one end side to the heating outlet on the other end side of the path from one end to the other end of the heat storage tank. In addition, the hot water from the hot water storage return path is allowed to flow from the heating inlet on the other end side of the heating flow path to the heating outlet on the one end side, and in addition, a heat storage tank is provided. Since the hot water that has passed through and the hot water from the bottom of the hot water storage tank are mixed, high-temperature heat that can be effectively used for heating is stored and discharged while using one type of latent heat storage material to be stored in the heat storage tank. The temperature of the hot water flowing in the heat recovery heat exchange unit can be lowered.

つまり、湯水循環路における貯湯用戻り路を流動する湯水は、目標温度(例えば、65℃)に維持されるものであって、暖房用循環路を流動する暖房用熱媒は、湯水の温度(目標温度)と同程度の温度に加熱することが好ましいものであり、また、暖房用循環路を流動して暖房用端末を通過した熱媒の温度は、貯湯用戻り路を流動する湯水の目標温度(例えば、65℃)よりも低くなる点に鑑みて、目標温度(例えば、65℃)の湯水を、加熱用流動路の他端部側の加熱用入口から一端部側の加熱用出口に向けて流動させ、かつ、暖房用熱媒を、暖房用被加熱路の一端部側の暖房用入口から他端部側の暖房用出口に向けて流動させるようにして、蓄熱槽に収納する潜熱蓄熱材として一つの種類を用いながらも、蓄熱槽に蓄熱した高温の熱を暖房に有効に利用できることになる。 That is, the hot water flowing through the hot water storage return path in the hot water circulation path is maintained at the target temperature (for example, 65 ° C.), and the heating heat medium flowing through the heating circulation path is the temperature of the hot water (for example, 65 ° C.). It is preferable to heat to a temperature similar to the target temperature), and the temperature of the heat medium that flows through the heating circulation path and passes through the heating terminal is the target of the hot water that flows through the hot water storage return path. In view of the fact that the temperature is lower than the temperature (for example, 65 ° C.), hot water having a target temperature (for example, 65 ° C.) is applied from the heating inlet on the other end side of the heating flow path to the heating outlet on the one end side. Latent heat stored in the heat storage tank so that the heating medium flows toward and from the heating inlet on one end side of the heated path for heating toward the heating outlet on the other end side. Even though one type of heat storage material is used, the high-temperature heat stored in the heat storage tank can be effectively used for heating.

加えて、蓄熱槽を通過した湯水と貯湯槽の底部からの低温の湯水とを混合させて、排熱回収熱交換部に流動する湯水の温度を低温に、換言すれば、設定冷却温度に維持させるようにするものであるから、蓄熱槽に収納する潜熱蓄熱材として一つの種類を用いることにより、蓄熱槽を通過した湯水が高温となっても、排熱回収熱交換部に流動する湯水の温度を低温に維持できるのである。 In addition, the hot water that has passed through the heat storage tank and the low-temperature hot water from the bottom of the hot water storage tank are mixed, and the temperature of the hot water that flows to the exhaust heat recovery heat exchange section is maintained at a low temperature, in other words, at the set cooling temperature. By using one type of latent heat storage material to be stored in the heat storage tank, even if the hot water that has passed through the heat storage tank becomes hot, the hot water that flows to the exhaust heat recovery heat exchange section The temperature can be kept low.

要するに、本発明の熱電併給システムの特徴構成によれば、潜熱蓄熱材を収納した蓄熱槽に発電部の排熱を蓄熱して暖房に利用することにより、熱余りが発生することを抑制し、しかも、蓄熱槽の潜熱蓄熱材として一つの種類を用いながらも、暖房に有効に利用できる高温の熱を蓄熱し且つ排熱回収熱交換部に流動する湯水の温度を低温にすることができる。 In short, according to the characteristic configuration of the combined heat and power supply system of the present invention, the exhaust heat of the power generation unit is stored in the heat storage tank containing the latent heat storage material and used for heating, thereby suppressing the generation of excess heat. Moreover, while using one type of latent heat storage material in the heat storage tank, it is possible to store high-temperature heat that can be effectively used for heating and lower the temperature of hot water flowing to the exhaust heat recovery heat exchange section.

本発明の熱電併給システムの更なる特徴構成は、前記貯湯槽の底部に接続した給水路の給水圧にて前記貯湯槽の上部に接続した出湯路を通して湯水を供給できるように構成され、
前記出湯路から分岐した出湯用分岐路が、前記往き側合流路に合流接続され、かつ、前記出湯路における前記出湯用分岐路の分岐箇所よりも下流側に合流する出湯用合流路が、前記戻り側分岐路に接続され、
前記出湯路を流動する湯水の全量を前記出湯用分岐路に分岐させることなく流動させる基本出湯状態と、前記出湯路を流動する湯水の全量を前記出湯用分岐路に分岐させて、前記往き側合流路、前記加熱用流動路、前記戻り側分岐路、及び、前記出湯用合流路を通して流動させる蓄熱槽加熱出湯状態とに切換える出湯状態切換部が設けられている点にある。
A further characteristic configuration of the combined heat and power supply system of the present invention is such that hot water can be supplied through the hot water outlet connected to the upper part of the hot water storage tank at the water supply pressure of the water supply channel connected to the bottom of the hot water storage tank.
The hot water outlet branch path branched from the hot water outlet is connected to the outgoing hot water branch flow path and joins the hot water discharge branch path downstream of the branch point of the hot water branch path in the hot water outlet. Connected to the return branch,
The basic hot water state in which the entire amount of hot water flowing in the hot water passage is flowed without branching to the hot water branch path, and the total amount of hot water flowing in the hot water channel is branched into the hot water branch path to the outgoing side. A hot water discharge state switching unit for switching between a hot water discharge state, a heating flow path, a return side branch path, and a heat storage tank heating hot water discharge state in which the hot water flows through the hot water discharge joint flow path is provided.

すなわち、出湯状態切換部を基本出湯状態に切換えると、上述の如く、蓄熱槽の蓄熱量が少ないときには、湯水循環路の貯湯用戻り路を流動する湯水の全量が蓄熱槽の加熱用流動路を通流されて、蓄熱槽の蓄熱が進められ、そして、蓄熱槽の蓄熱量が増加するに伴って、貯湯槽での貯湯が進められることになる。 That is, when the hot water state switching unit is switched to the basic hot water state, as described above, when the amount of heat stored in the heat storage tank is small, the total amount of hot water flowing through the hot water storage return path of the hot water circulation path becomes the heating flow path of the heat storage tank. The heat is passed through and the heat storage in the heat storage tank is promoted, and as the amount of heat stored in the heat storage tank increases, the hot water storage in the hot water storage tank is promoted.

冬季等においては、蓄熱槽に蓄熱した熱を暖房に利用することになるが、暖房が利用されない季節においても、貯湯槽の貯湯量が少なくなったときに、出湯状態切換部を蓄熱槽加熱出湯状態に切換えることによって、貯湯槽の上部から排出される湯水を、蓄熱槽に蓄熱した熱にて加熱して出湯することができる。 In winter, etc., the heat stored in the heat storage tank is used for heating, but even in the season when heating is not used, when the amount of hot water stored in the hot water storage tank is low, the hot water discharge state switching unit is heated to the heat storage tank. By switching to the state, the hot water discharged from the upper part of the hot water storage tank can be heated by the heat stored in the heat storage tank and discharged.

要するに、本発明の熱電併給システムの更なる特徴構成によれば、暖房が利用されない季節においても、蓄熱槽に蓄熱した熱を出湯のために有効利用することができる。 In short, according to the further characteristic configuration of the combined heat and power system of the present invention, the heat stored in the heat storage tank can be effectively used for hot water even in the season when heating is not used.

本発明の熱電併給システムの更なる特徴構成は、前記運転制御部が、前記出湯状態切換部を前記基本出湯状態に切換えた状態において、前記貯湯槽の貯湯量が設定未満になったときに前記蓄熱槽の蓄熱量が運転許容量以上である場合には、前記出湯状態切換部を前記蓄熱槽加熱出湯状態に切換えるように構成されている点にある。 A further characteristic configuration of the combined heat and power supply system of the present invention is that when the operation control unit switches the hot water discharge state switching unit to the basic hot water discharge state and the amount of hot water stored in the hot water storage tank becomes less than the set value. When the amount of heat stored in the heat storage tank is equal to or greater than the allowable operating amount, the hot water discharge state switching unit is configured to switch to the hot water discharge state heated in the heat storage tank.

すなわち、運転制御部が、前記出湯状態切換部を前記基本出湯状態に切換えることにより、冬季等においては、蓄熱槽に蓄熱された熱を利用して暖房を行い、また、貯湯槽で貯湯された湯水を利用して出湯(給湯)することができる。 That is, by switching the hot water discharge state switching unit to the basic hot water discharge state, the operation control unit heats using the heat stored in the heat storage tank in winter or the like, and the hot water is stored in the hot water storage tank. Hot water can be used for hot water supply.

また、運転制御部が、出湯状態切換部を基本出湯状態に切換えた状態において、貯湯槽の貯湯量が設定未満になったときに蓄熱槽の蓄熱量が運転許容量以上である場合には、出湯状態切換部を蓄熱槽加熱出湯状態に切換えるものであるから、貯湯槽に貯湯された湯水や蓄熱槽に蓄熱された熱を利用して出湯(給湯)することができる。 In addition, when the operation control unit switches the hot water discharge state switching unit to the basic hot water discharge state and the heat storage amount in the hot water storage tank is less than the set value, the heat storage amount in the heat storage tank is equal to or greater than the operation allowable amount. Since the hot water discharge state switching unit is switched to the heat storage tank heating hot water discharge state, hot water can be discharged (hot water supply) by using the hot water stored in the hot water storage tank or the heat stored in the heat storage tank.

つまり、例えば、発電部(例えば、固体酸化物形燃料電池)を24時間の連続運転を継続して行うようにした場合において、出湯状態切換部を基本出湯状態に切換えておくと、発電部の排熱が蓄熱槽に蓄熱され且つ貯湯槽に貯湯されることになるから、貯湯槽に貯湯された湯水を利用して出湯することになるが、湯水消費量が多い時間帯等では、貯湯槽に貯湯した湯水が不足する(貯湯槽の貯湯量が設定未満になる)事態が発生する虞がある。
そのようなときに、蓄熱槽の蓄熱量が運転許容量以上である場合には、運転制御部が出湯状態切換部を蓄熱槽加熱出湯状態に切換えるものであるから、蓄熱槽に蓄熱された熱をも利用して出湯することができる。
That is, for example, when the power generation unit (for example, a solid oxide fuel cell) is to be continuously operated for 24 hours, if the hot water discharge state switching unit is switched to the basic hot water discharge state, the power generation unit Since the exhaust heat is stored in the heat storage tank and stored in the hot water storage tank, the hot water stored in the hot water storage tank is used to discharge the hot water. However, during times when the hot water consumption is high, the hot water storage tank is used. There is a risk that the amount of hot water stored in the hot water will be insufficient (the amount of hot water stored in the hot water tank will be less than the set value).
In such a case, if the amount of heat stored in the heat storage tank is equal to or greater than the allowable operating amount, the operation control unit switches the hot water discharge state switching unit to the heat storage tank heating hot water discharge state. Therefore, the heat stored in the heat storage tank You can also use the hot water.

したがって、冬季等の暖房を行う季節においては、蓄熱槽に蓄熱された熱を利用して暖房を行うことができ、また、蓄熱槽に蓄熱された熱をも利用して出湯することができるのであり、使い勝手が向上する。 Therefore, in the heating season such as winter, the heat stored in the heat storage tank can be used for heating, and the heat stored in the heat storage tank can also be used to discharge hot water. Yes, usability is improved.

要するに、本発明の熱電併給システムの更なる特徴構成によれば、蓄熱槽に蓄熱された熱をも利用して出湯することができるのであり、使い勝手が向上する。 In short, according to a further characteristic configuration of the combined heat and power supply system of the present invention, hot water can be discharged by using the heat stored in the heat storage tank, which improves usability.

本発明の熱電併給システムの更なる特徴構成は、前記運転制御部が、前記蓄熱槽加熱出湯状態に切換えているときに、前記蓄熱槽の蓄熱量が運転停止量以下となれば、前記出湯状態切換部を前記基本出湯状態に切換えるように構成されている点にある。 A further characteristic configuration of the combined heat and power supply system of the present invention is that when the operation control unit is switched to the hot water discharge state of the heat storage tank, if the heat storage amount of the heat storage tank is equal to or less than the operation stop amount, the hot water discharge state The point is that the switching unit is configured to switch to the basic hot water discharge state.

すなわち、貯湯槽の貯湯量が設定未満になったときに蓄熱槽の蓄熱量が運転許容量以上であることにより、運転制御部が、出湯状態切換部を蓄熱槽加熱出湯状態に切換えているときに、蓄熱槽の蓄熱量が運転停止量以下となれば、運転制御部が、出湯状態切換部を基本出湯状態に切換えることになるから、出湯路を通して供給される湯水の温度が急激に上下動する虞を回避して、良好に出湯することができる。 That is, when the amount of heat stored in the hot water storage tank becomes less than the set value and the amount of heat stored in the heat storage tank is equal to or greater than the allowable operating amount, the operation control unit switches the hot water discharge state switching unit to the hot water discharge state of the heat storage tank. In addition, if the amount of heat stored in the heat storage tank is equal to or less than the amount of operation stop, the operation control unit switches the hot water discharge state switching unit to the basic hot water discharge state, so that the temperature of the hot water supplied through the hot water outlet fluctuates rapidly. It is possible to avoid the risk of hot water and to discharge hot water satisfactorily.

つまり、蓄熱槽加熱出湯状態に切換えているときに、蓄熱槽の蓄熱量が残り少なくなると、蓄熱槽にて加熱される湯水の温度が急激に上下動することがあるが、そのような上下動が発生する蓄熱量に応じて、蓄熱槽の蓄熱量に対する運転停止量を定めて、蓄熱槽の蓄熱量が運転停止量以下になると、基本出湯状態に切換えるようにすることにより、出湯路を通して供給される湯水の温度が急激に上下動する虞を回避できるのである。 That is, when the heat storage amount in the heat storage tank is low when the hot water is switched to the heat storage tank heating hot water state, the temperature of the hot water heated in the heat storage tank may suddenly fluctuate. According to the amount of heat storage generated, the operation stop amount for the heat storage amount of the heat storage tank is determined, and when the heat storage amount of the heat storage tank becomes less than the operation stop amount, it is supplied through the hot water outlet by switching to the basic hot water discharge state. It is possible to avoid the possibility that the temperature of the hot water suddenly fluctuates up and down.

要するに、本発明の熱電併給システムの更なる特徴構成によれば、出湯路を通して供給される湯水の温度が急激に上下動する虞を回避して、良好に出湯することができる。 In short, according to a further characteristic configuration of the combined heat and power supply system of the present invention, it is possible to satisfactorily discharge hot water while avoiding the possibility that the temperature of the hot water supplied through the hot water passage suddenly fluctuates up and down.

本発明の熱電併給システムの更なる特徴構成は、前記蓄熱槽の内部の他端部側温度を検出する他端部側温度センサ及び前記蓄熱槽の内部の一端部側温度を検出する一端部側温度センサが設けられ、
前記運転制御部が、前記他端部側温度センサ及び前記一端部側温度センサの夫々が前記潜熱蓄熱材の融点よりも高い設定高温側温度を検出すると、前記蓄熱槽の蓄熱量が前記運転許容量以上であると判別し、且つ、前記一端部側温度センサが前記潜熱蓄熱材の融点よりも低い設定低温側温度を検出すると、前記蓄熱槽の蓄熱量が前記運転停止量以下であると判別するように構成されている点にある。
A further characteristic configuration of the combined heat and power system of the present invention is a temperature sensor on the other end side that detects the temperature on the other end side inside the heat storage tank and one end side that detects the temperature on the one end side inside the heat storage tank. A temperature sensor is provided,
When the operation control unit detects a set high temperature side temperature higher than the melting point of the latent heat storage material by each of the other end side temperature sensor and the one end side temperature sensor, the heat storage amount of the heat storage tank is the operation permit. When it is determined that the capacity is equal to or higher than the capacity and the one end side temperature sensor detects a set low temperature side temperature lower than the melting point of the latent heat storage material, it is determined that the heat storage amount of the heat storage tank is equal to or less than the operation stop amount. It is in the point that it is configured to do.

すなわち、蓄熱槽の内部に収納された潜熱蓄熱材は、蓄熱槽の内部の加熱用流動路の他端部から一端部に向けて高温の湯水が流動することによって蓄熱するものであるから、蓄熱槽を蓄熱する際には、潜熱蓄熱材の他端部側部分の方が一端部側部分よりも先に高温になる状態で潜熱蓄熱材の全体が高温になる。 That is, the latent heat storage material stored inside the heat storage tank stores heat by flowing high-temperature hot water from the other end to one end of the heating flow path inside the heat storage tank. When storing heat in the tank, the temperature of the entire latent heat storage material becomes high in a state where the temperature of the other end side portion of the latent heat storage material becomes higher than that of the one end side portion.

従って、蓄熱槽の内部の他端部側温度を検出する他端部側温度センサ及び蓄熱槽の内部の一端部側温度を検出する一端部側温度センサの夫々が、潜熱蓄熱材の融点よりも高い設定高温側温度を検出している状態は、蓄熱槽の内部に収納された潜熱蓄熱材の全体が十分に蓄熱している状態であるから、運転制御部が、他端部側温度センサ及び一端部側温度センサの夫々が潜熱蓄熱材の融点よりも高い設定高温側温度を検出すると、蓄熱槽の蓄熱量が運転許容量以上であると判別することになる。 Therefore, the temperature sensor on the other end side that detects the temperature on the other end side inside the heat storage tank and the temperature sensor on the one end side that detects the temperature on the one end side inside the heat storage tank are more than the melting point of the latent heat storage material. The state in which the high set high temperature side temperature is detected is the state in which the entire latent heat storage material housed inside the heat storage tank is sufficiently storing heat, so that the operation control unit performs the operation control unit with the other end side temperature sensor and When each of the one-end side temperature sensors detects the set high temperature side temperature higher than the melting point of the latent heat storage material, it is determined that the heat storage amount of the heat storage tank is equal to or more than the operation allowable amount.

ちなみに、蓄熱槽を蓄熱する際には、潜熱蓄熱材の他端部側部分の方が一端部側部分よりも先に高温になる状態で潜熱蓄熱材の全体が高温になるものであるから、一端部側温度センサが潜熱蓄熱材の融点よりも高い設定高温側温度を検出すると、蓄熱槽の蓄熱量が運転許容量以上であると判別することができるが、一端部側温度センサが故障する等により、潜熱蓄熱材の融点よりも高い設定高温側温度を検出した際に、他端部側温度センサが潜熱蓄熱材の融点よりも高い設定高温側温度を検出しないときには、蓄熱槽の蓄熱量が運転許容量以上でないと判別することができる。 By the way, when heat is stored in the heat storage tank, the temperature of the latent heat storage material as a whole becomes high in a state where the temperature of the other end side portion of the latent heat storage material becomes higher than that of the one end side portion. When the temperature sensor on the one end side detects the set high temperature side temperature higher than the melting point of the latent heat storage material, it can be determined that the amount of heat stored in the heat storage tank is equal to or greater than the allowable operating amount, but the temperature sensor on the one end side fails. When the temperature on the other end side does not detect the set high temperature side temperature higher than the melting point of the latent heat storage material when the set high temperature side temperature higher than the melting point of the latent heat storage material is detected, the amount of heat stored in the heat storage tank Can be determined not to exceed the operating allowance.

また、蓄熱槽加熱出湯状態において蓄熱槽が放熱する際には、蓄熱槽の内部の加熱用流動路の一端部から他端部に向けて低温の湯水が流動することにより放熱することになるものであるから、蓄熱槽が放熱する際には、潜熱蓄熱材の一端部側部分の方が他端部側部分よりも先に低温になる状態で潜熱蓄熱材の放熱が進行することになる。 Further, when the heat storage tank dissipates heat in the state where the hot water is discharged from the heat storage tank, the low-temperature hot water flows from one end to the other end of the heating flow path inside the heat storage tank to dissipate heat. Therefore, when the heat storage tank dissipates heat, the heat dissipation of the latent heat storage material proceeds in a state where the temperature of the one end side portion of the latent heat storage material becomes lower than that of the other end side portion.

従って、蓄熱槽の内部の他端部側温度を検出する他端部側温度センサ及び蓄熱槽の内部の一端部側温度を検出する一端部側温度センサのうちの、一端部側温度センサが、潜熱蓄熱材の融点よりも低い設定低温側温度を検出している状態は、蓄熱槽の内部に収納された潜熱蓄熱材蓄熱量が少なくなっている状態であるから、運転制御部が、一端部側温度センサが潜熱蓄熱材の融点よりも低い設定低温側温度を検出すると、蓄熱槽の蓄熱量が運転停止量以下であると判別することになる。 Therefore, of the other end side temperature sensor that detects the other end side temperature inside the heat storage tank and the one end side temperature sensor that detects the one end side temperature inside the heat storage tank, the one end side temperature sensor is The state in which the set low temperature side temperature lower than the melting point of the latent heat storage material is detected is the state in which the amount of heat storage of the latent heat storage material stored inside the heat storage tank is small, so that the operation control unit is at one end. When the side temperature sensor detects the set low temperature side temperature lower than the melting point of the latent heat storage material, it is determined that the heat storage amount of the heat storage tank is equal to or less than the operation stop amount.

要するに、本発明の熱電併給システムの更なる特徴構成によれば、蓄熱槽の蓄熱量が運転許容量以上であること、及び、蓄熱槽の蓄熱量が運転停止量以下であることを適切に判別できる。 In short, according to the further characteristic configuration of the combined heat and power system of the present invention, it is appropriately determined that the heat storage amount of the heat storage tank is equal to or more than the operation allowable amount and that the heat storage amount of the heat storage tank is equal to or less than the operation stop amount. it can.

熱電併給システムの概略構成図である。It is a schematic block diagram of a combined heat and power system. 蓄熱状態を示す概略構成図である。It is a schematic block diagram which shows the heat storage state. 貯湯蓄熱状態を示す概略構成図である。It is a schematic block diagram which shows the hot water storage heat storage state. 別実施形態の熱電併給システムの概略構成図である。It is a schematic block diagram of the combined heat and power system of another embodiment. 基本出湯状態を示す概略構成図である。It is a schematic block diagram which shows the basic hot water discharge state. 蓄熱槽加熱出湯状態を示す概略構成図である。It is a schematic block diagram which shows the hot water discharge state of a heat storage tank.

〔実施形態〕
以下、本発明の熱電併給システムについての実施の形態を図面に基づいて説明する。
(熱電併給システムの全体構成)
図1に示すように、複数の電気負荷1に対する給電ライン2が接続された屋内の分電盤3に、商用電力を供給する商用電源4からの商用送電ライン4Aが接続され、発電部としての燃料電池式発電モジュールMからの送電ライン5が、屋内の分電盤3に接続されている。
[Embodiment]
Hereinafter, embodiments of the combined heat and power system of the present invention will be described with reference to the drawings.
(Overall configuration of combined heat and power system)
As shown in FIG. 1, a commercial power transmission line 4A from a commercial power source 4 for supplying commercial power is connected to an indoor distribution board 3 to which power supply lines 2 for a plurality of electric loads 1 are connected to serve as a power generation unit. The power transmission line 5 from the fuel cell type power generation module M is connected to the indoor distribution board 3.

燃料電池式発電モジュールMからの送電ライン5に、当該燃料電池式発電モジュールMの発電電力を商用電源4から供給される電力と同じ電圧で、同じ周波数に調整する系統連系用のインバータ等を備える電力変換部6が装備されている。
したがって、商用電源4からの商用電力、及び、燃料電池式発電モジュールMの発電電力が、複数の電気負荷1に供給されるように構成されている。
In the transmission line 5 from the fuel cell power generation module M, an inverter or the like for grid interconnection that adjusts the power generated by the fuel cell power generation module M to the same voltage and frequency as the power supplied from the commercial power source 4 is installed. The power conversion unit 6 is provided.
Therefore, the commercial power from the commercial power source 4 and the power generated by the fuel cell type power generation module M are configured to be supplied to the plurality of electric loads 1.

システムケーシングKが設けられ、当該システムケーシングKに、上述の燃料電池式発電モジュールM、湯水を貯湯する密閉型の貯湯槽8、燃料電池式発電モジュールMから排出される排ガスの熱を排熱として回収する排熱回収熱交換部N、当該排熱回収熱交換部Nを経由する形態で、貯湯槽8の底部と上部とを接続する湯水循環用の湯水循環路9、貯湯槽8の底部から取出した湯水を当該貯湯槽8の上部に戻す形態で、湯水循環路9を通して湯水を循環させる湯水循環ポンプ10、潜熱蓄熱材を収納した暖房用の蓄熱槽J、及び、運転制御部Hが収納されている。 A system casing K is provided, and the heat of the exhaust gas discharged from the above-mentioned fuel cell power generation module M, the closed hot water storage tank 8 for storing hot water, and the fuel cell power generation module M is used as exhaust heat in the system casing K. From the hot water circulation path 9 for hot water circulation connecting the bottom and the top of the hot water storage tank 8 and the bottom of the hot water storage tank 8 via the waste heat recovery heat exchange unit N to be recovered and the waste heat recovery heat exchange part N. The hot water circulation pump 10 that circulates hot water through the hot water circulation path 9, the heat storage tank J for heating that stores the latent heat storage material, and the operation control unit H are stored in the form of returning the taken out hot water to the upper part of the hot water storage tank 8. Has been done.

また、運転制御部Hに各種の情報を指令する操作指令部としてのリモコンRが設けられている。 Further, the operation control unit H is provided with a remote controller R as an operation command unit that commands various information.

本実施形態においては、都市ガス等の燃料ガスにて作動するフィンチューブ型熱交換式の給湯部D及び都市ガス等の燃料ガスにて作動するフィンチューブ型熱交換式の暖房部Eを備えた熱源機Fが備えられ、当該熱源機Fの作動を制御する熱源制御部Fhに対して、上述のリモコンRが各種の情報を指令するように構成されている。 In the present embodiment, a fin tube type heat exchange type hot water supply unit D that operates with a fuel gas such as city gas and a fin tube type heat exchange type heating unit E that operates with a fuel gas such as city gas are provided. A heat source machine F is provided, and the remote control R described above is configured to command various information to the heat source control unit Fh that controls the operation of the heat source machine F.

運転制御部Hが、燃料電池式発電モジュールMの作動状態において貯湯槽8に温度成層を形成する状態で貯湯すべく、湯水循環路9を通して貯湯槽8の上部に供給される湯水の温度が目標温度(例えば、65℃)になるように湯水循環路9を通して流動する湯水循環量を調整する形態で、湯水循環ポンプ10の作動を制御する排熱回収式貯湯処理を実行するように構成されている。
ちなみに、上記目標温度は、夏季、冬季、中間期等の季節に応じて、自動的に異なる温度を設定してもよく、また、リモコンRにて使用者の好みの温度を設定するように構成してもよい。
The target is the temperature of the hot water supplied to the upper part of the hot water storage tank 8 through the hot water circulation path 9 so that the operation control unit H stores the hot water in a state where the hot water storage tank 8 is formed with a temperature stratification in the operating state of the fuel cell type power generation module M. It is configured to execute an exhaust heat recovery type hot water storage process that controls the operation of the hot water circulation pump 10 in a form of adjusting the amount of hot water circulating through the hot water circulation path 9 so as to reach a temperature (for example, 65 ° C.). There is.
By the way, the above target temperature may be automatically set to a different temperature according to the seasons such as summer, winter, and intermediate season, and the remote controller R is configured to set the user's favorite temperature. You may.

したがって、貯湯槽8に貯湯した湯水を、貯湯槽8の上部に接続した出湯路11を通して、給湯栓等の湯水消費箇所に出湯(給湯)できるように構成されている。
そして、貯湯槽8に貯湯した湯水が出湯されると、貯湯槽8の下部に接続した給水路12を通して、上水道等の給水源より給水されることになる。
つまり、貯湯槽8の底部に接続した給水路12の給水圧にて貯湯槽8の上部に接続した出湯路11を通して湯水を供給できるように構成されている。
Therefore, the hot water stored in the hot water storage tank 8 is configured to be able to be discharged (hot water supply) to a hot water consumption point such as a hot water tap through a hot water outlet 11 connected to the upper part of the hot water storage tank 8.
Then, when the hot water stored in the hot water storage tank 8 is discharged, water is supplied from a water supply source such as a water supply through a water supply channel 12 connected to the lower part of the hot water storage tank 8.
That is, it is configured so that hot water can be supplied through the hot water outlet 11 connected to the upper part of the hot water storage tank 8 by the water supply pressure of the water supply channel 12 connected to the bottom of the hot water storage tank 8.

(湯水循環路の詳細)
湯水循環路9は、貯湯槽8の底部と排熱回収熱交換部Nとを接続する貯湯用往き路9aと、排熱回収熱交換部Nと貯湯槽8の上部とを接続する貯湯用戻り路9bとからなる。
そして、貯湯用往き路9aには、湯水の流れ方向に沿って、上述した湯水循環ポンプ10、湯水循環路9を流動する湯水を冷却するラジエータ14が設けられている。
尚、ラジエータ14は、貯湯槽8の内部全体に目標温度(例えば、65℃)の湯水が貯湯された状態(沸き上がった状態)において、貯湯用往き路9aを流動する湯水の温度が設定冷却温度(例えば、40℃)を超える場合には、湯水を設定冷却温度(例えば、40℃)に冷却するために設けられている。
(Details of hot water circulation route)
The hot water circulation path 9 is a hot water storage outbound path 9a that connects the bottom of the hot water storage tank 8 and the exhaust heat recovery heat exchange unit N, and a hot water storage return that connects the exhaust heat recovery heat exchange unit N and the upper part of the hot water storage tank 8. It consists of road 9b.
The hot water storage outbound path 9a is provided with the hot water circulation pump 10 described above and a radiator 14 for cooling the hot water flowing in the hot water circulation path 9 along the flow direction of the hot water.
The radiator 14 has a set cooling temperature at which the temperature of the hot water flowing through the hot water storage outbound path 9a is set in a state where hot water having a target temperature (for example, 65 ° C.) is stored in the entire inside of the hot water storage tank 8 (in a boiling state). If it exceeds (for example, 40 ° C.), it is provided to cool the hot water to a set cooling temperature (for example, 40 ° C.).

貯湯用戻り路9bには、排熱回収熱交換部Nにて加熱された湯水の温度を検出する温度センサとしての温水側センサ17が設けられている。
つまり、運転制御部Hが、排熱回収式貯湯処理において、温水側センサ17の検出温度が目標温度(例えば、65℃)になるように湯水循環ポンプ10の作動を制御するように構成されている。
The hot water storage return path 9b is provided with a hot water side sensor 17 as a temperature sensor for detecting the temperature of the hot water heated by the exhaust heat recovery heat exchange unit N.
That is, the operation control unit H is configured to control the operation of the hot water circulation pump 10 so that the detection temperature of the hot water side sensor 17 becomes the target temperature (for example, 65 ° C.) in the waste heat recovery type hot water storage process. There is.

(出湯構成の詳細)
出湯路11には、給水路12から分岐する分岐路12Aから供給される湯水(冷水)と当該出湯路11を通流する湯水(温水)とを混合する混合弁18が設けられている。
そして、例えば、リモコンRにて指令された目標給湯温度(例えば、40℃等)の湯水を出湯すべく、分岐路12Aからの湯水(冷水)と出湯路11を通流する湯水(温水)とを混合弁18にて混合できるように構成されている。
(Details of hot water composition)
The hot water outlet 11 is provided with a mixing valve 18 that mixes hot water (cold water) supplied from the branch passage 12A branching from the water supply passage 12 and hot water (hot water) flowing through the hot water outlet 11.
Then, for example, in order to discharge hot water having a target hot water supply temperature (for example, 40 ° C.) commanded by the remote controller R, hot water (cold water) from the branch road 12A and hot water (hot water) flowing through the hot water passage 11 Is configured to be mixed by the mixing valve 18.

また、出湯路11が、熱源機Fの給湯部Dに湯水を供給するように構成されている。
そして、給湯部Dが、例えば、貯湯槽8に湯水が貯湯されていない場合等において、出湯路11からの湯水を、リモコンRにて指令された目標給湯温度(例えば、40℃等)に加熱して出湯するように構成されている。
Further, the hot water passage 11 is configured to supply hot water to the hot water supply unit D of the heat source machine F.
Then, the hot water supply unit D heats the hot water from the hot water passage 11 to the target hot water supply temperature (for example, 40 ° C., etc.) commanded by the remote controller R, for example, when the hot water is not stored in the hot water storage tank 8. It is configured to be used for hot water.

(燃料電池式モジュールの詳細)
燃料電池式発電モジュールMは、都市ガス等の燃料ガスが燃料ガス供給路20を通して供給される改質処理部21及び固体酸化物形の複数の燃料電池セルを備えるセルスタック22を、高温容器23の内部に収納する形態に構成されている。
つまり、本実施形態においては、燃料電池式発電モジュールMは、固体酸化物形燃料電池として構成されている。
(Details of fuel cell module)
The fuel cell type power generation module M has a cell stack 22 including a reforming processing unit 21 in which fuel gas such as city gas is supplied through a fuel gas supply path 20 and a plurality of solid oxide type fuel cell cells, and a high temperature container 23. It is configured to be stored inside the.
That is, in the present embodiment, the fuel cell type power generation module M is configured as a solid oxide fuel cell.

改質処理部21は、燃料ガスを水蒸気改質処理して、水素成分が多い改質ガスを生成するものであって、生成した改質ガスが、セルスタック22に供給されるように構成されている。
ちなみに、改質処理部21には、燃料ガスに加えて、水蒸気が供給されることになるが、その構成は周知であるので、本実施形態においては詳細な説明を省略する。
The reforming treatment unit 21 steam reforms the fuel gas to generate a reforming gas containing a large amount of hydrogen components, and the reforming gas produced is supplied to the cell stack 22. ing.
By the way, water vapor is supplied to the reforming processing unit 21 in addition to the fuel gas, but since the configuration is well known, detailed description thereof will be omitted in the present embodiment.

図示は省略するが、空気(酸素含有ガス)がセルスタック22に供給されている。
そして、セルスタック22が、改質ガスを燃料極に通流させ、かつ、空気(酸素含有ガス)を酸素極に通流させることによって、発電するように構成されている。
Although not shown, air (oxygen-containing gas) is supplied to the cell stack 22.
The cell stack 22 is configured to generate electricity by passing the reforming gas through the fuel electrode and passing air (oxygen-containing gas) through the oxygen electrode.

また、燃料極を通流した後の改質ガスが、酸素極を通流した後の空気(酸素含有ガス)を用いて燃焼し、その燃焼熱にて改質処理部21を加熱するように構成されている。
さらに、改質ガスを燃焼させた排ガスを高温容器23から排出する排ガス路24が、上述した排熱回収熱交換部Nを経由する形態で設けられている。つまり、排熱回収熱交換部Nが、燃料極を通流した後の改質ガスを燃焼させた排ガスの排熱を回収できるように構成されている。
Further, the reforming gas after passing through the fuel electrode is burned by using the air (oxygen-containing gas) after passing through the oxygen electrode, and the reforming treatment unit 21 is heated by the combustion heat. It is configured.
Further, an exhaust gas passage 24 for discharging the exhaust gas obtained by burning the reformed gas from the high temperature container 23 is provided in the form of passing through the exhaust heat recovery heat exchange unit N described above. That is, the exhaust heat recovery heat exchange unit N is configured to be able to recover the exhaust heat of the exhaust gas obtained by burning the reformed gas after passing through the fuel electrode.

また、燃料ガス供給路20には、当該燃料ガス供給路20を開閉して燃料ガスの供給を断続する燃料ガス供給弁25、及び、燃料ガスの供給圧を検出する圧力センサ26が設けられている。
そして、運転制御部Hは、リモコンRから運転指令が指令されると、圧力センサ26にて燃料ガスの供給圧が適正であると判別したときには、燃料ガス供給弁25を開いて、燃料電池式発電モジュールMを作動させる運転処理を実行し、リモコンRから運転停止指令が指令されると、燃料ガス供給弁25を閉じて、燃料電池式発電モジュールMを停止させる停止処理を実行することになる。
そして、運転制御部Hは、運転処理の実行中においては、上述した排熱回収式貯湯処理を実行するように構成されている。
Further, the fuel gas supply path 20 is provided with a fuel gas supply valve 25 that opens and closes the fuel gas supply path 20 to interrupt the supply of the fuel gas, and a pressure sensor 26 that detects the supply pressure of the fuel gas. There is.
Then, when the operation control unit H determines that the fuel gas supply pressure is appropriate by the pressure sensor 26 when the operation command is commanded from the remote control R, the operation control unit H opens the fuel gas supply valve 25 and uses a fuel cell type. When the operation process for operating the power generation module M is executed and the operation stop command is commanded from the remote control R, the fuel gas supply valve 25 is closed and the stop process for stopping the fuel cell type power generation module M is executed. ..
Then, the operation control unit H is configured to execute the above-mentioned waste heat recovery type hot water storage process during the execution of the operation process.

(暖房用構成について)
潜熱蓄熱材を収納した蓄熱槽Jの内部に、加熱用流動路27及び暖房用被加熱路28の夫々が当該蓄熱槽Jの一端部(本実施形態では下端部)から他端部(本実施形態では上端部)に亘って位置する状態で設けられている。
本実施形態においては、潜熱蓄熱材として、融点が58℃の酢酸ナトリウム三水和物が蓄熱槽Jに収納されている。
(About the heating configuration)
Inside the heat storage tank J containing the latent heat storage material, the heating flow path 27 and the heating passage 28 are respectively from one end (lower end in the present embodiment) to the other end (the present implementation) of the heat storage tank J. In the form, it is provided so as to be located over the upper end portion).
In the present embodiment, sodium acetate trihydrate having a melting point of 58 ° C. is stored in the heat storage tank J as a latent heat storage material.

暖房用熱媒を床暖房パネル等の暖房用端末Bに循環供給する暖房用循環路15が、暖房用戻り路15aを暖房用被加熱路28の一端部側の暖房用入口28aと接続し、かつ、暖房用往き路15bを暖房用被加熱路28の他端部側の暖房用出口28bと接続する状態で設けられている。
本実施形態においては、暖房用熱媒を循環流動させる暖房用ポンプ16が、暖房用往き路15bに配設されている。
The heating circulation path 15 that circulates and supplies the heating heat medium to the heating terminal B such as the floor heating panel connects the heating return path 15a to the heating inlet 28a on one end side of the heating heated path 28. In addition, the heating outbound path 15b is provided in a state of being connected to the heating outlet 28b on the other end side of the heated path 28 for heating.
In the present embodiment, the heating pump 16 that circulates and flows the heating heat medium is arranged in the heating outbound path 15b.

暖房用往き路15bが、熱源機Fの暖房部Eを経由して配管されている。
そして、暖房部Eが、例えば、蓄熱槽Jに蓄熱されていない場合等において、暖房用往き路15bを流動する暖房用熱媒を目標供給温度(例えば、60℃等)に加熱するように構成されている。
尚、本実施形態においては、暖房用ポンプ16が、熱源機Fに装備されている。
The heating outbound route 15b is piped via the heating unit E of the heat source machine F.
Then, the heating unit E is configured to heat the heating heat medium flowing through the heating outbound path 15b to a target supply temperature (for example, 60 ° C., etc.) when, for example, the heat is not stored in the heat storage tank J. Has been done.
In the present embodiment, the heating pump 16 is provided in the heat source machine F.

湯水循環路9における貯湯用戻り路9bから分岐した戻り側分岐路9cが、加熱用流動路27の他端部側の加熱用入口27aに接続され、かつ、湯水循環路9における貯湯用往き路9aに合流する往き側合流路9dが、加熱用流動路27の一端部側の加熱用出口27bに接続されて、貯湯用戻り路9bを流動する湯水にて蓄熱槽Jを蓄熱するように構成されている。
本実施形態では、往き側合流路9dが、貯湯用往き路9aにおける湯水循環ポンプ10の上流側箇所に接続されている。
The return side branch path 9c branched from the hot water storage return path 9b in the hot water circulation path 9 is connected to the heating inlet 27a on the other end side of the heating flow path 27, and the hot water storage outbound path in the hot water circulation path 9. The forward side merging flow path 9d that joins 9a is connected to the heating outlet 27b on one end side of the heating flow path 27, and the heat storage tank J is configured to store heat with hot water flowing through the hot water storage return path 9b. Has been done.
In the present embodiment, the outgoing side joint flow path 9d is connected to the upstream side portion of the hot water circulation pump 10 in the hot water storage outward passage 9a.

つまり、潜熱蓄熱材が融ける程度まで加熱されている状態である等、蓄熱槽Jに多量の熱が蓄熱されている場合においては、暖房用循環路15を循環する暖房用熱媒を蓄熱槽Jの熱量にて目標供給温度(例えば、60℃等)に加熱し、且つ、蓄熱槽Jに蓄熱されていない場合等においては、暖房用熱媒を暖房部Eにて目標供給温度(例えば、60℃等)に加熱するように構成されている。 That is, when a large amount of heat is stored in the heat storage tank J, such as when the latent heat storage material is heated to the extent that it melts, the heat storage tank J uses a heating heat medium that circulates in the heating circulation path 15. When the heat is heated to the target supply temperature (for example, 60 ° C.) and the heat is not stored in the heat storage tank J, the heating heat medium is heated to the target supply temperature (for example, 60 ° C.) by the heating unit E. It is configured to heat to (° C, etc.).

(蓄熱用構成の詳細について)
貯湯用戻り路9bを流動する湯水のうちで、加熱用流動路27を経由して貯湯用往き路9aに流動させる加熱用流動量と、貯湯槽8を経由して貯湯用往き路9aに流動させる貯湯用流動量との割合を変更調節する流量調節部Vが、貯湯用往き路9aにおける往き側合流路9dの接続箇所(合流箇所)に設けられている。
(Details of heat storage configuration)
Of the hot water flowing through the hot water storage return path 9b, the amount of hot water that flows to the hot water storage outbound path 9a via the heating flow path 27 and the amount of hot water that flows to the hot water storage outbound path 9a via the hot water storage tank 8. A flow rate adjusting unit V for changing and adjusting the ratio with the amount of hot water to be stored is provided at a connection point (merging point) of the outgoing side junction flow path 9d in the hot water storage outward passage 9a.

そして、流量調節部Vが、往き側合流路9dを流動する湯水の温度が設定冷却温度(例えば、40℃)以下のときには、図2に示す如く、貯湯用流動量が零となるようにし、かつ、往き側合流路9dを流動する湯水の温度が設定冷却温度(例えば、40℃)を超えるときには、図3に示す如く、貯湯用往き路9aにおける往き側合流路9dの合流箇所よりも下流側の湯水の温度を設定冷却温度(例えば、40℃)に維持すべく、加熱用流動量と貯湯用流動量との割合を調節する温度制御処理を実行するように構成されている。 Then, when the temperature of the hot water flowing in the forward side joint flow path 9d is equal to or lower than the set cooling temperature (for example, 40 ° C.), the flow rate adjusting unit V sets the flow rate for hot water storage to zero as shown in FIG. When the temperature of the hot water flowing through the outgoing side junction 9d exceeds the set cooling temperature (for example, 40 ° C.), as shown in FIG. 3, it is downstream from the confluence of the outgoing side junction 9d in the hot water storage outlet 9a. In order to maintain the temperature of the hot water on the side at the set cooling temperature (for example, 40 ° C.), the temperature control process for adjusting the ratio between the flow rate for heating and the flow rate for hot water storage is configured to be executed.

本実施形態においては、流量調節部Vが、WAX式の混合弁を用いて構成されており、往き側合流路9dを流動する湯水の温度が設定冷却温度(例えば、40℃)以下のときには、往き側合流路9dを流動する湯水と貯湯槽8の底部からの湯水との混合温度を設定冷却温度(例えば、40℃)に上昇させようとして、往き側合流路9dから湯水を流動させる開度を全開にし、且つ、貯湯槽8の底部から湯水を流動させる開度を全閉する。 In the present embodiment, the flow rate adjusting unit V is configured by using a WAX type mixing valve, and when the temperature of the hot water flowing through the forward side joint flow path 9d is equal to or lower than the set cooling temperature (for example, 40 ° C.), The opening degree at which hot water flows from the outgoing side junction 9d in an attempt to raise the mixing temperature of the hot water flowing through the outgoing side junction 9d and the hot water from the bottom of the hot water storage tank 8 to the set cooling temperature (for example, 40 ° C.). Is fully opened, and the opening degree at which hot water flows from the bottom of the hot water storage tank 8 is fully closed.

そして、往き側合流路9dを流動する湯水の温度が設定冷却温度(例えば、40℃)を超えるときには、往き側合流路9dを流動する湯水と貯湯槽8の底部からの湯水との混合温度を設定冷却温度(例えば、40℃)に下降させようとして、往き側合流路9dから湯水を流動させる開度を全開よりも閉じ側にし、且つ、貯湯槽8の底部から湯水を流動させる開度を全閉よりも開き側にする。 Then, when the temperature of the hot water flowing in the forward side joint flow path 9d exceeds the set cooling temperature (for example, 40 ° C.), the mixed temperature of the hot water flowing in the forward side joint flow path 9d and the hot water water from the bottom of the hot water storage tank 8 is set. In an attempt to lower the temperature to the set cooling temperature (for example, 40 ° C.), the opening degree at which hot water flows from the forward side joint flow path 9d is set to the closed side rather than the fully open side, and the opening degree at which hot water flows from the bottom of the hot water storage tank 8 is set. Make it open rather than fully closed.

例えば、往き側合流路9dから流動する湯水の温度が60℃でかつ貯湯槽8の底部から流動する湯水の温度が20℃の場合には、加熱用流動量と貯湯用流動量との割合が1:1となり、往き側合流路9dから流動する湯水量と貯湯槽8の底部から流動する湯水量が同じになる。 For example, when the temperature of the hot water flowing from the forward-side joint flow path 9d is 60 ° C. and the temperature of the hot water flowing from the bottom of the hot water storage tank 8 is 20 ° C., the ratio between the amount of hot water flowing and the amount of hot water flowing is the ratio. It becomes 1: 1 and the amount of hot water flowing from the forward side joint flow path 9d and the amount of hot water flowing from the bottom of the hot water storage tank 8 are the same.

つまり、温度制御処理を実行する流量調節部Vの作動によって、蓄熱槽Jが蓄熱されていないときには、貯湯用戻り路9bを流動する湯水の全量が蓄熱槽Jに供給されて、蓄熱槽Jの蓄熱が優先的に行われることになり、そして、蓄熱槽Jの蓄熱量が増加するに伴って、貯湯用戻り路9bを流動する湯水が貯湯槽8にも供給されながら貯湯されることになる。
また、蓄熱槽Jの蓄熱量が変化するに伴って、往き側合流路9dを流動する湯水の温度が変化しても、貯湯用往き路9aにおける往き側合流路9dの合流箇所よりも下流側の湯水の温度を設定冷却温度(例えば、40℃)に維持されることになる。
That is, when the heat storage tank J is not stored by the operation of the flow rate adjusting unit V that executes the temperature control process, the entire amount of hot water flowing through the hot water storage return path 9b is supplied to the heat storage tank J, and the heat storage tank J The heat storage is prioritized, and as the amount of heat stored in the heat storage tank J increases, the hot water flowing through the hot water storage return path 9b is also supplied to the hot water storage tank 8 and stored. ..
Further, even if the temperature of the hot water flowing in the outbound side junction 9d changes as the amount of heat stored in the heat storage tank J changes, the downstream side of the junction of the outbound junction 9d in the hot water storage outbound passage 9a. The temperature of the hot water will be maintained at the set cooling temperature (for example, 40 ° C.).

ちなみに、本実施形態を実施するにあたり、流量調節部Vを電動式の三方弁を用いて構成する等により、暖房運転を行わないときには、貯湯用戻り路9bを流動する湯水の全量を貯湯槽8に流動させる状態に維持できるように構成してもよい。 By the way, in carrying out this embodiment, the flow rate adjusting unit V is configured by using an electric three-way valve, and when the heating operation is not performed, the entire amount of hot water flowing through the hot water storage return path 9b is used as the hot water storage tank 8. It may be configured so that it can be maintained in a state of being fluidized.

〔別実施形態〕
次に、別実施形態を説明するが、この別実施形態は、蓄熱槽Jを給湯に使用できるようにする実施形態を説明するものであって、上記実施形態で説明した構成と同じ構成の部分については同じ符号を付して、詳細な説明を省略する。
[Another Embodiment]
Next, another embodiment will be described. This other embodiment describes an embodiment in which the heat storage tank J can be used for hot water supply, and has the same configuration as that described in the above embodiment. The same reference numerals are given to the above, and detailed description thereof will be omitted.

図4に示すように、出湯路11から分岐した出湯用分岐路11aが、往き側合流路9dに合流接続され、かつ、出湯路11における出湯用分岐路11aの分岐箇所よりも下流側に合流する出湯用合流路11bが、戻り側分岐路9cに接続されている。
そして、出湯路11における出湯用分岐路11aの分岐箇所に、電動式三方弁を用いた出湯状態切換部Wが設けられている。
また、貯湯用戻り路9bにおける戻り側分岐路9cの分岐箇所より貯湯槽8に近接する流路部分には、貯湯槽8からの湯水の逆流を阻止する逆止弁29が設けられている。
As shown in FIG. 4, the hot water branch passage 11a branched from the hot water passage 11 is merged and connected to the outgoing side junction flow path 9d, and merges to the downstream side of the branch portion of the hot water branch passage 11a in the hot water passage 11. The hot water discharge joint flow path 11b is connected to the return side branch path 9c.
Then, a hot water discharge state switching unit W using an electric three-way valve is provided at a branch point of the hot water discharge branch path 11a in the hot water discharge path 11.
Further, a check valve 29 for preventing the backflow of hot water from the hot water storage tank 8 is provided in the flow path portion close to the hot water storage tank 8 from the branch point of the return side branch road 9c in the hot water storage return path 9b.

出湯状態切換部Wは、図5に示す如く、出湯路11を流動する湯水の全量を出湯用分岐路11aに分岐させることなく流動させる基本出湯状態と、図6に示す如く、出湯路11を流動する湯水の全量を出湯用分岐路11aに分岐させて、往き側合流路9d、加熱用流動路27、戻り側分岐路9c、及び、出湯用合流路11bを通して流動させる蓄熱槽加熱出湯状態とに切換えるように構成されている。 As shown in FIG. 5, the hot water discharge state switching unit W provides a basic hot water discharge state in which the entire amount of hot water flowing in the hot water outlet 11 is allowed to flow without branching to the hot water branch passage 11a, and a hot water outlet 11 as shown in FIG. A heat storage tank heating hot water discharge state in which the entire amount of flowing hot water is branched into a hot water outlet branch path 11a and is allowed to flow through the forward side joint flow path 9d, the heating flow path 27, the return side branch path 9c, and the hot water discharge joint flow path 11b. It is configured to switch to.

つまり、出湯状態切換部Wを基本出湯状態に切換えた場合には、先の実施形態と同様に、温度制御処理を実行する流量調節部Vの作動によって、蓄熱槽Jが蓄熱されていないときには、貯湯用戻り路9bを流動する湯水の全量が蓄熱槽Jに供給されて、蓄熱槽Jの蓄熱が優先的に行われることになり(図2参照)、そして、蓄熱槽Jの蓄熱量が増加するに伴って、貯湯用戻り路9bを流動する湯水が貯湯槽8にも供給されながら貯湯されることになる(図3参照)。
また、蓄熱槽Jの蓄熱量が変化するに伴って、往き側合流路9dを流動する湯水の温度が変化しても、貯湯用往き路9aにおける往き側合流路9dの合流箇所よりも下流側の湯水の温度を設定冷却温度(例えば、40℃)に維持されることになる。
That is, when the hot water discharge state switching unit W is switched to the basic hot water discharge state, the heat storage tank J is not stored by the operation of the flow rate control unit V that executes the temperature control process, as in the previous embodiment. The entire amount of hot water flowing through the return path 9b for hot water storage is supplied to the heat storage tank J, the heat storage of the heat storage tank J is preferentially performed (see FIG. 2), and the heat storage amount of the heat storage tank J increases. As a result, the hot water flowing through the hot water storage return path 9b is stored while being supplied to the hot water storage tank 8 (see FIG. 3).
Further, even if the temperature of the hot water flowing in the outbound side junction 9d changes as the amount of heat stored in the heat storage tank J changes, the downstream side of the junction of the outbound junction 9d in the hot water storage outbound passage 9a. The temperature of the hot water will be maintained at the set cooling temperature (for example, 40 ° C.).

そして、貯湯槽8の貯湯量が設定未満になったとき(貯湯槽8の上部の湯水温度が目標温度(例えば、65℃)よりも低くなったとき)に、後述の如く、蓄熱槽Jの蓄熱量が運転許容量以上である場合には、出湯状態切換部Wを蓄熱槽加熱出湯状態に切換えると、出湯路11を流動する湯水の全量が出湯用分岐路11aに分岐されて、往き側合流路9d、加熱用流動路27、戻り側分岐路9c、及び、出湯用合流路11bを通して流動されて、蓄熱槽Jにて加熱されることになる。 Then, when the amount of hot water stored in the hot water storage tank 8 becomes less than the set value (when the temperature of the hot water in the upper part of the hot water storage tank 8 becomes lower than the target temperature (for example, 65 ° C.)), as described later, the heat storage tank J When the amount of heat storage is equal to or greater than the allowable operating amount, when the hot water discharge state switching unit W is switched to the hot water discharge state heated by the heat storage tank, the entire amount of hot water flowing through the hot water outlet 11 is branched to the hot water branch passage 11a on the outgoing side. It is flowed through the joint flow path 9d, the heating flow path 27, the return side branch passage 9c, and the hot water discharge joint flow path 11b, and is heated in the heat storage tank J.

ちなみに、蓄熱槽加熱出湯状態においては、戻り側分岐路9cを流動する湯水が、出湯用合流路11bを通して出湯路11に流動し、且つ、出湯用分岐路11aを流動する湯水の一部が、往き側合流路9dを通して流量調節部Vに流動することになる。
そして、流量調節部Vは、往き側合流路9dを流動する湯水の温度に応じて、加熱用流動量と貯湯用流動量との割合を調節することになり、例えば、「貯湯槽8の上部の湯水の温度が設定冷却温度(例えば、40℃)よりも低い場合においては」、図6に示す如く、往き側合流路9dを流動する湯水の温度が設定冷却温度(例えば、40℃)以下のときには、往き側合流路9dを流動する湯水と貯湯槽8の底部からの湯水との混合温度を設定冷却温度(例えば、40℃)に上昇させようとして、往き側合流路9dから湯水を流動させる開度を全開にし、且つ、貯湯槽8の底部から湯水を流動させる開度を全閉する。
By the way, in the hot water discharge state of the heat storage tank, the hot water flowing through the return side branch passage 9c flows into the hot water passage 11 through the hot water discharge joint flow path 11b, and a part of the hot water flowing through the hot water branch passage 11a is formed. It will flow to the flow rate adjusting unit V through the forward side combined flow path 9d.
Then, the flow rate adjusting unit V adjusts the ratio of the heating flow rate and the hot water storage flow rate according to the temperature of the hot water flowing in the forward side joint flow path 9d. For example, "the upper part of the hot water storage tank 8". When the temperature of the hot water is lower than the set cooling temperature (for example, 40 ° C.) ”, as shown in FIG. 6, the temperature of the hot water flowing in the forward side joint flow path 9d is equal to or lower than the set cooling temperature (for example, 40 ° C.). At this time, the hot water flows from the forward side joint flow path 9d in an attempt to raise the mixing temperature of the hot water flowing through the forward side joint flow path 9d and the hot water from the bottom of the hot water storage tank 8 to the set cooling temperature (for example, 40 ° C.). The opening degree for flowing hot water is fully opened, and the opening degree for flowing hot water from the bottom of the hot water storage tank 8 is fully closed.

そして、運転制御部Hが、通常は、出湯状態切換部Wを基本出湯状態に切換え、且つ、出湯状態切換部Wを基本出湯状態に切換えた状態において、貯湯槽8の貯湯量が設定未満になったとき(貯湯槽8の上部の湯水温度が目標温度(例えば、65℃)よりも低くなったとき)に、後述の如く、蓄熱槽Jの蓄熱量が運転許容量以上である場合には、出湯状態切換部Wを蓄熱槽加熱出湯状態に切換えるように構成されている。 Then, in a state in which the operation control unit H normally switches the hot water discharge state switching unit W to the basic hot water discharge state and the hot water discharge state switching unit W to the basic hot water discharge state, the amount of hot water stored in the hot water storage tank 8 becomes less than the set value. When the temperature of the hot water in the upper part of the hot water storage tank 8 becomes lower than the target temperature (for example, 65 ° C.), as described later, when the heat storage amount of the heat storage tank J is equal to or more than the operation allowable amount. , The hot water discharge state switching unit W is configured to switch to the heat storage tank heating hot water discharge state.

また、運転制御部Hが、蓄熱槽加熱出湯状態に切換えているときに、蓄熱槽Jの蓄熱量が後述する運転停止量以下となれば、出湯状態切換部Wを前記基本出湯状態に切換えるように構成されている。 Further, when the operation control unit H is switching to the heat storage tank heating hot water discharge state, if the heat storage amount of the heat storage tank J is equal to or less than the operation stop amount described later, the hot water discharge state switching unit W is switched to the basic hot water discharge state. It is configured in.

蓄熱槽Jの内部の他端部側温度(上端部側温度)を検出する他端部側温度センサTu及び蓄熱槽Jの内部の一端部側温度(下端部側温度)を検出する一端部側温度センサTsが設けられている。
そして、運転制御部Hが、他端部側温度センサTu及び一端部側温度センサTsの夫々が潜熱蓄熱材の融点(例えば、58℃)よりも高い設定高温側温度(例えば65℃)を検出すると、蓄熱槽Jの蓄熱量が運転許容量以上であると判別し、且つ、一端部側温度センサTsが潜熱蓄熱材の融点よりも低い設定低温側温度(例えば50℃)を検出すると、蓄熱槽Jの蓄熱量が運転停止量以下であると判別するように構成されている。
The other end side temperature sensor Tu that detects the other end side temperature (upper end side temperature) inside the heat storage tank J and the one end side that detects the one end side temperature (lower end side temperature) inside the heat storage tank J Temperature sensors Ts are provided.
Then, the operation control unit H detects a set high temperature side temperature (for example, 65 ° C.) at which the other end side temperature sensor Tu and the one end side temperature sensor Ts are higher than the melting point (for example, 58 ° C.) of the latent heat storage material. Then, when it is determined that the amount of heat stored in the heat storage tank J is equal to or greater than the allowable operating amount, and the temperature sensor Ts on one end detects a set low temperature side temperature (for example, 50 ° C.) lower than the melting point of the latent heat storage material, heat storage is performed. It is configured to determine that the heat storage amount of the tank J is equal to or less than the operation stop amount.

貯湯槽8の上端側に貯湯された湯水の温度を検出する湯水温度センサSが設けられている。
そして、運転制御部Hが、湯水温度センサSの検出温度が目標温度(例えば、65℃)よりも低くなったときに、貯湯槽8の貯湯量が設定未満になったと判別するように構成されている。
A hot water temperature sensor S for detecting the temperature of the hot water stored in the hot water storage tank 8 is provided on the upper end side of the hot water storage tank 8.
Then, the operation control unit H is configured to determine that the amount of hot water stored in the hot water storage tank 8 is less than the set value when the detected temperature of the hot water temperature sensor S becomes lower than the target temperature (for example, 65 ° C.). ing.

〔その他の別実施形態〕
次に、その他の別実施形態を列記する。
(1)上記実施形態及び別実施形態においては、発電部として、燃料電池式発電モジュールMを例示したが、発電部として、発電機を駆動するガスエンジンを設ける形態で実施してもよい。
この場合、排熱回収熱交換部Nは、ガスエンジンを冷却する際の熱を回収することになる。
[Other Other Embodiments]
Next, other other embodiments are listed.
(1) In the above embodiment and another embodiment, the fuel cell type power generation module M is exemplified as the power generation unit, but the power generation unit may be provided with a gas engine for driving the generator.
In this case, the exhaust heat recovery heat exchange unit N recovers the heat when cooling the gas engine.

(2)上記実施形態においては、燃料電池式の発電部として、固体酸化物形の燃料電池セルを備える燃料電池式発電モジュールMを例示したが、燃料電池式の発電部として、固体高分子形の燃料電池セルを備える燃料電池式の発電部を設ける形態で実施してもよい。
この場合、排熱回収熱交換部Nは、燃料電池式の発電部を冷却する際の熱を回収することになる。
(2) In the above embodiment, the fuel cell type power generation module M provided with the solid oxide type fuel cell is exemplified as the fuel cell type power generation unit, but the fuel cell type power generation unit is a solid polymer type. This may be carried out in the form of providing a fuel cell type power generation unit including the fuel cell of the above.
In this case, the exhaust heat recovery heat exchange unit N recovers the heat when cooling the fuel cell type power generation unit.

(3)上記実施形態及び別実施形態においては、流量調節部Vを、三方弁を用いて構成する場合を例示したが、往き側合流路9dを流動する湯水の流動量を調節する流量調節弁と、貯湯槽8の底部からの湯水の流動量を調節する流量調節弁と、それらの流量調節弁を制御する弁制御部とにより、流量調節部Vを構成する等、流量調節部Vの具体構成は各種変更できる。 (3) In the above embodiment and another embodiment, the case where the flow rate adjusting unit V is configured by using a three-way valve is illustrated, but the flow rate adjusting valve that adjusts the flow rate of hot water flowing through the forward side joint flow path 9d. A specific flow rate adjusting unit V, such as forming a flow rate adjusting unit V by a flow rate adjusting valve that adjusts the flow rate of hot water from the bottom of the hot water storage tank 8 and a valve control unit that controls those flow rate adjusting valves. The configuration can be changed in various ways.

(4)上記実施形態及び別実施形態においては、蓄熱槽Jを縦向き姿勢に設置する場合を例示したが、蓄熱槽Jを横倒れ姿勢で設置する等、蓄熱槽Jの設置の具体形態は各種変更できる。 (4) In the above embodiment and another embodiment, the case where the heat storage tank J is installed in the vertical posture is illustrated, but the specific embodiment of the installation of the heat storage tank J, such as installing the heat storage tank J in the sideways posture, is Various changes can be made.

(5)上記実施形態及び別実施形態においては、潜熱蓄熱材として、酢酸ナトリウム三水和物を例示したが、潜熱蓄熱材としては、パラフィン系のトリアコンタン(融点65℃)や有機物系ステアリン酸(融点71℃)等、各種のものを適用できる。 (5) In the above embodiment and another embodiment, sodium acetate trihydrate was exemplified as the latent heat storage material, but as the latent heat storage material, paraffin-based triactan (melting point 65 ° C.) and organic stearic acid were used. Various things such as (melting point 71 ° C.) can be applied.

(6)上記実施形態及び別実施形態においては、湯水循環路9の貯湯用往き路9aに、湯水循環路9を流動する湯水を冷却するラジエータ14を設けるようにしたが、当該ラジエータ14を省略する形態で実施してもよい。 (6) In the above embodiment and another embodiment, the radiator 14 for cooling the hot water flowing in the hot water circulation path 9 is provided in the hot water storage outbound path 9a of the hot water circulation path 9, but the radiator 14 is omitted. It may be carried out in the form of.

尚、上記実施形態(別実施形態を含む)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜変更することが可能である。 The configurations disclosed in the above embodiment (including another embodiment) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and the present specification. The embodiment disclosed in the above is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

8 貯湯槽
9 湯水循環路
9a 貯湯用往き路
9b 貯湯用戻り路
9c 戻り側分岐路
9d 往き側合流路
10 湯水循環ポンプ
11 出湯路
11a 出湯用分岐路
11b 出湯用合流路
12 給水路
15 暖房用循環路
15a 暖房用戻り路
27 加熱用流動路
27a 加熱用入口
27b 加熱用出口
28 暖房用被加熱路
28a 暖房用入口
28b 暖房用出口
H 運転制御部
J 蓄熱槽
M 発電部
N 排熱回収熱交換部
Ts 一端部側温度センサ
Tu 他端部側温度センサ
V 流量調節部
W 出湯状態切換部
8 Hot water storage tank 9 Hot water circulation path 9a Outward path for hot water storage 9b Return path for hot water storage 9c Return side branch path 9d Outgoing side joint flow path 10 Hot water circulation pump 11 Hot water circulation pump 11 Outlet channel 11a Hot water branch path 11b Hot water supply junction 12 Water supply channel 15 For heating Circulation path 15a Return path for heating 27 Flow path for heating 27a Inlet for heating 27b Outlet for heating 28 Pass for heating 28a Inlet for heating 28b Outlet for heating H Operation control unit J Heat storage tank M Power generation unit N Exhaust heat recovery heat exchange Part Ts One end side temperature sensor Tu The other end side temperature sensor V Flow control part W Hot water discharge state switching part

Claims (5)

燃料の供給により作動する発電部と、湯水を貯湯する密閉型の貯湯槽と、前記発電部の排熱を回収する排熱回収熱交換部を経由する形態で、前記貯湯槽の底部と上部とを接続する湯水流動用の湯水循環路と、前記貯湯槽の底部から取出した湯水を当該貯湯槽の上部に戻す形態で、前記湯水循環路を通して湯水を循環させる湯水循環ポンプと、運転制御部とが設けられ、
前記運転制御部が、前記発電部の作動状態において前記貯湯槽に温度成層を形成する状態で貯湯すべく、前記湯水循環路を通して前記貯湯槽の上部に供給される湯水の温度が目標温度になるように前記湯水循環路を通して流動する湯水循環量を調整する形態で、前記湯水循環ポンプの作動を制御する排熱回収式貯湯処理を実行するように構成された熱電併給システムであって、
潜熱蓄熱材を収納した蓄熱槽の内部に、加熱用流動路及び暖房用被加熱路の夫々が当該蓄熱槽の一端部から他端部に亘って位置する状態で設けられ、
暖房用熱媒を暖房用端末に循環供給する暖房用循環路が、暖房用戻り路を前記暖房用被加熱路の一端部側の暖房用入口と接続し、かつ、暖房用往き路を前記暖房用被加熱路の他端部側の暖房用出口と接続する状態で設けられ、
前記湯水循環路における前記排熱回収熱交換部と前記貯湯槽の上部とを接続する貯湯用戻り路から分岐した戻り側分岐路が、前記加熱用流動路の他端部側の加熱用入口に接続され、かつ、前記湯水循環路における前記貯湯槽の底部と前記排熱回収熱交換部とを接続する貯湯用往き路に合流する往き側合流路が、前記加熱用流動路の一端部側の加熱用出口に接続され、
前記貯湯用戻り路を流動する湯水のうちで、前記加熱用流動路を経由して前記貯湯用往き路に流動させる加熱用流動量と、前記貯湯槽を経由して前記貯湯用往き路に流動させる貯湯用流動量との割合を変更調節する流量調節部が、前記往き側合流路を流動する湯水の温度が設定冷却温度以下のときには、前記貯湯用流動量が零となるようにし、かつ、前記往き側合流路を流動する湯水の温度が前記設定冷却温度を超えるときには、前記貯湯用往き路における前記往き側合流路の合流箇所よりも下流側の湯水の温度を前記設定冷却温度に維持すべく、前記加熱用流動量と前記貯湯用流動量との割合を調節する温度制御処理を実行するように構成されている熱電併給システム。
The bottom and top of the hot water storage tank are via a power generation unit that operates by supplying fuel, a closed hot water storage tank that stores hot water, and an exhaust heat recovery heat exchange unit that recovers the exhaust heat of the power generation unit. A hot water circulation pump for circulating hot water through the hot water circulation path, and an operation control unit in a form of returning the hot water taken out from the bottom of the hot water storage tank to the upper part of the hot water storage tank. Is provided,
In order for the operation control unit to store hot water in a state where a temperature stratification is formed in the hot water storage tank in the operating state of the power generation unit, the temperature of hot water supplied to the upper part of the hot water storage tank through the hot water circulation path becomes the target temperature. It is a combined heat and power system configured to execute an exhaust heat recovery type hot water storage process that controls the operation of the hot water circulation pump in a form of adjusting the amount of hot water circulating through the hot water circulation path.
Inside the heat storage tank containing the latent heat storage material, each of the heating flow path and the heated passage for heating is provided so as to be located from one end to the other end of the heat storage tank.
The heating circulation path that circulates and supplies the heating heat medium to the heating terminal connects the heating return path to the heating inlet on one end side of the heating heated path, and connects the heating outbound path to the heating. It is provided in a state of being connected to the heating outlet on the other end side of the heated passage.
The return side branch path branched from the hot water storage return path connecting the exhaust heat recovery heat exchange section and the upper part of the hot water storage tank in the hot water circulation path serves as a heating inlet on the other end side of the heating flow path. The forward side junction flow path that is connected and joins the hot water storage outbound path that connects the bottom of the hot water storage tank and the exhaust heat recovery heat exchange section in the hot water circulation path is on one end side of the heating flow path. Connected to the heating outlet,
Of the hot water flowing through the hot water storage return path, the amount of hot water that flows to the hot water storage outbound path via the heating flow path and the amount of hot water that flows to the hot water storage outbound path via the hot water storage tank. When the temperature of the hot water flowing in the forward side joint flow path is equal to or lower than the set cooling temperature, the flow rate adjusting unit for changing and adjusting the ratio with the flow rate for hot water storage makes the flow rate for hot water storage zero. When the temperature of the hot water flowing through the outgoing side junction flow path exceeds the set cooling temperature, the temperature of the hot water water downstream from the confluence of the outgoing side junction flow path in the hot water storage outbound passage is maintained at the set cooling temperature. Therefore, a combined heat and power supply system configured to execute a temperature control process for adjusting the ratio between the flow rate for heating and the flow rate for hot water storage.
前記貯湯槽の底部に接続した給水路の給水圧にて前記貯湯槽の上部に接続した出湯路を通して湯水を供給できるように構成され、
前記出湯路から分岐した出湯用分岐路が、前記往き側合流路に合流接続され、かつ、前記出湯路における前記出湯用分岐路の分岐箇所よりも下流側に合流する出湯用合流路が、前記戻り側分岐路に接続され、
前記出湯路を流動する湯水の全量を前記出湯用分岐路に分岐させることなく流動させる基本出湯状態と、前記出湯路を流動する湯水の全量を前記出湯用分岐路に分岐させて、前記往き側合流路、前記加熱用流動路、前記戻り側分岐路、及び、前記出湯用合流路を通して流動させる蓄熱槽加熱出湯状態とに切換える出湯状態切換部が設けられている請求項1に記載の熱電併給システム。
It is configured so that hot water can be supplied through the hot water outlet connected to the upper part of the hot water storage tank by the water supply pressure of the water supply channel connected to the bottom of the hot water storage tank.
The hot water outlet branch path branched from the hot water outlet is connected to the outgoing hot water branch flow path and joins the hot water discharge branch path downstream of the branch point of the hot water branch path in the hot water outlet. Connected to the return branch,
The basic hot water state in which the entire amount of hot water flowing in the hot water passage is flowed without branching to the hot water branch path, and the total amount of hot water flowing in the hot water channel is branched into the hot water branch path to the outgoing side. The combined heat and power supply according to claim 1, wherein the combined flow path, the heating flow path, the return side branch path, and a hot water discharge state switching unit for switching between the hot water discharge state of the heat storage tank flowing through the hot water discharge joint flow path are provided. system.
前記運転制御部が、前記出湯状態切換部を前記基本出湯状態に切換えた状態において、前記貯湯槽の貯湯量が設定未満になったときに前記蓄熱槽の蓄熱量が運転許容量以上である場合には、前記出湯状態切換部を前記蓄熱槽加熱出湯状態に切換えるように構成されている請求項2に記載の熱電併給システム。 When the operation control unit switches the hot water discharge state switching unit to the basic hot water discharge state, and the heat storage amount of the hot water storage tank becomes less than the set value, the heat storage amount of the heat storage tank is equal to or more than the operation allowable amount. The combined heat and power system according to claim 2, wherein the hot water discharge state switching unit is configured to switch to the hot water discharge state heated by the heat storage tank. 前記運転制御部が、前記蓄熱槽加熱出湯状態に切換えているときに、前記蓄熱槽の蓄熱量が運転停止量以下となれば、前記出湯状態切換部を前記基本出湯状態に切換えるように構成されている請求項3に記載の熱電併給システム。 When the operation control unit is switched to the heat storage tank heating hot water discharge state, if the heat storage amount of the heat storage tank is equal to or less than the operation stop amount, the hot water discharge state switching unit is configured to switch to the basic hot water discharge state. The combined heat and power system according to claim 3. 前記蓄熱槽の内部の他端部側温度を検出する他端部側温度センサ及び前記蓄熱槽の内部の一端部側温度を検出する一端部側温度センサが設けられ、
前記運転制御部が、前記他端部側温度センサ及び前記一端部側温度センサの夫々が前記潜熱蓄熱材の融点よりも高い設定高温側温度を検出すると、前記蓄熱槽の蓄熱量が前記運転許容量以上であると判別し、且つ、前記一端部側温度センサが前記潜熱蓄熱材の融点よりも低い設定低温側温度を検出すると、前記蓄熱槽の蓄熱量が前記運転停止量以下であると判別するように構成されている請求項4に記載の熱電併給システム。
An other end side temperature sensor for detecting the temperature on the other end side inside the heat storage tank and a one end side temperature sensor for detecting the temperature on the one end side inside the heat storage tank are provided.
When the operation control unit detects a set high temperature side temperature higher than the melting point of the latent heat storage material by each of the other end side temperature sensor and the one end side temperature sensor, the heat storage amount of the heat storage tank is the operation permit. When it is determined that the capacity is equal to or higher than the capacity and the one end side temperature sensor detects a set low temperature side temperature lower than the melting point of the latent heat storage material, it is determined that the heat storage amount of the heat storage tank is equal to or less than the operation stop amount. The combined heat and power supply system according to claim 4, which is configured to perform the same.
JP2019137507A 2019-07-26 2019-07-26 cogeneration system Active JP7262337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019137507A JP7262337B2 (en) 2019-07-26 2019-07-26 cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019137507A JP7262337B2 (en) 2019-07-26 2019-07-26 cogeneration system

Publications (2)

Publication Number Publication Date
JP2021021520A true JP2021021520A (en) 2021-02-18
JP7262337B2 JP7262337B2 (en) 2023-04-21

Family

ID=74574743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019137507A Active JP7262337B2 (en) 2019-07-26 2019-07-26 cogeneration system

Country Status (1)

Country Link
JP (1) JP7262337B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248913A (en) * 2000-03-08 2001-09-14 Osaka Gas Co Ltd Storage type hot water supply apparatus
JP2008275182A (en) * 2007-04-25 2008-11-13 Noritz Corp Exhaust heat recovering system and auxiliary heat storage tank
JP5551971B2 (en) * 2010-06-01 2014-07-16 大阪瓦斯株式会社 Hot water storage water heater
JP2017040379A (en) * 2015-08-17 2017-02-23 株式会社ガスター Heat source device
JP2017053626A (en) * 2016-12-26 2017-03-16 大阪瓦斯株式会社 Cogeneration system and heating equipment
JP2017133748A (en) * 2016-01-27 2017-08-03 大阪瓦斯株式会社 Waste heat utilization heat source facility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248913A (en) * 2000-03-08 2001-09-14 Osaka Gas Co Ltd Storage type hot water supply apparatus
JP2008275182A (en) * 2007-04-25 2008-11-13 Noritz Corp Exhaust heat recovering system and auxiliary heat storage tank
JP5551971B2 (en) * 2010-06-01 2014-07-16 大阪瓦斯株式会社 Hot water storage water heater
JP2017040379A (en) * 2015-08-17 2017-02-23 株式会社ガスター Heat source device
JP2017133748A (en) * 2016-01-27 2017-08-03 大阪瓦斯株式会社 Waste heat utilization heat source facility
JP2017053626A (en) * 2016-12-26 2017-03-16 大阪瓦斯株式会社 Cogeneration system and heating equipment

Also Published As

Publication number Publication date
JP7262337B2 (en) 2023-04-21

Similar Documents

Publication Publication Date Title
JP2005061711A (en) Exhaust heat recovering water heater
JP4296200B2 (en) Hot water system
JP5300717B2 (en) Cogeneration system
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP5359195B2 (en) Solar system
JP4213636B2 (en) Hot water storage hot water source
JP4608391B2 (en) Waste heat recovery device
JP2008051383A (en) Hot water storage unit
JP4716352B2 (en) Hot water storage hot water source
JP2003240345A (en) Waste heat recovery hot water supply system
JP2012057923A (en) Hot water supply system
JP2015050826A (en) Demand response system
JP3966839B2 (en) Waste heat utilization heat source device
JP3836761B2 (en) Cogeneration system
JP2007127373A (en) Exhaust heat recovery equipment
JP2021021520A (en) Cogeneration system
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP7345338B2 (en) Combined heat and power system
JP4304601B2 (en) Storage water heater and cogeneration system
JP2008045843A (en) Hot water supply heating system
JP6640002B2 (en) Combined heat and power system
JP4077419B2 (en) Cogeneration system
JP6643938B2 (en) Distributed power generation system
JP2016207581A (en) Fuel cell cogeneration system
JP4408770B2 (en) Hot water storage heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7262337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150