JP2021019038A - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- JP2021019038A JP2021019038A JP2019132712A JP2019132712A JP2021019038A JP 2021019038 A JP2021019038 A JP 2021019038A JP 2019132712 A JP2019132712 A JP 2019132712A JP 2019132712 A JP2019132712 A JP 2019132712A JP 2021019038 A JP2021019038 A JP 2021019038A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- sintered
- particles
- semiconductor element
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 178
- 229910052751 metal Inorganic materials 0.000 claims abstract description 179
- 239000002184 metal Substances 0.000 claims abstract description 179
- 239000002923 metal particle Substances 0.000 claims description 33
- 238000005245 sintering Methods 0.000 abstract description 37
- 230000006378 damage Effects 0.000 abstract description 4
- 239000010949 copper Substances 0.000 description 243
- 229910052802 copper Inorganic materials 0.000 description 242
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 238
- 239000002245 particle Substances 0.000 description 157
- 239000010410 layer Substances 0.000 description 154
- 239000012756 surface treatment agent Substances 0.000 description 31
- 239000007789 gas Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 16
- 239000002612 dispersion medium Substances 0.000 description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 238000007747 plating Methods 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 11
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 235000019253 formic acid Nutrition 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- -1 aromatic carboxylic acids Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 4
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 4
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 3
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 3
- BWVZAZPLUTUBKD-UHFFFAOYSA-N 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol Chemical compound CC1(C)C(C)C2CC1CC2C1CCCC(O)C1 BWVZAZPLUTUBKD-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 3
- 229940088601 alpha-terpineol Drugs 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- YWWVWXASSLXJHU-AATRIKPKSA-N (9E)-tetradecenoic acid Chemical compound CCCC\C=C\CCCCCCCC(O)=O YWWVWXASSLXJHU-AATRIKPKSA-N 0.000 description 2
- LAVARTIQQDZFNT-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-yl acetate Chemical compound COCC(C)OCC(C)OC(C)=O LAVARTIQQDZFNT-UHFFFAOYSA-N 0.000 description 2
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- PKRSYEPBQPFNRB-UHFFFAOYSA-N 2-phenoxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1OC1=CC=CC=C1 PKRSYEPBQPFNRB-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- YWWVWXASSLXJHU-UHFFFAOYSA-N 9E-tetradecenoic acid Natural products CCCCC=CCCCCCCCC(O)=O YWWVWXASSLXJHU-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 238000004093 laser heating Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 229960002446 octanoic acid Drugs 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- SZHOJFHSIKHZHA-UHFFFAOYSA-N tridecanoic acid Chemical compound CCCCCCCCCCCCC(O)=O SZHOJFHSIKHZHA-UHFFFAOYSA-N 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical compound COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 description 1
- CUVLMZNMSPJDON-UHFFFAOYSA-N 1-(1-butoxypropan-2-yloxy)propan-2-ol Chemical compound CCCCOCC(C)OCC(C)O CUVLMZNMSPJDON-UHFFFAOYSA-N 0.000 description 1
- SNAQINZKMQFYFV-UHFFFAOYSA-N 1-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCCOC SNAQINZKMQFYFV-UHFFFAOYSA-N 0.000 description 1
- SQQBGYGZHHXUPZ-UHFFFAOYSA-N 1-butylcyclohexane-1-carboxylic acid Chemical compound CCCCC1(C(O)=O)CCCCC1 SQQBGYGZHHXUPZ-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- QRRSHRVKVLSFQS-UHFFFAOYSA-N 1-ethylcyclohexane-1-carboxylic acid Chemical compound CCC1(C(O)=O)CCCCC1 QRRSHRVKVLSFQS-UHFFFAOYSA-N 0.000 description 1
- BMEVZVXFJBPTKE-UHFFFAOYSA-N 1-hexylcyclohexane-1-carboxylic acid Chemical compound CCCCCCC1(C(O)=O)CCCCC1 BMEVZVXFJBPTKE-UHFFFAOYSA-N 0.000 description 1
- RERATEUBWLKDFE-UHFFFAOYSA-N 1-methoxy-2-[2-(2-methoxypropoxy)propoxy]propane Chemical compound COCC(C)OCC(C)OCC(C)OC RERATEUBWLKDFE-UHFFFAOYSA-N 0.000 description 1
- CXBDYQVECUFKRK-UHFFFAOYSA-N 1-methoxybutane Chemical compound CCCCOC CXBDYQVECUFKRK-UHFFFAOYSA-N 0.000 description 1
- REHQLKUNRPCYEW-UHFFFAOYSA-N 1-methylcyclohexane-1-carboxylic acid Chemical compound OC(=O)C1(C)CCCCC1 REHQLKUNRPCYEW-UHFFFAOYSA-N 0.000 description 1
- QCHJKYVYKKEPGI-UHFFFAOYSA-N 1-nonylcyclohexane-1-carboxylic acid Chemical compound CCCCCCCCCC1(C(O)=O)CCCCC1 QCHJKYVYKKEPGI-UHFFFAOYSA-N 0.000 description 1
- ZOSBAYFWABIRBV-UHFFFAOYSA-N 1-pentylcyclohexane-1-carboxylic acid Chemical compound CCCCCC1(C(O)=O)CCCCC1 ZOSBAYFWABIRBV-UHFFFAOYSA-N 0.000 description 1
- FENFUOGYJVOCRY-UHFFFAOYSA-N 1-propoxypropan-2-ol Chemical compound CCCOCC(C)O FENFUOGYJVOCRY-UHFFFAOYSA-N 0.000 description 1
- ZVBMXGLAFRTOJS-UHFFFAOYSA-N 1-propylcyclohexane-1-carboxylic acid Chemical compound CCCC1(C(O)=O)CCCCC1 ZVBMXGLAFRTOJS-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- MTVLEKBQSDTQGO-UHFFFAOYSA-N 2-(2-ethoxypropoxy)propan-1-ol Chemical compound CCOC(C)COC(C)CO MTVLEKBQSDTQGO-UHFFFAOYSA-N 0.000 description 1
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical compound COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 description 1
- XYVAYAJYLWYJJN-UHFFFAOYSA-N 2-(2-propoxypropoxy)propan-1-ol Chemical compound CCCOC(C)COC(C)CO XYVAYAJYLWYJJN-UHFFFAOYSA-N 0.000 description 1
- NKBWMBRPILTCRD-UHFFFAOYSA-N 2-Methylheptanoic acid Chemical compound CCCCCC(C)C(O)=O NKBWMBRPILTCRD-UHFFFAOYSA-N 0.000 description 1
- HHBIYJMJDKRUCS-UHFFFAOYSA-N 2-Propyl-tridecanoic acid Chemical compound CCCCCCCCCCCC(C(O)=O)CCC HHBIYJMJDKRUCS-UHFFFAOYSA-N 0.000 description 1
- RJBIZCOYFBKBIM-UHFFFAOYSA-N 2-[2-(2-methoxyethoxy)ethoxy]propane Chemical compound COCCOCCOC(C)C RJBIZCOYFBKBIM-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- YJTIFIMHZHDNQZ-UHFFFAOYSA-N 2-[2-(2-methylpropoxy)ethoxy]ethanol Chemical compound CC(C)COCCOCCO YJTIFIMHZHDNQZ-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- SMNNDVUKAKPGDD-UHFFFAOYSA-N 2-butylbenzoic acid Chemical compound CCCCC1=CC=CC=C1C(O)=O SMNNDVUKAKPGDD-UHFFFAOYSA-N 0.000 description 1
- AVZVXSXEVJTJAB-UHFFFAOYSA-N 2-butyldecanoic acid Chemical compound CCCCCCCCC(C(O)=O)CCCC AVZVXSXEVJTJAB-UHFFFAOYSA-N 0.000 description 1
- NELJNBHLVVOMLC-UHFFFAOYSA-N 2-butyldodecanoic acid Chemical compound CCCCCCCCCCC(C(O)=O)CCCC NELJNBHLVVOMLC-UHFFFAOYSA-N 0.000 description 1
- UEWINXFENVHYDF-UHFFFAOYSA-N 2-butylheptanoic acid Chemical compound CCCCCC(C(O)=O)CCCC UEWINXFENVHYDF-UHFFFAOYSA-N 0.000 description 1
- KQYRYPXQPKPVSP-UHFFFAOYSA-N 2-butylhexanoic acid Chemical compound CCCCC(C(O)=O)CCCC KQYRYPXQPKPVSP-UHFFFAOYSA-N 0.000 description 1
- BDWTUWFDMGJTOD-UHFFFAOYSA-N 2-butylnonanoic acid Chemical compound CCCCCCCC(C(O)=O)CCCC BDWTUWFDMGJTOD-UHFFFAOYSA-N 0.000 description 1
- OARDBPIZDHVTCK-UHFFFAOYSA-N 2-butyloctanoic acid Chemical compound CCCCCCC(C(O)=O)CCCC OARDBPIZDHVTCK-UHFFFAOYSA-N 0.000 description 1
- JNPKZDAETFQNEL-UHFFFAOYSA-N 2-butylundecanoic acid Chemical compound CCCCCCCCCC(C(O)=O)CCCC JNPKZDAETFQNEL-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- SDKATVAEMVYSAB-UHFFFAOYSA-N 2-ethyl-dodecanoic acid Chemical compound CCCCCCCCCCC(CC)C(O)=O SDKATVAEMVYSAB-UHFFFAOYSA-N 0.000 description 1
- CGMMPMYKMDITEA-UHFFFAOYSA-N 2-ethylbenzoic acid Chemical compound CCC1=CC=CC=C1C(O)=O CGMMPMYKMDITEA-UHFFFAOYSA-N 0.000 description 1
- WJZIPMQUKSTHLV-UHFFFAOYSA-N 2-ethyldecanoic acid Chemical compound CCCCCCCCC(CC)C(O)=O WJZIPMQUKSTHLV-UHFFFAOYSA-N 0.000 description 1
- YRCGAHTZOXPQPR-UHFFFAOYSA-N 2-ethylnonanoic acid Chemical compound CCCCCCCC(CC)C(O)=O YRCGAHTZOXPQPR-UHFFFAOYSA-N 0.000 description 1
- STZGBQSXOHEXRA-UHFFFAOYSA-N 2-ethyltetradecanoic acid Chemical compound CCCCCCCCCCCCC(CC)C(O)=O STZGBQSXOHEXRA-UHFFFAOYSA-N 0.000 description 1
- JOYFPRCUHVNXEU-UHFFFAOYSA-N 2-ethyltridecanoic acid Chemical compound CCCCCCCCCCCC(CC)C(O)=O JOYFPRCUHVNXEU-UHFFFAOYSA-N 0.000 description 1
- VZOMLDYIAWPSDV-UHFFFAOYSA-N 2-ethylundecanoic acid Chemical compound CCCCCCCCCC(CC)C(O)=O VZOMLDYIAWPSDV-UHFFFAOYSA-N 0.000 description 1
- QMTHILFALDMACK-UHFFFAOYSA-N 2-heptyl-nonanoic acid Chemical compound CCCCCCCC(C(O)=O)CCCCCCC QMTHILFALDMACK-UHFFFAOYSA-N 0.000 description 1
- YNFUGQHDAKFMGG-UHFFFAOYSA-N 2-heptylbenzoic acid Chemical compound CCCCCCCC1=CC=CC=C1C(O)=O YNFUGQHDAKFMGG-UHFFFAOYSA-N 0.000 description 1
- YQIASAUDDDCAKU-UHFFFAOYSA-N 2-hexylbenzoic acid Chemical compound CCCCCCC1=CC=CC=C1C(O)=O YQIASAUDDDCAKU-UHFFFAOYSA-N 0.000 description 1
- FYSUCIRARGQXCJ-UHFFFAOYSA-N 2-hexylnonanoic acid Chemical compound CCCCCCCC(C(O)=O)CCCCCC FYSUCIRARGQXCJ-UHFFFAOYSA-N 0.000 description 1
- SQPZLZZLAPHSPL-UHFFFAOYSA-N 2-hexyloctanoic acid Chemical compound CCCCCCC(C(O)=O)CCCCCC SQPZLZZLAPHSPL-UHFFFAOYSA-N 0.000 description 1
- ONEKODVPFBOORO-UHFFFAOYSA-N 2-methyl lauric acid Chemical compound CCCCCCCCCCC(C)C(O)=O ONEKODVPFBOORO-UHFFFAOYSA-N 0.000 description 1
- KUSYIGBGHPOWEL-UHFFFAOYSA-N 2-methyl nonaoic acid Chemical compound CCCCCCCC(C)C(O)=O KUSYIGBGHPOWEL-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- SAOSCTYRONNFTC-UHFFFAOYSA-N 2-methyl-decanoic acid Chemical compound CCCCCCCCC(C)C(O)=O SAOSCTYRONNFTC-UHFFFAOYSA-N 0.000 description 1
- YSEQNZOXHCKLOG-UHFFFAOYSA-N 2-methyl-octanoic acid Chemical compound CCCCCCC(C)C(O)=O YSEQNZOXHCKLOG-UHFFFAOYSA-N 0.000 description 1
- FZUUHEZQCQGYNX-UHFFFAOYSA-N 2-methyl-tridecanoic acid Chemical compound CCCCCCCCCCCC(C)C(O)=O FZUUHEZQCQGYNX-UHFFFAOYSA-N 0.000 description 1
- PFFITEZSYJIHHR-UHFFFAOYSA-N 2-methyl-undecanoic acid Chemical compound CCCCCCCCCC(C)C(O)=O PFFITEZSYJIHHR-UHFFFAOYSA-N 0.000 description 1
- CPWJZWLDRWODFP-UHFFFAOYSA-N 2-methylnon-2-enoic acid Chemical compound CCCCCCC=C(C)C(O)=O CPWJZWLDRWODFP-UHFFFAOYSA-N 0.000 description 1
- XEFOHUNTIRSZAC-UHFFFAOYSA-N 2-methylpentadecanoic acid Chemical compound CCCCCCCCCCCCCC(C)C(O)=O XEFOHUNTIRSZAC-UHFFFAOYSA-N 0.000 description 1
- BWCZFWIRIAYLHO-UHFFFAOYSA-N 2-methyltetradecanoic acid Chemical compound CCCCCCCCCCCCC(C)C(O)=O BWCZFWIRIAYLHO-UHFFFAOYSA-N 0.000 description 1
- BTWOVZZLYFQANR-UHFFFAOYSA-N 2-nonylbenzoic acid Chemical compound CCCCCCCCCC1=CC=CC=C1C(O)=O BTWOVZZLYFQANR-UHFFFAOYSA-N 0.000 description 1
- QXFADXLALKKHIZ-UHFFFAOYSA-N 2-octylbenzoic acid Chemical compound CCCCCCCCC1=CC=CC=C1C(O)=O QXFADXLALKKHIZ-UHFFFAOYSA-N 0.000 description 1
- JCYPDKSGYHGCCY-UHFFFAOYSA-N 2-pentylbenzoic acid Chemical compound CCCCCC1=CC=CC=C1C(O)=O JCYPDKSGYHGCCY-UHFFFAOYSA-N 0.000 description 1
- MFHYZHQSCYJZEV-UHFFFAOYSA-N 2-pentyldecanoic acid Chemical compound CCCCCCCCC(C(O)=O)CCCCC MFHYZHQSCYJZEV-UHFFFAOYSA-N 0.000 description 1
- PLVOWOHSFJLXOR-UHFFFAOYSA-N 2-pentylheptanoic acid Chemical compound CCCCCC(C(O)=O)CCCCC PLVOWOHSFJLXOR-UHFFFAOYSA-N 0.000 description 1
- YNXFWNKTAOTVGR-UHFFFAOYSA-N 2-pentylnonanoic acid Chemical compound CCCCCCCC(C(O)=O)CCCCC YNXFWNKTAOTVGR-UHFFFAOYSA-N 0.000 description 1
- AHFVFQSYMVWCGQ-UHFFFAOYSA-N 2-pentyloctanoic acid Chemical compound CCCCCCC(C(O)=O)CCCCC AHFVFQSYMVWCGQ-UHFFFAOYSA-N 0.000 description 1
- HBDBCEBQJLOJTN-UHFFFAOYSA-N 2-pentylundecanoic acid Chemical compound CCCCCCCCCC(C(O)=O)CCCCC HBDBCEBQJLOJTN-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- GADSJKKDLMALGL-UHFFFAOYSA-N 2-propylbenzoic acid Chemical compound CCCC1=CC=CC=C1C(O)=O GADSJKKDLMALGL-UHFFFAOYSA-N 0.000 description 1
- SFQZYBRVKZYWDG-UHFFFAOYSA-N 2-propyldecanoic acid Chemical compound CCCCCCCCC(C(O)=O)CCC SFQZYBRVKZYWDG-UHFFFAOYSA-N 0.000 description 1
- NJUGDERYCCDBMJ-UHFFFAOYSA-N 2-propyldodecanoic acid Chemical compound CCCCCCCCCCC(C(O)=O)CCC NJUGDERYCCDBMJ-UHFFFAOYSA-N 0.000 description 1
- RXGPYPPCEXISOV-UHFFFAOYSA-N 2-propylheptanoic acid Chemical compound CCCCCC(C(O)=O)CCC RXGPYPPCEXISOV-UHFFFAOYSA-N 0.000 description 1
- HWXRWNDOEKHFTL-UHFFFAOYSA-N 2-propylhexanoic acid Chemical compound CCCCC(C(O)=O)CCC HWXRWNDOEKHFTL-UHFFFAOYSA-N 0.000 description 1
- APKRDOMMNFBDSG-UHFFFAOYSA-N 2-propylnonanoic acid Chemical compound CCCCCCCC(C(O)=O)CCC APKRDOMMNFBDSG-UHFFFAOYSA-N 0.000 description 1
- YCYMCMYLORLIJX-UHFFFAOYSA-N 2-propyloctanoic acid Chemical compound CCCCCCC(C(O)=O)CCC YCYMCMYLORLIJX-UHFFFAOYSA-N 0.000 description 1
- ZDYHEEQUYCULNO-UHFFFAOYSA-N 2-propylundecanoic acid Chemical compound CCCCCCCCCC(C(O)=O)CCC ZDYHEEQUYCULNO-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- WXBXVVIUZANZAU-UHFFFAOYSA-N 2E-decenoic acid Natural products CCCCCCCC=CC(O)=O WXBXVVIUZANZAU-UHFFFAOYSA-N 0.000 description 1
- GQVYBECSNBLQJV-VAWYXSNFSA-N 3-n-decyl acrylic acid Chemical compound CCCCCCCCCC\C=C\C(O)=O GQVYBECSNBLQJV-VAWYXSNFSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- WVDYBOADDMMFIY-UHFFFAOYSA-N Cyclopentanethiol Chemical compound SC1CCCC1 WVDYBOADDMMFIY-UHFFFAOYSA-N 0.000 description 1
- GZZPOFFXKUVNSW-UHFFFAOYSA-N Dodecenoic acid Natural products OC(=O)CCCCCCCCCC=C GZZPOFFXKUVNSW-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- TXWXLLMVRVKQSO-UHFFFAOYSA-N Heptyl cyclohexane carboxylic acid Chemical compound CCCCCCCC(=O)OC1CCCCC1 TXWXLLMVRVKQSO-UHFFFAOYSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N Lactic Acid Natural products CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- KJRCEJOSASVSRA-UHFFFAOYSA-N Propane-2-thiol Natural products CC(C)S KJRCEJOSASVSRA-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 235000019568 aromas Nutrition 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- JRVFLEPKNRTFHN-UHFFFAOYSA-N cycloheptanethiol Chemical compound SC1CCCCCC1 JRVFLEPKNRTFHN-UHFFFAOYSA-N 0.000 description 1
- CMKBCTPCXZNQKX-UHFFFAOYSA-N cyclohexanethiol Chemical compound SC1CCCCC1 CMKBCTPCXZNQKX-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 150000002398 hexadecan-1-ols Chemical class 0.000 description 1
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical class CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- YAQXGBBDJYBXKL-UHFFFAOYSA-N iron(2+);1,10-phenanthroline;dicyanide Chemical compound [Fe+2].N#[C-].N#[C-].C1=CN=C2C3=NC=CC=C3C=CC2=C1.C1=CN=C2C3=NC=CC=C3C=CC2=C1 YAQXGBBDJYBXKL-UHFFFAOYSA-N 0.000 description 1
- BDFAOUQQXJIZDG-UHFFFAOYSA-N iso-Butyl mercaptan Natural products CC(C)CS BDFAOUQQXJIZDG-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- NNNVXFKZMRGJPM-KHPPLWFESA-N sapienic acid Chemical compound CCCCCCCCC\C=C/CCCCC(O)=O NNNVXFKZMRGJPM-KHPPLWFESA-N 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- RHSBIGNQEIPSCT-UHFFFAOYSA-N stearonitrile Chemical compound CCCCCCCCCCCCCCCCCC#N RHSBIGNQEIPSCT-UHFFFAOYSA-N 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005472 straight-chain saturated fatty acid group Chemical group 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- WMXCDAVJEZZYLT-UHFFFAOYSA-N tert-butylthiol Chemical compound CC(C)(C)S WMXCDAVJEZZYLT-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- IBYFOBGPNPINBU-UHFFFAOYSA-N tetradecenoic acid Natural products CCCCCCCCCCCC=CC(O)=O IBYFOBGPNPINBU-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- WXBXVVIUZANZAU-CMDGGOBGSA-N trans-2-decenoic acid Chemical compound CCCCCCC\C=C\C(O)=O WXBXVVIUZANZAU-CMDGGOBGSA-N 0.000 description 1
- HOGWBMWOBRRKCD-BUHFOSPRSA-N trans-2-pentadecenoic acid Chemical compound CCCCCCCCCCCC\C=C\C(O)=O HOGWBMWOBRRKCD-BUHFOSPRSA-N 0.000 description 1
- IBYFOBGPNPINBU-OUKQBFOZSA-N trans-2-tetradecenoic acid Chemical compound CCCCCCCCCCC\C=C\C(O)=O IBYFOBGPNPINBU-OUKQBFOZSA-N 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- DYWSVUBJGFTOQC-UHFFFAOYSA-N xi-2-Ethylheptanoic acid Chemical compound CCCCCC(CC)C(O)=O DYWSVUBJGFTOQC-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.
近年、半導体パッケージ材料には、耐熱性(高温・高湿下での安定性や信頼性に優れること)が求められている。例えば、ハイブリッド自動車や電気自動車、電鉄、分散電源では、インバーターにパワー半導体が多く使われているが、パワー密度の向上が著しく、パッケージ材料は高温に晒される。特に、パワー半導体素子の動作時の過渡期に急峻なサージ電圧が発生し、半導体素子の発熱部の温度が急上昇する。サージ電圧が十分大きい場合は絶縁破壊などの現象が観察され、半導体装置の故障に至り、サージ電圧が小さい場合は熱ストレスなどによって半導体装置の劣化が生じる。 In recent years, heat resistance (excellent in stability and reliability under high temperature and high humidity) has been required for semiconductor package materials. For example, in hybrid vehicles, electric vehicles, electric railways, and distributed power sources, power semiconductors are often used for inverters, but the power density is significantly improved and the packaging material is exposed to high temperatures. In particular, a steep surge voltage is generated during the transitional period during operation of the power semiconductor element, and the temperature of the heat generating portion of the semiconductor element rises sharply. When the surge voltage is sufficiently large, phenomena such as dielectric breakdown are observed, leading to failure of the semiconductor device, and when the surge voltage is small, the semiconductor device deteriorates due to thermal stress or the like.
従来のパワー半導体装置では、半導体素子と共に基板上にスナバ回路が形成されている。スナバ回路として、抵抗素子及びコンデンサ素子を直列に接続して構成されるRCスナバ回路が採用されている。RCスナバ回路により、サージ電圧に起因する高周波のノイズが吸収される(例えば、特許文献1〜3参照)。しかし、フィールドで故障した半導体デバイスの調査から、このサージ電圧に起因すると考えられる劣化は実用上無視できない故障モードであることが分かっている(非特許文献1)。特に、SiCやGaN等のワイドバンドギャップ半導体の場合は、従来のSiと比較し高速動作が可能であるため、サージ電圧に起因した劣化の影響がより大きくなる。 In a conventional power semiconductor device, a snubber circuit is formed on a substrate together with a semiconductor element. As the snubber circuit, an RC snubber circuit configured by connecting a resistance element and a capacitor element in series is adopted. The RC snubber circuit absorbs high-frequency noise caused by the surge voltage (see, for example, Patent Documents 1 to 3). However, from the investigation of the semiconductor device that failed in the field, it is known that the deterioration considered to be caused by this surge voltage is a failure mode that cannot be ignored in practical use (Non-Patent Document 1). In particular, in the case of a wide bandgap semiconductor such as SiC or GaN, since high-speed operation is possible as compared with conventional Si, the influence of deterioration due to surge voltage becomes larger.
本発明は、急峻なサージ電圧による半導体素子の損傷を抑制することが可能な、半導体装置を提供することを目的とする。 An object of the present invention is to provide a semiconductor device capable of suppressing damage to a semiconductor element due to a steep surge voltage.
本発明の一側面は、半導体素子搭載用支持部材と、上記半導体素子搭載用支持部材上に第一焼結金属層を介して搭載された半導体素子と、上記半導体素子上に設けられた第二焼結金属層と、を備える、半導体装置を提供する。第二焼結金属層は放熱経路上に配置されないため、上記半導体装置では、半導体素子の放熱経路に影響を与えることなくサージ電圧が発生した際の半導体素子の発熱部の温度上昇が抑制される。このような半導体装置は信頼性に優れた構造を備えていると言える。 One aspect of the present invention is a support member for mounting a semiconductor element, a semiconductor element mounted on the support member for mounting the semiconductor element via a first sintered metal layer, and a second provided on the semiconductor element. Provided is a semiconductor device including a sintered metal layer. Since the second sintered metal layer is not arranged on the heat dissipation path, in the above semiconductor device, the temperature rise of the heat generating portion of the semiconductor element when a surge voltage is generated is suppressed without affecting the heat dissipation path of the semiconductor element. .. It can be said that such a semiconductor device has a structure having excellent reliability.
一態様において、上記第二焼結金属層が、上記半導体素子との界面に対して略平行に配向したフレーク状の金属粒子に由来する構造を含んでよい。 In one aspect, the second sintered metal layer may include a structure derived from flake-shaped metal particles oriented substantially parallel to the interface with the semiconductor element.
一態様において、上記第二焼結金属層における金属の含有量が、上記第二焼結金属層の全体積を基準として、65体積%以上90体積%以下であってよい。 In one aspect, the metal content in the second sintered metal layer may be 65% by volume or more and 90% by volume or less based on the total volume of the second sintered metal layer.
一態様において、半導体装置が上記第二焼結金属層上に金属板をさらに備えてよい。 In one aspect, the semiconductor device may further include a metal plate on the second sintered metal layer.
一態様において、上記第二焼結金属層又は上記金属板に金属配線が接続されていてよい。 In one aspect, the metal wiring may be connected to the second sintered metal layer or the metal plate.
一態様において、上記第二焼結金属層の厚さが100μm以上500μm以下であってよい。 In one aspect, the thickness of the second sintered metal layer may be 100 μm or more and 500 μm or less.
一態様において、上記半導体素子がワイドバンドギャップ半導体であってよい。 In one aspect, the semiconductor device may be a wide bandgap semiconductor.
本発明によれば、急峻なサージ電圧による半導体素子の損傷を抑制することが可能な、半導体装置を提供することができる。本発明によれば、より具体的には、パワー半導体素子の動作時の過渡期に急峻なサージ電圧が発生した場合であっても、半導体装置の熱抵抗に影響を与えることなく、パワー半導体素子の発熱部の温度上昇を抑制することができる。 According to the present invention, it is possible to provide a semiconductor device capable of suppressing damage to a semiconductor element due to a steep surge voltage. According to the present invention, more specifically, even when a steep surge voltage is generated during a transitional period during operation of a power semiconductor device, the power semiconductor device does not affect the thermal resistance of the semiconductor device. It is possible to suppress the temperature rise of the heat generating portion of the above.
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments.
以下、図面を参照しながら好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted.
<焼結金属層>
第一焼結金属層及び第二焼結金属層の各々は焼結体からなる。第一焼結金属層及び第二焼結金属層を構成する材料は、焼結性金属であり、例えば銀(Ag)、銅(Cu)等を含む。焼結性金属とは、その金属粒子が融点よりも低い温度で加熱されたときに焼結体を形成し得る金属である。第一焼結金属層及び第二焼結金属層は、例えば銀、銅等の焼結性金属粒子が分散された金属ペーストの焼結物である。第一焼結金属層及び第二焼結金属層は同一の組成を有するペーストから形成されてよく、異なる組成を有するペーストから形成されてよい。すなわち、両焼結金属層は同一でも異なっていてもよい。以下、焼結性金属が銅である場合を例にとり、焼結金属層(焼結銅層)の説明をするが、以下の記載において、「銅」を焼結性を有する他の「金属」に置き換えてよい。
<Sintered metal layer>
Each of the first sintered metal layer and the second sintered metal layer is made of a sintered body. The material constituting the first sintered metal layer and the second sintered metal layer is a sinterable metal, and includes, for example, silver (Ag), copper (Cu) and the like. The sinterable metal is a metal capable of forming a sintered body when the metal particles are heated at a temperature lower than the melting point. The first sintered metal layer and the second sintered metal layer are sintered products of a metal paste in which sinterable metal particles such as silver and copper are dispersed. The first sintered metal layer and the second sintered metal layer may be formed from pastes having the same composition, or may be formed from pastes having different compositions. That is, both sintered metal layers may be the same or different. Hereinafter, the sintered metal layer (sintered copper layer) will be described by taking the case where the sinterable metal is copper as an example. In the following description, "copper" is referred to as another "metal" having sinterability. May be replaced with.
(銅ペースト)
焼結銅層を形成するために用いられる銅ペーストは、金属粒子及び分散媒を含む。金属粒子は、サブマイクロ銅粒子及びフレーク状マイクロ銅粒子を含むことができる。
(Copper paste)
The copper paste used to form the sintered copper layer contains metal particles and a dispersion medium. The metal particles can include submicrocopper particles and flaky microcopper particles.
(金属粒子)
金属粒子としては、サブマイクロ銅粒子、フレーク状マイクロ銅粒子、これら以外の銅粒子、その他の金属粒子等が挙げられる。
(Metal particles)
Examples of the metal particles include submicro copper particles, flake-shaped micro copper particles, copper particles other than these, and other metal particles.
(サブマイクロ銅粒子)
サブマイクロ銅粒子としては、粒径が0.12μm以上0.8μm以下の銅粒子を含むものが挙げられ、例えば、体積平均粒径が0.12μm以上0.8μm以下の銅粒子を用いることができる。サブマイクロ銅粒子の体積平均粒径が0.12μm以上であれば、サブマイクロ銅粒子の合成コストの抑制、良好な分散性、表面処理剤の使用量の抑制といった効果が得られ易くなる。サブマイクロ銅粒子の体積平均粒径が0.8μm以下であれば、サブマイクロ銅粒子の焼結性が優れるという効果が得られ易くなる。より一層上記効果を得易いという観点から、サブマイクロ銅粒子の体積平均粒径は、0.15μm以上0.8μm以下であってもよく、0.15μm以上0.6μm以下であってもよく、0.2μm以上0.5μm以下であってもよく、0.3μm以上0.45μm以下であってもよい。
(Sub-micro copper particles)
Examples of the sub-micro copper particles include copper particles having a particle size of 0.12 μm or more and 0.8 μm or less. For example, copper particles having a volume average particle size of 0.12 μm or more and 0.8 μm or less may be used. it can. When the volume average particle size of the sub-micro copper particles is 0.12 μm or more, the effects of suppressing the synthesis cost of the sub-micro copper particles, good dispersibility, and suppressing the amount of the surface treatment agent used can be easily obtained. When the volume average particle diameter of the sub-micro copper particles is 0.8 μm or less, the effect of excellent sinterability of the sub-micro copper particles can be easily obtained. From the viewpoint that the above effect can be obtained more easily, the volume average particle size of the sub-micro copper particles may be 0.15 μm or more and 0.8 μm or less, or 0.15 μm or more and 0.6 μm or less. It may be 0.2 μm or more and 0.5 μm or less, and may be 0.3 μm or more and 0.45 μm or less.
なお、体積平均粒径とは50%体積平均粒径を意味する。銅粒子の体積平均粒径を求める場合、原料となる銅粒子、又は銅ペーストから揮発成分を除去した乾燥銅粒子を、分散剤を用いて分散媒に分散させたものを、光散乱法粒度分布測定装置(例えば、島津ナノ粒子径分布測定装置(SALD−7500nano,株式会社島津製作所製))で測定する方法等により求めることができる。光散乱法粒度分布測定装置を用いる場合、分散媒としては、ヘキサン、トルエン、α−テルピネオール等を用いることができる。 The volume average particle diameter means a 50% volume average particle diameter. When determining the volume average particle size of copper particles, the particle size distribution by the light scattering method is obtained by dispersing the copper particles as a raw material or dried copper particles obtained by removing volatile components from a copper paste in a dispersion medium using a dispersant. It can be obtained by a method of measuring with a measuring device (for example, Shimadzu nanoparticle size distribution measuring device (SALD-7500 nano, manufactured by Shimadzu Corporation)). When a light scattering method particle size distribution measuring device is used, hexane, toluene, α-terpineol or the like can be used as the dispersion medium.
サブマイクロ銅粒子は、粒径が0.12μm以上0.8μm以下の銅粒子を10質量%以上含むことができる。銅ペーストの焼結性の観点から、サブマイクロ銅粒子は、粒径が0.12μm以上0.8μm以下の銅粒子を20質量%以上含むことができ、30質量%以上含むことができ、90質量%以上含むことができ、100質量%含むことができる。サブマイクロ銅粒子における粒径が0.12μm以上0.8μm以下の銅粒子の含有割合が10質量%以上であると、銅粒子の分散性がより向上し、粘度の上昇、ペースト濃度の低下をより抑制することができる。 The sub-micro copper particles can contain 10% by mass or more of copper particles having a particle size of 0.12 μm or more and 0.8 μm or less. From the viewpoint of the sinterability of the copper paste, the sub-micro copper particles can contain 20% by mass or more of copper particles having a particle size of 0.12 μm or more and 0.8 μm or less, and can contain 30% by mass or more, 90% by mass. It can contain 100% by mass or more, and can contain 100% by mass. When the content ratio of the copper particles having a particle size of 0.12 μm or more and 0.8 μm or less in the sub-micro copper particles is 10% by mass or more, the dispersibility of the copper particles is further improved, the viscosity is increased, and the paste concentration is decreased. It can be more suppressed.
銅粒子の粒径は、例えば、SEM(走査型電子顕微鏡)像から算出することができる。銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。このSEM像の銅粒子に外接する四角形を画像処理ソフトにより作図し、その一辺をその粒子の粒径とする。 The particle size of the copper particles can be calculated from, for example, an SEM (scanning electron microscope) image. The powder of copper particles is placed on a carbon tape for SEM with a spatula to prepare a sample for SEM. This SEM sample is observed with an SEM device at a magnification of 5000. A quadrangle circumscribing the copper particles of this SEM image is drawn by image processing software, and one side thereof is used as the particle size of the particles.
サブマイクロ銅粒子の含有量は、金属粒子の全質量を基準として、10質量%以上90質量%以下であってもよく、30質量%以上90質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。サブマイクロ銅粒子の含有量が上記範囲内であれば、所望の焼結銅層を形成することが容易となる。 The content of the sub-micro copper particles may be 10% by mass or more and 90% by mass or less, 30% by mass or more and 90% by mass or less, and 35% by mass or more, based on the total mass of the metal particles. It may be 85% by mass or less, and may be 40% by mass or more and 80% by mass or less. When the content of the sub-micro copper particles is within the above range, it becomes easy to form a desired sintered copper layer.
サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、20質量%以上90質量%以下であってもよい。サブマイクロ銅粒子の上記含有量が20質量%以上であれば、フレーク状マイクロ銅粒子の間を充分に充填することができ、所望の焼結銅層を形成することが容易となる。サブマイクロ銅粒子の上記含有量が90質量%以下であれば、銅ペーストを焼結した時の体積収縮を充分に抑制できるため、所望の焼結銅層を形成することが容易となる。より一層上記効果を得易いという観点から、サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、30質量%以上85質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。 The content of the sub-micro copper particles may be 20% by mass or more and 90% by mass or less based on the total of the mass of the sub-micro copper particles and the mass of the flake-shaped micro copper particles. When the content of the sub-micro copper particles is 20% by mass or more, the space between the flake-shaped micro copper particles can be sufficiently filled, and a desired sintered copper layer can be easily formed. When the content of the sub-micro copper particles is 90% by mass or less, the volume shrinkage when the copper paste is sintered can be sufficiently suppressed, so that a desired sintered copper layer can be easily formed. From the viewpoint that the above effect can be obtained more easily, the content of the sub-micro copper particles is 30% by mass or more and 85% by mass or less based on the total of the mass of the sub-micro copper particles and the mass of the flake-shaped micro copper particles. It may be 35% by mass or more and 85% by mass or less, and may be 40% by mass or more and 80% by mass or less.
サブマイクロ銅粒子の形状は、特に限定されるものではない。サブマイクロ銅粒子の形状としては、例えば、球状、塊状、針状、フレーク状、略球状及びこれらの凝集体が挙げられる。分散性及び充填性の観点から、サブマイクロ銅粒子の形状は、球状、略球状、フレーク状であってもよく、燃焼性、分散性、フレーク状マイクロ粒子との混合性等の観点から、球状又は略球状であってもよい。 The shape of the sub-micro copper particles is not particularly limited. Examples of the shape of the sub-micro copper particles include spherical, lumpy, needle-like, flake-like, substantially spherical, and aggregates thereof. From the viewpoint of dispersibility and filling property, the shape of the sub-microcopper particles may be spherical, substantially spherical, or flake-shaped, and from the viewpoint of flammability, dispersibility, mixing with flake-shaped microparticles, etc., the shape is spherical. Alternatively, it may be substantially spherical.
サブマイクロ銅粒子は、分散性、充填性、及びフレーク状マイクロ粒子との混合性の観点から、アスペクト比が5以下であってもよく、3以下であってもよい。本明細書において、「アスペクト比」とは、粒子の長辺/厚さを示す。粒子の長辺及び厚さの測定は、例えば、粒子のSEM像から求めることができる。 The sub-micro copper particles may have an aspect ratio of 5 or less, or 3 or less, from the viewpoint of dispersibility, packing property, and mixing property with flake-shaped micro particles. As used herein, the "aspect ratio" refers to the long side / thickness of the particles. The measurement of the long side and the thickness of the particle can be obtained from, for example, an SEM image of the particle.
サブマイクロ銅粒子は、特定の表面処理剤で処理されていてもよい。特定の表面処理剤としては、例えば、炭素数8〜16の有機酸が挙げられる。炭素数8〜16の有機酸としては、例えば、カプリル酸、メチルヘプタン酸、エチルヘキサン酸、プロピルペンタン酸、ペラルゴン酸、メチルオクタン酸、エチルヘプタン酸、プロピルヘキサン酸、カプリン酸、メチルノナン酸、エチルオクタン酸、プロピルヘプタン酸、ブチルヘキサン酸、ウンデカン酸、メチルデカン酸、エチルノナン酸、プロピルオクタン酸、ブチルヘプタン酸、ラウリン酸、メチルウンデカン酸、エチルデカン酸、プロピルノナン酸、ブチルオクタン酸、ペンチルヘプタン酸、トリデカン酸、メチルドデカン酸、エチルウンデカン酸、プロピルデカン酸、ブチルノナン酸、ペンチルオクタン酸、ミリスチン酸、メチルトリデカン酸、エチルドデカン酸、プロピルウンデカン酸、ブチルデカン酸、ペンチルノナン酸、ヘキシルオクタン酸、ペンタデカン酸、メチルテトラデカン酸、エチルトリデカン酸、プロピルドデカン酸、ブチルウンデカン酸、ペンチルデカン酸、ヘキシルノナン酸、パルミチン酸、メチルペンタデカン酸、エチルテトラデカン酸、プロピルトリデカン酸、ブチルドデカン酸、ペンチルウンデカン酸、ヘキシルデカン酸、ヘプチルノナン酸、メチルシクロヘキサンカルボン酸、エチルシクロヘキサンカルボン酸、プロピルシクロヘキサンカルボン酸、ブチルシクロヘキサンカルボン酸、ペンチルシクロヘキサンカルボン酸、ヘキシルシクロヘキサンカルボン酸、ヘプチルシクロヘキサンカルボン酸、オクチルシクロヘキサンカルボン酸、ノニルシクロヘキサンカルボン酸等の飽和脂肪酸;オクテン酸、ノネン酸、メチルノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ミリストレイン酸、ペンタデセン酸、ヘキサデセン酸、パルミトレイン酸、サビエン酸等の不飽和脂肪酸;テレフタル酸、ピロメリット酸、o−フェノキシ安息香酸、メチル安息香酸、エチル安息香酸、プロピル安息香酸、ブチル安息香酸、ペンチル安息香酸、ヘキシル安息香酸、ヘプチル安息香酸、オクチル安息香酸、ノニル安息香酸等の芳香族カルボン酸が挙げられる。有機酸は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。このような有機酸と上記サブマイクロ銅粒子とを組み合わせることで、サブマイクロ銅粒子の分散性と焼結時における有機酸の脱離性を両立できる傾向にある。 The sub-micro copper particles may be treated with a specific surface treatment agent. Specific surface treatment agents include, for example, organic acids having 8 to 16 carbon atoms. Examples of organic acids having 8 to 16 carbon atoms include caprylic acid, methylheptanic acid, ethylhexanoic acid, propylpentanoic acid, pelargonic acid, methyloctanoic acid, ethylheptanic acid, propylhexanoic acid, capric acid, methylnonanoic acid, and ethyl. Octanoic acid, propylheptanic acid, butylhexanoic acid, undecanoic acid, methyldecanoic acid, ethylnonanoic acid, propyloctanoic acid, butylheptanic acid, lauric acid, methylundecanoic acid, ethyldecanoic acid, propylnonanoic acid, butyloctanoic acid, pentylheptanic acid, Tridecanoic acid, methyldodecanoic acid, ethylundecanoic acid, propyldecanoic acid, butylnonanoic acid, pentyloctanoic acid, myristic acid, methyltridecanoic acid, ethyldodecanoic acid, propylundecanoic acid, butyldecanoic acid, pentylnonanoic acid, hexyloctanoic acid, pentadecanoic acid , Methyltetradecanoic acid, ethyltridecanoic acid, propyldodecanoic acid, butylundecanoic acid, pentyldecanoic acid, hexylnonanoic acid, palmitic acid, methylpentadecanoic acid, ethyltetradecanoic acid, propyltridecanoic acid, butyldodecanoic acid, pentylundecanoic acid, hexyldecane Acids, heptylnonanoic acid, methylcyclohexanecarboxylic acid, ethylcyclohexanecarboxylic acid, propylcyclohexanecarboxylic acid, butylcyclohexanecarboxylic acid, pentylcyclohexanecarboxylic acid, hexylcyclohexanecarboxylic acid, heptylcyclohexanecarboxylic acid, octylcyclohexanecarboxylic acid, nonylcyclohexanecarboxylic acid, etc. Saturated fatty acids; octeneic acid, nonenic acid, methylnonenic acid, decenoic acid, undecenoic acid, dodecenoic acid, tridecenoic acid, tetradecenoic acid, myristoleic acid, pentadecenoic acid, hexadecenoic acid, palmitreic acid, sabienoic acid and other unsaturated fatty acids; Aromas such as acid, pyromellitic acid, o-phenoxybenzoic acid, methylbenzoic acid, ethyl benzoic acid, propyl benzoic acid, butyl benzoic acid, pentyl benzoic acid, hexyl benzoic acid, heptyl benzoic acid, octyl benzoic acid, nonyl benzoic acid, etc. Group carboxylic acids include. One type of organic acid may be used alone, or two or more types may be used in combination. By combining such an organic acid with the above-mentioned sub-micro copper particles, there is a tendency that both the dispersibility of the sub-micro copper particles and the desorption of the organic acid at the time of sintering can be achieved at the same time.
表面処理剤の処理量は、サブマイクロ銅粒子の表面に一分子層〜三分子層付着する量であってもよい。この量は、サブマイクロ銅粒子の表面に付着した分子層数(n)、サブマイクロ銅粒子の比表面積(Ap)(単位m2/g)と、表面処理剤の分子量(Ms)(単位g/mol)と、表面処理剤の最小被覆面積(SS)(単位m2/個)と、アボガドロ数(NA)(6.02×1023個)から算出できる。具体的には、表面処理剤の処理量は、表面処理剤の処理量(質量%)={(n・Ap・Ms)/(SS・NA+n・Ap・Ms)}×100%の式に従って算出される。 The treatment amount of the surface treatment agent may be an amount that adheres to the surface of the sub-micro copper particles in a single-layer to a triple-layer. The amounts are the number of molecular layers (n) attached to the surface of the sub-micro copper particles, the specific area surface (A p ) (unit: m 2 / g) of the sub-micro copper particles, and the molecular weight (M s ) of the surface treatment agent. the unit g / mol), the minimum coverage area of the surface treatment agent (S S) (unit m 2 / piece) can be calculated from Avogadro's number (N a) (6.02 × 10 23 cells). Specifically, the processing amount of the surface treatment agent, the process amount of the surface treatment agent (wt%) = {(n · A p · M s) / (S S · N A + n · A p · M s)} It is calculated according to the formula of × 100%.
サブマイクロ銅粒子の比表面積は、乾燥させたサブマイクロ銅粒子をBET比表面積測定法で測定することで算出できる。表面処理剤の最小被覆面積は、表面処理剤が直鎖飽和脂肪酸の場合、2.05×10−19m2/1分子である。それ以外の表面処理剤の場合には、例えば、分子モデルからの計算、又は「化学と教育」(上江田捷博、稲福純夫、森巌、40(2),1992,p114−117)に記載の方法で測定できる。表面処理剤の定量方法の一例を示す。表面処理剤は、銅ペーストから分散媒を除去した乾燥粉の熱脱離ガス・ガスクロマトグラフ質量分析計により同定でき、これにより表面処理剤の炭素数及び分子量を決定できる。表面処理剤の炭素分割合は、炭素分分析により分析できる。炭素分分析法としては、例えば、高周波誘導加熱炉燃焼/赤外線吸収法が挙げられる。同定された表面処理剤の炭素数、分子量及び炭素分割合から上記式により表面処理剤量を算出できる。 The specific surface area of the sub-micro copper particles can be calculated by measuring the dried sub-micro copper particles by the BET specific surface area measurement method. Minimum coverage of the surface treatment agent, if the surface treatment agent is a straight-chain saturated fatty acids, is 2.05 × 10 -19 m 2/1 molecule. For other surface treatment agents, for example, calculation from a molecular model or "Chemistry and Education" (Akihiro Ueda, Sumio Inafuku, Iwao Mori, 40 (2), 1992, p114-117). It can be measured by the method described. An example of a method for quantifying a surface treatment agent is shown. The surface treatment agent can be identified by a thermal desorption gas / gas chromatograph mass spectrometer of the dry powder obtained by removing the dispersion medium from the copper paste, whereby the carbon number and molecular weight of the surface treatment agent can be determined. The carbon content ratio of the surface treatment agent can be analyzed by carbon content analysis. Examples of the carbon content analysis method include a high-frequency induction heating furnace combustion / infrared absorption method. The amount of the surface treatment agent can be calculated from the carbon number, molecular weight and carbon content ratio of the identified surface treatment agent by the above formula.
表面処理剤の上記処理量は、0.07質量%以上2.1質量%以下であってもよく、0.10質量%以上1.6質量%以下であってもよく、0.2質量%以上1.1質量%以下であってもよい。 The treated amount of the surface treatment agent may be 0.07% by mass or more and 2.1% by mass or less, 0.10% by mass or more and 1.6% by mass or less, and 0.2% by mass. It may be 1.1% by mass or less.
サブマイクロ銅粒子としては、市販されているものを用いることができる。市販されているサブマイクロ銅粒子としては、例えば、CH−0200(三井金属鉱業株式会社製、体積平均粒径0.36μm)、HT−14(三井金属鉱業株式会社製、体積平均粒径0.41μm)、CT−500(三井金属鉱業株式会社製、体積平均粒径0.72μm)、Tn−Cu100(太陽日酸株式会社製、体積平均粒径0.12μm)が挙げられる。 As the sub-micro copper particles, commercially available ones can be used. Examples of commercially available sub-micro copper particles include CH-0200 (manufactured by Mitsui Metal Mining Co., Ltd., volume average particle size 0.36 μm) and HT-14 (manufactured by Mitsui Metal Mining Co., Ltd., volume average particle size 0. 41 μm), CT-500 (manufactured by Mitsui Metal Mining Co., Ltd., volume average particle size 0.72 μm), Tn-Cu100 (manufactured by Taiyo Nisshi Co., Ltd., volume average particle size 0.12 μm).
(フレーク状マイクロ銅粒子)
フレーク状マイクロ銅粒子としては、最大径が1μm以上20μm以下であり、アスペクト比が4以上の銅粒子を含むものが挙げられ、例えば、平均最大径が1μ以上20μm以下であり、アスペクト比が4以上の銅粒子を用いることができる。フレーク状マイクロ銅粒子の平均最大径及びアスペクト比が上記範囲内であれば、銅ペーストを焼結した際の体積収縮を充分に低減でき、所望の焼結銅層を形成することが容易となる。より一層上記効果を得易いという観点から、フレーク状マイクロ銅粒子の平均最大径は、1μm以上10μm以下であってもよく、3μm以上10μm以下であってもよい。フレーク状マイクロ銅粒子の最大径及び平均最大径の測定は、例えば、粒子のSEM像から求めることができ、後述するフレーク状構造の長径X及び長径の平均値Xavとして求められる。
(Flake-shaped micro copper particles)
Examples of the flake-shaped microcopper particles include copper particles having a maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of 4 or more. For example, an average maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of 4 are included. The above copper particles can be used. When the average maximum diameter and aspect ratio of the flake-shaped microcopper particles are within the above ranges, the volume shrinkage when the copper paste is sintered can be sufficiently reduced, and a desired sintered copper layer can be easily formed. .. From the viewpoint that the above effect can be more easily obtained, the average maximum diameter of the flake-shaped microcopper particles may be 1 μm or more and 10 μm or less, or 3 μm or more and 10 μm or less. The maximum diameter and the average maximum diameter of the flake-shaped microcopper particles can be measured, for example, from the SEM image of the particles, and can be obtained as the major axis X and the average value Xav of the flake-shaped structure described later.
フレーク状マイクロ銅粒子は、最大径が1μm以上20μm以下の銅粒子を50質量%以上含むことができる。焼結銅層内での配向、補強効果、接合ペーストの充填性の観点から、フレーク状マイクロ銅粒子は、最大径が1μm以上20μm以下の銅粒子を70質量%以上含むことができ、80質量%以上含むことができ、100質量%含むことができる。接合不良を抑制する観点から、フレーク状マイクロ銅粒子は、例えば、最大径が20μmを超える粒子等の接合厚さを超えるサイズの粒子を含まないことが好ましい。 The flake-shaped micro copper particles can contain 50% by mass or more of copper particles having a maximum diameter of 1 μm or more and 20 μm or less. From the viewpoint of orientation in the sintered copper layer, reinforcing effect, and filling property of the bonding paste, the flake-shaped micro copper particles can contain 70% by mass or more of copper particles having a maximum diameter of 1 μm or more and 20 μm or less, and have a maximum diameter of 80 mass%. It can contain% or more, and can contain 100% by mass. From the viewpoint of suppressing bonding defects, the flake-shaped microcopper particles preferably do not contain particles having a size exceeding the bonding thickness, such as particles having a maximum diameter of more than 20 μm.
フレーク状マイクロ銅粒子の長径XをSEM像から算出する方法を例示する。フレーク状マイクロ銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。SEM像のフレーク状マイクロ銅粒子に外接する長方形を画像処理ソフトにより作図し、長方形の長辺をその粒子の長径Xとする。複数のSEM像を用いて、この測定を50個以上のフレーク状マイクロ銅粒子に対して行い、長径の平均値Xavを算出する。 A method of calculating the major axis X of flake-shaped microcopper particles from an SEM image will be illustrated. The powder of flake-shaped microcopper particles is placed on a carbon tape for SEM with a spatula to prepare a sample for SEM. This SEM sample is observed with an SEM device at a magnification of 5000. A rectangle circumscribing the flake-shaped microcopper particles of the SEM image is drawn by image processing software, and the long side of the rectangle is defined as the major axis X of the particles. Using a plurality of SEM images, this measurement is performed on 50 or more flake-shaped microcopper particles, and the mean value Xav of the major axis is calculated.
フレーク状マイクロ銅粒子は、アスペクト比が4以上であってもよく、6以上であってもよい。アスペクト比が上記範囲内であれば、銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向することにより、銅ペーストを焼結させたときの体積収縮を抑制でき、所望の焼結銅層を形成することが容易となる。 The flake-shaped microcopper particles may have an aspect ratio of 4 or more, or 6 or more. When the aspect ratio is within the above range, the flake-shaped microcopper particles in the copper paste are oriented substantially parallel to the bonding surface, so that volume shrinkage when the copper paste is sintered can be suppressed, which is desired. It becomes easy to form the sintered copper layer of.
フレーク状マイクロ銅粒子の含有量は、金属粒子の全質量を基準として、1質量%以上90質量%以下であってもよく、10質量%以上70質量%以下であってもよく、20質量%以上50質量%以下であってもよい。フレーク状マイクロ銅粒子の含有量が、上記範囲内であれば、所望の焼結銅層を形成することが容易となる。 The content of the flake-shaped microcopper particles may be 1% by mass or more and 90% by mass or less, 10% by mass or more and 70% by mass or less, or 20% by mass, based on the total mass of the metal particles. It may be 50% by mass or less. When the content of the flake-shaped micro copper particles is within the above range, it becomes easy to form a desired sintered copper layer.
サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、80質量%以上であってもよい。サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計が上記範囲内であれば、所望の焼結銅層を形成することが容易となる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。 The total content of the sub-micro copper particles and the content of the flake-shaped micro copper particles may be 80% by mass or more based on the total mass of the metal particles. When the total content of the sub-micro copper particles and the content of the micro copper particles is within the above range, it becomes easy to form a desired sintered copper layer. From the viewpoint of further exerting the above effect, the total content of the sub-micro copper particles and the content of the flake-shaped micro-copper particles may be 90% by mass or more based on the total mass of the metal particles. It may be 100% by mass or more, or 100% by mass.
フレーク状マイクロ銅粒子において、表面処理剤の処理の有無は特に限定されるものではない。分散安定性及び耐酸化性の観点から、フレーク状マイクロ銅粒子は表面処理剤で処理されていてもよい。表面処理剤は、接合時に除去されるものであってもよい。このような表面処理剤としては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、オレイン酸等の脂肪族カルボン酸;テレフタル酸、ピロメリット酸、o−フェノキシ安息香酸等の芳香族カルボン酸;セチルアルコール、ステアリルアルコール、イソボルニルシクロヘキサノール、テトラエチレングリコール等の脂肪族アルコール;p−フェニルフェノール等の芳香族アルコール;オクチルアミン、ドデシルアミン、ステアリルアミン等のアルキルアミン;ステアロニトリル、デカニトリル等の脂肪族ニトリル;アルキルアルコキシシラン等のシランカップリング剤;ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、シリコーンオリゴマー等の高分子処理材等が挙げられる。表面処理剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 In the flake-shaped microcopper particles, the presence or absence of treatment with the surface treatment agent is not particularly limited. From the viewpoint of dispersion stability and oxidation resistance, the flake-shaped microcopper particles may be treated with a surface treatment agent. The surface treatment agent may be one that is removed at the time of joining. Examples of such surface treatment agents include aliphatic carboxylic acids such as palmitic acid, stearyl acid, arachidic acid, and oleic acid; aromatic carboxylic acids such as terephthalic acid, pyromellitic acid, and o-phenoxybenzoic acid; and cetyl alcohols. , Fatty alcohols such as stearyl alcohol, isobornylcyclohexanol, tetraethyleneglycol; aromatic alcohols such as p-phenylphenol; alkylamines such as octylamine, dodecylamine, stearylamine; fats such as stearonitrile and decanitrile. Group nitriles; silane coupling agents such as alkylalkoxysilanes; polymer-treated materials such as polyethylene glycols, polyvinyl alcohols, polyvinylpyrrolidones, and silicone oligomers. As the surface treatment agent, one type may be used alone, or two or more types may be used in combination.
表面処理剤の処理量は、粒子表面に一分子層以上の量であってもよい。このような表面処理剤の処理量は、フレーク状マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積により変化する。表面処理剤の処理量は、通常0.001質量%以上である。フレーク状マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積については、上述した方法により算出することができる。 The treatment amount of the surface treatment agent may be an amount of one molecular layer or more on the particle surface. The treatment amount of such a surface treatment agent varies depending on the specific surface area of the flake-shaped microcopper particles, the molecular weight of the surface treatment agent, and the minimum coating area of the surface treatment agent. The treatment amount of the surface treatment agent is usually 0.001% by mass or more. The specific surface area of the flake-shaped microcopper particles, the molecular weight of the surface treatment agent, and the minimum coating area of the surface treatment agent can be calculated by the above-mentioned method.
上記サブマイクロ銅粒子のみから銅ペーストを調製する場合、分散媒の乾燥に伴う体積収縮及び焼結収縮が大きいため、銅ペーストの焼結時に被着面より剥離し易くなり、半導体素子等の接合においては充分なダイシェア強度及び接続信頼性が得られにくい。サブマイクロ銅粒子とフレーク状マイクロ銅粒子とを併用することで、銅ペーストを焼結させたときの体積収縮が抑制され、所望の焼結銅層を形成することが容易となる。 When a copper paste is prepared only from the above-mentioned sub-micro copper particles, the volume shrinkage and sintering shrinkage due to drying of the dispersion medium are large, so that the copper paste is easily peeled off from the adherend surface at the time of sintering, and the semiconductor element or the like is joined. It is difficult to obtain sufficient die-share strength and connection reliability. By using the sub-micro copper particles and the flake-shaped micro copper particles in combination, the volume shrinkage when the copper paste is sintered is suppressed, and it becomes easy to form a desired sintered copper layer.
銅ペーストにおいて、金属粒子に含まれる、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子全量を基準として、50質量%以下が好ましく、40質量%以下とすることがより好ましく、30質量%以下とすることが更に好ましい。平均最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量を制限することにより、銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向し易くなり、銅ペーストを焼結させたときの体積収縮をより有効に抑制することができる。これにより、所望の焼結銅層を形成することが容易となる。このような効果が更に得られ易くなる点で、平均最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子全量を基準として、20質量%以下であってもよく、10質量%以下であってもよい。 In the copper paste, the content of micro copper particles having a maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of less than 2 contained in the metal particles has a maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of 4 or more. Based on the total amount of flake-shaped microcopper particles, it is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. By limiting the content of microcopper particles having an average maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of less than 2, the flake-shaped microcopper particles in the copper paste are oriented substantially parallel to the bonding surface. This facilitates the process, and the volume shrinkage when the copper paste is sintered can be suppressed more effectively. This facilitates the formation of the desired sintered copper layer. In terms of making it easier to obtain such an effect, the content of microcopper particles having an average maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of less than 2 is such that the maximum diameter is 1 μm or more and 20 μm or less, and the aspect ratio. It may be 20% by mass or less, or 10% by mass or less, based on the total amount of flake-shaped microcopper particles having a value of 4 or more.
フレーク状マイクロ銅粒子としては、市販されているものを用いることができる。市販されているフレーク状マイクロ銅粒子としては、例えば、MA−C025(三井金属鉱業株式会社製、平均最大径4.1μm)、3L3(福田金属箔粉工業株式会社製、体積最大径7.3μm)、1110F(三井金属鉱業株式会社製、平均最大径5.8μm)、2L3(福田金属箔粉工業株式会社製、平均最大径9μm)が挙げられる。 As the flake-shaped microcopper particles, commercially available ones can be used. Commercially available flake-shaped microcopper particles include, for example, MA-C025 (manufactured by Mitsui Mining & Smelting Co., Ltd., average maximum diameter 4.1 μm), 3L3 (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., maximum volume diameter 7.3 μm). ), 1110F (Mitsui Mining & Smelting Co., Ltd., average maximum diameter 5.8 μm), 2L3 (Fukuda Metal Foil Powder Industry Co., Ltd., average maximum diameter 9 μm).
銅ペーストにおいては、配合するマイクロ銅粒子として、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子を含み、且つ、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、上記フレーク状マイクロ銅粒子全量を基準として、50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下であるマイクロ銅粒子を用いることができる。市販されているフレーク状マイクロ銅粒子を用いる場合、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子を含み、且つ、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、上記フレーク状マイクロ銅粒子全量を基準として、50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下であるものを選定してもよい。 In the copper paste, the micro copper particles to be blended include flake-shaped micro copper particles having a maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of 4 or more, and have a maximum diameter of 1 μm or more and 20 μm or less, and have an aspect ratio. Microcopper particles having a content of less than 2 are 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, based on the total amount of the flake-shaped microcopper particles. be able to. When commercially available flake-shaped microcopper particles are used, the maximum diameter is 1 μm or more and 20 μm or less, the flake-shaped microcopper particles having an aspect ratio of 4 or more are included, and the maximum diameter is 1 μm or more and 20 μm or less. The content of the microcopper particles having a ratio of less than 2 is 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, based on the total amount of the flake-shaped microcopper particles. You may.
(銅粒子以外のその他の金属粒子)
金属粒子としては、上述したサブマイクロ銅粒子及びマイクロ銅粒子以外のその他の金属粒子を含んでいてもよく、例えば、ニッケル、銀、金、パラジウム、白金等の粒子を含んでいてもよい。その他の金属粒子は、体積平均粒径が0.01μm以上10μm以下であってもよく、0.01μm以上5μm以下であってもよく、0.05μm以上3μm以下であってもよい。金属粒子がこれらその他の金属粒子を含んでいる場合、その含有量は、充分な接合性を得るという観点から、金属粒子の全質量を基準として、20質量%未満であってもよく、10質量%以下であってもよい。その他の金属粒子は、含まれなくてもよい。その他の金属粒子の形状は、特に限定されるものではない。
(Other metal particles other than copper particles)
The metal particles may include the above-mentioned sub-micro copper particles and other metal particles other than the micro-copper particles, and may include, for example, particles such as nickel, silver, gold, palladium, and platinum. The volume average particle diameter of the other metal particles may be 0.01 μm or more and 10 μm or less, 0.01 μm or more and 5 μm or less, or 0.05 μm or more and 3 μm or less. When the metal particles contain these other metal particles, the content thereof may be less than 20% by mass based on the total mass of the metal particles from the viewpoint of obtaining sufficient bondability, and may be 10% by mass. It may be less than or equal to%. Other metal particles may not be included. The shapes of the other metal particles are not particularly limited.
金属粒子が銅粒子以外の金属粒子を含むことで、複数種の金属が固溶又は分散した焼結銅層を得ることができるため、焼結銅層の降伏応力、疲労強度等の機械的な特性が改善され、接続信頼性が向上し易い。また、複数種の金属粒子を添加することで、形成される焼結銅層は、特定の被着体に対して、接合強度及び接続信頼性が向上し易い。 Since the metal particles contain metal particles other than copper particles, a sintered copper layer in which a plurality of types of metals are solid-dissolved or dispersed can be obtained, so that the yield stress, fatigue strength, etc. of the sintered copper layer are mechanical. The characteristics are improved and the connection reliability is likely to be improved. Further, the sintered copper layer formed by adding a plurality of types of metal particles tends to improve the bonding strength and the connection reliability with respect to a specific adherend.
(分散媒)
分散媒は特に限定されるものではなく、揮発性のものであってもよい。揮発性の分散媒としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α−テルピネオール、イソボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類;エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類;エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)、乳酸エチル、乳酸ブチル、γ−ブチロラクトン、炭酸プロピレン等のエステル類;N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等の酸アミド;シクロヘキサノン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;炭素数1〜18のアルキル基を有するメルカプタン類;炭素数5〜7のシクロアルキル基を有するメルカプタン類が挙げられる。炭素数1〜18のアルキル基を有するメルカプタン類としては、例えば、エチルメルカプタン、n−プロピルメルカプタン、i−プロピルメルカプタン、n−ブチルメルカプタン、i−ブチルメルカプタン、t−ブチルメルカプタン、ペンチルメルカプタン、ヘキシルメルカプタン及びドデシルメルカプタンが挙げられる。炭素数5〜7のシクロアルキル基を有するメルカプタン類としては、例えば、シクロペンチルメルカプタン、シクロヘキシルメルカプタン及びシクロヘプチルメルカプタンが挙げられる。
(Dispersion medium)
The dispersion medium is not particularly limited and may be volatile. Examples of the volatile dispersion medium include monovalent and polyvalent and polyvalent such as pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, α-terpineol and isobornylcyclohexanol (MTPH). Valuable alcohols; ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol. Butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol butyl ether, di Ethers such as propylene glycol dimethyl ether, tripropylene glycol methyl ether, tripropylene glycol dimethyl ether; ethylene glycol ethyl ether acetate, ethylene glycol butyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol butyl ether acetate, dipropylene glycol methyl ether acetate (DPMA), lactic acid Ethers such as ethyl, butyl lactate, γ-butyrolactone, propylene carbonate; acid amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide; cyclohexanone, octane, nonane, decane, Examples thereof include aliphatic hydrocarbons such as undecane; aromatic hydrocarbons such as benzene, toluene and xylene; mercaptans having an alkyl group having 1 to 18 carbon atoms; and mercaptans having a cycloalkyl group having 5 to 7 carbon atoms. Examples of mercaptans having an alkyl group having 1 to 18 carbon atoms include ethyl mercaptan, n-propyl mercaptan, i-propyl mercaptan, n-butyl mercaptan, i-butyl mercaptan, t-butyl mercaptan, pentyl mercaptan, and hexyl mercaptan. And dodecyl mercaptan. Examples of mercaptans having a cycloalkyl group having 5 to 7 carbon atoms include cyclopentyl mercaptan, cyclohexyl mercaptan and cycloheptyl mercaptan.
分散媒の含有量は、金属粒子の全質量を100質量部として、5〜50質量部であってもよい。分散媒の含有量が上記範囲内であれば、銅ペーストをより適切な粘度に調整でき、また、銅粒子の焼結を阻害しにくい。 The content of the dispersion medium may be 5 to 50 parts by mass, where 100 parts by mass is the total mass of the metal particles. When the content of the dispersion medium is within the above range, the copper paste can be adjusted to a more appropriate viscosity, and the sintering of copper particles is less likely to be hindered.
(添加剤)
銅ペーストには、必要に応じて、ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤等を適宜添加してもよい。
(Additive)
Wetting improvers such as nonionic surfactants and fluorine-based surfactants; defoaming agents such as silicone oil; ion trapping agents such as inorganic ion exchangers, etc. are appropriately added to the copper paste, if necessary. May be good.
(銅ペーストの調製)
銅ペーストは、上述のサブマイクロ銅粒子、マイクロ銅粒子、その他の金属粒子及び任意の添加剤を分散媒に混合して調製してもよい。各成分の混合後に、撹拌処理を行ってもよい。分級操作により銅ペーストに含まれる金属粒子の最大粒径を調整してもよい。
(Preparation of copper paste)
The copper paste may be prepared by mixing the above-mentioned sub-micro copper particles, micro copper particles, other metal particles and any additive with a dispersion medium. After mixing each component, stirring treatment may be performed. The maximum particle size of the metal particles contained in the copper paste may be adjusted by a classification operation.
銅ペーストは、サブマイクロ銅粒子、表面処理剤、分散媒を予め混合して、分散処理を行ってサブマイクロ銅粒子の分散液を調製し、更にマイクロ銅粒子、その他の金属粒子及び任意の添加剤を混合して調製してもよい。このような手順とすることで、サブマイクロ銅粒子の分散性が向上してマイクロ銅粒子との混合性が良くなり、銅ペーストの性能がより向上する。サブマイクロ銅粒子の分散液に対し分級操作を行うことで、凝集物を除去してもよい。 In the copper paste, sub-micro copper particles, a surface treatment agent, and a dispersion medium are mixed in advance, and dispersion treatment is performed to prepare a dispersion liquid of sub-micro copper particles, and further micro copper particles, other metal particles, and any addition The agents may be mixed and prepared. By performing such a procedure, the dispersibility of the sub-micro copper particles is improved, the mixing property with the micro copper particles is improved, and the performance of the copper paste is further improved. The agglomerates may be removed by performing a classification operation on the dispersion liquid of the sub-micro copper particles.
図1は、上記銅ペーストの焼結物である、焼結銅層の断面SEM像である。同図には、フレーク状マイクロ銅粒子に由来する典型的なモルフォロジーが現れている。図1に示される焼結銅層は、積層界面(例えば、半導体素子搭載用支持部材との界面、半導体素子との界面)に対して略平行に配向したフレーク状の銅粒子に由来する構造(以下、「フレーク状構造」という場合もある)を有する焼結銅1と、他の銅粒子に由来する焼結銅2と、空孔3とを含む。 FIG. 1 is a cross-sectional SEM image of a sintered copper layer, which is a sintered product of the copper paste. The figure shows typical morphology derived from flaky microcopper particles. The sintered copper layer shown in FIG. 1 has a structure derived from flaky copper particles oriented substantially parallel to a laminated interface (for example, an interface with a support member for mounting a semiconductor element and an interface with a semiconductor element). Hereinafter, it includes a sintered copper 1 having a “flake-like structure”), a sintered copper 2 derived from other copper particles, and a pore 3.
焼結銅層は、構成する元素のうち軽元素を除いた元素中の銅元素の割合が95質量%以上であってもよく、97質量%以上であってもよく、98質量%以上であってもよく、100質量%であってもよい。焼結銅層における銅元素の割合が、上記範囲内であれば、金属間化合物の形成又は金属銅結晶粒界への異種元素の析出を抑制でき、焼結銅層を構成する金属銅の性質が強固になり易く、より一層優れた接続信頼性が得られ易い。 In the sintered copper layer, the ratio of the copper element in the elements excluding the light element among the constituent elements may be 95% by mass or more, 97% by mass or more, or 98% by mass or more. It may be 100% by mass. When the ratio of copper elements in the sintered copper layer is within the above range, the formation of intermetallic compounds or the precipitation of dissimilar elements at the metal copper crystal grain boundaries can be suppressed, and the properties of metallic copper constituting the sintered copper layer can be suppressed. Is easy to become strong, and it is easy to obtain even better connection reliability.
フレーク状構造を有する焼結銅は、フレーク状の銅粒子を含む銅ペーストを焼結することにより形成することができる。なお、フレーク状とは板状、鱗片状等の平板状の形状を包含する。フレーク状構造において、長径と厚さとの比が5以上であってもよい。フレーク状構造の長径の数平均径は2μm以上であってもよく、3μm以上であってもよく、4μm以上であってもよい。このような形状を有するフレーク状構造であれば、焼結銅層の補強効果が向上し、部材と焼結銅層との接合体が接合強度及び接続信頼性により一層優れるものとなる。 Sintered copper having a flake-shaped structure can be formed by sintering a copper paste containing flake-shaped copper particles. The flake shape includes a flat plate shape such as a plate shape or a reptile shape. In the flake-like structure, the ratio of the major axis to the thickness may be 5 or more. The number average diameter of the major axis of the flake-shaped structure may be 2 μm or more, 3 μm or more, or 4 μm or more. With the flake-shaped structure having such a shape, the reinforcing effect of the sintered copper layer is improved, and the joint body between the member and the sintered copper layer is further excellent in joint strength and connection reliability.
フレーク状構造の長径及び厚さは、例えば、部材と焼結銅層との接合体のSEM像から求めることができる。以下に、フレーク状構造の長径と厚さをSEM像から測定する方法を例示する。接合体をエポキシ注形樹脂でサンプル全体が埋まるように注ぎ、硬化する。注形したサンプルの観察したい断面付近で切断し、研磨で断面を削り、CP(クロスセクションポリッシャ)加工を行う。サンプルの断面をSEM装置により5000倍で観察する。接合体の断面画像(例えば5000倍)を取得し、稠密な連続部であり、直線状、直方体状、楕円体状の部分で、この部分の内に内包される直線の中で最大の長さのものを長径、それと直交してこの部分に内包される直線の中で最大の長さのものを厚さとしたときに、長径の長さが1μm以上で且つ長径/厚さの比が4以上であるものをフレーク状構造とみなし、測長機能のある画像処理ソフトによりフレーク状構造の長径と厚さを測長することができる。それらの平均値については、無作為に選んだ20点以上で数平均を計算することで得られる。 The major axis and thickness of the flake-like structure can be obtained, for example, from the SEM image of the bonded body of the member and the sintered copper layer. The method of measuring the major axis and the thickness of the flake-like structure from the SEM image will be illustrated below. The conjugate is poured with epoxy cast resin so that the entire sample is filled and cured. Cut the cast sample near the cross section you want to observe, grind the cross section by polishing, and perform CP (cross section polisher) processing. The cross section of the sample is observed with an SEM device at a magnification of 5000. A cross-sectional image (for example, 5000 times) of the joint is acquired, and it is a dense continuous part, which is a linear, rectangular parallelepiped, or elliptical part, and is the longest of the straight lines contained in this part. The length of the major axis is 1 μm or more and the ratio of the major axis / thickness is 4 or more when the one with the major axis and the one with the longest length among the straight lines included in this part orthogonal to the major axis are defined as the thickness. Is regarded as a flake-shaped structure, and the major axis and the thickness of the flake-shaped structure can be measured by image processing software having a length measuring function. The average value thereof can be obtained by calculating the number average with 20 points or more randomly selected.
焼結銅層における銅の含有量(体積割合)は、焼結銅層の体積を基準として、65体積%以上とすることができる。焼結銅層における銅の含有量が上記範囲内であれば、焼結銅層の内部に大きな空孔が形成されたり、フレーク状構造を繋ぐ焼結銅が疎になったりすることを抑制できる。そのため、焼結銅層における銅の含有量が上記範囲内であれば、充分な熱伝導性が得られるとともに、部材と焼結銅層との接合強度が向上し、得られる接合体は接続信頼性に優れるものとなる。焼結銅層における銅の含有量は、焼結銅層の体積を基準として、67体積%以上であってもよく、70体積%以上であってもよい。焼結銅層における銅の含有量は、焼結銅層の体積を基準として、製造プロセスの容易さの観点から、90体積%以下であってもよい。 The copper content (volume ratio) in the sintered copper layer can be 65% by volume or more based on the volume of the sintered copper layer. When the copper content in the sintered copper layer is within the above range, it is possible to prevent the formation of large pores inside the sintered copper layer and the sparseness of the sintered copper connecting the flake-like structures. .. Therefore, if the copper content in the sintered copper layer is within the above range, sufficient thermal conductivity can be obtained, the bonding strength between the member and the sintered copper layer is improved, and the obtained bonded body has connection reliability. It will be excellent in sex. The copper content in the sintered copper layer may be 67% by volume or more, or 70% by volume or more, based on the volume of the sintered copper layer. The copper content in the sintered copper layer may be 90% by volume or less based on the volume of the sintered copper layer from the viewpoint of easiness of the manufacturing process.
焼結銅層を構成する材料の組成が分かっている場合には、例えば、以下の手順で焼結銅層における銅の含有量を求めることができる。まず、焼結銅層を直方体に切り出し、焼結銅層の縦、横の長さをノギス又は外形形状測定装置で測定し、厚さを膜厚計で測定することにより焼結銅層の体積を計算する。切り出した焼結銅層の体積と、精密天秤で測定した焼結銅層の重量とから見かけの密度M1(g/cm3)を求める。求めたM1と、銅の密度8.96g/cm3とを用いて、下記式から焼結銅層における銅の含有量(体積%)が求められる。
焼結銅層における銅の含有量(体積%)=[(M1)/8.96]×100
When the composition of the material constituting the sintered copper layer is known, for example, the copper content in the sintered copper layer can be determined by the following procedure. First, the sintered copper layer is cut into a rectangular body, the length and width of the sintered copper layer are measured with a caliper or an external shape measuring device, and the thickness is measured with a film thickness meter to measure the volume of the sintered copper layer. To calculate. The apparent density M 1 (g / cm 3 ) is obtained from the volume of the cut out sintered copper layer and the weight of the sintered copper layer measured by a precision balance. Using the obtained M 1 and the copper density of 8.96 g / cm 3 , the copper content (volume%) in the sintered copper layer can be determined from the following formula.
Copper content (volume%) in the sintered copper layer = [(M 1 ) /8.96] × 100
部材と焼結銅層との接合体の接合強度は、10MPa以上であってもよく、15MPa以上であってもよく、20MPa以上であってもよく、30MPa以上であってもよい。接合強度は、万能型ボンドテスタ(4000シリーズ、DAGE社製)等を用いて測定することができる。 The bonding strength of the bonded body between the member and the sintered copper layer may be 10 MPa or more, 15 MPa or more, 20 MPa or more, or 30 MPa or more. The bond strength can be measured using a universal bond tester (4000 series, manufactured by DAGE) or the like.
<半導体装置100>
図2は、本実施形態の半導体装置の一例を示す模式断面図である。図2に示される半導体装置100は、半導体素子搭載用支持部材6と、半導体素子搭載用支持部材6上に第一焼結金属層4を介して搭載された半導体素子5と、半導体素子5上に設けられた第二焼結金属層7と、を備える。第一焼結金属層4は、主として半導体素子5と半導体素子搭載用支持部材6との接合を担うことから接合層ということができ、第二焼結金属層7は、主としてサージ電圧が発生した際の熱を瞬時に蓄熱することから蓄熱層ということができる。
<Semiconductor device 100>
FIG. 2 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. The semiconductor device 100 shown in FIG. 2 includes a semiconductor element mounting support member 6, a semiconductor element 5 mounted on the semiconductor element mounting support member 6 via a first sintered metal layer 4, and a semiconductor element 5. The second sintered metal layer 7 provided in the above is provided. The first sintered metal layer 4 can be said to be a bonding layer because it mainly bears the bonding between the semiconductor element 5 and the semiconductor element mounting support member 6, and the second sintered metal layer 7 mainly generates a surge voltage. It can be called a heat storage layer because it instantly stores the heat at the time.
半導体素子5としては、例えば、IGBT、ダイオード、ショットキーバリヤダイオード、MOS−FET、サイリスタ、ロジック、センサー、アナログ集積回路、LED、半導体レーザー、発信器等の半導体素子が挙げられる。半導体素子5は、Siの他、SiCやGaN等のワイドバンドギャップ半導体であってよい。また、半導体素子搭載用支持部材6としては、リードフレーム、金属板貼付セラミックス基板(例えばDBC)、LEDパッケージ等の半導体素子搭載用基材、金属ブロック等のブロック体、端子等の給電用部材、放熱板、水冷板などが挙げられる。 Examples of the semiconductor element 5 include semiconductor elements such as IGBTs, diodes, Schottky barrier diodes, MOS-FETs, thyristors, logics, sensors, analog integrated circuits, LEDs, semiconductor lasers, and transmitters. In addition to Si, the semiconductor element 5 may be a wide bandgap semiconductor such as SiC or GaN. The support member 6 for mounting a semiconductor element includes a lead frame, a ceramic substrate with a metal plate attached (for example, DBC), a base material for mounting a semiconductor element such as an LED package, a block body such as a metal block, and a power supply member such as a terminal. Examples include a heat radiating plate and a water cooling plate.
第一焼結金属層4及び第二焼結金属層7としては、上述した焼結金属層を用いることができる。第一焼結金属層4及び第二焼結金属層7共に、積層界面に対して略平行に配向したフレーク状の金属粒子に由来する構造を含むことができる。特に第二焼結金属層7は、半導体素子との界面に対して略平行に配向したフレーク状の金属粒子に由来する構造を含むことができる。 As the first sintered metal layer 4 and the second sintered metal layer 7, the above-mentioned sintered metal layer can be used. Both the first sintered metal layer 4 and the second sintered metal layer 7 can include a structure derived from flake-shaped metal particles oriented substantially parallel to the laminated interface. In particular, the second sintered metal layer 7 can include a structure derived from flake-shaped metal particles oriented substantially parallel to the interface with the semiconductor element.
上述のとおり、これら焼結金属層における金属の含有量は、焼結金属層の全体積を基準として、65体積%以上とすることができる。焼結金属層における金属の含有量は、焼結金属層の体積を基準として、67体積%以上であってもよく、70体積%以上であってもよい。焼結金属層における金属の含有量は、焼結金属層の体積を基準として90体積%以下であってもよい。 As described above, the metal content in these sintered metal layers can be 65% by volume or more based on the total volume of the sintered metal layers. The metal content in the sintered metal layer may be 67% by volume or more, or 70% by volume or more, based on the volume of the sintered metal layer. The metal content in the sintered metal layer may be 90% by volume or less based on the volume of the sintered metal layer.
第一焼結金属層4及び第二焼結金属層7の厚さは、1μm以上、5μm以上、10μm以上、15μm以上、20μm以上、50μm以上、100μm以上等とすることができ、また3000μm以下、1000μm以下、500μm以下、300μm以下、250μm以下、200μm以下、150μm以下等とすることができる。特に第二焼結金属層7において、厚さを100μm以上500μm以下とすることで、サージ電圧が発生した際の半導体素子5の発熱部の温度上昇を抑制する熱容量を確保しつつ、焼結接合する際に加圧せずに所望の焼結金属層を形成することができる。 The thickness of the first sintered metal layer 4 and the second sintered metal layer 7 can be 1 μm or more, 5 μm or more, 10 μm or more, 15 μm or more, 20 μm or more, 50 μm or more, 100 μm or more, and 3000 μm or less. , 1000 μm or less, 500 μm or less, 300 μm or less, 250 μm or less, 200 μm or less, 150 μm or less, and the like. In particular, in the second sintered metal layer 7, by setting the thickness to 100 μm or more and 500 μm or less, the sintered bonding is performed while ensuring the heat capacity for suppressing the temperature rise of the heat generating portion of the semiconductor element 5 when a surge voltage is generated. The desired sintered metal layer can be formed without pressurizing.
第二焼結金属層7は半導体素子5の主面全面に形成されていてもよく、一部に形成されていてもよい。 The second sintered metal layer 7 may be formed on the entire main surface of the semiconductor element 5, or may be partially formed.
<半導体装置100の製造方法>
半導体装置100の製造方法は特に限定されず、例えば下記の方法により製造される。
<Manufacturing method of semiconductor device 100>
The manufacturing method of the semiconductor device 100 is not particularly limited, and is manufactured by, for example, the following method.
(1)予め、半導体素子5と、半導体素子搭載用支持部材6と、半導体素子5と半導体素子搭載用支持部材6とを接合する第一焼結金属層4とを備えた部材を準備する。その後、半導体素子5の表面に金属ペーストを設けて焼結を行い、第二焼結金属層7を形成する。
(2)半導体素子搭載用支持部材6上に金属ペーストを設けて、その上に半導体素子5を積層し、さらに半導体素子5の上に銅ペーストを設けて、焼結を行う。これにより、半導体素子5と半導体素子搭載用支持部材6とを第一焼結金属層4により接合すると共に、半導体素子5上に第二焼結金属層7を形成する。
(3)予め、半導体素子5の表面に金属ペーストを設けて焼結を行い、第二焼結金属層7を形成する。その後、半導体素子搭載用支持部材6上に金属ペーストを設けて、予め第二焼結金属層7を設けた半導体素子5を積層し、焼結を行う。半導体素子5としてSiチップ等を用いた場合、このように、Siチップ等の表面に金属ペーストを設けてから焼結を行い、予めSiチップの表面に第二焼結金属層7を設けておくことが可能である。このようなSiチップは、ウエハの状態で全面に第二焼結金属層7を設け、これをダイシングして個片にすることで得てもよい。また、当該Siチップは、ウエハの状態で部分的に第二焼結金属層7を設け、これをダイシングして個片にすることで得てもよい。
(1) A member including the semiconductor element 5, the support member 6 for mounting the semiconductor element, and the first sintered metal layer 4 for joining the semiconductor element 5 and the support member 6 for mounting the semiconductor element 6 is prepared in advance. After that, a metal paste is provided on the surface of the semiconductor element 5 and sintered to form a second sintered metal layer 7.
(2) A metal paste is provided on a support member 6 for mounting a semiconductor element, a semiconductor element 5 is laminated on the metal paste, and a copper paste is further provided on the semiconductor element 5 to perform sintering. As a result, the semiconductor element 5 and the semiconductor element mounting support member 6 are joined by the first sintered metal layer 4, and the second sintered metal layer 7 is formed on the semiconductor element 5.
(3) A metal paste is provided on the surface of the semiconductor element 5 in advance and sintered to form a second sintered metal layer 7. After that, a metal paste is provided on the support member 6 for mounting the semiconductor element, and the semiconductor element 5 provided with the second sintered metal layer 7 in advance is laminated and sintered. When a Si chip or the like is used as the semiconductor element 5, the metal paste is provided on the surface of the Si chip or the like and then sintered, and the second sintered metal layer 7 is provided on the surface of the Si chip in advance. It is possible. Such a Si chip may be obtained by providing a second sintered metal layer 7 on the entire surface in the state of a wafer and dicing the second sintered metal layer 7 into individual pieces. Further, the Si chip may be obtained by partially providing a second sintered metal layer 7 in the state of a wafer and dicing the second sintered metal layer 7 into individual pieces.
金属ペーストを、半導体素子搭載用支持部材や半導体素子の必要な部分に設ける方法としては、金属ペーストを堆積させられる方法であればよい。このような方法としては、例えば、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、バーコート、アプリケータ、粒子堆積法、スプレーコータ、スピンコータ、ディップコータ、電着塗装等が挙げられる。金属ペーストの厚さは、所望の厚さの焼結金属層が得られれば特に制限されない。すなわち、金属ペーストの厚さは、1μm以上、5μm以上、10μm以上、15μm以上、20μm以上、50μm以上、100μm以上等とすることができ、また3000μm以下、1000μm以下、500μm以下、300μm以下、250μm以下、200μm以下、150μm以下等とすることができる。当該厚さは、例えば1μm以上1000μm以下であってもよく、10μm以上500μm以下であってもよく、50μm以上200μm以下であってもよく、10μm以上3000μm以下であってもよく、15μm以上500μm以下であってもよく、20μm以上300μm以下であってもよく、5μm以上500μm以下であってもよく、10μm以上250μm以下であってもよく、15μm以上150μm以下であってもよい。 The method of providing the metal paste on the support member for mounting the semiconductor element or the necessary portion of the semiconductor element may be any method as long as the metal paste can be deposited. Examples of such a method include screen printing, transfer printing, offset printing, jet printing method, dispenser, jet dispenser, needle dispenser, comma coater, slit coater, die coater, gravure coater, slit coat, letterpress printing, concave printing, and gravure. Examples include printing, stencil printing, soft lithograph, bar coating, applicator, particle deposition method, spray coater, spin coater, dip coater, electrodeposition coating and the like. The thickness of the metal paste is not particularly limited as long as a sintered metal layer having a desired thickness can be obtained. That is, the thickness of the metal paste can be 1 μm or more, 5 μm or more, 10 μm or more, 15 μm or more, 20 μm or more, 50 μm or more, 100 μm or more, and 3000 μm or less, 1000 μm or less, 500 μm or less, 300 μm or less, 250 μm. Hereinafter, it can be 200 μm or less, 150 μm or less, and the like. The thickness may be, for example, 1 μm or more and 1000 μm or less, 10 μm or more and 500 μm or less, 50 μm or more and 200 μm or less, 10 μm or more and 3000 μm or less, and 15 μm or more and 500 μm or less. It may be 20 μm or more and 300 μm or less, 5 μm or more and 500 μm or less, 10 μm or more and 250 μm or less, or 15 μm or more and 150 μm or less.
半導体素子搭載用支持部材や半導体素子上に設けられた金属ペーストは、焼結時の流動及びボイドの発生を抑制する観点から、適宜乾燥させてもよい。乾燥時のガス雰囲気は大気中であってもよく、窒素、希ガス等の無酸素雰囲気中であってもよく、水素、ギ酸等の還元雰囲気中であってもよい。乾燥方法は、常温放置による乾燥であってもよく、加熱乾燥であってもよく、減圧乾燥であってもよい。加熱乾燥又は減圧乾燥には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整してもよい。乾燥の温度及び時間としては、例えば、50℃以上180℃以下で1分以上120分間以下とすることができる。 The support member for mounting the semiconductor element and the metal paste provided on the semiconductor element may be appropriately dried from the viewpoint of suppressing flow and generation of voids during sintering. The gas atmosphere at the time of drying may be in the atmosphere, in an oxygen-free atmosphere such as nitrogen or rare gas, or in a reducing atmosphere such as hydrogen or formic acid. The drying method may be drying by leaving at room temperature, heating drying, or vacuum drying. For heat drying or vacuum drying, for example, a hot plate, a hot air dryer, a hot air heating furnace, a nitrogen dryer, an infrared dryer, an infrared heating furnace, a far infrared heating furnace, a microwave heating device, a laser heating device, an electromagnetic wave. A heating device, a heater heating device, a steam heating furnace, a hot plate pressing device, or the like can be used. The drying temperature and time may be appropriately adjusted according to the type and amount of the dispersion medium used. The drying temperature and time can be, for example, 1 minute or more and 120 minutes or less at 50 ° C. or higher and 180 ° C. or lower.
金属ペースト上に半導体素子を配置する方法としては、例えば、チップマウンター、フリップチップボンダー、カーボン製又はセラミックス製の位置決め冶具が挙げられる。なお、前述の乾燥工程は、半導体素子を配置する工程の後に行っても良い。 Examples of the method of arranging the semiconductor element on the metal paste include a chip mounter, a flip chip bonder, and a positioning jig made of carbon or ceramics. The above-mentioned drying step may be performed after the step of arranging the semiconductor element.
金属ペーストを加熱処理することで、金属ペーストの焼結を行う。加熱処理には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。 By heat-treating the metal paste, the metal paste is sintered. For heat treatment, for example, a hot plate, a hot air dryer, a hot air heating furnace, a nitrogen dryer, an infrared dryer, an infrared heating furnace, a far infrared heating furnace, a microwave heating device, a laser heating device, an electromagnetic heating device, etc. A heater heating device, a steam heating furnace, or the like can be used.
焼結時のガス雰囲気は、焼結体、半導体素子及び半導体素子搭載用支持部材の酸化抑制の観点から、無酸素雰囲気であってもよい。焼結時のガス雰囲気は、金属ペーストの金属粒子の表面酸化物を除去するという観点から、還元雰囲気であってもよい。無酸素雰囲気は、例えば、窒素、希ガス等の無酸素ガスの導入や、減圧(真空下)により実現される。還元雰囲気としては、例えば、純水素ガス、フォーミングガスに代表される水素及び窒素の混合ガス、ギ酸ガスを含む窒素、水素及び希ガスの混合ガス、ギ酸ガスを含む希ガス等の雰囲気が挙げられる。 The gas atmosphere at the time of sintering may be an oxygen-free atmosphere from the viewpoint of suppressing oxidation of the sintered body, the semiconductor element, and the support member for mounting the semiconductor element. The gas atmosphere at the time of sintering may be a reducing atmosphere from the viewpoint of removing surface oxides of metal particles of the metal paste. The anaerobic atmosphere is realized by introducing an anaerobic gas such as nitrogen or a rare gas or reducing the pressure (under vacuum). Examples of the reducing atmosphere include an atmosphere of pure hydrogen gas, a mixed gas of hydrogen and nitrogen typified by forming gas, nitrogen containing formic acid gas, a mixed gas of hydrogen and rare gas, and a rare gas containing formic acid gas. ..
加熱処理時の到達最高温度は、半導体素子及び半導体素子搭載用支持部材への熱ダメージの低減及び歩留まりを向上させるという観点から、250℃以上450℃以下であってもよく、250℃以上400℃以下であってもよく、250℃以上350℃以下であってもよい。到達最高温度が、200℃以上であれば、到達最高温度保持時間が60分以下において焼結が充分に進行する傾向にある。 The maximum temperature reached during the heat treatment may be 250 ° C. or higher and 450 ° C. or lower, and 250 ° C. or higher and 400 ° C. from the viewpoint of reducing thermal damage to the semiconductor element and the support member for mounting the semiconductor device and improving the yield. It may be 250 ° C. or higher and 350 ° C. or lower. When the maximum temperature reached is 200 ° C. or higher, sintering tends to proceed sufficiently when the maximum temperature reached is 60 minutes or less.
到達最高温度保持時間は、分散媒を全て揮発させ、また、歩留まりを向上させるという観点から、1分以上60分以下であってもよく、1分以上40分未満であってもよく、1分以上30分未満であってもよい。 The maximum temperature retention time may be 1 minute or more and 60 minutes or less, or 1 minute or more and less than 40 minutes, from the viewpoint of volatilizing all the dispersion medium and improving the yield. It may be more than 30 minutes.
焼結時の圧力は、焼結体における金属の含有量(堆積割合)が、焼結体を基準として65体積%以上となる条件とすることができる。例えば、上記金属ペースト(銅ペースト)を用いることで、焼結時に加圧せずに、所望の焼結金属層を形成することができる。例えば、第一金属層形成時であれば、金属ペースト上に載置した半導体素子による自重のみ、又は半導体素子の自重に加え、0.01MPa以下、より好ましくは0.008MPa以下、更に好ましくは0.005MPa以下の圧力を受けた状態で、充分な接合強度を得ることができる。焼結時に受ける圧力が上記範囲内であれば、特別な加圧装置が不要なため歩留まりを損なうこと無く、ボイドの低減、接合強度及び接続信頼性をより一層向上させることができる。金属ペーストが0.01MPa以下の圧力を受ける方法としては、例えば、半導体素子上に重りを載せる方法等が挙げられる。第二金属層形成時であれば、例えば、後述の金属板を用いない場合は非荷重にて焼結してよく、金属板を用いる場合は必要に応じ金属板上に重りを載せて焼結してよい。 The pressure at the time of sintering can be a condition in which the metal content (deposition ratio) in the sintered body is 65% by volume or more based on the sintered body. For example, by using the above metal paste (copper paste), a desired sintered metal layer can be formed without pressurizing during sintering. For example, at the time of forming the first metal layer, only the weight of the semiconductor element placed on the metal paste, or in addition to the weight of the semiconductor element, 0.01 MPa or less, more preferably 0.008 MPa or less, still more preferably 0. Sufficient bonding strength can be obtained under a pressure of .005 MPa or less. When the pressure received at the time of sintering is within the above range, voids can be reduced, joint strength and connection reliability can be further improved without impairing the yield because a special pressurizing device is not required. Examples of the method in which the metal paste receives a pressure of 0.01 MPa or less include a method of placing a weight on a semiconductor element and the like. When forming the second metal layer, for example, when the metal plate described later is not used, sintering may be performed with no load, and when a metal plate is used, a weight is placed on the metal plate and sintered. You can do it.
<半導体装置110>
図3は、本実施形態の半導体装置の一例を示す模式断面図である。図3に示される半導体装置110は、半導体素子搭載用支持部材6と、半導体素子搭載用支持部材6上に第一焼結金属層4を介して搭載された半導体素子5と、半導体素子5上に設けられた第二焼結金属層7と、第二焼結金属層上に設けられた金属板8と、を備える。金属板8以外の構成は、半導体装置100と同様である。
<Semiconductor device 110>
FIG. 3 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. The semiconductor device 110 shown in FIG. 3 includes a semiconductor element mounting support member 6, a semiconductor element 5 mounted on the semiconductor element mounting support member 6 via the first sintered metal layer 4, and the semiconductor element 5. A second sintered metal layer 7 provided on the second sintered metal layer and a metal plate 8 provided on the second sintered metal layer are provided. The configuration other than the metal plate 8 is the same as that of the semiconductor device 100.
金属板の材料としては、銅、アルミニウム、モリブデン、タングステン、銅−インバー−銅の3層構造を有する複合材等を用いることができる。金属板の厚さは、1μm以上、5μm以上、10μm以上、15μm以上、20μm以上、50μm以上等とすることができ、また3000μm以下、2000μm以下、1500μm以下、1300μm以下、1200μm以下、1000μm以下等とすることができる。 As the material of the metal plate, a composite material having a three-layer structure of copper, aluminum, molybdenum, tungsten, copper-invar-copper and the like can be used. The thickness of the metal plate can be 1 μm or more, 5 μm or more, 10 μm or more, 15 μm or more, 20 μm or more, 50 μm or more, and 3000 μm or less, 2000 μm or less, 1500 μm or less, 1300 μm or less, 1200 μm or less, 1000 μm or less, etc. Can be.
金属板8の主面の面積は、第二焼結金属層7の主面の面積と同じであってよく、異なっていてもよい。 The area of the main surface of the metal plate 8 may be the same as or different from the area of the main surface of the second sintered metal layer 7.
<半導体装置110の製造方法>
半導体装置110の製造方法は特に限定されず、例えば下記の方法により製造される。
<Manufacturing method of semiconductor device 110>
The manufacturing method of the semiconductor device 110 is not particularly limited, and is manufactured by, for example, the following method.
(1)予め、半導体素子5と、半導体素子搭載用支持部材6と、半導体素子5と半導体素子搭載用支持部材6とを接合する第一焼結金属層4とを備えた部材を準備する。その後、半導体素子5の表面に金属ペーストを設け、その上に金属板8を積層し、焼結を行う。これにより、第二焼結金属層7を介して金属板8を設ける。
(2)半導体素子搭載用支持部材6上に金属ペーストを設けて、その上に半導体素子5を積層する。さらに、半導体素子5の上に金属ペーストを設けて、金属板8を積層してから、焼結を行う。これにより、半導体素子5と半導体素子搭載用支持部材6とを第一焼結金属層4により接合すると共に、半導体素子5と金属板8とを第二焼結金属層7により接合する。
(3)予め、半導体素子5の表面に金属ペーストを設け、その上に金属板8を積層してから焼結を行い、半導体素子5の表面に第二焼結金属層7を介して金属板8を設けておく。その後、半導体素子搭載用支持部材6上に金属ペーストを設けて、予め第二焼結金属層7を介して金属板8を設けた半導体素子5を積層し、焼結を行う。半導体素子5としてSiチップ等を用いた場合、このように、Siチップ等の表面に金属ペーストを設け、金属板8を積層してから焼結を行い、予めSiチップの表面に第二焼結金属層7を介して金属板8を設けておくことが可能である。このようなSiチップは、ウエハの状態で全面に第二焼結金属層7及び金属板8を設け、これをダイシングして個片にすることで得てもよい。
(1) A member including the semiconductor element 5, the support member 6 for mounting the semiconductor element, and the first sintered metal layer 4 for joining the semiconductor element 5 and the support member 6 for mounting the semiconductor element 6 is prepared in advance. After that, a metal paste is provided on the surface of the semiconductor element 5, a metal plate 8 is laminated on the metal paste, and sintering is performed. As a result, the metal plate 8 is provided via the second sintered metal layer 7.
(2) A metal paste is provided on the support member 6 for mounting the semiconductor element, and the semiconductor element 5 is laminated on the metal paste. Further, a metal paste is provided on the semiconductor element 5, the metal plates 8 are laminated, and then sintering is performed. As a result, the semiconductor element 5 and the support member 6 for mounting the semiconductor element are joined by the first sintered metal layer 4, and the semiconductor element 5 and the metal plate 8 are joined by the second sintered metal layer 7.
(3) A metal paste is provided on the surface of the semiconductor element 5 in advance, a metal plate 8 is laminated on the metal plate 8 and then sintered, and a metal plate is placed on the surface of the semiconductor element 5 via a second sintered metal layer 7. 8 is provided. After that, a metal paste is provided on the support member 6 for mounting the semiconductor element, and the semiconductor element 5 provided with the metal plate 8 is laminated in advance via the second sintered metal layer 7 to perform sintering. When a Si chip or the like is used as the semiconductor element 5, a metal paste is provided on the surface of the Si chip or the like, the metal plates 8 are laminated, and then sintering is performed, and the second sintering is performed on the surface of the Si chip in advance. It is possible to provide the metal plate 8 via the metal layer 7. Such a Si chip may be obtained by providing a second sintered metal layer 7 and a metal plate 8 on the entire surface in the state of a wafer and dicing them into individual pieces.
<半導体装置200>
図4は、本実施形態の半導体装置の一例を示す模式断面図である。図4に示される半導体装置200は、リードフレーム10と、リードフレーム10上に第一焼結金属層4を介して搭載された半導体素子5と、半導体素子5上に設けられた第二焼結金属層7と、を備える。第二焼結金属層7の上部と、リードフレームのアウターリード10bとは金属配線11で接続されており、リードフレームの放熱面10c、並びにリードフレームのアウターリード10a及び10bの一部を除いた部分が、絶縁性の封止樹脂硬化物12で封止されている。半導体装置200は、リードフレーム10上に半導体素子5を1個有しているが、2個以上有していてもよい。この場合、複数ある半導体素子5はそれぞれ第二焼結金属層7によって金属配線11と接合することができる。なお、金属配線11は、半導体素子5の上部と、リードフレームのアウターリード10bとを接続していてもよい。
<Semiconductor device 200>
FIG. 4 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. The semiconductor device 200 shown in FIG. 4 includes a lead frame 10, a semiconductor element 5 mounted on the lead frame 10 via a first sintered metal layer 4, and a second sintered on the semiconductor element 5. A metal layer 7 is provided. The upper part of the second sintered metal layer 7 and the outer lead 10b of the lead frame are connected by a metal wiring 11, and the heat radiating surface 10c of the lead frame and a part of the outer leads 10a and 10b of the lead frame are removed. The portion is sealed with an insulating sealing resin cured product 12. The semiconductor device 200 has one semiconductor element 5 on the lead frame 10, but may have two or more semiconductor elements 5. In this case, the plurality of semiconductor elements 5 can be joined to the metal wiring 11 by the second sintered metal layer 7, respectively. The metal wiring 11 may connect the upper portion of the semiconductor element 5 to the outer lead 10b of the lead frame.
金属配線11は、ワイヤボンディングやリボンボンディング等によって形成される。ワイヤやリボンの材料にはAl、Cu等の金属が通常用いられるが、第二焼結金属層7及び半導体素子5に損傷を与えずに配線材を形成できるものであれば、特に限定されない。 The metal wiring 11 is formed by wire bonding, ribbon bonding, or the like. Metals such as Al and Cu are usually used as the material of the wire and the ribbon, but the material is not particularly limited as long as the wiring material can be formed without damaging the second sintered metal layer 7 and the semiconductor element 5.
リードフレームの放熱面10cとリードフレームのアウターリード10a,10bの一部が露出するようにして、第一焼結金属層4、半導体素子5、第二焼結金属層7、金属配線11等が封止樹脂硬化物12によって封止される。封止樹脂硬化物12は、例えばエポキシ樹脂と無機フィラーとを含有する熱硬化性樹脂(封止樹脂)の硬化物であってよい。 The first sintered metal layer 4, the semiconductor element 5, the second sintered metal layer 7, the metal wiring 11, and the like are exposed so that the heat radiating surface 10c of the lead frame and a part of the outer leads 10a and 10b of the lead frame are exposed. It is sealed by the sealing resin cured product 12. The sealing resin cured product 12 may be, for example, a cured product of a thermosetting resin (sealing resin) containing an epoxy resin and an inorganic filler.
<半導体装置210>
図5は、本実施形態の半導体装置の一例を示す模式断面図である。半導体装置210は、第二焼結金属層7上にさらに金属板8を備えている点、及び金属板8の上部と、リードフレームのアウターリード10bとが金属配線11で接続されている点を除き、半導体装置200と同様の構成を有している。
<Semiconductor device 210>
FIG. 5 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. The semiconductor device 210 further includes a metal plate 8 on the second sintered metal layer 7, and points that the upper portion of the metal plate 8 and the outer lead 10b of the lead frame are connected by a metal wiring 11. Except for this, it has the same configuration as the semiconductor device 200.
以下、実施例により本発明を更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.
<半導体装置の作製>
(実施例1)
(工程a:焼結銅ペーストの準備)
分散媒としてα−テルピネオール(和光純薬工業株式会社製)5.2g及びイソボルニルシクロヘキサノール(MTPH、日本テルペン化学株式会社製)6.8gと、サブマイクロ銅粒子としてCH−0200(三井金属鉱業株式会社製、粒径が0.12μm以上0.8μm以下の銅粒子の含有量95質量%)52.8gとをポリ瓶に混合し、これを超音波ホモジナイザー(US−600、日本精機株式会社製)により19.6kHz、600W、1分処理し分散液を得た。この分散液に、フレーク状マイクロ銅粒子としてMA−C025(三井金属鉱業株式会社製、最大径が1μm以上20μm以下の銅粒子の含有量100質量%)35.2gを添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。ポリ瓶を密栓し、自転公転型攪拌装置(Planetry Vacuum Mixer ARV−310、株式会社シンキー製)を用いて、2000rpmで2分間撹拌し、減圧下、2000rpmで2分間撹拌して焼結用銅ペーストを得た。
<Manufacturing of semiconductor devices>
(Example 1)
(Step a: Preparation of sintered copper paste)
5.2 g of α-terpineol (manufactured by Wako Pure Chemical Industries, Ltd.) and 6.8 g of isobornylcyclohexanol (MTPH, manufactured by Nippon Terpen Chemical Co., Ltd.) as dispersion media, and CH-0200 (Mitsui Metals) as submicro copper particles. 52.8 g of copper particles having a particle size of 0.12 μm or more and 0.8 μm or less (95% by mass) manufactured by Mining Co., Ltd. was mixed in a plastic bottle, and this was mixed with an ultrasonic homogenizer (US-600, Nippon Seiki Co., Ltd.). A dispersion was obtained by treating at 19.6 kHz, 600 W for 1 minute. To this dispersion, 35.2 g of MA-C025 (manufactured by Mitsui Mining & Smelting Co., Ltd., content of copper particles having a maximum diameter of 1 μm or more and 20 μm or less, 100% by mass) was added as flake-shaped micro copper particles, and dried powder with a spatula. Stir until no more. The plastic bottle is tightly closed, and the copper paste for sintering is stirred at 2000 rpm for 2 minutes under reduced pressure and at 2000 rpm for 2 minutes using a rotating and revolving stirring device (Plantery Vacuum Mixer ARV-310, manufactured by Shinky Co., Ltd.). Got
(工程b:サンプルの準備)
リードフレーム(TO247)の半導体素子搭載面上に、厚さ200μmのステンレス板に6×6mm正方形の開口を有するメタルマスクを載せ、メタルスキージを用いたステンシル印刷により、工程aで得た焼結用銅ペーストを塗布した。また、後述のようにして無電解ニッケルめっき・無電解パラジウムめっき被膜を施したSiCショットキーバリアダイオードチップ(5mm×5mm×厚さ400μm:以下、単に「SiCチップ」ということがある。)を準備し、そのめっき被膜面とは反対側の面を下にして、上記のとおり塗布した焼結用銅ペースト上に載置した。これをチューブ炉(株式会社エイブイシー製)にセットし、アルゴンガスを1L/minで流して空気をアルゴンガスに置換した。その後、水素ガスを300mL/minで流しながら昇温10分、350℃10分の条件で焼結処理して、リードフレームの半導体素子搭載面上に第一焼結銅層及びSiCチップを積層した。第一焼結銅層の厚さは100μmであった。その後、アルゴンガスを0.3L/minに換えて冷却し、50℃以下でサンプルを空気中に取り出した。
(Step b: Sample preparation)
A metal mask having a 6 × 6 mm square opening is placed on a stainless plate having a thickness of 200 μm on the semiconductor element mounting surface of the lead frame (TO247), and stencil printing using a metal squeegee is performed for sintering obtained in step a. A copper paste was applied. Further, as described later, a SiC Schottky barrier diode chip (5 mm × 5 mm × thickness 400 μm: hereinafter, may be simply referred to as “SiC chip”) having an electroless nickel plating / electroless palladium plating film is prepared. Then, it was placed on the copper paste for sintering coated as described above with the surface opposite to the plating coating surface facing down. This was set in a tube furnace (manufactured by ABC Co., Ltd.), and argon gas was flowed at 1 L / min to replace the air with argon gas. After that, the first sintered copper layer and the SiC chip were laminated on the semiconductor element mounting surface of the lead frame by sintering treatment under the conditions of a temperature rise of 10 minutes and 350 ° C. for 10 minutes while flowing hydrogen gas at 300 mL / min. .. The thickness of the first sintered copper layer was 100 μm. Then, the argon gas was changed to 0.3 L / min and cooled, and the sample was taken out into the air at 50 ° C. or lower.
(無電解ニッケルめっき被膜の形成)
SiCチップを、液温25℃のめっき活性処理液であるSA−100(日立化成株式会社製、商品名)へ5分間浸漬させた後、共振周波数28kHz、出力100Wの超音波を照射しながら2分間水洗した。続いて、液温85℃の無電解ニッケルめっき液であるNIPS−100(日立化成株式会社製、商品名)へ、SiCチップを共振周波数28kHz、出力100Wの超音波を照射しながら25分間浸漬させた後、共振周波数28kHz、出力100Wの超音波を照射しながら1分間水洗した。形成した無電解ニッケルめっき被膜の厚さは0.5μmであった。なお、無電解ニッケルめっき被膜におけるリン濃度は7重量%であった。
(Formation of electroless nickel plating film)
After immersing the SiC chip in SA-100 (manufactured by Hitachi Kasei Co., Ltd., trade name), which is a plating activity treatment liquid at a liquid temperature of 25 ° C., for 5 minutes, while irradiating ultrasonic waves with a resonance frequency of 28 kHz and an output of 100 W, 2 Washed for minutes. Subsequently, the SiC chip is immersed in NIPS-100 (trade name, manufactured by Hitachi Kasei Co., Ltd.), which is an electroless nickel plating solution having a liquid temperature of 85 ° C., for 25 minutes while irradiating ultrasonic waves having a resonance frequency of 28 kHz and an output of 100 W. After that, it was washed with water for 1 minute while irradiating ultrasonic waves having a resonance frequency of 28 kHz and an output of 100 W. The thickness of the formed electroless nickel plating film was 0.5 μm. The phosphorus concentration in the electroless nickel plating film was 7% by weight.
(無電解パラジウムめっき被膜の形成)
液温55℃の無電解パラジウムめっき液であるパレット(小島化学薬品株式会社製、商品名)へ、無電解ニッケルめっき済みのSiCチップを、共振周波数28kHz、出力100Wの超音波を照射しながら9秒間浸漬させた後、共振周波数28kHz、出力100Wの超音波を照射しながら1分間水洗した。形成した無電解パラジウムめっき被膜の厚さは0.1μmであった。なお、無電解パラジウム被膜におけるパラジウム濃度はほぼ100重量%であった。
(Formation of electroless palladium plating film)
An electroless nickel-plated SiC chip is applied to a pallet (manufactured by Kojima Chemicals Co., Ltd., trade name), which is an electroless palladium plating solution with a liquid temperature of 55 ° C., while irradiating ultrasonic waves with a resonance frequency of 28 kHz and an output of 100 W. After immersing for 2 seconds, it was washed with water for 1 minute while irradiating ultrasonic waves having a resonance frequency of 28 kHz and an output of 100 W. The thickness of the electroless palladium plating film formed was 0.1 μm. The palladium concentration in the electroless palladium coating was approximately 100% by weight.
(工程c:SiCチップへの焼結銅層の形成)
SiCチップのめっき被膜面上に、厚さ200μmのステンレス板に4×4mm正方形の開口を有するメタルマスクを載せ、メタルスキージを用いたステンシル印刷により、工程aで得た、焼結用銅ペーストを塗布した。これをチューブ炉(株式会社エイブイシー製)にセットし、アルゴンガスを1L/minで流して空気をアルゴンガスに置換した。その後、水素ガスを300mL/minで流しながら昇温10分、350℃10分の条件で焼結処理して、SiCチップ上に第二焼結銅層を形成した。第二焼結銅層の厚さは100μmであった。その後、アルゴンガスを0.3L/minに換えて冷却し、50℃以下でサンプルを空気中に取り出した。第二焼結銅層における銅の含有量(体積割合)は、焼結銅層の体積を基準として、90体積%であった。第二焼結金属層は、SiCチップとの界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含んでいた。
(Step c: Formation of sintered copper layer on SiC chip)
A metal mask having a 4 × 4 mm square opening was placed on a stainless steel plate having a thickness of 200 μm on the plating film surface of the SiC chip, and the copper paste for sintering obtained in step a was obtained by stencil printing using a metal squeegee. It was applied. This was set in a tube furnace (manufactured by ABC Co., Ltd.), and argon gas was flowed at 1 L / min to replace the air with argon gas. Then, the second sintered copper layer was formed on the SiC chip by sintering treatment under the conditions of a temperature rise of 10 minutes and 350 ° C. for 10 minutes while flowing hydrogen gas at 300 mL / min. The thickness of the second sintered copper layer was 100 μm. Then, the argon gas was changed to 0.3 L / min and cooled, and the sample was taken out into the air at 50 ° C. or lower. The copper content (volume ratio) in the second sintered copper layer was 90% by volume based on the volume of the sintered copper layer. The second sintered metal layer contained a structure derived from flake-shaped copper particles oriented substantially parallel to the interface with the SiC chip.
(工程d:ワイヤボンディング)
第二焼結銅層とリードフレームのアウターリードとを、直径200μmのAlワイヤ6本によって接続した。なお、ワイヤボンダーによって、超音波を加えながらAlワイヤを第二焼結銅層に押し付けることで、Alワイヤの接続を行った。
(Step d: Wire bonding)
The second sintered copper layer and the outer reed of the lead frame were connected by six Al wires having a diameter of 200 μm. The Al wire was connected by pressing the Al wire against the second sintered copper layer while applying ultrasonic waves with a wire bonder.
(工程e:モールド)
リードフレームの放熱面及びアウターリードの一部を除いた部分を固形封止材(CEL、日立化成株式会社製)で封止した。封止は、トンラスファーモールド装置を用いて、金型温度180℃、成形圧力6.9MPa、硬化加熱時間90秒の条件にて、行った。その後、封止後のサンプルを200℃のオーブンにて6時間加熱することで、封止樹脂の硬化を完了した。最後に余分なアウターリードを切断し、半導体装置を得た。
(Step e: Mold)
The heat-dissipating surface of the lead frame and the portion of the outer lead excluding a part were sealed with a solid sealing material (CEL, manufactured by Hitachi Kasei Co., Ltd.). Sealing was performed using a ton-las fur molding apparatus under the conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing heating time of 90 seconds. Then, the sealed sample was heated in an oven at 200 ° C. for 6 hours to complete the curing of the sealing resin. Finally, the excess outer lead was cut to obtain a semiconductor device.
(実施例2)
第二焼結銅層における銅の含有量が80体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例1と同様にして半導体装置を作製した。
(Example 2)
A semiconductor device was produced in the same manner as in Example 1 except that a copper paste for sintering was used in which the amount of solvent was adjusted so that the copper content in the second sintered copper layer was 80% by volume. ..
(実施例3)
第二焼結銅層における銅の含有量が70体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例1と同様にして半導体装置を作製した。
(Example 3)
A semiconductor device was produced in the same manner as in Example 1 except that a copper paste for sintering was used in which the amount of solvent was adjusted so that the copper content in the second sintered copper layer was 70% by volume. ..
(実施例4)
工程cにおけるステンレス板の厚さを1000μmとしたこと、第二焼結銅層の厚さを500μmとしたこと、及び第二焼結銅層における銅の含有量が90体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例1と同様にして半導体装置を作製した。
(Example 4)
The thickness of the stainless steel plate in step c was set to 1000 μm, the thickness of the second sintered copper layer was set to 500 μm, and the copper content in the second sintered copper layer was 90% by volume. A semiconductor device was produced in the same manner as in Example 1 except that a copper paste for sintering was used in which the amount of the solvent was adjusted.
(実施例5)
第二焼結銅層における銅の含有量が80体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例4と同様にして半導体装置を作製した。
(Example 5)
A semiconductor device was produced in the same manner as in Example 4 except that a copper paste for sintering was used in which the amount of solvent was adjusted so that the copper content in the second sintered copper layer was 80% by volume. ..
(実施例6)
第二焼結銅層における銅の含有量が70体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例4と同様にして半導体装置を作製した。
(Example 6)
A semiconductor device was produced in the same manner as in Example 4 except that a copper paste for sintering was used in which the amount of solvent was adjusted so that the copper content in the second sintered copper layer was 70% by volume. ..
(実施例7)
工程cにおいて、塗布した焼結用銅ペースト上に銅板(4mm×4mm×厚さ500μm)を積層したこと、及び工程dにおいて、銅板とリードフレームのアウターリードとを直径200μmのAlワイヤ6本によって接続したこと以外は、実施例1と同様にして半導体装置を作製した。
(Example 7)
In step c, a copper plate (4 mm × 4 mm × thickness 500 μm) was laminated on the coated copper paste for sintering, and in step d, the copper plate and the outer lead of the lead frame were formed by six Al wires having a diameter of 200 μm. A semiconductor device was manufactured in the same manner as in Example 1 except that the devices were connected.
(実施例8)
第二焼結銅層における銅の含有量が80体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例7と同様にして半導体装置を作製した。
(Example 8)
A semiconductor device was produced in the same manner as in Example 7 except that a copper paste for sintering was used in which the amount of solvent was adjusted so that the copper content in the second sintered copper layer was 80% by volume. ..
(実施例9)
第二焼結銅層における銅の含有量が70体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例7と同様にして半導体装置を作製した。
(Example 9)
A semiconductor device was produced in the same manner as in Example 7 except that a copper paste for sintering was used in which the amount of solvent was adjusted so that the copper content in the second sintered copper layer was 70% by volume. ..
(実施例10)
工程cにおけるステンレス板の厚さを1000μmとしたこと、及び第二焼結銅層の厚さを500μmとしたこと以外は、実施例7と同様にして半導体装置を作製した。
(Example 10)
A semiconductor device was produced in the same manner as in Example 7 except that the thickness of the stainless steel plate in step c was 1000 μm and the thickness of the second sintered copper layer was 500 μm.
(実施例11)
第二焼結銅層における銅の含有量が80体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例10と同様にして半導体装置を作製した。
(Example 11)
A semiconductor device was produced in the same manner as in Example 10 except that a copper paste for sintering was used in which the amount of solvent was adjusted so that the copper content in the second sintered copper layer was 80% by volume. ..
(実施例12)
第二焼結銅層における銅の含有量が70体積%になるように、溶剤の量を調整した焼結用銅ペーストを用いたこと以外は、実施例10と同様にして半導体装置を作製した。
(Example 12)
A semiconductor device was produced in the same manner as in Example 10 except that a copper paste for sintering was used in which the amount of solvent was adjusted so that the copper content in the second sintered copper layer was 70% by volume. ..
(比較例1)
リードフレーム(TO247)の半導体素子搭載面上に、はんだのシート(95質量%Pb−3.5質量%Sn−1.5質量%Ag、縦6mm×横6mm×厚さ100μm)を載置した。そして、SiCチップのカソード側とはんだのシートとが接触するように、SiCチップを載置した。これをギ酸リフロー炉内のヒーター上に設置し、炉内を13Paまで真空排気した。次に、ギ酸容器に窒素を導入し、バブリングさせながら、ギ酸容器から炉内にギ酸ガスを飽和させた窒素を8L/minで導入した。炉内圧力が80000Paに達した後に、ギ酸ガスを飽和させた窒素の導入を停止し、炉内圧力が80000Paを維持するように、真空排気量を調整した。ヒーターを15℃/minで室温から350℃まで昇温させた。昇温過程の230℃の時に排気を開始し、13Pa以下に真空排気した。350℃に達した後、温度を350℃に保持し、保持から5分経過後に窒素を炉内に10L/minで導入した。炉内圧力が大気圧に達した後に、20℃/minで350℃から50℃までヒーターを降温させた。その後、サンプルを炉内から取り出した。続いて、SiCチップのアノード側とリードフレームのアウターリードとを、直径200μmのAlワイヤ6本によって接続した。それ以降は、実施例1と同様にして半導体装置を作製した。
(Comparative Example 1)
A solder sheet (95% by mass Pb-3.5% by mass Sn-1.5% by mass Ag, length 6 mm x width 6 mm x thickness 100 μm) was placed on the semiconductor element mounting surface of the lead frame (TO247). .. Then, the SiC chip was placed so that the cathode side of the SiC chip and the solder sheet were in contact with each other. This was installed on the heater in the formic acid reflow furnace, and the inside of the furnace was evacuated to 13 Pa. Next, nitrogen was introduced into the formic acid vessel, and while bubbling, nitrogen saturated with formic acid gas was introduced from the formic acid vessel into the furnace at 8 L / min. After the furnace pressure reached 80,000 Pa, the introduction of nitrogen saturated with formic acid gas was stopped, and the vacuum displacement was adjusted so that the furnace pressure was maintained at 80,000 Pa. The heater was heated from room temperature to 350 ° C. at 15 ° C./min. Exhaust was started at 230 ° C. in the temperature raising process, and vacuum exhausted to 13 Pa or less. After reaching 350 ° C., the temperature was maintained at 350 ° C., and 5 minutes after the holding, nitrogen was introduced into the furnace at 10 L / min. After the pressure in the furnace reached atmospheric pressure, the temperature of the heater was lowered from 350 ° C. to 50 ° C. at 20 ° C./min. Then, the sample was taken out from the furnace. Subsequently, the anode side of the SiC chip and the outer lead of the lead frame were connected by six Al wires having a diameter of 200 μm. After that, the semiconductor device was manufactured in the same manner as in Example 1.
(比較例2)
工程cを実施しなかったこと、及び工程dにおいて、SiCチップのアノード側とリードフレームのアウターリードとを、直径200μmのAlワイヤ6本によって接続したこと以外は、実施例1と同様にして半導体装置を作製した。
(Comparative Example 2)
Semiconductors in the same manner as in Example 1 except that step c was not carried out and in step d, the anode side of the SiC chip and the outer lead of the lead frame were connected by six Al wires having a diameter of 200 μm. The device was made.
<半導体装置の温度評価>
25℃の冷却水によって温度調節された銅製冷却ブロック(縦100mm×横100mm×厚さ20mm)に、放熱シート(信越化学工業株式会社製、TC−100TXS、熱伝導率5Wm−1K−1、縦60mm×横40mm×厚さ100μm)を貼り、その上に、半導体装置のリードフレームの放熱面が放熱シートに接するように、各実施例及び比較例の半導体装置を載置した。半導体装置の上面にガラスエポキシ板(縦80mm×横20mm×厚さ1mm)を配置し、上部から押さえつけることで半導体装置を固定し、評価サンプルとした。
<Temperature evaluation of semiconductor devices>
A heat-dissipating sheet (manufactured by Shinetsu Chemical Industry Co., Ltd., TC-100TXS, thermal conductivity 5 Wm -1 K -1) is placed on a copper cooling block (length 100 mm x width 100 mm x thickness 20 mm) whose temperature is controlled by cooling water at 25 ° C. 60 mm in length × 40 mm in width × 100 μm in thickness), and the semiconductor devices of each Example and Comparative Example were placed on the heat-dissipating surface of the lead frame of the semiconductor device so as to be in contact with the heat-dissipating sheet. A glass epoxy plate (length 80 mm × width 20 mm × thickness 1 mm) was placed on the upper surface of the semiconductor device, and the semiconductor device was fixed by pressing from above to prepare an evaluation sample.
この評価サンプルに対し、急峻なサージ電圧が発生した場合を模した実験を行った。すなわち、アノード側アウターリードからカソード側アウターリードに電流を30A通電させ、1.1秒後に通電を停止した。また、IONの通電直前から通電後まで微小電流ICを10mA通電し、30A通電直後にアノード側アウターリードとカソード側アウターリードの両側に発生する微小電圧Vjをオシロスコープにて測定した。Vjの温度依存性を用いて、通電停止直後のVjの最小値から最高到達温度を求めた。10回測定し、その平均値を図6に示す。 An experiment was conducted on this evaluation sample simulating the case where a steep surge voltage was generated. That is, a current of 30 A was applied from the outer lead on the anode side to the outer lead on the cathode side, and the energization was stopped after 1.1 seconds. Also, the minute current I C and 10mA energization until after energization from the previous energization of I ON, to measure the minute voltage V j to be generated on both sides of the anode side outer lead and the cathode-side outer leads immediately 30A energized by an oscilloscope. Using the temperature dependence of V j, to determine the maximum temperature from a minimum of V j immediately after de-energization. It was measured 10 times, and the average value is shown in FIG.
実施例1〜3の結果に示されるように、第二焼結銅層の緻密度を上げる(第二焼結銅層における銅の含有量を増やす)ことによって、チップの温度上昇をより抑えることができた。実施例1,4に示されるように、第二焼結銅層の厚さを増すことで、チップの温度上昇をより抑えることができた。実施例7〜12に示されるように、チップを、第二焼結銅層及び金属板を介してワイヤに接続することで、チップの温度上昇をより抑えることができた。一方、比較例に示されるように、チップとワイヤとの間に第二焼結銅層を設けない場合、チップの温度が大幅に上昇した。このような大幅な温度上昇により、チップが損傷する虞がある。 As shown in the results of Examples 1 to 3, the temperature rise of the chip is further suppressed by increasing the density of the second sintered copper layer (increasing the copper content in the second sintered copper layer). I was able to do it. As shown in Examples 1 and 4, the temperature rise of the chip could be further suppressed by increasing the thickness of the second sintered copper layer. As shown in Examples 7 to 12, the temperature rise of the chip could be further suppressed by connecting the chip to the wire via the second sintered copper layer and the metal plate. On the other hand, as shown in the comparative example, when the second sintered copper layer was not provided between the chip and the wire, the temperature of the chip increased significantly. Such a large temperature rise may damage the chip.
1…フレーク状構造を有する焼結銅、2…銅粒子に由来する焼結銅、3…空孔、4…第一焼結金属層、5…半導体素子、6…半導体素子搭載用支持部材、7…第二焼結金属層、8…金属板、10…リードフレーム、10a,10b…リードフレームのアウターリード、10c…リードフレームの放熱面、11…金属配線、12…封止樹脂硬化物、100,110,200,210…半導体装置。
1 ... Sintered copper having a flake-like structure, 2 ... Sintered copper derived from copper particles, 3 ... Pore, 4 ... First sintered metal layer, 5 ... Semiconductor element, 6 ... Support member for mounting semiconductor element, 7 ... Second sintered metal layer, 8 ... Metal plate, 10 ... Lead frame, 10a, 10b ... Outer lead of lead frame, 10c ... Heat dissipation surface of lead frame, 11 ... Metal wiring, 12 ... Sealed resin cured product, 100, 110, 200, 210 ... Semiconductor device.
Claims (7)
The semiconductor device according to any one of claims 1 to 6, wherein the semiconductor element is a wide bandgap semiconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019132712A JP7484097B2 (en) | 2019-07-18 | 2019-07-18 | Semiconductor Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019132712A JP7484097B2 (en) | 2019-07-18 | 2019-07-18 | Semiconductor Device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021019038A true JP2021019038A (en) | 2021-02-15 |
JP7484097B2 JP7484097B2 (en) | 2024-05-16 |
Family
ID=74564336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019132712A Active JP7484097B2 (en) | 2019-07-18 | 2019-07-18 | Semiconductor Device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7484097B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043540A1 (en) * | 2015-09-07 | 2017-03-16 | 日立化成株式会社 | Assembly and semiconductor device |
WO2018025571A1 (en) * | 2016-08-05 | 2018-02-08 | 三菱電機株式会社 | Power semiconductor device |
JP2018110149A (en) * | 2016-12-28 | 2018-07-12 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
JP2018147967A (en) * | 2017-03-02 | 2018-09-20 | 日立化成株式会社 | Method for manufacturing connection structure, connection structure and semiconductor device |
JP2019079905A (en) * | 2017-10-24 | 2019-05-23 | 三菱電機株式会社 | Semiconductor device and semiconductor device manufacturing method |
-
2019
- 2019-07-18 JP JP2019132712A patent/JP7484097B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043540A1 (en) * | 2015-09-07 | 2017-03-16 | 日立化成株式会社 | Assembly and semiconductor device |
WO2018025571A1 (en) * | 2016-08-05 | 2018-02-08 | 三菱電機株式会社 | Power semiconductor device |
JP2018110149A (en) * | 2016-12-28 | 2018-07-12 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
JP2018147967A (en) * | 2017-03-02 | 2018-09-20 | 日立化成株式会社 | Method for manufacturing connection structure, connection structure and semiconductor device |
JP2019079905A (en) * | 2017-10-24 | 2019-05-23 | 三菱電機株式会社 | Semiconductor device and semiconductor device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP7484097B2 (en) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7359267B2 (en) | Copper paste for bonding, method for manufacturing bonded body, and method for manufacturing semiconductor device | |
JP7056724B2 (en) | Bonds and semiconductor devices | |
JP7232236B2 (en) | COPPER PASTE FOR JOINING, METHOD FOR MANUFACTURING JOINTED BODY, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE | |
JP6938966B2 (en) | Manufacturing method of connection structure, connection structure and semiconductor device | |
JP7392728B2 (en) | Copper paste for bonding, method for manufacturing bonded body, and bonded body | |
JP6984146B2 (en) | Resin-containing copper sintered body and its manufacturing method, bonded body, and semiconductor device | |
JP2024010136A (en) | Manufacturing method of bonded body and semiconductor device, and copper paste for bonding | |
JP7067002B2 (en) | Manufacturing method of semiconductor device | |
JP2021019038A (en) | Semiconductor device | |
JP2021172858A (en) | Manufacturing method of semiconductor device, support member set for mounting semiconductor element and semiconductor element set | |
JP7127407B2 (en) | Joining metal paste, joined body, and method for producing joined body | |
JP7375295B2 (en) | Electronic components and electronic component manufacturing methods | |
JP2021174968A (en) | Double-sided cooled semiconductor module, double-sided cooled semiconductor device and method for manufacturing double-sided cooled semiconductor module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231031 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7484097 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |