JP2021018998A - Composite substrate, and manufacturing method thereof - Google Patents

Composite substrate, and manufacturing method thereof Download PDF

Info

Publication number
JP2021018998A
JP2021018998A JP2019131665A JP2019131665A JP2021018998A JP 2021018998 A JP2021018998 A JP 2021018998A JP 2019131665 A JP2019131665 A JP 2019131665A JP 2019131665 A JP2019131665 A JP 2019131665A JP 2021018998 A JP2021018998 A JP 2021018998A
Authority
JP
Japan
Prior art keywords
layer
substrate
treatment
composite substrate
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019131665A
Other languages
Japanese (ja)
Other versions
JP7041648B2 (en
Inventor
永田 和寿
Kazuhisa Nagata
和寿 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019131665A priority Critical patent/JP7041648B2/en
Publication of JP2021018998A publication Critical patent/JP2021018998A/en
Application granted granted Critical
Publication of JP7041648B2 publication Critical patent/JP7041648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a composite substrate which can endure against a high temperature.SOLUTION: The method is a method for manufacturing a composite substrate of φ100 to 300 mm by laminating a first layer composed of an insulative substrate containing Si or Al, a second layer composed of an amorphous layer containing Si, and a third layer which is a single crystal silicon substrate in order. The method comprises the steps of: performing a hydrophilic treatment on at least one face of the first layer to make a contact angle with water 60 degrees or below; forming the second layer on the face thus hydrophilized; bonding together the first and third layers through the second layer; thinning the first layer; and heating a resultant composite substrate at a temperature of 400 to 700°C. In the method, the ratio of a thickness of the first layer in a laminating direction and a thickness of the third layer in the laminating direction after the thinning step is 0.5 or less, and the difference in thermal expansion coefficient between the first and third layers in a range of 40°C to 400°C is 3 ppm or less.SELECTED DRAWING: Figure 2

Description

本発明は単結晶シリコン基板上に絶縁性膜を備えた複合基板に関するもので、より詳しくは半導体デバイスや MEMS(Micro Electro Mechanical System)用途に用いられる単結晶シリコン基板上に、熱伝導性の高い窒化挂素や窒化アルミニウムといった絶縁性基板を備えた貼り合わせ基板に関する。 The present invention relates to a composite substrate having an insulating film on a single crystal silicon substrate, and more specifically, has high thermal conductivity on a single crystal silicon substrate used for semiconductor devices and MEMS (Micro Electro Mechanical System) applications. The present invention relates to a bonded substrate provided with an insulating substrate such as a nitride or aluminum nitride.

SOI(Silicon on insulator)をはじめとし、シリコン基板複合化による半導体デバイスの高性能化の検討が盛んに行われている。その中で透明性が高いためオプトエレクトロニクス用途へ利用されるSOQ(Silicon on Quartz)や、高絶縁性で熱伝導性の良さで高周波用途へ利用されるSOS(Silicon on Sapphire)などの機能を高めた基板がある。例えば特許文献1では、貼り合わせ前後の熱処理温度を工夫することで、シリコンとサファイアを貼り合わせたSOSを作製している。しかし、これらの複合基板(ハイブリッド基板)は、半導体層として利用されるシリコン(Si)に対して熱膨張率の異なる材料との組み合わせであり、貼り合わせで作製する場合にはそれぞれの基板の熱膨張率の違いにより作製が難しいことが知られている。 There are many studies on improving the performance of semiconductor devices by combining silicon substrates, including SOI (Silicon on insulator). Among them, SOQ (Silicon on Quartz), which is used for optoelectronic applications due to its high transparency, and SOS (Silicon on Sapphire), which is used for high frequency applications due to its high insulation and good thermal conductivity, have been enhanced. There is a board. For example, in Patent Document 1, SOS in which silicon and sapphire are bonded is produced by devising the heat treatment temperature before and after bonding. However, these composite substrates (hybrid substrates) are a combination of materials having a different coefficient of thermal expansion than silicon (Si) used as a semiconductor layer, and when manufactured by bonding, the heat of each substrate is high. It is known that it is difficult to manufacture due to the difference in expansion coefficient.

また近年、パワーエレクトロニクスの進歩により、電力の変換と制御を高効率で行うパワーデバイスが急速に普及し、産業用ロボット、電車など輸送機器のモーター制御に活用されている。さらに、自動車動力のハイブリッド化、電気モーター化が進み高出力パワーモジュールの市場が急速に広がりつつある。パワーモジュールは、数十から数百kWの大電力の変換・制御を行うため、その回路基板には高い絶縁性、放熱性、耐熱性が要求される。窒化ケイ素や窒化アルミニウムといった50W/(m・K)を超える熱伝導率を持つ基板が、車載用インバーターなどパワーモジュールの回路基板に使用されている。これらの高熱伝導性基板とSiの複合化によりさらに熱伝導性を高めた絶縁性基板も次世代材料として期待されるが、SOQやSOS同様、基板間の熱膨張率が異なる点、4インチを超える大口径基板においては一般に普及しているのは焼結体であり表面粗さが大きいという2点が問題となり、300℃を超える高温プロセス時に貼り合わせ基板が分離してしまうという課題があった。例えば特許文献2は、表面粗さが大きい焼結体に関して、貼り合わせ面にアモルファス層を形成し改善する例を示しているが、本発明者らの実験において、窒化アルミニウム焼結体で同様の処理を行い、単結晶シリコン基板と貼り合わせた基板を高温処理すると前記アモルファス層形成界面で剥がれ、単結晶シリコン基板にアモルファス層のみが転写されてしまうことが分かった。 In recent years, with the progress of power electronics, power devices that convert and control electric power with high efficiency have rapidly become widespread, and are used for motor control of transportation equipment such as industrial robots and trains. Furthermore, the market for high-output power modules is rapidly expanding due to the progress of hybridization of automobile power and electric motors. Since a power module converts and controls a large amount of power of several tens to several hundreds of kW, its circuit board is required to have high insulation, heat dissipation, and heat resistance. Substrates having a thermal conductivity of more than 50 W / (m · K) such as silicon nitride and aluminum nitride are used for circuit boards of power modules such as in-vehicle inverters. Insulating substrates with further enhanced thermal conductivity by combining these highly thermally conductive substrates and Si are also expected as next-generation materials, but like SOQ and SOS, the difference in thermal expansion coefficient between substrates is 4 inches. In the case of a large-diameter substrate exceeding 300 ° C., a sintered body is generally used, which has two problems of large surface roughness, and there is a problem that the bonded substrate is separated during a high temperature process exceeding 300 ° C. .. For example, Patent Document 2 shows an example in which an amorphous layer is formed on a bonded surface to improve a sintered body having a large surface roughness, but in the experiments of the present inventors, the same applies to the aluminum nitride sintered body. It was found that when the treatment was performed and the substrate bonded to the single crystal silicon substrate was treated at a high temperature, it was peeled off at the amorphous layer forming interface, and only the amorphous layer was transferred to the single crystal silicon substrate.

特許第5643509号公報Japanese Patent No. 5643509 特許第6182661号公報Japanese Patent No. 6182661

上記現状を顧み、本発明は高温に耐えることのできる複合基板を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a composite substrate that can withstand high temperatures.

本発明者らは単結晶シリコン基板と絶縁性基板の複合基板に関して、絶縁性基板表面に親水化処理を施した上で親水化面に介在層を設けることで、表面粗さの改善、および単結晶シリコン基板−介在層−絶縁性基板の各貼り合わせ界面の密着力の向上を達成し、300℃を超える高温処理にも耐える複合基板が得られることを見出した。 The present inventors have improved the surface roughness of a composite substrate of a single crystal silicon substrate and an insulating substrate by subjecting the surface of the insulating substrate to a hydrophilic treatment and then providing an interposition layer on the hydrophilic surface. It has been found that the adhesion of each bonding interface of the crystalline silicon substrate-intervening layer-insulating substrate is improved, and a composite substrate that can withstand high temperature treatment exceeding 300 ° C. can be obtained.

すなわち、本発明の一実施形態に係る複合基板の製造方法は、SiもしくはAlを含む絶縁性基板である第一層と、Siを含むアモルファス層である第二層と、単結晶シリコン基板である第三層とを順に積層してφ100から300mmの複合基板を製造する方法である。当該製造方法は、第一層の少なくとも1つの面に親水化処理を施して水との接触角を60度以下とする工程、親水化処理を施した面に第二層を成膜する工程、第二層を介して第一層と第三層とを貼り合わせる工程、第一層を薄膜化する工程、および、複合基板を400℃から700℃の温度で加熱する工程を含む。そして、薄膜化した後における第一層の積層方向の厚みと第三層の積層方向の厚みの比が0.5以下であり、かつ第一層と第三層の40℃から400℃における熱膨張係数の差が3ppm以下であることを特徴とする。絶縁性基板は、SiもしくはAlNを含むとよい。 That is, the method for manufacturing a composite substrate according to an embodiment of the present invention is a first layer which is an insulating substrate containing Si or Al, a second layer which is an amorphous layer containing Si, and a single crystal silicon substrate. This is a method of manufacturing a composite substrate having a diameter of 100 to 300 mm by laminating the third layer in order. The manufacturing method includes a step of subjecting at least one surface of the first layer to a hydrophilic treatment to reduce the contact angle with water to 60 degrees or less, a step of forming a second layer on the surface subjected to the hydrophilic treatment, and the like. It includes a step of laminating the first layer and the third layer via the second layer, a step of thinning the first layer, and a step of heating the composite substrate at a temperature of 400 ° C. to 700 ° C. The ratio of the thickness of the first layer in the stacking direction to the thickness of the third layer in the stacking direction after thinning is 0.5 or less, and the heat of the first layer and the third layer at 40 ° C to 400 ° C. The difference in expansion coefficient is 3 ppm or less. The insulating substrate may contain Si 3 N 4 or Al N.

本発明では、アモルファス層はアモルファスSi、SiOおよびSiから選ばれ、スパッタ、CVDもしくはスピン塗布により形成するとよい。 In the present invention, the amorphous layer is selected from amorphous Si, SiO 2 and Si 3 N 4, sputtered, may be formed by CVD or spin coating.

また、本発明では、親水化処理は、オゾン処理、UV処理、プラズマ処理、イオンビーム処理、超音波洗浄、およびフッ化水素酸もしくは塩酸を含む酸性溶液による洗浄のいずれかまたは複数の方法とするとよい。 Further, in the present invention, the hydrophilization treatment is one or more of ozone treatment, UV treatment, plasma treatment, ion beam treatment, ultrasonic cleaning, and cleaning with an acidic solution containing hydrofluoric acid or hydrochloric acid. Good.

また、本発明の一実施形態に係る複合基板は、SiもしくはAlを含む絶縁性基板である第一層と、Siを含むアモルファス層である第二層と、単結晶シリコン基板である第三層と、を順に積層して構成されるφ100から300mmの複合基板である。当該複合基板において、第二層と直接接触する第一層の表面を飛行時間型二次イオン質量分析法(ToF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)によって分析を行なった場合に、SiもしくはAlとして検出される正2次イオンのピークとC(n,m=1〜20)として検出される炭化水素の正2次イオンのピークとの強度比であるがSi/CもしくはAl/Cが1以上であることを特徴とする。絶縁性基板は、SiもしくはAlNを含むとよい。 Further, the composite substrate according to the embodiment of the present invention includes a first layer which is an insulating substrate containing Si or Al, a second layer which is an amorphous layer containing Si, and a third layer which is a single crystal silicon substrate. , And are laminated in this order to form a composite substrate having a diameter of 100 to 300 mm. When the surface of the first layer in direct contact with the second layer of the composite substrate is analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS), The intensity ratio of the peak of positive secondary ions detected as Si or Al to the peak of positive secondary ions of hydrocarbon detected as C n H m (n, m = 1 to 20) is Si / C. It is characterized in that n H m or Al / C n H m is 1 or more. The insulating substrate may contain Si 3 N 4 or Al N.

本発明では、アモルファス層は、アモルファスSi、SiOおよびSiから選ばれるとよい。 In the present invention, the amorphous layer may be selected from amorphous Si, SiO 2 and Si 3 N 4 .

本発明では、第二層と直接接触する第一層の表面は、オゾン処理、UV処理、プラズマ処理、イオンビーム処理、超音波洗浄、およびフッ化水素酸もしくは塩酸を含む酸性溶液による洗浄のいずれかまたは複数の方法により親水化処理された面とするとよい。 In the present invention, the surface of the first layer in direct contact with the second layer can be treated with ozone, UV, plasma, ion beam, ultrasonic cleaning, or cleaning with an acidic solution containing hydrofluoric acid or hydrochloric acid. Alternatively, the surface may be hydrolyzed by a plurality of methods.

複合基板の構造を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of a composite substrate. 複合基板の製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the manufacturing method of a composite substrate. 絶縁性基板の表面に対する親水化処理の前後における接触角を示す写真である。It is a photograph which shows the contact angle before and after the hydrophilic treatment with respect to the surface of an insulating substrate. 絶縁性基板の表面に対するプラズマ活性化処理の前後におけるToF-SIMS測定結果を示している。The ToF-SIMS measurement results before and after the plasma activation treatment on the surface of the insulating substrate are shown.

以下、本発明の実施形態について詳細に説明するが、本発明は、これらに限定されるものではない。
図1は、本実施形態に係る複合基板1の構造を示している。図1に示すように、複合基板1において第一層(表層)をなす絶縁性基板2、絶縁性基板2に接する第二層(中間層)をなすアモルファス層3、ならびに絶縁性基板2およびアモルファス層3に対する支持基板となる第三層をなす単結晶シリコン基板4が、この順に積層された構造を有する。複合基板の寸法は、直径φ100〜300mmとされる。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
FIG. 1 shows the structure of the composite substrate 1 according to the present embodiment. As shown in FIG. 1, the insulating substrate 2 forming the first layer (surface layer) of the composite substrate 1, the amorphous layer 3 forming the second layer (intermediate layer) in contact with the insulating substrate 2, the insulating substrate 2 and the amorphous The single crystal silicon substrate 4 forming the third layer serving as the support substrate for the layer 3 has a structure in which they are laminated in this order. The dimensions of the composite substrate are φ100 to 300 mm in diameter.

絶縁性基板2は、シリコン(Si)もしくはアルミニウム(Al)を含む素材により形成される。絶縁性基板2は、40℃から400℃における熱膨張係数について、単結晶シリコン基板の熱膨張係数の差が3ppm以下となる素材を用いることが好ましい。具体的には、絶縁性基板は、窒化アルミニウム(AlN)焼結体、窒化ケイ素(Si)焼結体等とするとよい。絶縁性基板2におけるアモルファス層3と直接接触する面は、アモルファス層3が設けられる前に親水化処理がなされている。この親水化処理は、オゾン処理、UV処理、プラズマ処理、イオンビーム処理、超音波洗浄、またはフッ化水素酸もしくは塩酸を含む酸性溶液による洗浄のいずれかまたは複数の方法とするとよい。 The insulating substrate 2 is formed of a material containing silicon (Si) or aluminum (Al). As the insulating substrate 2, it is preferable to use a material in which the difference in the coefficient of thermal expansion of the single crystal silicon substrate is 3 ppm or less with respect to the coefficient of thermal expansion from 40 ° C. to 400 ° C. Specifically, the insulating substrate may be an aluminum nitride (AlN) sintered body, a silicon nitride (Si 3 N 4 ) sintered body, or the like. The surface of the insulating substrate 2 that comes into direct contact with the amorphous layer 3 is hydrophilized before the amorphous layer 3 is provided. The hydrophilization treatment may be one or more of ozone treatment, UV treatment, plasma treatment, ion beam treatment, ultrasonic cleaning, and cleaning with an acidic solution containing hydrofluoric acid or hydrochloric acid.

親水化処理は、絶縁性基板2の処理面において水との接触角が60度以下となるように行うとよい。また、親水化処理は、絶縁性基板2の処理面について飛行時間型二次イオン質量分析法(ToF-SIMS : Time-of-Flight Secondary Ion Mass Spectrometry)によって分析を行なった場合に、SiもしくはAlとして検出される正2次イオンのピークとC(n,m=1〜20)として検出される炭化水素の正2次イオンのピークの強度比(すなわち、Si/CもしくはAl/C)が1以上となるように、行うとよい。 The hydrophilization treatment may be performed so that the contact angle with water on the treated surface of the insulating substrate 2 is 60 degrees or less. Further, the hydrophilization treatment is performed when the treated surface of the insulating substrate 2 is analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS), Si or Al. The intensity ratio of the peak of the positive secondary ion detected as and the peak of the positive secondary ion of the hydrocarbon detected as C n H m (n, m = 1 to 20) (that is, Si / C n H m or It is preferable to carry out so that Al / C n H m ) is 1 or more.

アモルファス層3は、Siを含んだアモルファス(非晶質)の層である。具体的には、Siを含むアモルファス層3として、アモルファスSi、SiOまたはSiのいずれかとするとよい。このようなアモルファス層3は、スパッタ、CVDもしくはスピン塗布により形成するとよい。 The amorphous layer 3 is an amorphous layer containing Si. Specifically, the amorphous layer 3 containing Si may be any of amorphous Si, SiO 2 or Si 3 N 4 . Such an amorphous layer 3 may be formed by sputtering, CVD or spin coating.

図2は、本実施形態に係る複合基板1の製造方法の手順を示すフローチャートである。
はじめに、直径φ100〜300mmの絶縁性基板2を準備する(ステップS10)。続いて、準備した絶縁性基板2の一方の面に親水化処理を施す(ステップS11)。親水化処理の方法は任意であるが、例えば、オゾン処理、UV処理、プラズマ処理、イオンビーム処理、超音波洗浄、またはフッ化水素酸もしくは塩酸を含む酸性溶液による洗浄のいずれかまたは複数の方法とするとよい。親水化処理は、絶縁性基板2の処理面において水との接触角が60度以下となるように行うとよい。また、親水化処理は、絶縁性基板2の処理面について飛行時間型二次イオン質量分析法(ToF-SIMS : Time-of-Flight Secondary Ion Mass Spectrometry)によって分析を行なった場合に、SiもしくはAlとして検出される正2次イオンのピークとC(n,m=1〜20)として検出される炭化水素の正2次イオンのピークの強度比(すなわち、Si/CもしくはAl/C)が1以上となるように、行うとよい。
FIG. 2 is a flowchart showing a procedure of a manufacturing method of the composite substrate 1 according to the present embodiment.
First, an insulating substrate 2 having a diameter of φ100 to 300 mm is prepared (step S10). Subsequently, one surface of the prepared insulating substrate 2 is subjected to a hydrophilic treatment (step S11). The method of hydrophilization is arbitrary, but for example, one or more of ozone treatment, UV treatment, plasma treatment, ion beam treatment, ultrasonic cleaning, or cleaning with an acidic solution containing hydrofluoric acid or hydrochloric acid. It is good to say. The hydrophilization treatment may be performed so that the contact angle with water on the treated surface of the insulating substrate 2 is 60 degrees or less. Further, the hydrophilization treatment is performed when the treated surface of the insulating substrate 2 is analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS), Si or Al. The intensity ratio of the peak of the positive secondary ion detected as and the peak of the positive secondary ion of the hydrocarbon detected as C n H m (n, m = 1 to 20) (that is, Si / C n H m or It is preferable to carry out so that Al / C n H m ) is 1 or more.

続いて、絶縁性基板2の親水化処理を施した面に、アモルファス層3を形成する(ステップS12)。アモルファス層3は、例えば、スパッタ、CVDもしくはスピン塗布により成膜するとよい。そして、形成したアモルファス層3を研磨し平坦化する(ステップS13)。このとき、アモルファス層3の表面粗さが0.3nm以下となるように研磨することが好ましい。 Subsequently, the amorphous layer 3 is formed on the surface of the insulating substrate 2 that has been subjected to the hydrophilic treatment (step S12). The amorphous layer 3 may be formed into a film by, for example, sputtering, CVD or spin coating. Then, the formed amorphous layer 3 is polished and flattened (step S13). At this time, it is preferable to polish the amorphous layer 3 so that the surface roughness is 0.3 nm or less.

絶縁性基板2に対する貼り合わせ前の工程(ステップS10〜S13)と並行して、支持基板となる単結晶シリコン基板4を準備する(ステップS20)。単結晶シリコン基板4の寸法は直径φ100〜300mmとするとよいが、ステップS10で準備する絶縁性基板2と略等しい径とすることが好ましい。また、単結晶シリコン基板4は、絶縁性基板2およびアモルファス層3と貼り合わせて複合基板1を形成したときに十分な強度を有するように、厚さを600μm程度とするとよい。 In parallel with the steps (steps S10 to S13) before bonding to the insulating substrate 2, the single crystal silicon substrate 4 to be the support substrate is prepared (step S20). The size of the single crystal silicon substrate 4 is preferably φ100 to 300 mm in diameter, but it is preferable that the diameter is substantially equal to that of the insulating substrate 2 prepared in step S10. Further, the single crystal silicon substrate 4 may have a thickness of about 600 μm so as to have sufficient strength when the composite substrate 1 is formed by bonding the insulating substrate 2 and the amorphous layer 3 together.

続いて、ステップS13にて形成されたアモルファス層3の表面、およびステップS20で準備した単結晶シリコン基板4の表面にそれぞれプラズマ活性化処理を施す(ステップS30)。そして、それぞれプラズマ活性化処理を施されたアモルファス層3の表面と単結晶シリコン基板4の表面とを貼り合わせる(ステップS31)。すなわち、アモルファス層3を介して、絶縁性基板2と単結晶シリコン基板4とを貼り合わせる。続いて、絶縁性基板2を研削研磨して薄膜化し(ステップS32)、複合基板1とする。ステップS32において、絶縁性基板2は、絶縁性基板2の積層方向の厚みと単結晶シリコン基板4の積層方向の厚みの比が0.5以下となるように薄膜化される。最後に、複合基板1を、400℃から700℃の温度で加熱する(ステップS33)。 Subsequently, plasma activation treatment is performed on the surface of the amorphous layer 3 formed in step S13 and the surface of the single crystal silicon substrate 4 prepared in step S20, respectively (step S30). Then, the surface of the amorphous layer 3 subjected to the plasma activation treatment and the surface of the single crystal silicon substrate 4 are bonded to each other (step S31). That is, the insulating substrate 2 and the single crystal silicon substrate 4 are bonded together via the amorphous layer 3. Subsequently, the insulating substrate 2 is ground and thinned (step S32) to form a composite substrate 1. In step S32, the insulating substrate 2 is thinned so that the ratio of the thickness of the insulating substrate 2 in the stacking direction to the thickness of the single crystal silicon substrate 4 in the stacking direction is 0.5 or less. Finally, the composite substrate 1 is heated at a temperature of 400 ° C. to 700 ° C. (step S33).

[実施例1]
絶縁性基板として、外径150mm、厚さ380μmの窒化アルミニウム(AlN)焼結体を準備し、一方の面を窒素雰囲気下で60秒、プラズマ活性化した。この処理面の水の接触角を接触角計(協和界面科学株式会社製dropmaster)にて測定したところ、接触角20度で親水化されたことを確認した。図3は、親水化処理前後の水の接触角を示す写真である。図3(a)は、親水化処理前の写真であり、接触角は80度となっている。これに対し図3(b)は、親水化処理後の写真であり、接触角は20度となっている。この親水化面にプラズマCVDによりアモルファス層としてシリコン酸化膜(SiO)を1μm成膜し、シリコン酸化膜を研磨することで表面粗さを0.3nm以下とした。続いて、支持基板として外径150mm、厚さ600μmの単結晶シリコン基板を準備し、シリコン基板表面と前述のAlN焼結基板上のシリコン酸化膜にそれぞれプラズマ活性化処理を施して両基板を貼り合わせた。この接合基板を300℃,12時間加熱し破損がないことを確認した後、AlN焼結体を100μmまで研削研磨した。その後、さらに700℃で12時間加熱したが破損はみられなかった。このようにして、700℃の耐熱性を持つAlN on シリコン基板が作製された。
[Example 1]
As an insulating substrate, an aluminum nitride (AlN) sintered body having an outer diameter of 150 mm and a thickness of 380 μm was prepared, and one surface was plasma-activated in a nitrogen atmosphere for 60 seconds. When the contact angle of water on this treated surface was measured with a contact angle meter (dropmaster manufactured by Kyowa Interface Science Co., Ltd.), it was confirmed that the water was hydrophilized at a contact angle of 20 degrees. FIG. 3 is a photograph showing the contact angle of water before and after the hydrophilization treatment. FIG. 3A is a photograph before the hydrophilic treatment, and the contact angle is 80 degrees. On the other hand, FIG. 3B is a photograph after the hydrophilic treatment, and the contact angle is 20 degrees. A silicon oxide film (SiO 2 ) of 1 μm was formed as an amorphous layer on this hydrophilic surface by plasma CVD, and the silicon oxide film was polished to reduce the surface roughness to 0.3 nm or less. Subsequently, a single crystal silicon substrate having an outer diameter of 150 mm and a thickness of 600 μm was prepared as a support substrate, and the silicon substrate surface and the silicon oxide film on the above-mentioned AlN sintered substrate were respectively subjected to plasma activation treatment and both substrates were attached. I matched it. The bonded substrate was heated at 300 ° C. for 12 hours to confirm that there was no damage, and then the AlN sintered body was ground and polished to 100 μm. After that, it was further heated at 700 ° C. for 12 hours, but no damage was observed. In this way, an AlN on silicon substrate having a heat resistance of 700 ° C. was produced.

[実施例2]
絶縁性基板として、外径150mm、厚さ380μmの窒化アルミニウム(AlN)焼結体を準備し、フッ化水素酸水溶液(5wt%、25℃)に5分間浸透した。この処理面の水の接触角を接触角計(協和界面科学株式会社製dropmaster)にて測定したところ、接触角20度で親水化されたことを確認した。この親水化面にプラズマCVDによりアモルファス層としてシリコン酸化膜(SiO)を1μm成膜し、シリコン酸化膜を研磨することで表面粗さを0.3nm以下とした。続いて、支持基板として外径150mm、厚さ600μmの単結晶シリコン基板を準備し、シリコン基板表面と前述のAlN焼結基板上のシリコン酸化膜にそれぞれプラズマ活性化処理を施して両基板を貼り合わせた。この接合基板を300℃で12時間加熱し破損がないことを確認した後、AlN焼結体を100μmまで研削研磨した。その後、さらに700℃で12時間加熱したが破損はみられなかった。このようにして、700℃の耐熱性を持つAlN on シリコン基板が作製された。
[Example 2]
As an insulating substrate, an aluminum nitride (AlN) sintered body having an outer diameter of 150 mm and a thickness of 380 μm was prepared and permeated into a hydrofluoric acid aqueous solution (5 wt%, 25 ° C.) for 5 minutes. When the contact angle of water on this treated surface was measured with a contact angle meter (dropmaster manufactured by Kyowa Interface Science Co., Ltd.), it was confirmed that the water was hydrophilized at a contact angle of 20 degrees. A silicon oxide film (SiO 2 ) of 1 μm was formed as an amorphous layer on this hydrophilic surface by plasma CVD, and the silicon oxide film was polished to reduce the surface roughness to 0.3 nm or less. Subsequently, a single crystal silicon substrate having an outer diameter of 150 mm and a thickness of 600 μm was prepared as a support substrate, and the silicon substrate surface and the silicon oxide film on the above-mentioned AlN sintered substrate were respectively subjected to plasma activation treatment and both substrates were attached. I matched it. The bonded substrate was heated at 300 ° C. for 12 hours to confirm that there was no damage, and then the AlN sintered body was ground and polished to 100 μm. After that, it was further heated at 700 ° C. for 12 hours, but no damage was observed. In this way, an AlN on silicon substrate having a heat resistance of 700 ° C. was produced.

[実施例3]
絶縁性基板として、外径150mm、厚さ380μmの窒化アルミニウム(AlN)焼結体を準備し、一方の面を窒素雰囲気下で60秒、プラズマ活性化した。このプラズマ活性化処理の前後において、AlN表面をToF-SIMSで測定し、Al(原子量27)とC(分子量27)の強度比(Al/C)を求めた。その結果、図4に示すように、処理前(図4(a))の強度比は0.7であったものが、処理後(図4(b))は13となり、処理によってAlリッチとなったことが確認された。この親水化面にプラズマCVDによりアモルファス層としてシリコン酸化膜(SiO)を1μm成膜し、シリコン酸化膜を研磨することで表面粗さを0.3nm以下とした。続いて、支持基板として外径150mm、厚さ600μmの単結晶シリコン基板を準備し、シリコン基板表面と前述のAlN焼結基板上のシリコン酸化膜にそれぞれプラズマ活性化処理を施して両基板を貼り合わせた。この接合基板を300℃で12時間加熱し破損がないことを確認した後、AlN焼結体を100μmまで研削研磨した。その後、さらに700℃で12時間加熱したが破損はみられなかった。このようにして、700℃の耐熱性を持つAlN on シリコン基板が作製された。
[Example 3]
As an insulating substrate, an aluminum nitride (AlN) sintered body having an outer diameter of 150 mm and a thickness of 380 μm was prepared, and one surface was plasma-activated in a nitrogen atmosphere for 60 seconds. Before and after this plasma activation treatment, the AlN surface was measured by ToF-SIMS, and the intensity ratio (Al / C 2 H 3 ) of Al (atomic weight 27) and C 2 H 3 (molecular weight 27) was determined. As a result, as shown in FIG. 4, the intensity ratio before the treatment (FIG. 4 (a)) was 0.7, but after the treatment (FIG. 4 (b)) it became 13, and the treatment resulted in Al-rich. It was confirmed that it became. A silicon oxide film (SiO 2 ) of 1 μm was formed as an amorphous layer on this hydrophilic surface by plasma CVD, and the silicon oxide film was polished to reduce the surface roughness to 0.3 nm or less. Subsequently, a single crystal silicon substrate having an outer diameter of 150 mm and a thickness of 600 μm was prepared as a support substrate, and the silicon substrate surface and the silicon oxide film on the above-mentioned AlN sintered substrate were respectively subjected to plasma activation treatment and both substrates were attached. I matched it. The bonded substrate was heated at 300 ° C. for 12 hours to confirm that there was no damage, and then the AlN sintered body was ground and polished to 100 μm. After that, it was further heated at 700 ° C. for 12 hours, but no damage was observed. In this way, an AlN on silicon substrate having a heat resistance of 700 ° C. was produced.

[実施例4]
絶縁性基板として、外径150mm、厚さ400μmの窒化ケイ素(Si)焼結体を準備し、一方の面を窒素雰囲気下で60秒、プラズマ活性化した。この処理面の水の接触角を接触角計(協和界面科学株式会社製dropmaster)にて測定したところ、接触角20度で親水化されたことを確認した。この親水化面にスパッタ処理によりアモルファス層としてシリコン酸化膜(SiO)を1μm成膜し、シリコン酸化膜を研磨することで表面粗さを0.3nm以下とした。続いて、支持基板として外径150mm、厚さ600μmの単結晶シリコン基板を準備し、シリコン基板表面と前述のSi焼結基板上のシリコン酸化膜にそれぞれプラズマ活性化処理を施して両基板を貼り合わせた。この接合基板を300℃で12時間加熱し破損がないことを確認した後、Si焼結体を100μmまで研削研磨した。その後、さらに550℃で12時間加熱したが破損はみられなかった。このようにして、550℃の耐熱性を持つSi on シリコン基板が作製された。
[Example 4]
As the insulating substrate, preparing the outer diameter 150 mm, a thickness of 400μm silicon nitride (Si 3 N 4) sintered body, one face 60 seconds under a nitrogen atmosphere to plasma activation. When the contact angle of water on this treated surface was measured with a contact angle meter (dropmaster manufactured by Kyowa Interface Science Co., Ltd.), it was confirmed that the water was hydrophilized at a contact angle of 20 degrees. A silicon oxide film (SiO 2 ) of 1 μm was formed on the hydrophilic surface as an amorphous layer by a sputtering treatment, and the silicon oxide film was polished to reduce the surface roughness to 0.3 nm or less. Subsequently, a single crystal silicon substrate having an outer diameter of 150 mm and a thickness of 600 μm was prepared as a support substrate, and the silicon substrate surface and the silicon oxide film on the above-mentioned Si 3 N 4 sintered substrate were subjected to plasma activation treatment, respectively. The substrates were pasted together. This bonded substrate was heated at 300 ° C. for 12 hours to confirm that there was no damage, and then the Si 3 N 4 sintered body was ground and polished to 100 μm. After that, it was further heated at 550 ° C. for 12 hours, but no damage was observed. In this way, a Si 3 N 4 on silicon substrate having a heat resistance of 550 ° C. was produced.

[比較例1]
絶縁性基板として、外径150mm、厚さ380μmの窒化アルミニウム(AlN)焼結体を準備した。プラズマ活性化等の処理を行わずに、水の接触角を接触角計(協和界面科学株式会社製dropmaster)にて測定したところ、接触角80度であった。また、このAlN表面をToF-SIMSで測定したところ、Al(原子量27)とC(分子量27)の強度比(Al/C)は0.8であった。この基板表面にスバッタ処理によりアモルファス層としてシリコン酸化膜(SiO)を1μm成膜し、シリコン酸化膜を研磨することで表面粗さを0.3nm以下とした。続いて、支持基板として外径150mm、厚さ600μmの単結晶シリコン基板を準備し、シリコン基板表面と前述のAlN焼結基板上のシリコン酸化膜にそれぞれプラズマ活性化処理を施して両基板を貼り合わせた。この接合基板を150℃で12時間加熱したところ、Φ30mmのボイドが発生した。このAlN焼結体を100μmまで研削研磨し、再度熱処理を試みた。200℃で12時間加熱したところ接合基板が分離し、CVDにより絶縁性基板上に成膜されたシリコン酸化膜が部分的にシリコン基板側に転写されていた。
[Comparative Example 1]
As an insulating substrate, an aluminum nitride (AlN) sintered body having an outer diameter of 150 mm and a thickness of 380 μm was prepared. When the contact angle of water was measured with a contact angle meter (dropmaster manufactured by Kyowa Interface Science Co., Ltd.) without performing treatment such as plasma activation, the contact angle was 80 degrees. Moreover, when this AlN surface was measured by ToF-SIMS, the intensity ratio (Al / C 2 H 3 ) of Al (atomic weight 27) and C 2 H 3 (molecular weight 27) was 0.8. A silicon oxide film (SiO 2 ) was formed as an amorphous layer on the surface of the substrate by 1 μm, and the silicon oxide film was polished to reduce the surface roughness to 0.3 nm or less. Subsequently, a single crystal silicon substrate having an outer diameter of 150 mm and a thickness of 600 μm was prepared as a support substrate, and the silicon substrate surface and the silicon oxide film on the above-mentioned AlN sintered substrate were respectively subjected to plasma activation treatment and both substrates were attached. I matched it. When this bonded substrate was heated at 150 ° C. for 12 hours, voids of Φ30 mm were generated. This AlN sintered body was ground and polished to 100 μm, and heat treatment was attempted again. When heated at 200 ° C. for 12 hours, the bonded substrate was separated, and the silicon oxide film formed on the insulating substrate by CVD was partially transferred to the silicon substrate side.

[比較例2]
絶縁性基板として、外径150mm、厚さ380μmの窒化アルミニウム(AlN)焼結体を準備し、一方の面を窒素雰囲気下で60秒、プラズマ活性化した。この処理面の水の接触角を接触角計(協和界面科学株式会社製dropmaster)にて測定したところ、接触角20度で親水化されたことを確認した。この親水化面にプラズマCVDによりアモルファス層としてシリコン酸化膜(SiO)を1μm成膜し、シリコン酸化膜を研磨することで表面粗さを0.3nm以下とした。続いて、支持基板として外径150mm、厚さ600μmの単結晶シリコン基板を準備し、シリコン基板表面と前述のAlN焼結基板上のシリコン酸化膜にそれぞれプラズマ活性化処理を施して両基板を貼り合わせた。この接合基板を300℃で12時間加熱し破損がないことを確認した後、AlN焼結体を100μmまで研削研磨した。その後、さらに750℃で12時間加熱したところ破損してしまった。
[Comparative Example 2]
As an insulating substrate, an aluminum nitride (AlN) sintered body having an outer diameter of 150 mm and a thickness of 380 μm was prepared, and one surface was plasma-activated in a nitrogen atmosphere for 60 seconds. When the contact angle of water on this treated surface was measured with a contact angle meter (dropmaster manufactured by Kyowa Interface Science Co., Ltd.), it was confirmed that the water was hydrophilized at a contact angle of 20 degrees. A silicon oxide film (SiO 2 ) of 1 μm was formed as an amorphous layer on this hydrophilic surface by plasma CVD, and the silicon oxide film was polished to reduce the surface roughness to 0.3 nm or less. Subsequently, a single crystal silicon substrate having an outer diameter of 150 mm and a thickness of 600 μm was prepared as a support substrate, and the silicon substrate surface and the silicon oxide film on the above-mentioned AlN sintered substrate were respectively subjected to plasma activation treatment and both substrates were attached. I matched it. The bonded substrate was heated at 300 ° C. for 12 hours to confirm that there was no damage, and then the AlN sintered body was ground and polished to 100 μm. After that, when it was further heated at 750 ° C. for 12 hours, it was damaged.

以上で説明した通り、上記によれば300℃を超える高温処理にも耐える複合基板が得ることが可能となる。 As described above, according to the above, it is possible to obtain a composite substrate that can withstand high temperature treatment exceeding 300 ° C.

1 複合基板
2 絶縁性基板
3 アモルファス層
4 単結晶シリコン基板

1 Composite substrate 2 Insulating substrate 3 Amorphous layer 4 Single crystal silicon substrate

Claims (8)

SiもしくはAlを含む絶縁性基板である第一層と、Siを含むアモルファス層である第二層と、単結晶シリコン基板である第三層とを順に積層してφ100から300mmの複合基板を製造する方法であって、
前記第一層の少なくとも1つの面に親水化処理を施して水との接触角を60度以下とする工程、
前記親水化処理を施した面に前記第二層を成膜する工程、
第二層を介して第一層と第三層とを貼り合わせる工程、
前記第一層を薄膜化する工程、および、
前記複合基板を400℃から700℃の温度で加熱する工程を含み、
前記薄膜化した後における前記第一層の積層方向の厚みと前記第三層の積層方向の厚みの比が0.5以下であり、かつ前記第一層と前記第三層の40℃から400℃における熱膨張係数の差が3ppm以下であることを特徴とする複合基板の製造方法。
A composite substrate having a diameter of 100 to 300 mm is manufactured by sequentially laminating a first layer which is an insulating substrate containing Si or Al, a second layer which is an amorphous layer containing Si, and a third layer which is a single crystal silicon substrate. How to do
A step of hydrophilizing at least one surface of the first layer so that the contact angle with water is 60 degrees or less.
A step of forming the second layer on the surface subjected to the hydrophilic treatment,
The process of bonding the first layer and the third layer via the second layer,
The process of thinning the first layer and
The step of heating the composite substrate at a temperature of 400 ° C. to 700 ° C. is included.
The ratio of the thickness of the first layer in the stacking direction to the thickness of the third layer in the stacking direction after the thinning is 0.5 or less, and the ratio of the first layer to the third layer is 40 ° C. to 400 ° C. A method for manufacturing a composite substrate, characterized in that the difference in coefficient of thermal expansion at ° C. is 3 ppm or less.
前記絶縁性基板は、SiもしくはAlNを含むことを特徴とする請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the insulating substrate contains Si 3 N 4 or Al N. 前記アモルファス層はアモルファスSi、SiOおよびSiから選ばれ、スパッタ、CVDもしくはスピン塗布により形成することを特徴とする請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the amorphous layer is selected from amorphous Si, SiO 2 and Si 3 N 4 and is formed by sputtering, CVD or spin coating. 前記親水化処理はオゾン処理、UV処理、プラズマ処理、イオンビーム処理、超音波洗浄、およびフッ化水素酸もしくは塩酸を含む酸性溶液による洗浄のいずれかまたは複数の方法であることを特徴とする請求項1から3のいずれか1項に記載の製造方法。 The hydrophilization treatment is one or a plurality of methods of ozone treatment, UV treatment, plasma treatment, ion beam treatment, ultrasonic cleaning, and cleaning with an acidic solution containing hydrofluoric acid or hydrochloric acid. The production method according to any one of Items 1 to 3. SiもしくはAlを含む絶縁性基板である第一層と、
Siを含むアモルファス層である第二層と、
単結晶シリコン基板である第三層と、
を順に積層して構成されるφ100から300mmの複合基板であって、
前記第二層と直接接触する前記第一層の表面を飛行時間型二次イオン質量分析法(ToF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)によって分析を行なった場合に、SiもしくはAlとして検出される正2次イオンのピークとC(n,m=1〜20)として検出される炭化水素の正2次イオンのピークとの強度比であるがSi/CもしくはAl/Cが1以上であることを特徴とする複合基板。
The first layer, which is an insulating substrate containing Si or Al,
The second layer, which is an amorphous layer containing Si,
The third layer, which is a single crystal silicon substrate,
A composite substrate having a diameter of 100 to 300 mm, which is formed by laminating in order.
When the surface of the first layer in direct contact with the second layer is analyzed by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Si or Al positive secondary ion peaks and C n H m (n, m = 1~20) to be detected as it is the intensity ratio between the peaks of the positive secondary ion detected is a hydrocarbon as Si / C n H m Alternatively, a composite substrate characterized in that Al / C n H m is 1 or more.
前記絶縁性基板は、SiもしくはAlNを含むことを特徴とする請求項5に記載の複合基板。 The composite substrate according to claim 5, wherein the insulating substrate contains Si 3 N 4 or Al N. 前記アモルファス層は、アモルファスSi、SiOおよびSiから選ばれることを特徴とする請求項5または6に記載の複合基板。 The composite substrate according to claim 5 or 6, wherein the amorphous layer is selected from amorphous Si, SiO 2 and Si 3 N 4 . 前記第二層と直接接触する前記第一層の表面は、オゾン処理、UV処理、プラズマ処理、イオンビーム処理、超音波洗浄、およびフッ化水素酸もしくは塩酸を含む酸性溶液による洗浄のいずれかまたは複数の方法により親水化処理された面であることを特徴とする請求項5から7のいずれか1項に記載の複合基板。

The surface of the first layer, which is in direct contact with the second layer, is either ozone-treated, UV-treated, plasma-treated, ion-beam-treated, ultrasonic-cleaned, and cleaned with an acidic solution containing hydrofluoric acid or hydrochloric acid. The composite substrate according to any one of claims 5 to 7, wherein the surface is hydrophilized by a plurality of methods.

JP2019131665A 2019-07-17 2019-07-17 Manufacturing method of composite substrate Active JP7041648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131665A JP7041648B2 (en) 2019-07-17 2019-07-17 Manufacturing method of composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131665A JP7041648B2 (en) 2019-07-17 2019-07-17 Manufacturing method of composite substrate

Publications (2)

Publication Number Publication Date
JP2021018998A true JP2021018998A (en) 2021-02-15
JP7041648B2 JP7041648B2 (en) 2022-03-24

Family

ID=74563735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131665A Active JP7041648B2 (en) 2019-07-17 2019-07-17 Manufacturing method of composite substrate

Country Status (1)

Country Link
JP (1) JP7041648B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200480A (en) * 2008-01-24 2009-09-03 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor substrate
JP2015005769A (en) * 2008-04-25 2015-01-08 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
WO2019013212A1 (en) * 2017-07-14 2019-01-17 信越化学工業株式会社 Highly heat conductive device substrate and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200480A (en) * 2008-01-24 2009-09-03 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor substrate
JP2015005769A (en) * 2008-04-25 2015-01-08 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
WO2019013212A1 (en) * 2017-07-14 2019-01-17 信越化学工業株式会社 Highly heat conductive device substrate and method for producing same

Also Published As

Publication number Publication date
JP7041648B2 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
TWI812747B (en) Techniques for joining dissimilar materials in microelectronics
TWI492275B (en) The method of manufacturing the bonded substrate
JP3900741B2 (en) Manufacturing method of SOI wafer
US9142448B2 (en) Method of producing a silicon-on-insulator article
JP5433567B2 (en) Manufacturing method of SOI substrate
US8551862B2 (en) Method of manufacturing laminated wafer by high temperature laminating method
JP5935751B2 (en) Heat dissipation board and manufacturing method thereof
TWI430339B (en) Method for the preparation of a multi-layered crystalline structure
US20120280367A1 (en) Method for manufacturing a semiconductor substrate
US20160351436A1 (en) Low temperature wafer bonding
JP4624812B2 (en) Manufacturing method of SOI wafer
CN113193109A (en) Preparation method of composite film and composite film
JP7041648B2 (en) Manufacturing method of composite substrate
WO2010137682A1 (en) Process for production of laminated wafer
JP2023112087A (en) Method for fabricating semiconductor structure including high resistivity layer, and related semiconductor structure
JP2009253184A (en) Manufacturing method for laminated substrate
JP2012160648A (en) Method for manufacturing soi wafer
CN112368828A (en) Technique for joining dissimilar materials in microelectronics
JP2007194345A (en) Method and device for manufacturing laminate substrate
Tan et al. A back-to-face silicon layer stacking for three-dimensional integration
JP7082097B2 (en) Glass-on-silicon substrate and its manufacturing method
US20230187255A1 (en) Semiconductor device and manufacturing method of semiconductor device
WO2022172902A1 (en) Chemical bonding method, package-type electronic component, and hybrid bonding method for electronic device
KR20220124205A (en) Method for bonding two semiconductor substrates
JP2017028178A (en) Three-dimensional mounting method for semiconductor wafer and joining method for semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220311

R150 Certificate of patent or registration of utility model

Ref document number: 7041648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150