JP2021019411A - Rotor for electric motor and manufacturing method therefor - Google Patents

Rotor for electric motor and manufacturing method therefor Download PDF

Info

Publication number
JP2021019411A
JP2021019411A JP2019133291A JP2019133291A JP2021019411A JP 2021019411 A JP2021019411 A JP 2021019411A JP 2019133291 A JP2019133291 A JP 2019133291A JP 2019133291 A JP2019133291 A JP 2019133291A JP 2021019411 A JP2021019411 A JP 2021019411A
Authority
JP
Japan
Prior art keywords
iron core
region
core piece
rotor
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019133291A
Other languages
Japanese (ja)
Inventor
寛和 谷口
Hirokazu Taniguchi
寛和 谷口
隆久 蟹江
Takahisa Kanie
隆久 蟹江
浩一 恒川
Koichi Tsunekawa
浩一 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2019133291A priority Critical patent/JP2021019411A/en
Publication of JP2021019411A publication Critical patent/JP2021019411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

To provide a rotor for an electric motor and a manufacturing method therefor, the rotor including respective magnetic poles from which leakage flux is reduced.SOLUTION: A rotor 1 comprises: an iron core 10, a laminate of iron core pieces 11; and a permanent magnet 20 buried in the iron core 10. In an arc-shaped region R extending in the circumferential direction on the outer circumferential side of each iron core piece 11, punching holes PH2 to PH8 are provided in parallel. The region R is partitioned into a first region Ra and a second region Rb separated from the first region Ra so as to take the punching holes PH2 to PH8 provided in parallel as a boundary. In addition, a plurality of bridge parts BR2 stretched between the first region Ra and the second region Rb are formed. The width WBR2 of at least one bridge part BR2 of the plurality of bridge parts BR2 is equal to or shorter than twice the thickness T11 of the iron core piece 11.SELECTED DRAWING: Figure 6

Description

本発明は、電動モーターの回転子、及びその製造方法に関する。 The present invention relates to a rotor of an electric motor and a method for manufacturing the same.

例えば、下記特許文献1には、電動モーターの回転子(以下、単に回転子と呼ぶ)が記載されている。この回転子は、鉄心及び複数の永久磁石を備える。鉄心は、円柱状の部品である。 For example, Patent Document 1 below describes a rotor of an electric motor (hereinafter, simply referred to as a rotor). The rotor comprises an iron core and a plurality of permanent magnets. The iron core is a columnar part.

永久磁石は、鉄心の中心軸の延設方向に対して平行に延びる平板状の部材である。永久磁石は、その板厚方向に磁化されている。すなわち、永久磁石の表面がN極であり、裏面がS極である。永久磁石は、鉄心の外周側の縁部に埋設されている。複数の永久磁石が、鉄心の周方向に所定の間隔をおいて配置されている。これにより、複数の磁極(N極及びS極)が鉄心の周方向に等間隔に配置されている。鉄心の内部における、各永久磁石の周囲の所定の位置に、複数の空隙が設けられている。 The permanent magnet is a flat plate-shaped member extending parallel to the extending direction of the central axis of the iron core. Permanent magnets are magnetized in the plate thickness direction. That is, the front surface of the permanent magnet is the north pole and the back surface is the south pole. The permanent magnet is embedded in the outer peripheral edge of the iron core. A plurality of permanent magnets are arranged at predetermined intervals in the circumferential direction of the iron core. As a result, a plurality of magnetic poles (N pole and S pole) are arranged at equal intervals in the circumferential direction of the iron core. A plurality of voids are provided at predetermined positions around each permanent magnet inside the iron core.

鉄心は、鋼板(母材)を打ち抜いて形成された円板状の複数の鉄心片が積層された積層体である。各鉄心片には、複数の打ち抜き孔が並設されている。隣接する2つの打ち抜き孔の間には、所定の方向に延びるブリッジ部が形成されている。言い換えれば、鋼板(母材)のうち、ブリッジ部として残される部分の両側の部位が打ち抜かれる。各鉄心片の打ち抜き孔が、その鉄心片に隣り合う鉄心片の打ち抜き孔に連通するように、全ての鉄心片が積層される。このようにして形成された複数の貫通孔(打ち抜き孔が連通した部分)のうちの所定の貫通孔に永久磁石がそれぞれ収容され、その他の貫通孔が空隙として残される。なお、永久磁石が収容される貫通孔の内部空間が永久磁石によって占有されるのではなく、その貫通孔の一部が空隙として残されている。 The iron core is a laminated body in which a plurality of disc-shaped iron core pieces formed by punching a steel plate (base material) are laminated. A plurality of punching holes are arranged side by side in each iron core piece. A bridge portion extending in a predetermined direction is formed between two adjacent punch holes. In other words, in the steel plate (base material), the portions on both sides of the portion left as the bridge portion are punched out. All the iron core pieces are laminated so that the punched holes of each iron core piece communicate with the punched holes of the iron core pieces adjacent to the iron core piece. Permanent magnets are housed in predetermined through holes among the plurality of through holes (portions in which the punched holes communicate) formed in this manner, and the other through holes are left as voids. The internal space of the through hole in which the permanent magnet is housed is not occupied by the permanent magnet, but a part of the through hole is left as a gap.

特開2012−165480号公報Japanese Unexamined Patent Publication No. 2012-165480

上記の空隙の透磁率は、その周囲の部分(鋼板で構成された部分)の透磁率に比べて低い。永久磁石の周囲に上記のような空隙を設けることにより、永久磁石の一方の磁極から他方の磁極へ向かうループ状の磁路が形成され難くなる。すなわち、回転子の各磁極の漏れ磁束(磁束の短絡)を抑制できる。ただし、ブリッジ部を通る磁路が形成されるので、漏れ磁束が多少生じる。 The magnetic permeability of the above-mentioned void is lower than the magnetic permeability of the surrounding portion (the portion made of the steel plate). By providing the above-mentioned voids around the permanent magnet, it becomes difficult to form a loop-shaped magnetic path from one magnetic pole of the permanent magnet to the other magnetic pole. That is, the leakage flux (short circuit of the magnetic flux) of each magnetic pole of the rotor can be suppressed. However, since a magnetic path passing through the bridge portion is formed, some leakage flux is generated.

本発明は上記問題に対処するためになされたもので、その目的は、各磁極の漏れ磁束を低減した電動モーターの回転子及びその製造方法を提供することにある。なお、下記本発明の各構成要件の記載においては、本発明の理解を容易にするために、実施形態の対応箇所の符号を括弧内に記載しているが、本発明の各構成要件は、実施形態の符号によって示された対応箇所の構成に限定解釈されるべきものではない。 The present invention has been made to address the above problems, and an object of the present invention is to provide a rotor of an electric motor in which the leakage flux of each magnetic pole is reduced, and a method for manufacturing the rotor. In the following description of each component of the present invention, in order to facilitate understanding of the present invention, the reference numerals of the corresponding parts of the embodiments are described in parentheses, but each component of the present invention is described. It should not be construed as limited to the configuration of the corresponding parts indicated by the reference numerals of the embodiments.

上記目的を達成するために、本発明に係る電動モーターの回転子(1、1B)は、鋼板からなる円板状の打ち抜き成形体である複数の鉄心片(11、11B)の積層体である円柱状の鉄心(10、10B)と、前記鉄心片の中心軸の延設方向に対して平行に延設され、前記鉄心に埋設された永久磁石(20)と、を備える。
前記鉄心片における外周側にて周方向に延びる円弧状の領域(R)内に複数の打ち抜き孔(PH2乃至PH9)が並設されて、前記円弧状の領域が、前記並設された複数の打ち抜き孔を境界として、第1領域(Ra)と、前記第1領域から離隔した第2領域(Rb)とに区画されるとともに、前記第1領域と前記第2領域との間に架け渡された複数のブリッジ部(BR1乃至BR6)が形成されている。
また、前記複数のブリッジ部のうちの少なくとも1つのブリッジ部の幅(WBR2、WBR4、BR5)が、前記鉄心片の板厚(T11)の2倍以下である。
なお、この場合、前記鉄心は、各鉄心片の前記複数の打ち抜き孔が、隣接する鉄心片の前記複数の打ち抜き孔にそれぞれ連通した複数の連通部(TH2乃至TH8)を有するとよい。
また、前記複数の連通部のうちの少なくとも1つの連通部(TH2、TH8)に、前記永久磁石が収容され、前記永久磁石が収容された連通部内において、前記永久磁石の一方の磁極が前記第1領域側へ向けられ、前記永久磁石の他方の磁極が前記第2領域側へ向けられていて、前記永久磁石が収容された前記連通部内の所定の部位が空隙(G)であるとよい。
In order to achieve the above object, the rotors (1, 1B) of the electric motor according to the present invention are a laminated body of a plurality of iron core pieces (11, 11B) which are disc-shaped punched bodies made of steel plates. A cylindrical iron core (10, 10B) and a permanent magnet (20) extending parallel to the extending direction of the central axis of the iron core piece and embedded in the iron core are provided.
A plurality of punching holes (PH2 to PH9) are arranged side by side in an arc-shaped region (R) extending in the circumferential direction on the outer peripheral side of the iron core piece, and the arc-shaped region is formed by the plurality of juxtaposed arc-shaped regions. With the punched hole as a boundary, it is divided into a first region (Ra) and a second region (Rb) separated from the first region, and is bridged between the first region and the second region. A plurality of bridge portions (BR1 to BR6) are formed.
Further, the width (W BR2 , W BR4, W BR5 ) of at least one of the plurality of bridge portions is not more than twice the plate thickness (T 11 ) of the iron core piece.
In this case, the iron core may have a plurality of communication portions (TH2 to TH8) in which the plurality of punched holes of each iron core piece communicate with the plurality of punched holes of adjacent iron core pieces.
Further, the permanent magnet is housed in at least one communication part (TH2, TH8) of the plurality of communication parts, and one magnetic pole of the permanent magnet is in the communication part in which the permanent magnet is housed. It is preferable that the other magnetic pole of the permanent magnet is directed to the one region side, the other magnetic pole of the permanent magnet is directed to the second region side, and a predetermined portion in the communication portion in which the permanent magnet is housed is a gap (G).

本発明の一態様に係る電動モーターの回転子において、前記複数のブリッジ部のうち、前記永久磁石の磁路のうちの第1の磁路を構成する第1のブリッジ部(BR2、BR5)の幅(WBR2、WBR5)が、前記第1の磁路よりも長い第2の磁路を構成する第2のブリッジ部(BR3、BR6)の幅(WBR3、WBR6)よりも小さく設定されている。 In the rotor of the electric motor according to one aspect of the present invention, among the plurality of bridge portions, the first bridge portion (BR2, BR5) constituting the first magnetic path among the magnetic paths of the permanent magnets. The width (W BR2 , W BR5 ) is set to be smaller than the width (W BR3 , W BR6 ) of the second bridge portion (BR3, BR6) constituting the second magnetic path longer than the first magnetic path. Has been done.

また、本発明の他の態様に係る電動モーターの回転子において、前記少なくとも1つのブリッジ部であって、その幅が前記鉄心片の板厚の2倍以下であるブリッジ部が、前記永久磁石から見て、前記鉄心片の径方向における内側に配置されている。 Further, in the rotor of the electric motor according to another aspect of the present invention, the bridge portion which is at least one bridge portion and whose width is twice or less the plate thickness of the iron core piece is from the permanent magnet. As seen, they are arranged inside the iron core piece in the radial direction.

また、上記目的を達成するために、本発明に係る電動モーターの回転子の製造方法は、鋼板を打ち抜いて、円板状の複数の鉄心片を製造する鉄心片製造工程と、前記複数の鉄心片を積層して円柱状の鉄心を製造する鉄心製造工程と、前記鉄心片の中心軸の延設方向に対して平行に延設された複数の永久磁石を、前記鉄心に埋設する永久磁石組み付け工程と、を含む。
前記鉄心片製造工程は、前記鉄心片における外周側にて周方向に延びる円弧状の領域内に複数の打ち抜き孔を並設して、前記円弧状の領域を、前記複数の打ち抜き孔を境界として、第1領域と、前記第1領域から離隔した第2領域とに区画するとともに、前記第1領域と前記第2領域との間に架け渡された複数のブリッジ部を形成する工程であって、前記複数のブリッジ部のうちの少なくとも1つのブリッジ部の幅が、前記鉄心片の板厚の2倍以下であるように前記鋼板を打ち抜く工程を含む。
なお、この場合、前記鉄心製造工程は、各鉄心片の前記複数の打ち抜き孔が、隣接する鉄心片の前記複数の打ち抜き孔にそれぞれ連通した複数の連通部が形成されるように前記複数の鉄心片を積層する工程を含むとよい。
また、前記永久磁石組み付け工程は、前記複数の連通部のうちの少なくとも1つの連通部内に前記永久磁石を収容する工程であって、前記永久磁石が収容された前記連通部において、前記永久磁石の一方の磁極が前記第1領域側へ向けられ、前記永久磁石の他方の磁極が前記第2領域側へ向けられていて、前記永久磁石が収容された連通部内の所定の部位に空隙が形成されるように、前記永久磁石を配置する工程を含むとよい。
Further, in order to achieve the above object, the method for manufacturing the rotor of the electric motor according to the present invention includes a core piece manufacturing process for punching a steel plate to manufacture a plurality of disk-shaped iron core pieces, and the plurality of iron cores. An iron core manufacturing process in which pieces are laminated to produce a columnar iron core, and a permanent magnet assembly in which a plurality of permanent magnets extended parallel to the extending direction of the central axis of the iron core piece are embedded in the iron core. Including the process.
In the iron core piece manufacturing process, a plurality of punched holes are arranged side by side in an arc-shaped region extending in the circumferential direction on the outer peripheral side of the iron core piece, and the arc-shaped region is defined by the plurality of punched holes. , A step of dividing into a first region and a second region separated from the first region, and forming a plurality of bridge portions bridged between the first region and the second region. The step of punching the steel plate so that the width of at least one of the plurality of bridge portions is not more than twice the plate thickness of the iron core piece is included.
In this case, in the iron core manufacturing process, the plurality of iron cores are formed so that the plurality of punched holes of each iron core piece communicate with each of the plurality of punched holes of the adjacent iron core pieces. It is preferable to include a step of laminating the pieces.
Further, the permanent magnet assembling step is a step of accommodating the permanent magnet in at least one communicating portion among the plurality of communicating portions, and in the communicating portion in which the permanent magnet is accommodated, the permanent magnet One magnetic pole is directed toward the first region, the other magnetic pole of the permanent magnet is directed toward the second region, and a gap is formed at a predetermined portion in the communication portion in which the permanent magnet is housed. As described above, it is preferable to include a step of arranging the permanent magnets.

仮に、ブリッジ部の幅が鉄心片の板厚の2倍よりも大きくなるように、鋼板(母材)の所定の部位が打ち抜かれた場合、ブリッジ部の幅方向における両端部には残留応力が分布するが、ブリッジ部の中央部には残留応力が分布しない。 If a predetermined portion of the steel plate (base material) is punched so that the width of the bridge portion is larger than twice the plate thickness of the iron core piece, residual stress is generated at both ends in the width direction of the bridge portion. Although it is distributed, residual stress is not distributed in the central part of the bridge part.

これに対し、本発明に係る電動モーターの回転子の鉄心片の製造工程において、少なくとも1つのブリッジ部の幅が鉄心片の板厚の2倍以下であるように、鋼板(母材)の所定の部位が打ち抜かれる。この場合、ブリッジ部の略全体に亘り、加工硬化が生じ、ブリッジ部の幅方向における両端部のみならず中央部にも残留応力が分布している。 On the other hand, in the manufacturing process of the iron core piece of the rotor of the electric motor according to the present invention, the steel plate (base material) is specified so that the width of at least one bridge portion is not more than twice the plate thickness of the iron core piece. The part of is punched out. In this case, work hardening occurs over substantially the entire bridge portion, and residual stress is distributed not only at both ends in the width direction of the bridge portion but also at the center portion.

一般に、鋼板において、残留応力が分布している部分は、残留応力が分布していない部分に比べて、磁束が通り難い(つまり、透磁率が低い)ことが知られている。 In general, it is known that in a steel sheet, a portion where residual stress is distributed is more difficult for magnetic flux to pass through (that is, has a lower magnetic permeability) than a portion where residual stress is not distributed.

本発明に係る電動モーターの回転子の鉄心片は、複数のブリッジ部を有するが、そのうちの少なくとも1つのブリッジ部の幅が、鉄心片の板厚の2倍以下である。したがって、当該ブリッジ部の全体に亘って残留応力が分布している。よって、本発明によれば、全てのブリッジ部の幅が、鉄心片の板厚の2倍以上である場合に比べて、漏れ磁束を低減できる。例えば、従来の鉄心片におけるブリッジ部であって、その幅が板厚の2倍より大きいブリッジ部を、複数のブリッジ部に置き換える(分割する)とよい。ただし、そのうちの少なくとも1つのブリッジ部の幅を板厚の2倍以下に設定し、且つ前記置き換えた複数のブリッジ部の断面積の総計が、元のブリッジ部の断面積と同一であるように設定する。これによれば、前記置き換えた複数のブリッジ部全体において残留応力が分布している領域が、元のブリッジ部において残留応力が分布している領域に比べて大きくなる。例えば、前記複数のブリッジ部の全てのブリッジ部の幅を板厚の2倍以下に設定すれば、前記置き換えた複数のブリッジ部の全体に亘って残留応力が分布している。よって、元のブリッジ部を通る漏れ磁束に比べて、前記置き換えた複数のブリッジ部を通る漏れ磁束が低減される。 The iron core piece of the rotor of the electric motor according to the present invention has a plurality of bridge portions, and the width of at least one of the bridge portions is not more than twice the plate thickness of the iron core piece. Therefore, the residual stress is distributed over the entire bridge portion. Therefore, according to the present invention, the leakage flux can be reduced as compared with the case where the width of all the bridge portions is twice or more the plate thickness of the iron core piece. For example, a bridge portion in a conventional iron core piece whose width is larger than twice the plate thickness may be replaced (divided) with a plurality of bridge portions. However, the width of at least one of the bridge portions is set to be twice or less the plate thickness, and the total cross-sectional area of the plurality of bridge portions replaced is the same as the cross-sectional area of the original bridge portion. Set. According to this, the region where the residual stress is distributed in the entire of the plurality of replaced bridge portions is larger than the region where the residual stress is distributed in the original bridge portion. For example, if the widths of all the bridge portions of the plurality of bridge portions are set to twice or less the plate thickness, the residual stress is distributed over the entire of the replaced plurality of bridge portions. Therefore, the leakage flux passing through the replaced plurality of bridge portions is reduced as compared with the leakage flux passing through the original bridge portion.

本発明の一実施形態に係る回転子が適用された電動モーターの主要部の斜視図である。It is a perspective view of the main part of the electric motor to which the rotor which concerns on one Embodiment of this invention is applied. 本発明の一実施形態に係る回転子の斜視図である。It is a perspective view of the rotor which concerns on one Embodiment of this invention. 図2の回転子を構成する鉄心の斜視図である。It is a perspective view of the iron core which constitutes the rotor of FIG. 図2の回転子を構成する永久磁石の斜視図である。It is a perspective view of the permanent magnet which constitutes the rotor of FIG. 図3の鉄心を構成する鉄心片の平面図である。It is a top view of the iron core piece constituting the iron core of FIG. 図5の鉄心片の一部を拡大した図であって、鉄心片の外周側の縁部を周方向に8等分した8個の領域のうちの1つの領域の拡大平面図である。FIG. 5 is an enlarged view of a part of the iron core piece of FIG. 5, and is an enlarged plan view of one of eight regions obtained by dividing the outer peripheral edge of the iron core piece into eight equal parts in the circumferential direction. 回転子の1つの磁極を拡大した拡大平面図である。It is an enlarged plan view which enlarged one magnetic pole of a rotor. 比較例に係る回転子の斜視図である。It is a perspective view of the rotor which concerns on a comparative example. 図8の回転子の鉄心の斜視図である。It is a perspective view of the iron core of the rotor of FIG. 図9の鉄心を構成する鉄心片の平面図である。It is a top view of the iron core piece constituting the iron core of FIG. 図10の鉄心片の一部を拡大した図であって、鉄心片の外周側の縁部を周方向に8等分した8個の領域のうちの1つの領域の拡大平面図である。FIG. 10 is an enlarged view of a part of the iron core piece of FIG. 10, and is an enlarged plan view of one of eight regions obtained by dividing the outer peripheral edge of the iron core piece into eight equal parts in the circumferential direction. 図11の鉄心片の打ち抜き孔の周辺部の硬度の変化率(打ち抜き孔の形成前と形成後の硬度の比)を示すグラフである。It is a graph which shows the rate of change of the hardness of the peripheral part of the punched hole of the iron core piece of FIG. 11 (the ratio of the hardness before and after the formation of the punched hole). 図11の鉄心片のブリッジ部(BR2A)の長手方向に垂直な断面における残留応力の分布図(EBSD分析結果)である。It is a distribution diagram (EBSD analysis result) of the residual stress in the cross section perpendicular to the longitudinal direction of the bridge portion (BR2A) of the iron core piece of FIG. 図6の鉄心片のブリッジ部(BR2)の長手方向に垂直な断面における残留応力の分布図(EBSD分析結果)である。It is a distribution diagram (EBSD analysis result) of the residual stress in the cross section perpendicular to the longitudinal direction of the bridge portion (BR2) of the iron core piece of FIG. 図2の回転子及び図10の回転子の1つの磁極における磁力線の分布図である。FIG. 5 is a distribution diagram of magnetic field lines at one magnetic pole of the rotor of FIG. 2 and the rotor of FIG. 本発明の第1の変形例に係る回転子の1つの磁極における磁力線の分布図である。It is a distribution figure of the magnetic field line in one magnetic pole of the rotor which concerns on the 1st modification of this invention. 本発明の第2の変形例に係る回転子の1つの磁極の外周面に沿って延びるブリッジ部を拡大した拡大平面図である。It is an enlarged plan view of the bridge part extending along the outer peripheral surface of one magnetic pole of the rotor which concerns on the 2nd modification of this invention. 本発明の第3の変形例に係る回転子の1つの磁極の外周面に沿って延びるブリッジ部を拡大した拡大平面図である。It is an enlarged plan view of the bridge part extending along the outer peripheral surface of one magnetic pole of the rotor which concerns on the 3rd modification of this invention.

以下、本発明の一実施形態に係る回転子1について説明する。ここで、回転子1が適用された電動モーターMの構成について簡単に説明しておく。電動モーターMは、図1に示すように、固定子ST及び回転子1を備える。固定子STは、円筒状の部品である。固定子STの内周面には、複数のコイルが組み付けられている。これらのコイルは、固定子STの周方向に所定の間隔を置いて配置されている。 Hereinafter, the rotor 1 according to the embodiment of the present invention will be described. Here, the configuration of the electric motor M to which the rotor 1 is applied will be briefly described. As shown in FIG. 1, the electric motor M includes a stator ST and a rotor 1. The stator ST is a cylindrical component. A plurality of coils are assembled on the inner peripheral surface of the stator ST. These coils are arranged at predetermined intervals in the circumferential direction of the stator ST.

回転子1は、円柱状の部品である。回転子1は、固定子ST内に収容され、回転子1と固定子STとが同軸配置されている。詳しくは後述するように、回転子1は複数の磁極(N極及びS極)を有する(図2参照)。これらの磁極は、回転子1の周方向に等間隔に配置されている。本実施形態では、回転子1は、8個の磁極(4個のN極及び4個のS極)を備える。これらのN極及びS極が、鉄心10の周方向に交互に配置されている。固定子STの複数のコイルに、所定の順に電力が供給される。これにより、回転子1が固定子STに対して回転する。 The rotor 1 is a columnar part. The rotor 1 is housed in the stator ST, and the rotor 1 and the stator ST are coaxially arranged. As will be described in detail later, the rotor 1 has a plurality of magnetic poles (N pole and S pole) (see FIG. 2). These magnetic poles are arranged at equal intervals in the circumferential direction of the rotor 1. In this embodiment, the rotor 1 includes eight magnetic poles (four north poles and four south poles). These N poles and S poles are alternately arranged in the circumferential direction of the iron core 10. Power is supplied to the plurality of coils of the stator ST in a predetermined order. As a result, the rotor 1 rotates with respect to the stator ST.

つぎに、回転子1の構成の概略について説明する。回転子1は、図2に示すように、鉄心10及び複数(16個)の永久磁石20を備える。鉄心10は、図3に示すように、円柱状の部品である。また、永久磁石20は、図4に示すように、鉄心10の中心軸の延設方向に対して平行に延設された平板状の部品である。永久磁石20は、その板厚方向に着磁されている。すなわち、永久磁石20の表面20aがN極であり、裏面20bがS極である。鉄心10の周方向に、上記のような8個の磁極(4個のN極及び4個のS極)が配置されるように、鉄心10を周方向に8等分した各部位(後述する積層部SR)に、2個の永久磁石20が埋設される(図2参照)。 Next, the outline of the configuration of the rotor 1 will be described. As shown in FIG. 2, the rotor 1 includes an iron core 10 and a plurality of (16) permanent magnets 20. As shown in FIG. 3, the iron core 10 is a columnar part. Further, as shown in FIG. 4, the permanent magnet 20 is a flat plate-shaped component extended in parallel with the extending direction of the central axis of the iron core 10. The permanent magnet 20 is magnetized in the plate thickness direction thereof. That is, the front surface 20a of the permanent magnet 20 is the north pole, and the back surface 20b is the south pole. Each part of the iron core 10 divided into eight equal parts in the circumferential direction (described later) so that the above eight magnetic poles (four N poles and four S poles) are arranged in the circumferential direction of the iron core 10. Two permanent magnets 20 are embedded in the laminated portion SR) (see FIG. 2).

つぎに、鉄心10の構成について具体的に説明する。鉄心10は、複数の鉄心片11を積層した積層体である(図3及び図5参照)。鉄心片11は、珪素鋼板(母材)を打ち抜いて形成される(鉄心片製造工程)。珪素鋼板(母材)の板厚は、例えば、0.3mmである。鉄心片11は、円板状の部品(打ち抜き成形品)である。 Next, the configuration of the iron core 10 will be specifically described. The iron core 10 is a laminated body in which a plurality of iron core pieces 11 are laminated (see FIGS. 3 and 5). The iron core piece 11 is formed by punching a silicon steel plate (base material) (iron core piece manufacturing process). The plate thickness of the silicon steel plate (base material) is, for example, 0.3 mm. The iron core piece 11 is a disk-shaped part (punched molded product).

鉄心片11の中心部には、打ち抜き孔PH1が形成されている。打ち抜き孔PH1は円形を呈する。 A punch hole PH1 is formed in the central portion of the iron core piece 11. The punched hole PH1 has a circular shape.

また、鉄心片11の外周側の縁部(打ち抜き孔PH1の外側の円環状の部分))を、鉄心片11の周方向に8等分した各領域Rであって、鉄心片11の周方向に延びる円弧状(扇形)の各領域Rに、打ち抜き孔PH2乃至PH8が形成されている(図6参照)。なお、詳しくは後述するように、各領域Rは、回転子1の各磁極を構成する。すなわち、N極に対応する領域Rの両側に位置する領域R,RがS極に対応している(図5参照)。 Further, each region R obtained by dividing the outer peripheral edge of the iron core piece 11 (the outer annular portion of the punched hole PH1) into eight equal parts in the circumferential direction of the iron core piece 11 in the circumferential direction of the iron core piece 11. Punch holes PH2 to PH8 are formed in each arcuate (fan-shaped) region R extending in the direction (see FIG. 6). As will be described in detail later, each region R constitutes each magnetic pole of the rotor 1. That is, the regions R and R located on both sides of the region R corresponding to the N pole correspond to the S pole (see FIG. 5).

打ち抜き孔PH2乃至打ち抜き孔PH8は、領域Rの周方向における中心線CLに対して垂直な方向へ並設されている(図6参照)。 The punched holes PH2 to the punched holes PH8 are arranged side by side in a direction perpendicular to the center line CL in the circumferential direction of the region R (see FIG. 6).

打ち抜き孔PH2と打ち抜き孔PH8とは、中心線CLに関して線対称である。また、打ち抜き孔PH3乃至打ち抜き孔PH7の形状は同一である。打ち抜き孔PH3乃至打ち抜き孔PH7が、打ち抜き孔PH2と打ち抜き孔PH8との間に並設されている。 The punched hole PH2 and the punched hole PH8 are line-symmetrical with respect to the center line CL. Further, the shapes of the punched holes PH3 to the punched holes PH7 are the same. Punch holes PH3 to punch holes PH7 are arranged side by side between the punch holes PH2 and the punch holes PH8.

打ち抜き孔PH2は、第1孔部PH2a及び第2孔部PH2bから構成される。第1孔部PH2aは、台形を呈する。すなわち、第1孔部PH2aは、中心線CLの延設方向に対して垂直な方向へ延設された一組の辺L1,L2と、辺L1,L2の一端(中心線CL側の端部)同士及び他端(中心線CLとは反対側の端部)同士をそれぞれ結ぶ一組の辺L3,L4を有する。辺L2が辺L1から見て、鉄心片11の径方向における外側に位置している。辺L2は、辺L1よりも長い。辺L3は、中心線CLに対して平行に延設され、且つ辺L1,L2に直交している。辺L4は、辺L1,L2に対して傾斜している。 The punched hole PH2 is composed of a first hole portion PH2a and a second hole portion PH2b. The first hole PH2a has a trapezoidal shape. That is, the first hole PH2a includes a set of sides L1 and L2 extending in a direction perpendicular to the extending direction of the center line CL, and one end of the sides L1 and L2 (the end on the center line CL side). ) And the other end (the end opposite to the center line CL) have a set of sides L3 and L4, respectively. The side L2 is located on the outer side of the iron core piece 11 in the radial direction when viewed from the side L1. The side L2 is longer than the side L1. The side L3 extends parallel to the center line CL and is orthogonal to the sides L1 and L2. The side L4 is inclined with respect to the sides L1 and L2.

第2孔部PH2bは、第1孔部PH2aの辺L2の他端(辺L2と辺L4との交差部の近傍)から、領域Rの外周側へ向かって延設されている。第2孔部PH2bは、長方形を呈する。後述するように、鉄心片11が積層された状態において、各鉄心片11の第2孔部PH2bが、その鉄心片11に隣り合う鉄心片11の第2孔部PH2bに連通し、この連通部(貫通孔TH2(図3及び図7参照))に永久磁石20が挿入される。第2孔部PH2bの短辺の長さは、永久磁石20の板厚T20(図4参照)と同等である。第2孔部PH2bの長辺の長さは、永久磁石20の幅W20より少し長い。 The second hole portion PH2b extends from the other end of the side L2 of the first hole portion PH2a (near the intersection of the side L2 and the side L4) toward the outer peripheral side of the region R. The second hole PH2b has a rectangular shape. As will be described later, in a state where the iron core pieces 11 are laminated, the second hole portion PH2b of each iron core piece 11 communicates with the second hole portion PH2b of the iron core piece 11 adjacent to the iron core piece 11, and this communication portion The permanent magnet 20 is inserted into the through hole TH2 (see FIGS. 3 and 7). The length of the short side of the second hole portion PH2b is equivalent to the plate thickness T 20 of the permanent magnet 20 (see FIG. 4). The length of the long side of the second hole portion PH2b is slightly longer than the width W 20 of the permanent magnet 20.

打ち抜き孔PH3乃至打ち抜き孔PH7は、中心線CLの延設方向に対して平行に延設された長方形をそれぞれ呈する。打ち抜き孔PH3乃至打ち抜き孔PH7の形状及び大きさは同一である。打ち抜き孔PH3乃至打ち抜き孔PH7は、中心線CLの延設方向に対して垂直な方向に、等間隔に配置されている。 The punched holes PH3 to the punched holes PH7 each exhibit a rectangle extending parallel to the extending direction of the center line CL. The punch holes PH3 to the punch holes PH7 have the same shape and size. The punched holes PH3 to the punched holes PH7 are arranged at equal intervals in a direction perpendicular to the extending direction of the center line CL.

打ち抜き孔PH8は、打ち抜き孔PH2と同様に、第1孔部PH8a及び第2孔部PH8bから構成されている。第1孔部PH8aと第1孔部PH2aとが、中心線CLに関して線対称であり、第2孔部PH8bと第2孔部PH2bとが、中心線CLに関して線対称である。 The punched hole PH8 is composed of a first hole portion PH8a and a second hole portion PH8b, similarly to the punched hole PH2. The first hole PH8a and the first hole PH2a are line-symmetric with respect to the center line CL, and the second hole PH8b and the second hole PH2b are line-symmetric with respect to the center line CL.

なお、鉄心片11の外形(外周面)及び打ち抜き孔PH1乃至打ち抜き孔PH8が、同時に形成(打ち抜き加工)される。 The outer shape (outer peripheral surface) of the iron core piece 11 and the punched holes PH1 to the punched holes PH8 are formed (punched) at the same time.

領域R内に打ち抜き孔PH2乃至打ち抜き孔PH8が並設されて、領域Rが、打ち抜き孔PH2乃至打ち抜き孔PH8を境界として、第1領域Raと第2領域Rbとに区画されている。そして、以下説明するように、第1領域Raと第2領域Rbとの間に2個のブリッジ部BR1及び6個のブリッジ部BR2が架け渡されている。なお、以下の説明における各ブリッジ部の「幅」とは、それらの延設方向(第1領域Raから第2領域Rbへ向かう方向、又はその反対方向)に垂直であり、且つ鉄心片の板厚方向に垂直な方向の寸法を意味する。 Punch holes PH2 and punch holes PH8 are arranged side by side in the region R, and the region R is divided into a first region Ra and a second region Rb with the punch holes PH2 to the punch holes PH8 as boundaries. Then, as described below, two bridge portions BR1 and six bridge portions BR2 are bridged between the first region Ra and the second region Rb. The "width" of each bridge portion in the following description is perpendicular to their extension direction (direction from the first region Ra to the second region Rb, or the opposite direction), and is a plate of the iron core piece. It means the dimension in the direction perpendicular to the thickness direction.

第2孔部PH2b及び第2孔部PH8bの先端部(第1孔部PH2a及び第1孔部PH8aとは反対側の端部)と、鉄心片11の外周面の間には、珪素鋼板(母材)がそれぞれ残存している。これらの残存部をブリッジ部BR1と呼ぶ。また、打ち抜き孔PH2乃至打ち抜き孔PH8のうちの隣接する2つの打ち抜き孔の間にも、珪素鋼板(母材)がそれぞれ残存している。これらの残存部をブリッジ部BR2と呼ぶ。ブリッジ部BR1の幅WBR1は、鉄心片11の板厚T11の2倍より大きい。ブリッジ部BR1の幅WBR1は、例えば、1.5mmm(>0.3mm(板厚T11)×2))である。また、ブリッジ部BR2の幅WBR2は、鉄心片11の板厚T11の2倍以下である。ブリッジ部BR2の幅WBR2は、例えば、0.5mmm(<0.3mm(板厚T11)×2))である。 Between the tip of the second hole PH2b and the second hole PH8b (the end opposite to the first hole PH2a and the first hole PH8a) and the outer peripheral surface of the iron core piece 11, a silicon steel plate ( Base material) remains. These remaining portions are referred to as bridge portions BR1. Further, a silicon steel plate (base material) remains between two adjacent punched holes in the punched holes PH2 to the punched holes PH8. These remaining portions are referred to as bridge portions BR2. The width W BR1 of the bridge portion BR1 is larger than twice the plate thickness T 11 of the iron core piece 11. The width W BR1 of the bridge portion BR1 is, for example, 1.5 mm (> 0.3 mm (plate thickness T 11 ) × 2)). Further, the width W BR2 of the bridge portion BR2 is twice or less the plate thickness T 11 of the iron core piece 11. The width W BR2 of the bridge portion BR2 is, for example, 0.5 mm (<0.3 mm (plate thickness T 11 ) × 2)).

上記のように構成された複数(例えば500枚)の鉄心片11が積層され、互いにかしめ結合されて、鉄心10が形成される(鉄心製造工程)。この工程において、各鉄心片11の打ち抜き孔PH1が同軸配置されるとともに、各鉄心片11の各領域Rが、その鉄心片11に隣接する鉄心片11の領域Rに重ねられる。すなわち、各鉄心片11の打ち抜き孔PH2乃至打ち抜き孔PH8が、その鉄心片11に隣接する鉄心片11の打ち抜き孔PH2乃至打ち抜き孔PH8に連通する(各打ち抜き孔の内周面が連続する)ように、各鉄心片11が配置される。 A plurality of (for example, 500) iron core pieces 11 configured as described above are laminated and caulked to each other to form an iron core 10 (iron core manufacturing process). In this step, the punched holes PH1 of each iron core piece 11 are coaxially arranged, and each region R of each iron core piece 11 is overlapped with the region R of the iron core piece 11 adjacent to the iron core piece 11. That is, the punched holes PH2 to the punched holes PH8 of each iron core piece 11 communicate with the punched holes PH2 to the punched holes PH8 of the iron core piece 11 adjacent to the iron core piece 11 (the inner peripheral surfaces of the punched holes are continuous). Each iron core piece 11 is arranged in.

これにより、鉄心10には、その中心軸の延設方向における一端面から他端面へ貫通する貫通孔TH1が形成される(図3参照)。貫通孔TH1は、隣接する鉄心片11の打ち抜き孔PH1が互いに連通した部位である。貫通孔TH1は、鉄心10の中心軸に対して同軸配置されている。 As a result, the iron core 10 is formed with a through hole TH1 penetrating from one end surface to the other end surface in the extending direction of the central axis (see FIG. 3). The through hole TH1 is a portion where the punched holes PH1 of the adjacent iron core pieces 11 communicate with each other. The through hole TH1 is coaxially arranged with respect to the central axis of the iron core 10.

また、鉄心10は、複数の鉄心片11の8個の領域Rがそれぞれ積層されて構成された8個の積層部SRを有する。各積層部SRは、回転子1の磁極に対応している。各積層部SRには、鉄心10の中心軸の延設方向における一端面から他端面へ貫通する貫通孔TH2乃至貫通孔TH8が形成されている。貫通孔TH2は、各鉄心片11の打ち抜き孔PH2の第1孔部PH2aが連通した部位である第1孔部TH2aと、各鉄心片11の打ち抜き孔PH2の第2孔部PH2bが連通した部位である第2孔部TH2bとから構成されている。また、貫通孔TH8は、各鉄心片11の打ち抜き孔PH8の第1孔部PH8aが連通した部位である第1孔部TH8aと、各鉄心片11の打ち抜き孔PH8の第2孔部PH8bが連通した部位である第2孔部TH8bとから構成されている。 Further, the iron core 10 has eight laminated portions SR formed by laminating eight regions R of a plurality of iron core pieces 11. Each laminated portion SR corresponds to the magnetic pole of the rotor 1. Through holes TH2 to through holes TH2 that penetrate from one end surface to the other end surface in the extending direction of the central axis of the iron core 10 are formed in each laminated portion SR. The through hole TH2 is a portion where the first hole portion TH2a, which is a portion where the first hole portion PH2a of the punched hole PH2 of each iron core piece 11 communicates, and the portion where the second hole portion PH2b of the punched hole PH2 of each iron core piece 11 communicates. It is composed of a second hole portion TH2b. Further, in the through hole TH8, the first hole portion TH8a, which is a portion where the first hole portion PH8a of the punched hole PH8 of each iron core piece 11 communicates, and the second hole portion PH8b of the punched hole PH8 of each iron core piece 11 communicate with each other. It is composed of a second hole portion TH8b, which is a formed portion.

貫通孔TH1に、図示しないシャフト(電動モーターMの回転駆動軸)が挿入される。そして、前記シャフトの外周面が、貫通孔TH1の内周面に接着される。 A shaft (rotational drive shaft of the electric motor M) (not shown) is inserted into the through hole TH1. Then, the outer peripheral surface of the shaft is adhered to the inner peripheral surface of the through hole TH1.

また、各積層部SRに設けられた貫通孔TH2及び貫通孔TH8のうちの第2孔部TH2b及び第2孔部TH8bに、永久磁石20がそれぞれ収容され、各永久磁石20が、第2孔部TH2b及び第2孔部TH8bの内周面に接着される(永久磁石組み付け工程)。なお、N極に対応した積層部SRの第2孔部TH2b及び第2孔部TH8bにおいて、永久磁石20の表面20a(N極)が、各鉄心片11の第1領域Ra側へ向けられ、永久磁石20の裏面20b(S極)が、各鉄心片11の第2領域Rb側へ向けられる。一方、S極に対応した積層部SRの第2孔部TH2b及び第2孔部TH8bにおいて、永久磁石20の表面20a(N極)が、各鉄心片11の第2領域Rb側へ向けられ、永久磁石20の裏面20b(S極)が、各鉄心片11の第1領域Ra側へ向けられる。 Further, the permanent magnets 20 are housed in the second hole TH2b and the second hole TH8b of the through holes TH2 and the through holes TH8 provided in each laminated portion SR, and each permanent magnet 20 is a second hole. It is adhered to the inner peripheral surfaces of the portion TH2b and the second hole portion TH8b (permanent magnet assembly step). The surface 20a (N pole) of the permanent magnet 20 is directed toward the first region Ra side of each iron core piece 11 in the second hole portion TH2b and the second hole portion TH8b of the laminated portion SR corresponding to the N pole. The back surface 20b (S pole) of the permanent magnet 20 is directed toward the second region Rb side of each iron core piece 11. On the other hand, in the second hole portion TH2b and the second hole portion TH8b of the laminated portion SR corresponding to the S pole, the surface 20a (N pole) of the permanent magnet 20 is directed toward the second region Rb side of each iron core piece 11. The back surface 20b (S pole) of the permanent magnet 20 is directed toward the first region Ra side of each iron core piece 11.

各貫通孔TH2において、永久磁石20の幅方向における一端が、第1孔部TH2aと第2孔部TH2bとの境界部に位置している(図7参照)。つまり、貫通孔TH2において、第1孔部TH2aが、永久磁石20の幅方向における一端面20cに沿った空隙Gとして残される。また、上記のように、永久磁石20の幅W20は、第2孔部PH2bの長辺の長さより短い。したがって、第2孔部TH2bの内部空間が、永久磁石20に占有されるのではなく、第2孔部TH2b内に、永久磁石20の幅方向における他端面20dに沿った空隙Gが残される。 In each through hole TH2, one end of the permanent magnet 20 in the width direction is located at the boundary between the first hole portion TH2a and the second hole portion TH2b (see FIG. 7). That is, in the through hole TH2, the first hole portion TH2a is left as a gap G along the one end surface 20c in the width direction of the permanent magnet 20. Further, as described above, the width W 20 of the permanent magnet 20 is shorter than the length of the long side of the second hole portion PH2b. Therefore, the internal space of the second hole portion TH2b is not occupied by the permanent magnet 20, but a gap G along the other end surface 20d in the width direction of the permanent magnet 20 is left in the second hole portion TH2b.

また、各貫通孔TH8において、永久磁石20の幅方向における一端が、第1孔部TH8aと第2孔部TH8bとの境界部に位置している。つまり、貫通孔TH8において、第1孔部TH8aが、永久磁石20の幅方向における一端面20cに沿った空隙Gとして残される。また、第2孔部TH8bの内部空間が、永久磁石20に占有されるのではなく、第2孔部TH8b内に、永久磁石20の幅方向における他端面20dに沿った空隙Gが残される。 Further, in each through hole TH8, one end of the permanent magnet 20 in the width direction is located at the boundary between the first hole portion TH8a and the second hole portion TH8b. That is, in the through hole TH8, the first hole portion TH8a is left as a gap G along the one end surface 20c in the width direction of the permanent magnet 20. Further, the internal space of the second hole portion TH8b is not occupied by the permanent magnet 20, but a gap G along the other end surface 20d in the width direction of the permanent magnet 20 is left in the second hole portion TH8b.

また、貫通孔TH3乃至貫通孔TH7には何も収容されない。すなわち、貫通孔TH3乃至貫通孔TH7は、空隙Gとして残される。 Further, nothing is accommodated in the through hole TH3 to the through hole TH7. That is, the through hole TH3 to the through hole TH7 are left as the gap G.

なお、ブリッジ部BR2は、永久磁石20から見て、鉄心片11(鉄心10)の径方向における内側に配置されている。 The bridge portion BR2 is arranged inside the iron core piece 11 (iron core 10) in the radial direction when viewed from the permanent magnet 20.

各積層部SRは、第1領域Raが積層された部位である第1積層部SRaと第2領域Rbが積層された部位である第2積層部SRbとから構成され、それらの間に空隙Gが並設されている。空隙Gの透磁率は、その周囲(珪素鋼板からなる部分)の透磁率よりも小さい。したがって、第1積層部SRaと第2積層部SRbとが、空隙Gによって、磁気的に分離されている(磁気的結合力が弱められている)。そのため、各積層部SRに貫通孔TH2乃至貫通孔TH8が設けられない場合に比べて、第1積層部SRa側から第2積層部SRb側(又は反対方向)へ向かう磁路が形成され難い。すなわち、回転子1の各磁極(積層部SR)において、漏れ磁束(磁束の短絡)が低減される。なお、鉄心片11の各ブリッジ部BR1及びブリッジ部BR2が磁路を構成し、漏れ磁束が多少生じるが、以下説明するように、ブリッジ部BR2内に分布した残留応力の作用により、ブリッジ部BR2を、磁束が通り難くなっている。 Each laminated portion SR is composed of a first laminated portion SRa which is a portion where the first region Ra is laminated and a second laminated portion SRb which is a portion where the second region Rb is laminated, and a gap G is provided between them. Are lined up side by side. The magnetic permeability of the void G is smaller than the magnetic permeability of the periphery (the portion made of the silicon steel plate). Therefore, the first laminated portion SRa and the second laminated portion SRb are magnetically separated by the gap G (the magnetic coupling force is weakened). Therefore, it is difficult to form a magnetic path from the first laminated portion SRa side to the second laminated portion SRb side (or in the opposite direction) as compared with the case where the through hole TH2 to the through hole TH8 is not provided in each laminated portion SR. That is, the leakage flux (short circuit of magnetic flux) is reduced at each magnetic pole (stacked portion SR) of the rotor 1. The bridge portion BR1 and the bridge portion BR2 of the iron core piece 11 form a magnetic path, and some leakage flux is generated. However, as described below, due to the action of the residual stress distributed in the bridge portion BR2, the bridge portion BR2 The magnetic flux is difficult to pass through.

つぎに、鉄心片11のブリッジ部BR2の作用及び効果を説明するために、比較例としての回転子1Aについて説明する。回転子1Aは、図8に示すように、鉄心10A及び複数の永久磁石20を備える。鉄心10Aは、図9に示すように、鉄心片11Aを積層した積層体である。図10に示すように、鉄心片11Aの外形に関する構成(形状、直径、板厚など)は、鉄心片11と同一であるが、打ち抜き孔(ブリッジ部)に関する構成が鉄心片11とは異なる。具体的には、鉄心片11Aは、鉄心片11の打ち抜き孔PH1、打ち抜き孔PH2及び打ち抜き孔PH8と同様の、打ち抜き孔PH1A、打ち抜き孔PH2A及び打ち抜き孔PH8Aを有する。鉄心片11において、打ち抜き孔PH2と打ち抜き孔PH8との間に、打ち抜き孔PH3乃至打ち抜き孔PH7が設けられている(図6参照)が、鉄心片11Aにおいて、打ち抜き孔PH2Aと打ち抜き孔PH8Aとの間に1つの打ち抜き孔PHAが設けられている(図11参照)。つまり、鉄心片11の1つの領域Rにおいて2個のブリッジ部BR1及び6個のブリッジ部BR2が設けられているのに対し、鉄心片11Aの1つの領域Rにおいて、2個のブリッジ部BR1A及び2個のブリッジ部BR2Aが設けられている。ブリッジ部BR1Aの幅WBR1Aは、ブリッジ部BR1の幅WBR1と同一(つまり、1.5mm)である。一方、ブリッジ部BR2Aの幅WBR2Aは、ブリッジ部BR1Aの幅WBR1Aと同一(つまり、1.5mm)である。つまり、ブリッジ部BR2Aの幅WBR2Aは、鉄心片11Aの板厚T11A(=0.3mm)の2倍よりも大きい。 Next, in order to explain the action and effect of the bridge portion BR2 of the iron core piece 11, the rotor 1A as a comparative example will be described. As shown in FIG. 8, the rotor 1A includes an iron core 10A and a plurality of permanent magnets 20. As shown in FIG. 9, the iron core 10A is a laminated body in which iron core pieces 11A are laminated. As shown in FIG. 10, the configuration (shape, diameter, plate thickness, etc.) of the iron core piece 11A is the same as that of the iron core piece 11, but the configuration of the punched hole (bridge portion) is different from that of the iron core piece 11. Specifically, the iron core piece 11A has a punching hole PH1A, a punching hole PH2A, and a punching hole PH8A similar to the punching hole PH1, punching hole PH2, and punching hole PH8 of the iron core piece 11. In the iron core piece 11, punching holes PH3 to punching holes PH7 are provided between the punching holes PH2 and the punching holes PH8 (see FIG. 6), but in the iron core piece 11A, the punching holes PH2A and the punching holes PH8A One punch hole PHA is provided between them (see FIG. 11). That is, while the two bridge portions BR1 and the six bridge portions BR2 are provided in one region R of the iron core piece 11, the two bridge portions BR1A and the two bridge portions BR1A are provided in one region R of the iron core piece 11A. Two bridge portions BR2A are provided. The width W BR1A of the bridge portion BR1A is the same as the width W BR1 of the bridge portion BR1 (that is, 1.5 mm). On the other hand, the width W BR2A of the bridge portion BR2A is the same as the width WBR1A of the bridge portion BR1A (that is, 1.5 mm). That is, the width W BR2A of the bridge portion BR2A is larger than twice the plate thickness T 11A (= 0.3 mm) of the iron core piece 11A.

上記のように構成された鉄心片11Aが積層されて、鉄心10A(図9参照)が形成される。そして、回転子1と同様に、鉄心10Aに永久磁石20が組み付けられて、回転子1A(図8参照)が形成される。 The iron core pieces 11A configured as described above are laminated to form the iron core 10A (see FIG. 9). Then, similarly to the rotor 1, the permanent magnet 20 is assembled to the iron core 10A to form the rotor 1A (see FIG. 8).

つぎに、回転子1と回転子1Aの漏れ磁束を比較する。ここで、一般に、鋼板において、残留応力が分布している部分は、残留応力が分布していない部分に比べて、磁路が形成され難い(透磁率が低い)ことが知られている。また、一般に、鋼板に打ち抜き孔を形成した場合、その鋼板の残存部のうち、打ち抜き孔の内周面(せん断面)から、板厚と同程度の距離だけ前記残存部内に入り込んだ領域に加工硬化が生じ(図12参照)、当該部位に残留応力が分布することが知られている。 Next, the leakage flux of the rotor 1 and the rotor 1A is compared. Here, it is generally known that in a steel sheet, a portion where residual stress is distributed is less likely to form a magnetic path (a magnetic permeability is lower) than a portion where residual stress is not distributed. Further, in general, when a punched hole is formed in a steel sheet, it is processed into a region of the remaining part of the steel sheet that has entered the remaining part by a distance equivalent to the plate thickness from the inner peripheral surface (shearing surface) of the punched hole. It is known that hardening occurs (see FIG. 12) and residual stress is distributed in the site.

比較例に係る鉄心片11Aの製造工程において、ブリッジ部BR2Aの幅WBR2Aが鉄心片11Aの板厚T11Aの2倍よりも大きい1.5mmになるように、珪素鋼板(母材)の所定の部位が打ち抜かれる。この場合、ブリッジ部BR2Aの幅方向における両端部には、加工硬化が生じ、当該部位に残留応力が分布している(図13参照)が、ブリッジ部BR2Aの中央部には、加工硬化が生じておらず、当該部位に残留応力が分布していない。 In the manufacturing process of the iron core piece 11A according to the comparative example, the silicon steel plate (base material) is predetermined so that the width W BR2A of the bridge portion BR2A is 1.5 mm, which is larger than twice the plate thickness T 11A of the iron core piece 11A. The part of is punched out. In this case, work hardening occurs at both ends of the bridge portion BR2A in the width direction, and residual stress is distributed in the portion (see FIG. 13), but work hardening occurs at the central portion of the bridge portion BR2A. Residual stress is not distributed in the relevant part.

これに対し、本実施形態に係る鉄心11の製造工程において、ブリッジ部BR2の幅WBR2が鉄心片11の板厚T11の2倍以下である0.5mmになるように、珪素鋼板(母材)の所定の部位が打ち抜かれる。この場合、ブリッジ部BR2の略全体に亘って加工硬化が生じ、ブリッジ部BR2の幅方向における両端部のみならず中央部にも残留応力が分布している(図14参照)。 In contrast, in the manufacturing process of the core 11 of the present embodiment, as the width W BR2 of the bridge portion BR2 is doubled or less is 0.5mm in thickness T 11 of the core piece 11, a silicon steel plate (mother A predetermined part of the material) is punched out. In this case, work hardening occurs over substantially the entire bridge portion BR2, and residual stress is distributed not only at both ends in the width direction of the bridge portion BR2 but also at the central portion (see FIG. 14).

本実施形態に係る鉄心片11は、比較例に係る鉄心片11Aのブリッジ部BR2Aを、ブリッジ部BR2,BR2,BR2に置き換えたものに相当する。ブリッジ部BR2,BR2,BR2の断面積の総計は、ブリッジ部BR2Aの断面積と同一である。そして、ブリッジ部BR2Aの一部に残留応力が分布していないのに対し、ブリッジ部BR2,BR2,BR2の全体に亘って残留応力が分布している。したがって、回転子1の各磁極の漏れ磁束は、回転子1Aに比べて低減されている。なお、ブリッジ部BR1の幅WBR1とブリッジ部BR1Aの幅WBR1Aは同一なので、ブリッジ部BR1を通る漏れ磁束と、ブリッジ部BR1Aを通る漏れ磁束は同等である。 The iron core piece 11 according to the present embodiment corresponds to the one in which the bridge portion BR2A of the iron core piece 11A according to the comparative example is replaced with the bridge portion BR2, BR2, BR2. The total cross-sectional area of the bridge portions BR2, BR2, and BR2 is the same as the cross-sectional area of the bridge portion BR2A. Then, while the residual stress is not distributed in a part of the bridge portion BR2A, the residual stress is distributed over the entire bridge portion BR2, BR2, BR2. Therefore, the leakage flux of each magnetic pole of the rotor 1 is reduced as compared with the rotor 1A. Since the width W BR1 of the bridge portion BR1 and the width W BR1A of the bridge portion BR1A are the same, the leakage flux passing through the bridge portion BR1 and the leakage flux passing through the bridge portion BR1A are equivalent.

つぎに、回転子1と回転子1Aの剛性を比較する。回転子1,1Aがそれぞれ回転駆動されると、鉄心10,10Aに遠心力がそれぞれ作用する。鉄心片11の領域Rのブリッジ部BR1及びブリッジ部BR2の断面積の総計が、鉄心片11Aの領域Rのブリッジ部BR1A及びブリッジ部BR2Aの断面積の総計と同一である。また、上記のように、ブリッジ部BR2Aの幅方向における中央部には加工硬化が生じていないのに対し、ブリッジ部BR2の全体に亘って加工硬化が生じている。よって、鉄心片11の領域Rに設けられた2個のブリッジ部BR1及び6個のブリッジ部BR2からなる部分全体としての剛性が、鉄心片11Aの領域Rに設けられた2個のブリッジ部BR1A及び2個のブリッジ部BR2Aからなる部分全体としての剛性よりも高い。したがって、上記の遠心力に対する、鉄心10の剛性(第1領域Raが外側へ突出するような変形の生じ難さ)が、鉄心10Aの剛性に比べて高い。 Next, the rigidity of the rotor 1 and the rotor 1A are compared. When the rotors 1 and 1A are rotationally driven, centrifugal force acts on the iron cores 10 and 10A, respectively. The total cross-sectional area of the bridge portion BR1 and the bridge portion BR2 of the region R of the iron core piece 11 is the same as the total cross-sectional area of the bridge portion BR1A and the bridge portion BR2A of the region R of the iron core piece 11A. Further, as described above, work hardening does not occur in the central portion of the bridge portion BR2A in the width direction, whereas work hardening occurs in the entire bridge portion BR2. Therefore, the rigidity of the entire portion consisting of the two bridge portions BR1 and the six bridge portions BR2 provided in the region R of the iron core piece 11 is increased by the two bridge portions BR1A provided in the region R of the iron core piece 11A. And higher than the rigidity of the entire portion consisting of the two bridge portions BR2A. Therefore, the rigidity of the iron core 10 with respect to the above-mentioned centrifugal force (difficulty of deformation such that the first region Ra protrudes outward) is higher than the rigidity of the iron core 10A.

さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。 Furthermore, the practice of the present invention is not limited to the above-described embodiment, and various changes can be made as long as the object of the present invention is not deviated.

例えば、鉄心片11に代えて、図16に示ように、鉄心片11Bを積層した鉄心10Bを用いて回転子1Bを構成しても良い。鉄心片11Bは、比較例である鉄心片11Aのブリッジ部BR2Aを、上記実施形態と同様のブリッジ部BR2、及び次に説明するブリッジ部BR3に置き換えたものに相当する。ブリッジ部BR3の幅WBR3は、鉄心片11Bの板厚の2倍より少し大きい。例えば、ブリッジ部BR3の幅WBR3は、1.0mm(>0.3mm(板厚)×2)である。すなわち、ブリッジ部BR3の幅WBR3は、ブリッジ部BR2Aの幅WBR2A(=1.5mm)に比べて小さい。 For example, instead of the iron core piece 11, as shown in FIG. 16, the rotor 1B may be configured by using the iron core 10B in which the iron core pieces 11B are laminated. The iron core piece 11B corresponds to a comparative example in which the bridge portion BR2A of the iron core piece 11A is replaced with the bridge portion BR2 similar to the above embodiment and the bridge portion BR3 described below. The width W BR3 of the bridge portion BR3 is slightly larger than twice the plate thickness of the iron core piece 11B. For example, the width W BR3 of the bridge portion BR3 is 1.0 mm (> 0.3 mm (plate thickness) × 2). That is, the width W BR3 of the bridge portion BR3 is smaller than the width W BR2A (= 1.5 mm) of the bridge portion BR2A.

ブリッジ部BR2及びブリッジ部BR3の断面積の総計が、鉄心片11Aのブリッジ部BR2Aの断面積と同一である。ブリッジ部BR3の幅方向における中央部に、残留応力が分布していない(加工硬化が生じていない)領域が存在するが、その領域は、ブリッジ部BR2Aにおける同領域に比べて狭い。したがって、ブリッジ部BR2及びブリッジ部BR3からなる部分全体において残留応力が分布している領域が、ブリッジ部BR2Aにおいて残留応力が分布している領域に比べて大きい。よって、回転子1Bの各磁極の漏れ磁束は、回転子1Aに比べて、低減されている。 The total cross-sectional area of the bridge portion BR2 and the bridge portion BR3 is the same as the cross-sectional area of the bridge portion BR2A of the iron core piece 11A. There is a region where residual stress is not distributed (work hardening does not occur) in the central portion of the bridge portion BR3 in the width direction, but the region is narrower than that region in the bridge portion BR2A. Therefore, the region where the residual stress is distributed in the entire portion including the bridge portion BR2 and the bridge portion BR3 is larger than the region where the residual stress is distributed in the bridge portion BR2A. Therefore, the leakage flux of each magnetic pole of the rotor 1B is reduced as compared with the rotor 1A.

また、図16の例において、比較的磁束を通し難いブリッジ部BR2が永久磁石20の近傍に配置され、ブリッジ部BR2に比べて少し磁束を通し易いブリッジ部BR3が、永久磁石20から見て、ブリッジ部BR2よりも遠い位置に配置されている。つまり、ブリッジ部BR2を通る磁路の長さが、ブリッジ部BR3を通る磁路の長さよりも短い。言い換えれば、磁束密度が比較的大きくなる位置に、磁束を通し難いブリッジ部BR2が配置され、磁束密度が比較的小さくなる位置に、ブリッジ部BR2に比べて少し磁束を通し易いブリッジ部BR3が配置されている。これによれば、ブリッジ部BR2とブリッジ部BR3とを、図16とは反対の位置に配置した場合に比べて、より効率的に漏れ磁束を低減できる。 Further, in the example of FIG. 16, the bridge portion BR2, which is relatively difficult to pass magnetic flux, is arranged in the vicinity of the permanent magnet 20, and the bridge portion BR3, which is slightly easier to pass magnetic flux than the bridge portion BR2, is seen from the permanent magnet 20. It is arranged at a position farther than the bridge portion BR2. That is, the length of the magnetic path passing through the bridge portion BR2 is shorter than the length of the magnetic path passing through the bridge portion BR3. In other words, the bridge portion BR2, which is difficult to pass magnetic flux, is arranged at a position where the magnetic flux density is relatively large, and the bridge portion BR3, which is slightly easier to pass magnetic flux than the bridge portion BR2, is arranged at a position where the magnetic flux density is relatively small. Has been done. According to this, the leakage flux can be reduced more efficiently as compared with the case where the bridge portion BR2 and the bridge portion BR3 are arranged at positions opposite to those in FIG.

また、鉄心片11Bの領域Rにおける2個のブリッジ部BR1、2個のブリッジ部BR2及び2個のブリッジ部BR3の断面積の総計は、鉄心片11Aの領域Rにおける2個のブリッジ部BR1A及び2個のブリッジ部BR2Aの断面積の総計と同一である。そして、ブリッジ部BR2の全体に亘り加工硬化が生じている。また、ブリッジ部BR3の幅方向における両端部に加工硬化が生じている。上記のように、ブリッジ部BR3の幅方向における中央部には加工硬化が生じていないが、その領域は、ブリッジ部BR2Aの同領域に比べて狭い。よって、鉄心片11Bの領域Rに設けられたブリッジ部(2個のブリッジ部BR1、2個のブリッジ部BR2及び2個のブリッジ部BR3からなる部分)において加工硬化が生じている領域が、鉄心片11Aの領域Rに設けられたブリッジ部(2個のブリッジ部BR1A及び2個のブリッジ部BR2Aからなる部分)において加工硬化が生じている領域より大きい。すなわち、鉄心片11Bの領域Rのブリッジ部全体としての剛性が、鉄心片11Aの領域Rのブリッジ部全体としての剛性より高い。つまり、遠心力に対する、鉄心10Bの剛性が、鉄心10Aの剛性よりも高い。 Further, the total cross-sectional area of the two bridge portions BR1, the two bridge portions BR2 and the two bridge portions BR3 in the region R of the iron core piece 11B is the two bridge portions BR1A and the two bridge portions BR1A in the region R of the iron core piece 11A. It is the same as the total cross-sectional area of the two bridge portions BR2A. Then, work hardening has occurred over the entire bridge portion BR2. Further, work hardening has occurred at both ends of the bridge portion BR3 in the width direction. As described above, work hardening has not occurred in the central portion of the bridge portion BR3 in the width direction, but the region is narrower than that of the bridge portion BR2A. Therefore, the region where work hardening occurs in the bridge portion (the portion consisting of the two bridge portions BR1, the two bridge portions BR2, and the two bridge portions BR3) provided in the region R of the iron core piece 11B is the iron core. It is larger than the region where work hardening occurs in the bridge portion (the portion composed of the two bridge portions BR1A and the two bridge portions BR2A) provided in the region R of the piece 11A. That is, the rigidity of the entire bridge portion of the region R of the iron core piece 11B is higher than the rigidity of the entire bridge portion of the region R of the iron core piece 11A. That is, the rigidity of the iron core 10B with respect to the centrifugal force is higher than the rigidity of the iron core 10A.

また、図17Aに示すように、回転子1の鉄心片11におけるブリッジ部BR1を、ブリッジ部BR4,BR4,BR4に置き換えても良い。すなわち、打ち抜き孔PH2(PH8)と鉄心片11の外周面との間に、スリット状の打ち抜き孔PH9,PH9を形成しても良い。ブリッジ部BR4の幅WBR4は、例えば、0.5mmである。これによれば、各ブリッジ部BR4の全体に亘って残留応力が分布している。また、ブリッジ部BR4,BR4,BR4の断面積の総計が、ブリッジ部BR1の断面積と同一である。よって、永久磁石20から見て鉄心片11の外周側を通る漏れ磁束が、上記実施形態(図7)に比べて低減される。また、ブリッジ部BR4の全体に亘って加工硬化が生じている。よって、本変形例の剛性は、上記実施形態(図7)に比べて高い。 Further, as shown in FIG. 17A, the bridge portion BR1 in the iron core piece 11 of the rotor 1 may be replaced with the bridge portions BR4, BR4, BR4. That is, slit-shaped punched holes PH9 and PH9 may be formed between the punched holes PH2 (PH8) and the outer peripheral surface of the iron core piece 11. The width W BR4 of the bridge portion BR4 is, for example, 0.5 mm. According to this, the residual stress is distributed over the entire bridge portion BR4. Further, the total cross-sectional area of the bridge portions BR4, BR4, and BR4 is the same as the cross-sectional area of the bridge portion BR1. Therefore, the leakage flux passing through the outer peripheral side of the iron core piece 11 when viewed from the permanent magnet 20 is reduced as compared with the above embodiment (FIG. 7). Further, work hardening has occurred over the entire bridge portion BR4. Therefore, the rigidity of this modification is higher than that of the above embodiment (FIG. 7).

また、図17Bに示すように、鉄心片11におけるブリッジ部BR1を、ブリッジ部BR5及びブリッジ部BR6に置き換えても良い。ブリッジ部BR5の幅WBR5は、例えば、0,5mmであり、ブリッジ部BR6の幅WBR6は、例えば、1.0mmである。これによれば、ブリッジ部BR5の全体に亘って残留応力が分布する。また、ブリッジ部BR6の幅方向における中央部には残留応力が分布していない領域が存在するが、その領域は、ブリッジ部BR1に比べて狭い。また、ブリッジ部BR5及びブリッジ部BR6の断面積の総計が,ブリッジ部BR1の断面積と同一である。よって、永久磁石20から見て鉄心片11の外周側を通る漏れ磁束が、上記実施形態(図7)に比べて低減される。また、ブリッジ部BR5及びブリッジ部BR6からなる部分全体において加工硬化が生じている領域が、ブリッジ部BR1において加工硬化が生じている領域に比べて大きい。よって、本変形例の剛性は、上記実施形態(図7)に比べて高い。 Further, as shown in FIG. 17B, the bridge portion BR1 in the iron core piece 11 may be replaced with the bridge portion BR5 and the bridge portion BR6. The width W BR5 of the bridge portion BR5 is, for example, 0.5 mm, and the width W BR6 of the bridge portion BR6 is, for example, 1.0 mm. According to this, the residual stress is distributed over the entire bridge portion BR5. Further, although there is a region in which the residual stress is not distributed in the central portion in the width direction of the bridge portion BR6, the region is narrower than that of the bridge portion BR1. Further, the total cross-sectional area of the bridge portion BR5 and the bridge portion BR6 is the same as the cross-sectional area of the bridge portion BR1. Therefore, the leakage flux passing through the outer peripheral side of the iron core piece 11 when viewed from the permanent magnet 20 is reduced as compared with the above embodiment (FIG. 7). Further, the region where work hardening occurs in the entire portion including the bridge portion BR5 and the bridge portion BR6 is larger than the region where work hardening occurs in the bridge portion BR1. Therefore, the rigidity of this modification is higher than that of the above embodiment (FIG. 7).

1,1A,1B…回転子、10,10A,10B…鉄心、11,11A,11B…鉄心片、20…永久磁石、BR1,BR2,BR3,BR4,BR5,BR6,BR1A,BR2A…ブリッジ部、G…空隙、M…電動モーター、PH1〜PH9,PH1A,PH2A,PH8A,PHA…打ち抜き孔、R…領域、Ra…第1領域、Rb…第2領域、SR…積層部、T11,11A…板厚、TH1〜TH8…貫通孔 1,1A, 1B ... Rotor 10,10A, 10B ... Iron core, 11,11A, 11B ... Iron core piece, 20 ... Permanent magnet, BR1, BR2, BR3, BR4, BR5, BR6, BR1A, BR2A ... Bridge part, G ... Air gap, M ... Electric motor, PH1-PH9, PH1A, PH2A, PH8A, PHA ... Punch hole, R ... Region, Ra ... 1st region, Rb ... 2nd region, SR ... Laminated part, T 11, T 11A ... Plate thickness, TH1 to TH8 ... Through hole

Claims (4)

鋼板からなる円板状の打ち抜き成形体である複数の鉄心片の積層体である円柱状の鉄心と、
前記鉄心片の中心軸の延設方向に対して平行に延設され、前記鉄心に埋設された永久磁石と、
を備えた電動モーターの回転子であって、
前記鉄心片における外周側にて周方向に延びる円弧状の領域内に複数の打ち抜き孔が並設されて、前記円弧状の領域が、前記並設された複数の打ち抜き孔を境界として、第1領域と、前記第1領域から離隔した第2領域とに区画されるとともに、前記第1領域と前記第2領域との間に架け渡された複数のブリッジ部が形成されていて、
前記複数のブリッジ部のうちの少なくとも1つのブリッジ部の幅が、前記鉄心片の板厚の2倍以下である、電動モーターの回転子。
A columnar iron core, which is a laminate of a plurality of iron core pieces, which is a disk-shaped punched molded body made of steel plates,
A permanent magnet extending parallel to the extending direction of the central axis of the iron core piece and embedded in the iron core,
It is a rotor of an electric motor equipped with
A plurality of punching holes are arranged side by side in an arc-shaped region extending in the circumferential direction on the outer peripheral side of the iron core piece, and the arc-shaped region is the first with the plurality of punched holes arranged side by side as a boundary. A plurality of bridge portions are formed by being divided into a region and a second region separated from the first region and bridged between the first region and the second region.
A rotor of an electric motor in which the width of at least one of the plurality of bridge portions is not more than twice the plate thickness of the iron core piece.
請求項1に記載の電動モーターの回転子において、
前記複数のブリッジ部のうち、前記永久磁石の磁路のうちの第1の磁路を構成する第1のブリッジ部の幅が、前記第1の磁路よりも長い第2の磁路を構成する第2のブリッジ部の幅よりも小さく設定されている、電動モーターの回転子。
In the rotor of the electric motor according to claim 1,
Among the plurality of bridge portions, the width of the first bridge portion forming the first magnetic path among the magnetic paths of the permanent magnet constitutes the second magnetic path longer than the first magnetic path. The rotor of the electric motor, which is set smaller than the width of the second bridge part.
請求項1又は請求項2に記載の電動モーターの回転子において、
前記少なくとも1つのブリッジ部であって、その幅が前記鉄心片の板厚の2倍以下であるブリッジ部が、前記永久磁石から見て、前記鉄心片の径方向における内側に配置されている、電動モーターの回転子。
In the rotor of the electric motor according to claim 1 or 2.
The at least one bridge portion whose width is not more than twice the plate thickness of the iron core piece is arranged inside the iron core piece in the radial direction when viewed from the permanent magnet. Rotor of electric motor.
鋼板を打ち抜いて、円板状の複数の鉄心片を製造する鉄心片製造工程と、
前記複数の鉄心片を積層して円柱状の鉄心を製造する鉄心製造工程と、
前記鉄心片の中心軸の延設方向に対して平行に延設された複数の永久磁石を、前記鉄心に埋設する永久磁石組み付け工程と、
を含む電動モーターの回転子の製造方法であって、
前記鉄心片製造工程は、
前記鉄心片における外周側にて周方向に延びる円弧状の領域内に複数の打ち抜き孔を並設して、前記円弧状の領域を、前記複数の打ち抜き孔を境界として、第1領域と、前記第1領域から離隔した第2領域とに区画するとともに、前記第1領域と前記第2領域との間に架け渡された複数のブリッジ部を形成する工程であって、前記複数のブリッジ部のうちの少なくとも2つのブリッジ部の幅が、前記鉄心片の板厚の2倍以下であるように前記鋼板を打ち抜く工程を含む、電動モーターの回転子の製造方法。
An iron core piece manufacturing process that punches out a steel plate to produce multiple disc-shaped iron core pieces,
An iron core manufacturing process for manufacturing a columnar iron core by laminating the plurality of iron core pieces,
A permanent magnet assembling step of embedding a plurality of permanent magnets extending parallel to the extending direction of the central axis of the iron core piece in the iron core.
Is a method of manufacturing a rotor for an electric motor, including
The iron core piece manufacturing process is
A plurality of punching holes are arranged side by side in an arc-shaped region extending in the circumferential direction on the outer peripheral side of the iron core piece, and the arc-shaped region is defined as a first region and the said It is a step of partitioning into a second region separated from the first region and forming a plurality of bridge portions bridged between the first region and the second region, and is a step of forming a plurality of bridge portions of the plurality of bridge portions. A method for manufacturing a rotor of an electric motor, which comprises a step of punching the steel plate so that the width of at least two of the bridge portions is not more than twice the plate thickness of the iron core piece.
JP2019133291A 2019-07-19 2019-07-19 Rotor for electric motor and manufacturing method therefor Pending JP2021019411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019133291A JP2021019411A (en) 2019-07-19 2019-07-19 Rotor for electric motor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133291A JP2021019411A (en) 2019-07-19 2019-07-19 Rotor for electric motor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2021019411A true JP2021019411A (en) 2021-02-15

Family

ID=74565881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133291A Pending JP2021019411A (en) 2019-07-19 2019-07-19 Rotor for electric motor and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2021019411A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165480A (en) * 2011-02-03 2012-08-30 Toyota Motor Corp Rotor for rotary electric machine and method for manufacturing the same
WO2015087773A1 (en) * 2013-12-09 2015-06-18 三菱電機株式会社 Embedded-permanent-magnet electric motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165480A (en) * 2011-02-03 2012-08-30 Toyota Motor Corp Rotor for rotary electric machine and method for manufacturing the same
WO2015087773A1 (en) * 2013-12-09 2015-06-18 三菱電機株式会社 Embedded-permanent-magnet electric motor

Similar Documents

Publication Publication Date Title
JP6826566B2 (en) Stator core for rotary electric machine and rotary electric machine
JP7044762B2 (en) IPM rotor
CN108292866B (en) Motor and method for manufacturing motor
JP6989458B2 (en) Rotor of rotary electric machine
JP6597184B2 (en) Permanent magnet type motor
JP6083059B2 (en) Rotor structure of permanent magnet rotating machine
JP5755336B2 (en) Rotor and permanent magnet embedded motor
JP2007104819A (en) Rotating electric machine
TWI547064B (en) Rotor for permanent magnet type electric motor
JP6065568B2 (en) Magnetizer
WO2017195498A1 (en) Rotor and rotary electric machine
TWI672891B (en) Stator core sheet and rotary electric machine
JP2000308287A (en) Permanent magnet embedded reluctance motor
JPWO2014162804A1 (en) Permanent magnet embedded rotary electric machine
JP2013034325A (en) Rotary electric machine
JP2012239327A (en) Permanent magnet motor
JP2004320989A (en) Permanent magnet embedding motor
WO2021039016A1 (en) Interior permanent magnet motor
JP2019165593A (en) Rotary electric machine
JP6992299B2 (en) Rotor
JP2011015555A (en) Dynamo-electric machine
US20210249920A1 (en) Rotating electrical machine rotor core
JP2002058184A (en) Rotor construction and motor
JP2021019411A (en) Rotor for electric motor and manufacturing method therefor
JP3914293B2 (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003