JP2021018749A - Frequency response analysis method - Google Patents

Frequency response analysis method Download PDF

Info

Publication number
JP2021018749A
JP2021018749A JP2019135657A JP2019135657A JP2021018749A JP 2021018749 A JP2021018749 A JP 2021018749A JP 2019135657 A JP2019135657 A JP 2019135657A JP 2019135657 A JP2019135657 A JP 2019135657A JP 2021018749 A JP2021018749 A JP 2021018749A
Authority
JP
Japan
Prior art keywords
pressure
vibration
chamber
diaphragm
frequency response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135657A
Other languages
Japanese (ja)
Other versions
JP7300919B2 (en
Inventor
高野 雅之
Masayuki Takano
雅之 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2019135657A priority Critical patent/JP7300919B2/en
Publication of JP2021018749A publication Critical patent/JP2021018749A/en
Application granted granted Critical
Publication of JP7300919B2 publication Critical patent/JP7300919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

To provide a frequency response analysis method of a pilot governor for a reverse operation type pressure governor capable of appropriately inputting an actual pressure sine wave or the like as input and measuring a driving pressure as an output response thereof, and also capable of performing a frequency response analysis that analyzes control characteristics from these values.SOLUTION: A frequency response analysis method performs: a pressure vibration imparting step of imparting cycle pressure vibration to a first chamber H1; a pressure vibration measuring step of measuring a simulated secondary pressure involving the cycle pressure vibration to be introduced to the first chamber H1; a vibration measuring step of measuring a driving pressure to be introduced to a driving pressure introducing path L4 from a third chamber H3 in a state where the cycle pressure vibration is imparted in the pressure vibration imparting step; and a frequency response analysis step of carrying out a frequency response analysis on the basis of an amplitude and a phase of the simulated secondary vibration to be measured in the pressure vibration measuring step, and an amplitude and a phase of vibration in another section to be measured in the vibration measuring step.SELECTED DRAWING: Figure 1

Description

本発明は、逆作動型整圧装置として用いるパイロットガバナの周波数応答解析方法に関する。 The present invention relates to a method for analyzing the frequency response of a pilot governor used as a counter-actuated pressure regulator.

従来、二次圧が設定圧力よりも上昇・降下した場合に、メインガバナの主弁体の変位を制御できる整圧装置として、逆作動型整圧装置と、それに用いられるパイロットガバナが知られている(特許文献1を参照)。
一方で、制御システムを解析する一つの手法として、正弦波等の入力に対する応答から制御特性を調べる周波数応答解析が知られている。当該周波数応答解析は、電気系・メカトロ系システムで使用される場合が多いが、電気を必要としないフィードバック制御装置であるパイロットガバナ等の整圧器にも当然のことながら適用可能である。例えば、パイロット式ガバナにおいては、入力信号をパイロットに入力する二次圧、出力信号を本体弁下流側配管の二次圧として、パイロットガバナ単体においては、入力信号を二次圧、出力信号を駆動圧として、種々の周波数での入力に対する周波数応答解析を行うことにより、系の安定性を判定できる。
Conventionally, as a pressure regulating device that can control the displacement of the main valve body of the main governor when the secondary pressure rises or falls below the set pressure, a reverse operation type pressure regulating device and a pilot governor used for the reverse pressure regulating device are known. (See Patent Document 1).
On the other hand, as one method for analyzing a control system, frequency response analysis for examining control characteristics from a response to an input such as a sine wave is known. The frequency response analysis is often used in electrical and mechatronic systems, but it can of course be applied to pressure regulators such as pilot governors, which are feedback control devices that do not require electricity. For example, in the pilot type governor, the input signal is used as the secondary pressure for inputting the input signal to the pilot, and the output signal is used as the secondary pressure for the piping on the downstream side of the main valve. The stability of the system can be determined by performing frequency response analysis for inputs at various frequencies as pressure.

特開2017−182718号公報Japanese Unexamined Patent Publication No. 2017-182718

さて、上述の如く、パイロット式ガバナもしくはパイロットガバナの周波数応答解析を行う場合、周期振動である正弦波等を入力信号として二次圧検知室へ付与する必要がある。しかしながら、特許文献1に示されるような一般に知られる逆作動型整圧装置に用いられるパイロット式ガバナもしくはパイロットガバナは、二次圧検知室に対して駆動圧室から排出された駆動圧が流入してくるため、正確な正弦波を入力信号として付与することができない。例えば、二次圧検知室に連通接続される二次側圧力導入路の管路抵抗を減らすことにより、当該二次側圧力導入路からの駆動圧排出抵抗を小さくできる。しかしながら、当該方法では、二次圧検知室を気密に構成し、その体積を強制的に変化させて圧力として正弦波を与えるような方法は適用できなくなる。 As described above, when the frequency response analysis of the pilot governor or the pilot governor is performed, it is necessary to apply a sine wave or the like, which is a periodic vibration, to the secondary pressure detection chamber as an input signal. However, in the pilot governor or the pilot governor used in the generally known reverse-acting pressure regulating device as shown in Patent Document 1, the driving pressure discharged from the driving pressure chamber flows into the secondary pressure detection chamber. Therefore, an accurate sine wave cannot be given as an input signal. For example, by reducing the pipeline resistance of the secondary pressure introduction path that is communicated with the secondary pressure detection chamber, the drive pressure discharge resistance from the secondary pressure introduction path can be reduced. However, in this method, a method in which the secondary pressure detection chamber is airtightly configured and its volume is forcibly changed to give a sine wave as pressure cannot be applied.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、入力として実際の圧力正弦波等を適切に投入できると共にその出力応答としての駆動圧を計測でき、それらの値から制御特性を解析する周波数応答解析を実行可能な逆作動型整圧装置のパイロットガバナの周波数応答解析方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to be able to appropriately input an actual pressure sine wave or the like as an input and to measure the driving pressure as an output response thereof, and control from those values. It is an object of the present invention to provide a frequency response analysis method for a pilot governor of a counter-actuated pressure regulator capable of performing frequency response analysis for analyzing characteristics.

上記目的を達成するための周波数応答解析方法は、
逆作動型整圧装置として用いるパイロットガバナの周波数応答解析方法であって、その特徴構成は、
筐体と第1ダイヤフラムとにより区画され二次側圧力導入路が連通接続される第1室と、前記筐体と前記第1ダイヤフラムと第2ダイヤフラムとにより区画され外部へ開放される開放孔が筐体に形成される第2室と、前記筐体と前記第2ダイヤフラムと第3ダイヤフラムとにより区画され一次側圧力導入路が連通接続されると共にメインガバナの駆動圧室に駆動圧を導入する駆動圧導入路が連通接続される第3室と、前記第3ダイヤフラムを前記第3室の側へ付勢する第1付勢部材と、
前記第1ダイヤフラムと前記第2ダイヤフラムと前記第3ダイヤフラムとを変位方向で同一の変位量となるよう連結する連結部材と、
前記変位方向において前記第2ダイヤフラムの側から前記一次側圧力導入路の導入端である一次側圧力導入端へ向けて第2付勢部材により付勢されて、前記一次側圧力導入端を開閉して前記一次側圧力導入端から前記第3室へ導入される一次圧側流体の流入量を調整する排気弁と、
当該排気弁に連結されると共に、前記第2ダイヤフラムに形成される開孔を開閉して前記第3室の側から前記第2室の側へ逃がす排出量を調整する開放弁とを有する前記パイロットガバナを用いて実行する周波数応答解析方法であり、
前記第1室に周期圧力振動を付与する圧力振動付与工程と、
前記第1室に導入される前記周期圧力振動を伴う模擬二次圧を計測する圧力振動計測工程と、
前記圧力振動付与工程にて前記周期圧力振動を付与している状態で、前記周期圧力振動を受けて生じる他部位での振動を計測する振動計測工程と、
前記圧力振動計測工程にて計測される模擬二次圧振動の振幅及び位相と、前記振動計測工程にて計測される前記他部位での振動の振幅及び位相とに基づいて周波数応答解析を行う周波数応答解析工程を実行する点にある。
The frequency response analysis method for achieving the above objectives is
It is a frequency response analysis method of the pilot governor used as a reverse operation type pressure regulator, and its characteristic configuration is
The first chamber, which is partitioned by the housing and the first diaphragm and the secondary pressure introduction path is communicated with each other, and the opening hole which is partitioned by the housing, the first diaphragm, and the second diaphragm and opened to the outside. The second chamber formed in the housing is partitioned by the housing, the second diaphragm, and the third diaphragm, and the primary pressure introduction path is communicated and connected, and the drive pressure is introduced into the drive pressure chamber of the main governor. A third chamber in which the drive pressure introduction path is communicated with each other, and a first urging member that urges the third diaphragm toward the third chamber.
A connecting member that connects the first diaphragm, the second diaphragm, and the third diaphragm so as to have the same displacement amount in the displacement direction.
In the displacement direction, the secondary pressure introduction end is urged by the second urging member from the side of the second diaphragm toward the primary pressure introduction end, which is the introduction end of the primary pressure introduction path, to open and close the primary pressure introduction end. An exhaust valve that adjusts the inflow amount of the primary pressure side fluid introduced into the third chamber from the primary side pressure introduction end, and
The pilot having an open valve which is connected to the exhaust valve and opens and closes an opening formed in the second diaphragm to adjust the amount of exhaust gas released from the side of the third chamber to the side of the second chamber. It is a frequency response analysis method executed using a governor.
A pressure vibration applying step of applying periodic pressure vibration to the first chamber, and
A pressure vibration measurement step for measuring a simulated secondary pressure accompanied by the periodic pressure vibration introduced into the first chamber,
A vibration measurement step of measuring vibration at another part generated by receiving the periodic pressure vibration while the periodic pressure vibration is applied in the pressure vibration applying step.
Frequency to perform frequency response analysis based on the amplitude and phase of simulated secondary pressure vibration measured in the pressure vibration measurement step and the amplitude and phase of vibration in the other part measured in the vibration measurement step. The point is to execute the response analysis process.

上記特徴構成を有する3枚のダイヤフラムを有するパイロットガバナは、従来から逆作動型整圧装置として一般的に用いられている2枚のダイヤフラムを有するパイロットガバナと異なる構成を有するが、両者とも、二次圧が上昇すると、すべてのダイヤフラムが下降して、駆動圧が排出(3枚ダイヤフラムの構成の場合には第2室を介して外部へ排出、2枚ダイヤフラムの構成の場合には二次圧検知室へ排出)され、二次圧が低下すると、駆動圧がメインガバナに供給される構成となるため、基本的には、2枚のダイヤフラムを有するパイロットガバナと同様の周波数応答特性を示すものと考えられる。
更に、上記特徴構成を有するパイロットガバナによれば、開放弁を介して第3室から逃がされる排出圧は、第2室へ導かれ第1室へ導かれることはないから、第1室では、当該排出圧に乱されることのない入力として周期圧力振動として二次圧を導入できる。
このため、上記特徴構成を有するパイロットガバナを用いて、圧力振動付与工程にて付与される周期圧力振動と振動計測工程にて計測される駆動圧とに基づいて周波数応答解析を実行することにより、一般的に用いられる逆作動型整圧装置のパイロットガバナの周波数応答特性と略同等の特性を得ることができる。
従って、入力として実際の圧力正弦波等を適切に投入できると共に出力を駆動圧として、それらの値から制御特性を解析する周波数応答解析を実行可能な逆作動型整圧装置のパイロットガバナの周波数応答解析方法を実現できる。
A pilot governor having three diaphragms having the above-mentioned characteristic configuration has a different configuration from a pilot governor having two diaphragms which has been generally used as a reverse-acting pressure regulator, but both of them have two. When the secondary pressure rises, all the diaphragms fall and the drive pressure is discharged (in the case of a three-diaphragm configuration, it is discharged to the outside via the second chamber, and in the case of a two-diaphragm configuration, the secondary pressure is discharged. When it is discharged to the detection chamber) and the secondary pressure drops, the drive pressure is supplied to the main governor. Therefore, it basically exhibits the same frequency response characteristics as a pilot governor with two diaphragms. it is conceivable that.
Further, according to the pilot governor having the above-mentioned characteristic configuration, the exhaust pressure released from the third chamber through the release valve is guided to the second chamber and not to the first chamber. Therefore, in the first chamber, A secondary pressure can be introduced as periodic pressure vibration as an input that is not disturbed by the discharge pressure.
Therefore, by using a pilot governor having the above-mentioned characteristic configuration, frequency response analysis is performed based on the periodic pressure vibration applied in the pressure vibration applying process and the driving pressure measured in the vibration measuring process. It is possible to obtain characteristics substantially equivalent to the frequency response characteristics of the pilot governor of a commonly used reverse-acting pressure regulator.
Therefore, the frequency response of the pilot governor of the counter-actuated pressure regulator that can appropriately input an actual pressure sine wave or the like as an input and can perform frequency response analysis that analyzes the control characteristics from those values using the output as a driving pressure. The analysis method can be realized.

尚、上記特徴構成を有するパイロットガバナは、上述したような従来のパイロットガバナの周波数応答特性を知るための検証用として用いることができる他、逆作動型整圧装置のパイロットガバナとして実用に供することもできる。 The pilot governor having the above-mentioned characteristic configuration can be used for verification for knowing the frequency response characteristics of the conventional pilot governor as described above, and can be put into practical use as a pilot governor for a reverse-acting pressure regulator. You can also.

周波数応答解析方法の更なる特徴構成は、
前記圧力振動付与工程は、複数の異なる周波数にて前記第1室に前記周期圧力振動を付与する工程であり、
前記圧力振動計測工程は、複数の異なる周波数にて発生した前記模擬二次圧を計測する工程であり、
前記振動計測工程は、複数の異なる周波数にて発生した前記周期圧力振動毎で生成される駆動圧を計測する工程であり、
前記周波数応答解析工程は、
複数の異なる周波数毎で前記圧力振動計測工程にて計測された前記模擬二次圧振動の振幅と前記振動計測工程にて計測された前記他部位での振動の振幅との比から導出されるゲインを複数の周波数毎に出力するゲイン出力工程と、
複数の異なる周波数毎で前記圧力振動計測工程にて計測された前記模擬二次圧振動の位相と前記振動計測工程にて計測された前記他部位での振動の位相との差を複数の周波数毎に出力する位相出力工程と、
前記ゲイン出力工程にて出力されるゲイン出力及び前記位相出力工程にて出力される位相出力から作成されるボード線図に基づいて、前記パイロットガバナの安定性を判定する安定性判定工程とを有する点にある。
Further features of the frequency response analysis method
The pressure vibration applying step is a step of applying the periodic pressure vibration to the first chamber at a plurality of different frequencies.
The pressure vibration measurement step is a step of measuring the simulated secondary pressure generated at a plurality of different frequencies.
The vibration measurement step is a step of measuring the driving pressure generated for each of the periodic pressure vibrations generated at a plurality of different frequencies.
The frequency response analysis step is
Gain derived from the ratio of the amplitude of the simulated secondary pressure vibration measured in the pressure vibration measurement step at each of a plurality of different frequencies to the amplitude of the vibration in the other part measured in the vibration measurement step. And the gain output process that outputs for each of multiple frequencies
The difference between the phase of the simulated secondary pressure vibration measured in the pressure vibration measurement process at each of a plurality of different frequencies and the phase of vibration at the other part measured in the vibration measurement process is set for each of a plurality of frequencies. Phase output process to output to
It has a stability determination step of determining the stability of the pilot governor based on a board diagram created from the gain output output in the gain output step and the phase output output in the phase output step. At the point.

当該判定によれば、実測に基づいた解析による判定であるため、種々の仮定を前提とする数値解析に基づく方法に比べ、より実態に即した判定を行うことができる。 According to the determination, since the determination is based on the actual measurement, the determination can be made more realistically than the method based on the numerical analysis premised on various assumptions.

周波数応答解析に用いるパイロットガバナの概略構成図である。It is a schematic block diagram of the pilot governor used for frequency response analysis. 周波数応答解析に用いるパイロットガバナが作動する場合の作用図である。It is an operation diagram when the pilot governor used for frequency response analysis operates. パイロットガバナへの入力としての周期圧力振動を伴う模擬二次圧のグラフ図、及び出力としての駆動圧のグラフ図である。It is a graph diagram of the simulated secondary pressure accompanied by the periodic pressure vibration as an input to the pilot governor, and the graph diagram of the drive pressure as an output.

本発明の実施形態に係るパイロットガバナ100の周波数応答解析方法は、入力として実際の圧力正弦波等を適切に投入できると共にその出力応答としての駆動圧を計測でき、それらの値から制御特性を解析するものに関する。 The frequency response analysis method of the pilot governor 100 according to the embodiment of the present invention can appropriately input an actual pressure sine wave or the like as an input, measure the driving pressure as the output response, and analyze the control characteristics from those values. Regarding what to do.

逆作動型整圧装置200は、図1に示すように、流体流路L0の二次圧を設定圧力に調整する逆作動型のメインガバナ10と、そのメインガバナ10へ駆動圧を導入するパイロットガバナ100とを備えて構成されている。 As shown in FIG. 1, the reverse-acting pressure regulating device 200 includes a reverse-acting main governor 10 that adjusts the secondary pressure of the fluid flow path L0 to a set pressure, and a pilot that introduces a driving pressure into the main governor 10. It is configured to include a governor 100.

メインガバナ10は、ダイヤフラムプレート14に沿って設けられる主ダイヤフラムD0を備えており、その内部空間が主ダイヤフラムD0にて第5室H5と第6室H6とに区画されている。そして、メインガバナ10は、流体流路L0に設けられる主開口部K0を開閉する主弁体V0を備えており、この主弁体V0は連結棒16にて主ダイヤフラムD0と連結され主ダイヤフラムD0と連動して動く形態で、開閉される構成となっている。また、第5室H5には、主ダイヤフラムD0を主弁体V0の閉弁方向側に付勢する主付勢バネG0が配設されている。 The main governor 10 is provided with a main diaphragm D0 provided along the diaphragm plate 14, and the internal space thereof is divided into a fifth chamber H5 and a sixth chamber H6 by the main diaphragm D0. The main governor 10 is provided with a main valve body V0 that opens and closes the main opening K0 provided in the fluid flow path L0, and the main valve body V0 is connected to the main diaphragm D0 by a connecting rod 16 and is connected to the main diaphragm D0. It is configured to open and close in a form that moves in conjunction with. Further, in the fifth chamber H5, a main urging spring G0 that urges the main diaphragm D0 toward the valve closing direction side of the main valve body V0 is arranged.

パイロットガバナ100は、筐体Kと第1ダイヤフラムD1とにより区画され二次側圧力導入路L2が連通接続される第1室H1と、筐体Kと第1ダイヤフラムD1と第2ダイヤフラムD2とにより区画され外部へ開放される開放孔K1が筐体Kに形成される第2室H2と、筐体Kと第2ダイヤフラムD2と第3ダイヤフラムD3とにより区画され一次側圧力導入路L1が連通接続されると共にメインガバナ10の第6室H6(駆動圧室の一例)に駆動圧を導入する駆動圧導入路L4が連通接続される第3室H3と、第3ダイヤフラムD3を第3室H3の側へ付勢する第1付勢部材G1と、第1ダイヤフラムD1と第2ダイヤフラムD2と第3ダイヤフラムD3とを変位方向(図1で矢印Z方向)で同一の変位量となるよう連結する連結部材Rと、変位方向において第2ダイヤフラムD2の側から一次側圧力導入路L1の導入端である一次圧導入端L1aへ向けて第2付勢部材G2により付勢されて、一次圧導入端L1aを開閉して一次圧導入端L1aから第3室H3へ導入される一次圧側流体の流入量を調整する排気弁V1と、当該排気弁V1に連結されると共に、第2ダイヤフラムD2に形成される開孔DP2aを開閉して第3室H3の側から第2室H2の側へ逃がす排出量を調整する開放弁V2とを有する。
ここで、駆動圧導入路L4は、流路径を絞る絞り39を有する第3流体流路L3を介して、二次側圧力導入路L2に連通接続されている。また、第1付勢部材G1の第3ダイヤフラムD3と逆側の基端側端部は、筐体Kの内周面に設けられた雌螺子部G2bに螺合する形態で設けられる受け皿G2aに当接しており、当該受け皿G2aは雌螺子部G2bへ螺合しながら回転することで、変位方向(図1で矢印Z方向)に移動自在に構成されている。
The pilot governor 100 is composed of a first chamber H1 which is partitioned by a housing K and a first diaphragm D1 and a secondary pressure introduction path L2 is communicated with each other, and a housing K, a first diaphragm D1 and a second diaphragm D2. The second chamber H2 in which the opening hole K1 is partitioned and opened to the outside is formed in the housing K, and the housing K, the second diaphragm D2, and the third diaphragm D3 are partitioned, and the primary pressure introduction path L1 is communicated with each other. The third chamber H3 and the third diaphragm D3 are connected to the third chamber H3 in which the drive pressure introduction path L4 for introducing the drive pressure into the sixth chamber H6 (an example of the drive pressure chamber) of the main governor 10 is communicated with each other. A connection in which the first urging member G1 urging to the side, the first diaphragm D1, the second diaphragm D2, and the third diaphragm D3 are connected so as to have the same displacement amount in the displacement direction (arrow Z direction in FIG. 1). The member R and the primary pressure introduction end L1a are urged by the second urging member G2 from the side of the second diaphragm D2 in the displacement direction toward the primary pressure introduction end L1a which is the introduction end of the primary pressure introduction path L1. Is connected to the exhaust valve V1 that opens and closes to adjust the inflow amount of the primary pressure side fluid introduced into the third chamber H3 from the primary pressure introduction end L1a, and is formed in the second diaphragm D2. It has an open valve V2 that opens and closes the opening DP2a to adjust the amount of discharge that is released from the side of the third chamber H3 to the side of the second chamber H2.
Here, the drive pressure introduction path L4 is communicated with the secondary side pressure introduction path L2 via a third fluid flow path L3 having a throttle 39 for narrowing the flow path diameter. Further, the base end side end portion of the first urging member G1 opposite to the third diaphragm D3 is attached to a saucer G2a provided in a form of being screwed into a female screw portion G2b provided on the inner peripheral surface of the housing K. The saucer G2a is in contact with each other, and is configured to be movable in the displacement direction (arrow Z direction in FIG. 1) by rotating while being screwed into the female screw portion G2b.

尚、第1ダイヤフラムD1には第1ダイヤフラムプレートDP1が設けられ、第2ダイヤフラムD2には第2ダイヤフラムプレートDP2が設けられ、第3ダイヤフラムD3には第3ダイヤフラムプレートDP3が設けられており、連結部材Rは、第1ダイヤフラムプレートDP1と第2ダイヤフラムプレートDP2と第3ダイヤフラムプレートDP3とを連結する形態で設けられている。 The first diaphragm D1 is provided with the first diaphragm plate DP1, the second diaphragm D2 is provided with the second diaphragm plate DP2, and the third diaphragm D3 is provided with the third diaphragm plate DP3. The member R is provided in a form of connecting the first diaphragm plate DP1, the second diaphragm plate DP2, and the third diaphragm plate DP3.

上述の構成において第1付勢部材G1及び第2付勢部材G2の付勢力を適切に設定することで、流体流路L0の二次圧P2が設定圧力よりも昇圧した場合、図2(a)に示すように、第1室H1の圧力が昇圧することにより、第1付勢部材G1の付勢力に抗して、第1ダイヤフラムD1と第2ダイヤフラムD2と第3ダイヤフラムD3とが第1付勢部材G1の側へ変位する。これにより、排気弁V1が閉じ側へ動作されると共に開放弁V2が開き側へ動作され、第3室H3への一次圧P1の導入が停止されると共に、第3室H3の圧が第2室H2及び開放孔K1を介して外部へ放出される。これにより、第6室H6の圧は、駆動圧導入路L4、開孔DP2a、開放孔K1を介して、外部へ排出され、第6室H6の圧力は低下し、第5室H5と第6室H6との圧力差により主ダイヤフラムD0が第6室H6側に変位する。よって、メインガバナ10の主弁体V0が閉じ側に動作され、流体流路L0の二次圧P2を低下させて二次圧P2を設定圧力に調整する。
尚、開孔DP2aの開度は、二次圧P2と設定圧力との圧力差が大きいほど大きくなるように構成されている。
When the secondary pressure P2 of the fluid flow path L0 is higher than the set pressure by appropriately setting the urging force of the first urging member G1 and the second urging member G2 in the above configuration, FIG. 2A ), The pressure of the first chamber H1 is increased, so that the first diaphragm D1, the second diaphragm D2, and the third diaphragm D3 are first opposed to the urging force of the first urging member G1. It is displaced toward the urging member G1. As a result, the exhaust valve V1 is operated to the closed side and the open valve V2 is operated to the open side, the introduction of the primary pressure P1 to the third chamber H3 is stopped, and the pressure of the third chamber H3 is reduced to the second chamber H3. It is discharged to the outside through the chamber H2 and the opening hole K1. As a result, the pressure in the sixth chamber H6 is discharged to the outside through the drive pressure introduction path L4, the opening DP2a, and the opening hole K1, the pressure in the sixth chamber H6 decreases, and the fifth chamber H5 and the sixth chamber H6 The main diaphragm D0 is displaced toward the sixth chamber H6 due to the pressure difference from the chamber H6. Therefore, the main valve body V0 of the main governor 10 is operated to the closed side, the secondary pressure P2 of the fluid flow path L0 is lowered, and the secondary pressure P2 is adjusted to the set pressure.
The opening degree of the opening DP2a is configured to increase as the pressure difference between the secondary pressure P2 and the set pressure increases.

一方、流体流路L0の二次圧P2が設定圧力よりも降圧した場合、図2(b)に示すように、二次側圧力導入路L2にて流体流路L0の二次側に連通接続されたパイロットガバナ100の第1室H1の圧力が低下し、第1付勢部材G1の付勢力により第1ダイヤフラムD1と第2ダイヤフラムD2と第3ダイヤフラムD3とが第1室H1の側へ変位する。これにより、排気弁V1が開き側へ動作すると共に開放弁V2が閉じ側へ動作し、一次側圧力導入路L1を介して第3室H3へ流体流路L0の一次圧が導入され、第3室H3の圧力が上昇する。そして、その圧力上昇した第3室H3の圧力が駆動圧導入路L4を介してメインガバナ10の第6室H6へ駆動圧として導入され、第6室H6の圧力も上昇し、第5室H5と第6室H6との圧力差により主ダイヤフラムD0が第5室H5側に変位する。よって、メインガバナ10の主弁体V0が開き側に動作され、流体流路L0の二次圧P2を上昇させて二次圧P2を設定圧力に調整する。 On the other hand, when the secondary pressure P2 of the fluid flow path L0 is lower than the set pressure, as shown in FIG. 2B, the secondary side pressure introduction path L2 communicates with the secondary side of the fluid flow path L0. The pressure in the first chamber H1 of the pilot governor 100 is reduced, and the first diaphragm D1, the second diaphragm D2, and the third diaphragm D3 are displaced toward the first chamber H1 by the urging force of the first urging member G1. To do. As a result, the exhaust valve V1 operates to the open side and the open valve V2 operates to the closed side, and the primary pressure of the fluid flow path L0 is introduced into the third chamber H3 via the primary side pressure introduction path L1. The pressure in the chamber H3 rises. Then, the pressure of the third chamber H3 whose pressure has increased is introduced as a drive pressure into the sixth chamber H6 of the main governor 10 via the drive pressure introduction path L4, the pressure of the sixth chamber H6 also increases, and the pressure of the sixth chamber H6 also rises, and the fifth chamber H5 The main diaphragm D0 is displaced toward the fifth chamber H5 due to the pressure difference between the and the sixth chamber H6. Therefore, the main valve body V0 of the main governor 10 is operated to the open side, the secondary pressure P2 of the fluid flow path L0 is increased, and the secondary pressure P2 is adjusted to the set pressure.

さて、これまで説明してきた3枚のダイヤフラムを有するパイロットガバナ100は、周期圧力振動を伴う模擬二次圧P2を二次圧検知室としての第1室H1へ加えたときに、特許文献1(特開2017−12718号公報)に示される従来の逆作動型整圧装置に用いられる2枚のダイヤフラムを有するパイロットガバナと略同等の周波数応答特性を得られるよう以下のような構成を有している。 The pilot governor 100 having the three diaphragms described so far has patent document 1 (Patent Document 1) when a simulated secondary pressure P2 accompanied by periodic pressure vibration is applied to the first chamber H1 as the secondary pressure detection chamber. Japanese Patent Application Laid-Open No. 2017-12718) has the following configuration so as to obtain frequency response characteristics substantially equivalent to those of a pilot governor having two diaphragms used in a conventional reverse-acting pressure regulator. There is.

第1ダイヤフラムD1と第2ダイヤフラムD2と第3ダイヤフラムD3の有効受圧面積は、略同等に構成されており、好ましくは、当該有効受圧面積は、従来の逆作動型のパイロットガバナのダイヤフラムの有効受圧面積と等しく構成されている。
また、第1ダイヤフラムD1と第2ダイヤフラムD2と第3ダイヤフラムD3を連結する連結部材Rは、例えば、変位方向(図1で矢印Z方向)に沿って伸びると共に第1ダイヤフラムプレートDP1と第2ダイヤフラムプレートDP2と第3ダイヤフラムプレートDP3とを連結する複数の棒状部材R1(当該実施形態では、2本)にて構成することができる。
The effective pressure receiving areas of the first diaphragm D1, the second diaphragm D2, and the third diaphragm D3 are configured to be substantially the same, and preferably, the effective pressure receiving area is the effective pressure receiving pressure of the diaphragm of the conventional reverse-acting pilot governor. It is configured equal to the area.
Further, the connecting member R connecting the first diaphragm D1, the second diaphragm D2, and the third diaphragm D3 extends along the displacement direction (arrow Z direction in FIG. 1) and the first diaphragm plate DP1 and the second diaphragm. It can be composed of a plurality of rod-shaped members R1 (two in the embodiment) connecting the plate DP2 and the third diaphragm plate DP3.

また、二次圧P2と排気弁V1のストロークや振動可能部の質量の関係は、従来のパイロットガバナと略同等の性能が得られる。因みに、振動可能部は、連結部材R、第1ダイヤフラムD1、第2ダイヤフラムD2、第3ダイヤフラムD3を含むものである。より厳密には、上記関係は、排気弁V1、開放弁V2、第1ダイヤフラムD1、第2ダイヤフラムD2、第3ダイヤフラムD3の質量の影響も受けるものである。 Further, the relationship between the stroke of the secondary pressure P2 and the exhaust valve V1 and the mass of the vibrable portion can be substantially the same as that of the conventional pilot governor. Incidentally, the vibrable portion includes the connecting member R, the first diaphragm D1, the second diaphragm D2, and the third diaphragm D3. More precisely, the above relationship is also influenced by the masses of the exhaust valve V1, the open valve V2, the first diaphragm D1, the second diaphragm D2, and the third diaphragm D3.

更に、二次圧計測室としての第1室H1に対して、入力として周期圧力振動を伴う模擬二次圧を導入するべく、二次側圧力導入路L2には、二次側圧力導入路L2の開閉を切り替える開閉弁51が設けられている。
更に、第1室H1に対して、第1室H1に対して周期圧力振動を付与する圧力振動発生装置50(圧力振動付与部の一例)が設けられており、当該圧力振動発生装置50は、第1室H1への圧力導入を制御する圧力導入弁V3と、第1室H1からの圧力排出を制御する圧力排出弁V4とから構成されている。説明を追加すると、圧力導入弁V3は、第1室H1に連通接続されている一次側圧力導入路L1を開閉する形態で設けられ、圧力排出弁V4は、第1室H1に連通接続されている大気開放流路L5を開閉する形態で設けられている。
制御装置Cが、開閉弁51を閉止している状態で、第1圧力センサS1の検知圧力値に基づいて、圧力導入弁V3及び圧力排出弁V4の開閉を交互に切換制御することで、圧力振動を発生させることができる。
Further, in order to introduce a simulated secondary pressure accompanied by periodic pressure vibration as an input to the first chamber H1 as the secondary pressure measurement chamber, the secondary side pressure introduction path L2 has a secondary pressure introduction path L2. An on-off valve 51 for switching the opening and closing of the is provided.
Further, a pressure vibration generator 50 (an example of a pressure vibration applying unit) for applying periodic pressure vibration to the first chamber H1 is provided for the first chamber H1, and the pressure vibration generator 50 is provided. It is composed of a pressure introduction valve V3 that controls pressure introduction to the first chamber H1 and a pressure discharge valve V4 that controls pressure discharge from the first chamber H1. To add an explanation, the pressure introduction valve V3 is provided in a form of opening and closing the primary side pressure introduction path L1 which is communicated with the first chamber H1, and the pressure discharge valve V4 is communicated with the first chamber H1. It is provided in a form of opening and closing the open air flow path L5.
With the on-off valve 51 closed, the control device C alternately switches between opening and closing the pressure introduction valve V3 and the pressure discharge valve V4 based on the detected pressure value of the first pressure sensor S1 to control the pressure. Vibration can be generated.

更に、第1室H1に導入される周期圧力振動を伴う模擬二次圧を計測可能な第1圧力センサS1が、開閉弁51よりも第1室H1の側に設けられている。更に、駆動圧を計測可能な第2圧力センサS2が、駆動圧導入路L4に設けられ、制御装置Cは、当該第1圧力センサS1及び第2圧力センサS2にて計測された圧力を受信可能に構成されている。
制御装置Cは、第1圧力センサS1にて計測された第1室H1に導入される周期圧力振動を伴う模擬二次圧振動の振幅及び位相と、第2圧力センサS2にて計測された他部位での振動(例えば、駆動圧の振動)の振幅及び位相とに基づいて周波数応答解析を実行する。
Further, a first pressure sensor S1 capable of measuring a simulated secondary pressure accompanied by periodic pressure vibration introduced into the first chamber H1 is provided on the side of the first chamber H1 with respect to the on-off valve 51. Further, a second pressure sensor S2 capable of measuring the drive pressure is provided in the drive pressure introduction path L4, and the control device C can receive the pressure measured by the first pressure sensor S1 and the second pressure sensor S2. It is configured in.
The control device C includes the amplitude and phase of the simulated secondary pressure vibration accompanied by the periodic pressure vibration introduced into the first chamber H1 measured by the first pressure sensor S1, and the amplitude and phase measured by the second pressure sensor S2. A frequency response analysis is performed based on the amplitude and phase of the vibration at the site (eg, the vibration of the drive pressure).

さて、これまで説明してきたパイロットガバナ100の周波数応答解析方法の一例を説明する。 Now, an example of the frequency response analysis method of the pilot governor 100 described so far will be described.

操作者は、第1室H1と流体流路L0の二次側とを圧力の伝播を禁止するよう隔離すべく、開閉弁51を閉止する。
次に、制御装置Cが、圧力振動発生装置50に生成する周期圧力振動の周波数を初期値(例えば、複数の周波数の最小値が設定される:一例としては、0.1Hz)を設定され、圧力振動発生装置50が、設定された周波数の周期圧力振動を生成する圧力振動付与工程を実行する。
その後、制御装置Cは、設定された周波数において、第1圧力センサS1により計測された周期圧力振動に伴う模擬二次圧としての圧力を受信する圧力振動計測工程を実行すると共に、第2圧力センサS2により計測された駆動圧振動(周期圧力振動を受けて生じる他部位での圧力振動の一例)を受信する振動計測工程を実行する。
所定の設定された周波数にて、計測される入力としての模擬二次圧と、出力としての駆動圧としては、例えば、図3に示すような値となる。因みに、図3にて設定されている周波数は、0.5Hzである。尚、図3では、実測値がプロットにて表示されると共に、そのサイン近似を曲線にて示している。
The operator closes the on-off valve 51 in order to isolate the first chamber H1 and the secondary side of the fluid flow path L0 so as to prohibit the propagation of pressure.
Next, the control device C sets the frequency of the periodic pressure vibration generated in the pressure vibration generator 50 to an initial value (for example, a minimum value of a plurality of frequencies is set: 0.1 Hz as an example). The pressure vibration generator 50 executes a pressure vibration applying step of generating periodic pressure vibration of a set frequency.
After that, the control device C executes a pressure vibration measurement step of receiving the pressure as a simulated secondary pressure accompanying the periodic pressure vibration measured by the first pressure sensor S1 at the set frequency, and the second pressure sensor. The vibration measurement step of receiving the drive pressure vibration (an example of the pressure vibration at another part generated by receiving the periodic pressure vibration) measured by S2 is executed.
The simulated secondary pressure as an input and the driving pressure as an output to be measured at a predetermined set frequency are, for example, values as shown in FIG. Incidentally, the frequency set in FIG. 3 is 0.5 Hz. In FIG. 3, the measured values are displayed in plots, and the sine approximation is shown in curves.

制御装置Cは、圧力振動発生装置50にて生成される周期圧力振動の周波数を段階的に増加させる。尚、ここで、周波数は、設定している周期圧力振動の周波数が所定の上限値に達するまで指数関数的に増加させることが好ましい。
次に、制御装置Cは、周波数毎で計測された周期圧力振動に伴う模擬二次圧振動の振幅及び位相と、他部位での振動の振幅及び位相とからボード線図を出力して周波数応答解析を行う周波数応答解析工程を実行する。
具体的には、計測された複数の異なる周波数毎で圧力振動計測工程にて計測された周期圧力振動を伴う模擬二次圧振動の振幅A1と振動計測工程にて計測された他部位での振動の振幅A2との比から導出されるゲインGを複数の周波数毎に出力するゲイン出力工程と、複数の異なる周波数毎で圧力振動計測工程にて計測された周期圧力振動を伴う模擬二次圧振動の位相と振動計測工程にて計測された他部位での振動の位相との差を複数の周波数毎に出力する位相出力工程とを実行し、ゲイン出力工程にて出力されたゲイン及び位相出力工程にて出力された位相の差を、ボード線図上にプロットする。
The control device C gradually increases the frequency of the periodic pressure vibration generated by the pressure vibration generator 50. Here, it is preferable that the frequency is exponentially increased until the frequency of the set periodic pressure vibration reaches a predetermined upper limit value.
Next, the control device C outputs a board diagram from the amplitude and phase of the simulated secondary pressure vibration accompanying the periodic pressure vibration measured for each frequency and the amplitude and phase of the vibration at other parts to respond to the frequency. Perform the frequency response analysis step to perform the analysis.
Specifically, the amplitude A1 of the simulated secondary pressure vibration accompanied by the periodic pressure vibration measured in the pressure vibration measurement process for each of a plurality of different measured frequencies and the vibration in other parts measured in the vibration measurement process. Simulated secondary pressure vibration with periodic pressure vibration measured in the gain output process that outputs the gain G derived from the ratio of the amplitude A2 to the amplitude A2 for each of a plurality of frequencies and the pressure vibration measurement process for each of a plurality of different frequencies. The phase output process that outputs the difference between the phase of the above and the phase of the vibration at other parts measured in the vibration measurement process for each of a plurality of frequencies is executed, and the gain and phase output process output in the gain output process. The phase difference output in is plotted on the board diagram.

制御装置Cは、ゲイン出力工程にて出力されたゲインから導出されるゲイン余裕と、位相出力工程から導出される位相余裕とから作成されるボード線図に基づいて、パイロットガバナ100の安定性を判定する安定性判定工程(周波数応答解析工程の一例)を実行する。 The control device C determines the stability of the pilot governor 100 based on the Bode diagram created from the gain margin derived from the gain output in the gain output process and the phase margin derived from the phase output process. The stability determination step (an example of the frequency response analysis process) for determination is executed.

〔別実施形態〕
(1)第1圧力センサS1は、二次圧検知室としての第1室H1の圧力を直接計測するものであっても構わない。
また、第2圧力センサS2にて計測される駆動圧は、主弁体V0の下流側配管の二次圧としても良い。
[Another Embodiment]
(1) The first pressure sensor S1 may directly measure the pressure in the first chamber H1 as the secondary pressure detection chamber.
Further, the drive pressure measured by the second pressure sensor S2 may be the secondary pressure of the downstream piping of the main valve body V0.

(2)圧力発生装置50の他の構成例としては、例えば、ルーツポンプにより第1室H1の内部圧力を振動させる形や、第1室H1に連通接続するチャンバ室を加熱・冷却してチャンバ内の気体の膨張・収縮により圧力振動を形成させる構成を採用することも可能である。 (2) As another example of the configuration of the pressure generator 50, for example, a form in which the internal pressure of the first chamber H1 is vibrated by a roots pump, or a chamber in which a chamber chamber communicating with the first chamber H1 is heated and cooled is heated and cooled. It is also possible to adopt a configuration in which pressure vibration is formed by expansion and contraction of the gas inside.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in the present specification are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明のパイロットガバナの周波数応答解析方法は、入力として実際の圧力正弦波等を適切に投入できると共にその出力応答としての駆動圧を計測でき、それらの値から制御特性を解析する周波数応答解析を実行可能な逆作動型整圧装置のパイロットガバナの周波数応答解析方法として、有効に利用可能である。 The frequency response analysis method of the pilot governor of the present invention can appropriately input an actual pressure sine wave or the like as an input, measure the driving pressure as an output response, and analyze the control characteristics from those values. It can be effectively used as a frequency response analysis method for the pilot governor of a viable reverse-acting pressure regulator.

10 :メインガバナ
14 :ダイヤフラムプレート
100 :パイロットガバナ
200 :逆作動型整圧装置
D1 :第1ダイヤフラム
D2 :第2ダイヤフラム
D3 :第3ダイヤフラム
G1 :第1付勢部材
G2 :第2付勢部材
H1 :第1室
H2 :第2室
H3 :第3室
K :筐体
K1 :開放孔
L0 :流体流路
L1 :一次側圧力導入路
L1a :一次圧導入端
L2 :二次側圧力導入路
L4 :駆動圧導入路
P1 :一次圧
P2 :二次圧
R :連結部材
V0 :主弁体
V1 :排気弁
V2 :開放弁
10: Main governor 14: Diaphragm plate 100: Pilot governor 200: Reverse operation type pressure regulator D1: 1st diaphragm D2: 2nd diaphragm D3: 3rd diaphragm G1: 1st urging member G2: 2nd urging member H1 : 1st chamber H2: 2nd chamber H3: 3rd chamber K: Housing K1: Open hole L0: Fluid flow path L1: Primary pressure introduction path L1a: Primary pressure introduction end L2: Secondary pressure introduction path L4: Drive pressure introduction path P1: Primary pressure P2: Secondary pressure R: Connecting member V0: Main valve body V1: Exhaust valve V2: Open valve

Claims (2)

逆作動型整圧装置として用いるパイロットガバナの周波数応答解析方法であって、
筐体と第1ダイヤフラムとにより区画され二次側圧力導入路が連通接続される第1室と、前記筐体と前記第1ダイヤフラムと第2ダイヤフラムとにより区画され外部へ開放される開放孔が筐体に形成される第2室と、前記筐体と前記第2ダイヤフラムと第3ダイヤフラムとにより区画され一次側圧力導入路が連通接続されると共にメインガバナの駆動圧室に駆動圧を導入する駆動圧導入路が連通接続される第3室と、前記第3ダイヤフラムを前記第3室の側へ付勢する第1付勢部材と、
前記第1ダイヤフラムと前記第2ダイヤフラムと前記第3ダイヤフラムとを変位方向で同一の変位量となるよう連結する連結部材と、
前記変位方向において前記第2ダイヤフラムの側から前記一次側圧力導入路の導入端である一次側圧力導入端へ向けて第2付勢部材により付勢されて、前記一次側圧力導入端を開閉して前記一次側圧力導入端から前記第3室へ導入される一次圧側流体の流入量を調整する排気弁と、
当該排気弁に連結されると共に、前記第2ダイヤフラムに形成される開孔を開閉して前記第3室の側から前記第2室の側へ逃がす排出量を調整する開放弁とを有する前記パイロットガバナを用いて実行する周波数応答解析方法であり、
前記第1室に周期圧力振動を付与する圧力振動付与工程と、
前記第1室に導入される前記周期圧力振動を伴う模擬二次圧を計測する圧力振動計測工程と、
前記圧力振動付与工程にて前記周期圧力振動を付与している状態で、前記周期圧力振動を受けて生じる他部位での振動を計測する振動計測工程と、
前記圧力振動計測工程にて計測される模擬二次圧振動の振幅及び位相と、前記振動計測工程にて計測される前記他部位での振動の振幅及び位相とに基づいて周波数応答解析を行う周波数応答解析工程を実行する周波数応答解析方法。
This is a frequency response analysis method for pilot governors used as a reverse-acting pressure regulator.
The first chamber, which is partitioned by the housing and the first diaphragm and the secondary pressure introduction path is communicated with each other, and the opening hole which is partitioned by the housing, the first diaphragm, and the second diaphragm and opened to the outside. The second chamber formed in the housing is partitioned by the housing, the second diaphragm, and the third diaphragm, and the primary pressure introduction path is communicated and connected, and the drive pressure is introduced into the drive pressure chamber of the main governor. A third chamber in which the drive pressure introduction path is communicated with each other, and a first urging member that urges the third diaphragm toward the third chamber.
A connecting member that connects the first diaphragm, the second diaphragm, and the third diaphragm so as to have the same displacement amount in the displacement direction.
In the displacement direction, the secondary pressure introduction end is urged by the second urging member from the side of the second diaphragm toward the primary pressure introduction end, which is the introduction end of the primary pressure introduction path, to open and close the primary pressure introduction end. An exhaust valve that adjusts the inflow amount of the primary pressure side fluid introduced into the third chamber from the primary side pressure introduction end, and
The pilot having an open valve which is connected to the exhaust valve and opens and closes an opening formed in the second diaphragm to adjust the amount of exhaust gas released from the side of the third chamber to the side of the second chamber. It is a frequency response analysis method executed using a governor.
A pressure vibration applying step of applying periodic pressure vibration to the first chamber, and
A pressure vibration measurement step for measuring a simulated secondary pressure accompanied by the periodic pressure vibration introduced into the first chamber,
A vibration measurement step of measuring vibration at another part generated by receiving the periodic pressure vibration while the periodic pressure vibration is applied in the pressure vibration applying step.
Frequency to perform frequency response analysis based on the amplitude and phase of simulated secondary pressure vibration measured in the pressure vibration measurement step and the amplitude and phase of vibration in the other part measured in the vibration measurement step. A frequency response analysis method that executes a response analysis step.
前記圧力振動付与工程は、複数の異なる周波数にて前記第1室に前記周期圧力振動を付与する工程であり、
前記圧力振動計測工程は、複数の異なる周波数にて発生した前記模擬二次圧を計測する工程であり、
前記振動計測工程は、複数の異なる周波数にて発生した前記周期圧力振動毎で生成される駆動圧を計測する工程であり、
前記周波数応答解析工程は、
複数の異なる周波数毎で前記圧力振動計測工程にて計測された前記模擬二次圧振動の振幅と前記振動計測工程にて計測された前記他部位での振動の振幅との比から導出されるゲインを複数の周波数毎に出力するゲイン出力工程と、
複数の異なる周波数毎で前記圧力振動計測工程にて計測された前記模擬二次圧振動の位相と前記振動計測工程にて計測された前記他部位での振動の位相との差を複数の周波数毎に出力する位相出力工程と、
前記ゲイン出力工程にて出力されるゲイン出力及び前記位相出力工程にて出力される位相出力から作成されるボード線図に基づいて、前記パイロットガバナの安定性を判定する安定性判定工程とを有する請求項1に記載の周波数応答解析方法。
The pressure vibration applying step is a step of applying the periodic pressure vibration to the first chamber at a plurality of different frequencies.
The pressure vibration measurement step is a step of measuring the simulated secondary pressure generated at a plurality of different frequencies.
The vibration measurement step is a step of measuring the driving pressure generated for each of the periodic pressure vibrations generated at a plurality of different frequencies.
The frequency response analysis step is
Gain derived from the ratio of the amplitude of the simulated secondary pressure vibration measured in the pressure vibration measurement step at each of a plurality of different frequencies to the amplitude of the vibration in the other part measured in the vibration measurement step. And the gain output process that outputs for each of multiple frequencies
The difference between the phase of the simulated secondary pressure vibration measured in the pressure vibration measurement process at each of a plurality of different frequencies and the phase of vibration at the other part measured in the vibration measurement process is set for each of a plurality of frequencies. Phase output process to output to
It has a stability determination step of determining the stability of the pilot governor based on a board diagram created from the gain output output in the gain output step and the phase output output in the phase output step. The frequency response analysis method according to claim 1.
JP2019135657A 2019-07-23 2019-07-23 Frequency response analysis method Active JP7300919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135657A JP7300919B2 (en) 2019-07-23 2019-07-23 Frequency response analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135657A JP7300919B2 (en) 2019-07-23 2019-07-23 Frequency response analysis method

Publications (2)

Publication Number Publication Date
JP2021018749A true JP2021018749A (en) 2021-02-15
JP7300919B2 JP7300919B2 (en) 2023-06-30

Family

ID=74566040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135657A Active JP7300919B2 (en) 2019-07-23 2019-07-23 Frequency response analysis method

Country Status (1)

Country Link
JP (1) JP7300919B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285660A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Pressure governing device and characteristic adjustment method therefor
JP2015103013A (en) * 2013-11-25 2015-06-04 大阪瓦斯株式会社 Pressure governor device
JP2017182718A (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Pressure adjust device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285660A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Pressure governing device and characteristic adjustment method therefor
JP2015103013A (en) * 2013-11-25 2015-06-04 大阪瓦斯株式会社 Pressure governor device
JP2017182718A (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Pressure adjust device

Also Published As

Publication number Publication date
JP7300919B2 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
Gulati et al. A globally stable, load-independent pressure observer for the servo control of pneumatic actuators
EP2065779A1 (en) Pressure regulator and vibration isolator
KR20090075816A (en) Diagnostic mechanism in differential pressure type mass flow controller
JP2005196788A (en) Apparatus, method and system for controlling fluid flow
KR20140034206A (en) Automatic speed searching device and method for a partial stroke test of a control valve
AU2006317586A1 (en) Sound pressure level feedback control
US4325399A (en) Current to pressure converter apparatus
Zafer et al. Stability of gas pressure regulators
KR20070009643A (en) Proportional solenoid valve control device
CN103712787A (en) Pressure circulation service life testing system and method
WO2019059043A1 (en) Valve device, flow adjustment method, fluid control device, flow control method, semiconductor manufacturing device, and semiconductor manufacturing method
KR100686595B1 (en) Method for closing fluid passage, and water hammerless valve
Ferreira et al. Semi-empirical model for a hydraulic servo-solenoid valve
JP7300919B2 (en) Frequency response analysis method
JP7300918B2 (en) Pilot governor and reverse-acting pressure regulator equipped with it
Collier et al. Development of a rapid-response flow-control system using MEMS microvalve arrays
KR102304548B1 (en) Valve device and control method using the same, fluid control device and semiconductor manufacturing device
Wang et al. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction
TWI765472B (en) Flow control device and flow control method
JP4464120B2 (en) Fluid passage closing method, water hammerless valve device and water hammerless closing device
US20230185318A1 (en) Method of closed-loop controlling a piezoelectric valve device, controller device and fluidic system
Cruz et al. Mathematical Modeling of an Electropneumatic Pressure Regulator Servo-Valve
JP7506652B2 (en) Dynamic testing apparatus and control method thereof
WO2023013381A1 (en) Valve control device, valve control method, valve control program, and fluid control device
RU2725008C1 (en) Device for creation of reference pressure in volume with working substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230620

R150 Certificate of patent or registration of utility model

Ref document number: 7300919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150