JP2021018174A - 距離検出装置および撮像装置 - Google Patents

距離検出装置および撮像装置 Download PDF

Info

Publication number
JP2021018174A
JP2021018174A JP2019134707A JP2019134707A JP2021018174A JP 2021018174 A JP2021018174 A JP 2021018174A JP 2019134707 A JP2019134707 A JP 2019134707A JP 2019134707 A JP2019134707 A JP 2019134707A JP 2021018174 A JP2021018174 A JP 2021018174A
Authority
JP
Japan
Prior art keywords
irradiation
distance
light
light emitting
detecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019134707A
Other languages
English (en)
Inventor
悠人 鈴木
Yuto Suzuki
悠人 鈴木
大 内藤
Dai Naito
大 内藤
雄大 道心
Takehiro Doshin
雄大 道心
歩 根本
Ayumu Nemoto
歩 根本
航平 松本
Kohei Matsumoto
航平 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019134707A priority Critical patent/JP2021018174A/ja
Publication of JP2021018174A publication Critical patent/JP2021018174A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】測距動作時にユーザが触れる外装部分の温度上昇を抑制することが可能な距離検出装置を提供する。【解決手段】距離検出装置300はカメラ100のレンズ装置200を取り囲むように配置され、その中心軸がレンズ装置200の中心軸と略一致するように取り付けられる。距離検出装置300は、対象領域を照射するための発光素子309と、対象物356による、照射光354の反射光355を受光する受光素子310を備える。走査デバイス400は発光素子309からの照射光354を対象領域上で2次元的に走査する。距離演算部(TOF−CPU350)は、照射光354を発してから受光素子310が反射光355を受光するまでの時間に基づいて、対象物までの距離情報を演算してカメラ100に送信する。距離検出装置300内にて、発光素子309はレンズ装置200に接する側に配置される。【選択図】図2

Description

本発明は、被写体の距離情報を取得する距離検出装置に関するものである。
スマートフォン等が普及し、撮影の機会や写真撮影枚数が大幅に増加しており、周辺技術の進歩により撮像画像の画質や解像感が向上している。更に画質や解像感を高めるために、撮像装置から被写体までの距離情報(画像の奥行情報)を画素ごとに取得する技術がある。撮影前に距離情報を取得して、AF(自動焦点調節)の高速化、白とびや黒つぶれ等の発生箇所を補完する等の撮影補助、2次元画像に対する3次元的な画像表現が可能となる。撮影時の距離情報を用いて、背景と主被写体の画像にコントラスト差を設定したり、主被写体の輪郭を強調したり、主被写体に向けられている外光により発生する陰影を調整することができる。撮影時に保持した距離情報を用いて撮影後に、主被写体へ照射される外光の向きを変更する画像処理や前記補完が可能となる。また多視点撮影、拡張現実、仮想現実等の分野では3次元空間のマッピングに距離情報が活用される。画像や映像から距離情報を取得するための距離画像は、画素ごとに被写体の距離情報を表す画像である。
TOF(Time of Flight)方式は、撮像装置から被写体に向けて測距光を照射し、その反射光を距離画像取得用の撮像素子が受光するまでにかかる時間から距離を算出する方法である。例えば、所定の照射パターンにより強度変調された赤外光が被写体に照射される。被写体により反射された赤外光は撮像素子で受光され、照射パターンの照射時点と受光時点との時間差が検出されて距離値が算出される。距離値は画素ごとにビットマップ状に集められ、距離画像データとして保存される。特許文献1に開示された装置は、撮像装置本体に配置された測距光照射器の照射方向をアクチュエータにより変化させて、全撮影範囲への測距光の照射を行う。ユーザがどのような撮影画角で撮影を行っても、撮影画像全域での距離画像を正しく取得できる。
特開2014−157044号公報 特開2014−142547号公報
しかしながら、特許文献1には測距光照射器(照射手段)の詳細について記載がない。距離検出装置の照射手段は、数メートルから数十メートル先の被写体に向けて測距光を照射する必要があるので、特に高出力の赤外LED(発光ダイオード)または赤外レーザが使用される。これらの光源は、その駆動時の発熱量が大きいので高温になる。そのため、光源が距離検出装置の外装部近傍に配置される場合、外装部表面への伝熱によって局所的に高温となる。この外装部表面にユーザの手等が接触し続けると低温やけどを発症する可能性が考えられる。
本発明の目的は、測距動作時にユーザが触れる外装部分の温度上昇を抑制することが可能な距離検出装置を提供することである。
本発明の一実施形態の距離検出装置は、対象領域を照射光で照射する発光手段と、前記照射光を走査する走査手段と、前記対象領域上の対象物による、前記照射光の反射光を受光する受光手段と、前記発光手段が前記照射光を照射してから前記受光手段が前記反射光を受光するまでの時間に基づいて、前記対象物までの距離を示す距離情報の演算を行う距離演算手段と、を備える距離検出装置であって、前記距離検出装置は撮像装置が備えるレンズ装置を取り囲む位置にあって、前記発光手段は前記距離検出装置の内部で前記レンズ装置と接する側に配置される。
本発明の距離検出装置によれば、測距動作時にユーザが触れる外装部分の温度上昇を抑制することが可能である。
実施形態のカメラシステムの外観斜視図である。 第1実施形態の距離検出装置を説明する分解斜視図である。 第1および第2実施形態のカメラシステムの回路構成を説明する図である。 走査デバイスの概略図である。 TOFカメラシステムを説明する図である。 実施形態における取得画像を説明する図である。 発光素子をすべて用いた照射により撮影する場合を説明する図である。 第1実施形態の距離検出装置における発光素子の配置を説明する図である。 ユーザがカメラシステムを使用する様子を説明する図である。 第1実施形態における照射光路を説明する図である。 比較例における照射光路を説明する図である。 第1実施形態における固定ミラーホルダの構成を説明する図である。 第1実施形態の変形例における発光素子の配置を説明する図である。 第2実施形態における発光素子の配置を説明する図である。 第3実施形態の距離検出装置を説明する分解斜視図である。 第3実施形態のカメラシステムの回路構成を説明する図である。 撮影画角と発光素子と走査デバイスの反射ミラーの関係を説明する模式図である。 取得画像を説明する図である。 各照射範囲が互いにオーバーラップ部をもつ状態を示す図である。 被写体面と発光素子と走査デバイスの反射ミラーの関係を説明する模式図である。 第4実施形態における照射範囲を説明する図である。 第4実施形態における距離画像の取得方法を説明する図である。
以下に、本発明の好ましい実施形態を、添付図面に基づいて詳細に説明する。各実施形態では、撮像装置(以下、カメラとも称す)100が備えるレンズ装置200に距離検出装置300が装着されたカメラシステム1の例を示す。
[第1実施形態]
図1から図13を参照して、本実施形態について説明する。図1はカメラシステム1の外観斜視図である。説明の便宜上、カメラ100の底面には、互いに直交するX軸およびZ軸を定義し、X軸およびZ軸のそれぞれに対して直交する軸をY軸と定義する。カメラ100の光軸Oの方向はZ軸に平行な方向とし、被写体側を前側と定義する。またレンズ装置200の光軸を中心とする半径方向において光軸に近い側を内周側とし、光軸から離れる側を外周側と定義する。
カメラ100の本体部はグリップ部117を有する。グリップ部117はユーザがカメラ100を把持する把持部である。カメラ100の正面には、レンズ装置200が設けられている。距離検出装置300は対象物に対向するように、レンズ装置200の前端部にて取付け機構(不図示)によりレンズ装置200の外周を囲むように取り付けられている。取付け機構の構成については、例えば特許文献2に開示されており、レンズ装置への装着用のロック機構が採用される。その詳しい説明は省略する。なお、レンズ装置200については、カメラ100の本体部に対して着脱可能でもよく、また両者が一体的に構成されていてもよい。
距離検出装置300は、レンズ装置200に対して着脱可能であるか、またはレンズ装置200と一体的に構成される。例えば、距離検出装置300は、その中心軸がレンズ装置200の中心軸と略一致するように取り付けられる。距離検出装置300は、レンズ装置200の光軸Oを中心とした円環形状を成し、発光部301および受光部302を備える。レンズ装置200の前面レンズは距離検出装置300の開口部から前側に露出した状態である。距離検出装置300はカメラ100に対してケーブル2を介して電気的に接続されており、各種情報の通信や給電が行われる。
距離検出装置300はレンズ装置200の前端部の周囲を取り囲むように配置されるので、距離検出装置300の照射光(測距光)に対し、レンズ装置200等の障害物によるケラレは発生しない。撮像装置の画角領域内への照射を行い、測距光を距離画像取得用の撮像部で受光して、距離画像を取得することができる。
図2は、距離検出装置300の分解斜視図である。距離検出装置300は、フロントカバー304、発光部301、受光部302、フレキシブルプリント基板(以下、FPCと略称する)306、接続端子307、リアカバー305を備える。
発光部301は対象領域を照射光で照射する。発光部301は、発光素子309a〜309d、MEMS方式の走査デバイス400を備える。MEMS(Micro Electro Mechanical System)方式は微小電気−機械システム方式であり、微小な電子回路と機械要素を基板上に組み込んだシステムを構築することができる。発光部301はさらに、固定ミラー705a,705bと固定ミラーホルダ706a,706bを備える。なお、走査デバイス400の詳細に関しては、図4を用いて後述する。
受光部302は、受光素子(TOFセンサ)310と、レンズユニット308を備える。レンズユニット308は、受光素子310の前面側、つまり対象領域上の対象物である被写体の側に配置される結像レンズを含む。
発光素子309a〜309dと受光素子310はFPC306を介して、それらの制御部(図3:TOF−CPU350)と電気的に接続されている。距離検出装置300が備える接続端子307は、FPC306に実装されている。フロントカバー304とリアカバー305がビス(不図示)等により締結固定された状態において、接続端子307はフロントカバー304とリアカバー305の境界部で外部に露出する。
図3は、本実施形態のカメラシステム1の主要な電気的構成を示すブロック図である。まず、カメラ100およびレンズ装置200の構成について説明する。カメラ100の本体部に内蔵されたマイクロコンピュータ(以下、「MPU」と称する)101は、カメラ100の動作制御を司る。MPU101は各構成要素に対して様々な処理や指示を実行する。MPU101は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)、入出力制御回路(I/O CONTROL)、マルチプレクサ、タイマ回路等を含むマイコン内蔵のワンチップIC回路構成である。MPU101はカメラシステム1の制御をソフトウエアにより行うことができる。電池102はカメラ100の電源であり、電源回路103に接続される。電源回路103は、出力電圧を後述する各回路に供給する。
スイッチ群106は、例えばレリーズボタン118(図1)の半押し操作でオンになるスイッチ(SW1)、レリーズボタン118の全押し操作でオンになるスイッチ(SW2)を含む。またスイッチ群106は、露出を設定するためのスイッチ(絞り、シャッタ速度設定SW)等の各種操作スイッチを含む。スイッチ群106による信号はMPU101が取得する。
測距回路108は被写体距離の測定を行い、測定データをMPU101に出力する。被写体距離の測定方法に関して、例えばアクティブ方式では、カメラ100側から光を照射して、被写体からの反射光を受光することにより被写体距離情報を取得可能である。パッシブ方式では、画面に対応して設けられたラインセンサ等の撮像センサの像信号を読みとることにより、被写体像に対応する焦点位置から位相差検出方式での演算を行い、被写体距離情報を検出可能である。また、測距回路108は被写体が人物である場合に顔検知や瞳検知等の、特徴領域の検出を行うことが可能である。
MPU101は、カメラ側接点116とレンズ側接点207を介してレンズ装置200と通信を行う。レンズ装置200が備えるレンズ制御回路201は、MPU101との間で通信を行い、AF(オートフォーカス)駆動回路203を介して撮影レンズ205を駆動し、焦点調節の制御を行う。図3では便宜上、1枚の撮影レンズ205のみを図示しているが、実際はフォーカスレンズ等、多数のレンズ群によって撮像光学系が構成される。AF駆動回路203は、例えばステッピングモータ等により、レンズ制御回路201の制御指令にしたがってフォーカスレンズの位置を変化させ、焦点合わせを行う。またレンズ制御回路201は、絞り駆動回路204を介して絞り装置206を駆動し、露出制御を行う。絞り駆動回路204は、例えばオートアイリス等を備え、レンズ制御回路201の制御指令にしたがって絞り装置206の開口径を変化させ、光学的に絞り値を調整する。
カメラ100の本体部が備える焦点距離検出回路109は、撮影レンズ205の焦点距離情報をMPU101に出力する。例えば、撮影レンズ205が単焦点レンズである場合、固定の焦点距離を示すデータがMPU101に送られる。また撮影レンズ205がズームレンズである場合、ズームエンコーダ(不図示)により検出される撮影レンズ205のズーム停止位置に応じた焦点距離を示すデータがMPU101に送られる。
表示部110は、液晶ディスプレイ(LCD)、液晶ビューファインダ(EVF)、有機ELディスプレイ等の表示デバイスを備え、撮影に関する情報や画像情報等を表示する。
シャッタ114は、撮像素子113の前面側に設けられていて、撮像素子113を遮光状態にする位置と撮像素子113を露光状態にする位置とに亘って移動可能である。撮像素子113には、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)によるイメージセンサが使用され、露光時に受光した光束に応じた画像信号を光電変換により出力する。
ケーブル2は、カメラ本体部側の接続端子115と距離検出装置300側の接続端子307とを繋ぐ接続部材である。ケーブル2を介して、MPU101とTOF−CPU350が相互通信を行い、またカメラ本体部から距離検出装置300へ電力供給を行うことができる。本実施形態ではカメラ本体部が電池102を備えるが、距離検出装置300にも電池を備える構成でもよい。
次に、距離検出装置300の回路構成について説明する。距離検出装置300はその制御部であるTOF−CPU350を備える。発光部301は光源駆動部351と電気的に接続されており、TOF−CPU350からの制御信号により、光源駆動部351が発光素子309a〜309dを発光させる。
発光素子309a〜309dには一般的に、LED(発光ダイオード)、VCSEL(面発光レーザ)等が用いられ、使用される光の波長域は近赤外線等の不可視光域である。発光部301は走査デバイス400を備え、走査デバイス400の反射ミラー(図4:402)により光を反射させることで被写体を照射する。反射ミラーについては図4にて後述する。SUB−TOF−CPU401はTOF−CPU350に接続され、TOF−CPU350から制御信号を受信して走査デバイス400を駆動させる。なお、SUB−TOF−CPU401を設けなくても、TOF−CPU350が直接、走査デバイス400を制御することで同様に照射を行うことも可能である。
本実施形態の構成では、発光素子309a〜309dからの照射光354a、354B〜354Dを走査せずに照射範囲を固定する場合と比べて、照射範囲を広げることができる。照射範囲を広げる方法については、後で図6、図7を用いて詳細に説明する。
被写体356は照射対象領域上の対象物である。照射光354は被写体356によって反射され、その反射光355を受光部302が受光する。受光部302は、レンズユニット308と受光素子310を備える。被写体356からの反射光355はレンズユニット308で結像された後、受光素子310が受光して光電変換を行い、距離画像生成用のアナログ信号を出力する。受光素子310が出力するアナログ信号は、A/Dコンバータ352が取得してデジタル信号に変換する。デジタル信号はTOF−CPU350に送信される。姿勢検出部353は角速度センサや加速度センサ等を備え、距離検出装置300の姿勢を検出して検出信号をTOF−CPU350に出力する。
発光部301と受光部302を用いた距離検出は、カメラ100のMPU101からの指令に従ってTOF−CPU350が各部に制御信号を送信することで行われる。例えば、スイッチ群106に含まれる電源スイッチのオンが検出された場合、表示部110は画面上に、カメラ100の撮像素子113による第1のライビュー表示と、距離検出装置300の受光素子310による第2のライブビュー表示を行う。距離検出装置300によるライブビュー表示については、発光素子309a〜309dから被写体への照射の中止や、照射光354a〜354dの照射量の調整を行うことで表示状態や表示内容を変更することができる。表示部110における画像の表示方法としては、第1のライブビュー表示と、第2のライブビュー表示を、分割した2画面で表示する方法と、各表示画像を重畳して表示する方法がある。あるいは、第1または第2のライブビュー表示を任意に選択して表示する方法等がある。
カメラシステム1において、レリーズボタン118が全押し操作されてスイッチ(SW2)がオンすると、カメラ100の撮影動作と距離検出装置300の撮影動作が開始する。あるいは、レリーズボタン118が半押し操作されてスイッチ(SW1)がオンすると、発光部301の照射準備の指示が行われ、電力供給が行われる。必要に応じてスイッチ(SW1)とスイッチ(SW2)とで機能を分けることができる。例えばスイッチ(SW1)のオン操作で距離検出装置300の撮影動作を開始させ、スイッチ(SW2)のオン操作でカメラ100の撮影動作を開始させることができる。
TOF−CPU350は、A/Dコンバータ352から取得したデジタル信号、つまり距離画像データに対応する信号を、距離検出装置側の接続端子307、ケーブル2、カメラ側の接続端子115を介してMPU101に送信する。
MPU101は、カメラ100で撮影された撮像画像と距離検出装置300で撮影した距離画像を取得して画像処理を行う。MPU101は、撮像画像と距離画像との合成処理を行うことで3次元画像のデータを生成して記録装置(不図示)に保存する。保存方法には、合成後の3次元画像データを保存する方法と、撮像画像に対して距離画像情報を付与してデータを保存する方法と、撮像画像と距離画像の各データを別々に保存する方法等がある。
図4は、本実施形態における走査デバイス400の概略図である。走査デバイス400の構成と、走査デバイス400によって走査された照射光354aと354B〜354Dによる照射範囲405が2次元的に形成される様子を示している。走査デバイス400の中央には、反射ミラー402が形成されている。
走査デバイス400は、反射ミラー402を垂直軸(B軸)回りで揺動させるためのトーションバー403と、水平軸(A軸)回りで揺動させるためのトーションバー404とを備え、いわゆるジンバル構造を有する。この走査デバイス400は、半導体プロセスを用いて製作されるMEMSにより構成されている。
走査デバイス400は、反射ミラー402を垂直軸(B軸)回りで駆動する電磁力または静電気力等を用いたアクチュエータ(不図示)を有する。反射ミラー402は共振作用によって高速に揺動可能である。また、走査デバイス400は、反射ミラー402を垂直軸(B軸)回りでの揺動に同期して水平軸(A軸)回りにおいて揺動させる電磁力または静電気力等を用いたアクチュエータ(不図示)を有する。
図4において、線407は反射ミラー402の垂直軸(B軸)回りでの揺動によって水平方向(H方向)に走査される光束(走査線)の往路を示し、線408は復路を示している。実際には、走査線の本数は、図4に示した本数よりも多いが、説明をわかりやすくするために少ない本数で示している。さらに、反射ミラー402の垂直軸(B軸)回りでの揺動に同期して、水平軸(A軸)回りで反射ミラー402を揺動させることで、走査線は垂直方向(V方向)にも走査される。走査線が垂直方向の走査端409に到達すると、走査開始点410まで戻って走査が繰り返される。このように、走査デバイス400は、反射ミラー402を連続的に揺動させることによって、照射範囲405を2次元的に形成することが可能である。
図5および図6を参照して、本実施形態におけるTOFシステムについて説明する。図5は発光素子309a〜309d、走査デバイス400、被写体356、レンズユニット308、受光素子310の関係を示す模式図である。発光素子309a〜309dは、TOF−CPU350の制御信号により、例えば、10MHzで変調された照射光354a、354B〜354Dを発生させて被写体356を照射する。
被写体356からの反射光355は、レンズユニット308により結像され、その距離に応じた遅れ時間をもって受光素子310に到達する。この遅れ時間から、TOF−CPU350は距離検出装置300から被写体356までの距離を算出する(TOF方式)。例えば、遅れ時間が10ナノ秒である場合、光速度は30万km/秒であるため、被写体距離357は、3m(=10ナノ(0.00000001)秒×30万km/秒)となる。
図6(A)は、カメラ100で撮影された撮像画像358を示す。図6(B)は、距離検出装置300が、発光素子309a〜309dのいずれか1つだけを用いた照射を行って撮影された距離画像363を示している。例えば、発光素子309aだけから光が照射され、その照射範囲を照射範囲405aとする。図6(A)に示す照射範囲405aは、走査デバイス400が反射ミラー402を連続的に揺動させることによって形成される。
距離検出装置300は、照射範囲405aへの照射によって、被写体356である人物の顔部分に対応した画角中央付近において、精度よく被写体距離情報を取得する。このように、発光素子309aだけの照射を行って被写体距離情報を取得した領域を、被写体距離マップ364と称す。画角中央付近の周辺部は発光素子309aの照射範囲外であるため、被写体距離情報が得られない。これは、発光素子309aの照射範囲と被写体356との距離に起因している。
図6(B)では、一例として、TOFシステムにより取得された被写体距離を白黒の濃淡で表している。被写体距離情報に基づいて、図6(B)に示す距離画像363が得られる。
本実施形態のカメラシステム1では、距離検出装置300がレンズ装置200の先端(前端)に配置されている。よって、発光部301からの照射光354が被写体356に到達するまでの過程で、カメラ100やレンズ装置200により光が遮られる、いわゆるケラレがない。同様に、被写体356からの反射光355が受光部302に到達するまでの過程で、カメラ100やレンズ装置200により光が遮られる、いわゆるケラレがない。
カメラシステム1は、撮像画像358と距離画像363とを合成することで、立体感のある3次元画像の出力が可能である。例えば、図6(A)に示す撮像画像358と図6(B)に示す距離画像363とを合成した場合、距離画像が取得できた人物の顔部分(被写体距離マップ364)について3次元(凹凸感等)を表現した画像の取得が可能となる。
一般的に被写体距離マップ364の取得範囲は、発光素子309a〜309dの種類、配置、走査デバイス400の走査範囲によって定まる。本実施形態のように、複数の発光素子309a〜309dと走査デバイス400を含む発光部301を用いることで、照射範囲を広げることが可能である。
図7(A)は、発光素子309a〜309dをすべて用いた照射により撮影する場合の照射範囲を示す。図7(B)は、距離検出装置300にて発光素子309a〜309dをすべて用いた照射により撮影された距離画像366を示す。発光素子309a〜309dの照射範囲405a〜405dを示している。照射範囲405a〜405dは、走査デバイス400が反射ミラー402を連続的に揺動させることによって形成される。
距離検出装置300は、照射範囲405aへの照射によって、図7(A)における被写体である人物の左上部分に対応した画角に対して、精度よく被写体距離を取得する。照射範囲405aと同様に、照射範囲405b〜405dへの各照射によって、人物の右上、左下、右下の部分にそれぞれ対応した画角に対して、精度よく被写体距離を取得することができる。このようにして距離検出装置300は、発光素子309a〜309dを同時に発光させ、照射範囲405a〜405dへの同時照射を行うことによって、被写体である人物全体に対応した画角において、精度よく被写体距離を取得する。但し、発光素子309a〜309dからの照射光354a、354B〜354Dを同時に被写体へ照射すると、照射光354a、354B〜354D同士が重なる場合に、距離情報の検出精度が低下する可能性がある。そのような場合には、発光素子309a〜309dによる同時照射を行わず、順番に照射してもよい。
発光素子309a〜309dをすべて用いた照射を行って被写体距離を取得した領域を、被写体距離マップ367と称す。図7(B)は、被写体距離を取得した結果としての距離画像366を示す。被写体距離マップ367は、図6(B)の被写体距離マップ364に比べて、距離情報の取得範囲が広い。
走査デバイス400の駆動範囲によっては、発光素子309が1つの場合でも、撮影画角内の任意の範囲を照射する照射方法が可能である。例えば、照射範囲405a〜405dの内、1つの照射範囲を任意に選択して被写体へ照射することも可能である。一般的には、発光素子309aだけを用いた照射に比べて、発光素子309a〜309dをすべて用いて照射を行う場合には、照射角度の小さいレーザ等の発光素子を用いることが可能となる。そのため、数メートルから数十メートル先の被写体まで照射することが可能である。
次に図8、図9を参照して、距離検出装置300の発光素子309a〜309dの配置について説明する。図8(A)は、距離検出装置300の上面図であり、図8(A)の紙面に垂直な方向がY方向であり、紙面内にX方向およびZ方向の各軸が設定されている。+Z方向が前面側(被写体側)であり、−Z方向が背面側(カメラ100側)である。図8(B)は、距離検出装置300の発光素子309a〜309dの配置を説明する図である。図8(B)の紙面に垂直な方向がZ方向であり、紙面内にX方向およびY方向の各軸が設定されている。図8(B)は距離検出装置300の背面図であり、リアカバー305を省略して図示している。
図8(B)に示すように、光軸Oに対して、+Y方向(上方向)に走査デバイス400が配置され、−Y方向(下方向)に受光部302が配置されている。走査デバイス400は、走査デバイスホルダ704によって保持されており、走査デバイスホルダ704と一体となって、ビス(不図示)等によりフロントカバー304に締結固定されている。
発光素子309a〜309dは、光軸Oに対して+X側(左側)にて、フロントカバー304の内周部701に沿うように分散して配置される。内周部701上には、光軸Oに対して+X側に複数の台座部702b〜702dが設けられている。発光素子309b〜309dはそれぞれ、FPC306に実装されており、FPC306を接着剤等により接着することで台座部702b〜702dに固定されている。
フロントカバー304の光軸Oに対して+X側であって、且つ、レンズ装置200の光軸Oと直交する平面部703上には、台座部702aが設けられている。発光素子309aはFPC306に実装されており、FPC306を接着剤等により接着することで台座部702aに固定されている。
図9は、ユーザがカメラシステム1を使用している様子を示す図である。図9(A)を参照して、発光素子309a〜309dを内周部701に沿うように配置する理由について説明する。ユーザは、カメラシステム1を使用して3次元画像の撮影を行う場合、右手でカメラ100のグリップ部117を把持し、左手でレンズ装置200を支持する。このとき、ユーザの左手が距離検出装置300の外装領域に接触する可能性がある。外装領域とは、光軸Oを挟んで+X側のリアカバー305の表面、および、フロントカバー304の側面を含む領域であり、図9(A)では、点Qで示す領域である。この外装領域を左外装部801と称する。
TOF方式によって距離検出を行うために搭載される発光素子309a〜309dは、数メートルから数十メートル先の被写体356まで照射光354を到達させるために、高出力の素子が使用される。高出力の発光素子は駆動時の発熱量が大きいため、高温になる可能性がある。そのため、発光素子309a〜309dを、仮に左外装部801の近傍に配置した場合、左外装部801が局所的に高温となる。左外装部801は、ユーザが撮影中に触れる可能性がある。ユーザの手指等が高温部分に触れ続けることで、低温やけどを発症する等の不利益を被ることを回避する必要がある。
本実施形態の距離検出装置300では、発光素子309a〜309dがフロントカバー304の内周部701に沿うように配置されている。これによって、左外装部801は、発光素子309a〜309dからの熱に対して、距離検出装置300内部の空気層によって断熱されるため、温度上昇が抑えられる。一方で、内周部701は、距離検出装置300をレンズ装置200に取り付けた状態では、レンズ装置200と対向して接しているため、ユーザが触れることはない。以上により、距離検出装置300においてユーザが撮影中に触れる部分が高温とならないので、ユーザへの不利益は生じない。
固定ミラー705a、705bおよび固定ミラーホルダ706a、706bは、照射光354b〜354dおよび354B〜354D(図10、図12参照)の光路を形成するための部品である。固定ミラーホルダ706aは固定ミラー705aの保持部材であり、固定ミラーホルダ706bは固定ミラー705bの保持部材である。
固定ミラー705aは図8(B)に示すように、固定ミラーホルダ706aに保持されており、発光素子309b、309cからの各照射光354b、354cの光路上に配置される。固定ミラーホルダ706aは、フロントカバー304の外周部707に沿うように配置される。外周部707上には、光軸Oに対して+X側に台座部702eが設けられている。固定ミラーホルダ706aは、台座部702eにおいて、ビス(不図示)等によりフロントカバー304に締結固定されている。
固定ミラー705bは図8(B)に示すように、固定ミラーホルダ706bに保持されており、発光素子309dからの照射光354dの光路上に配置される。固定ミラーホルダ706bは、フロントカバー304の外周部707に沿うように配置される。外周部707上には、光軸Oに対して+X側に台座部702fが設けられている。固定ミラーホルダ706bは、台座部702fにおいて、ビス(不図示)等によりフロントカバー304に締結固定されている。
次に図10、図12を参照して、発光素子309a〜309dからの各照射光354a〜354d、および、354B〜354Dの光路について説明する。図10は、距離検出装置300の発光素子309a〜309dからの照射光354a〜354d、および、354B〜354Dの光路を示す図である。図10には、照射光354a〜354dの光路に関わらない部品を省略して図示している。図12は、距離検出装置300の固定ミラーホルダ706a、706bの構成を説明するための断面図であり、図8(A)におけるS−S線での断面図である。
図10に示すように、発光素子309aからの照射光354aは、走査デバイス400内の照射点Pへ向けて直接照射される。また、発光素子309bからの照射光354bは、まず、固定ミラー705aへ向けて照射され、固定ミラー705aで反射された照射光354Bが照射点Pへ照射される。発光素子309cからの照射光354cは、照射光354bと同様に、まず、固定ミラー705aへ向けて照射され、固定ミラー705aで反射された照射光354Cが照射点Pへ照射される。発光素子309dからの照射光354dは、まず、固定ミラー705bへ向けて照射され、固定ミラー705bで反射された照射光354Dが照射点Pへ照射される。
ここで、照射光354b〜354dが、それぞれ固定ミラー705a、705bを介して、照射点Pへ照射されるように構成した理由を説明する。図10に示すように、発光素子309bと照射点Pとを結ぶ線分L1上には、台座部702aが配置されている。そのため、照射光354bを照射点Pへ直接照射する発光素子309bの配置では、照射光354bが光路上の台座部702aよって遮光されてしまい、照射点Pへ照射することができない。また、発光素子309cと照射点Pとを結ぶ線分L2上、および、発光素子309dと照射点Pとを結ぶ線分L3上には、フロントカバー304の内周部701(外装部)が配置されている。そのため、照射光354c、354dを照射点Pへ直接照射するようにそれぞれ、発光素子309c、309dを配置した場合には、照射光354c、354dが光路上の内周部701よって遮光されてしまい、照射点Pへ照射することができない。
照射光354b〜354dを照射点Pへ直接照射するための方法には、図11(A)および(B)に示す方法がある。図11(A)には、発光素子309b〜309dを走査デバイス400の近傍に配置する方法を示す。図11(B)は、線分L1〜L3が距離検出装置300の部品と干渉しないように、発光素子309b〜309dを外周部707の内面部に近接して配置する方法を示す。図11(A)では、熱源である発光素子309a〜309dが一箇所に集中して配置される。また図11(B)では、左外装部801の近傍に発光素子309b〜309dが配置される。そのため、どちらの場合にも左外装部801の温度上昇をもたらす可能性がある。
図11に示す比較例に対して、本実施形態の発光素子は外周部707の近傍に配置されず、距離検出装置300にてレンズ装置200に接する側に配置される。これにより、測距動作時にユーザが触れる部分の温度上昇を抑制することができる。
図12を参照して、固定ミラーホルダ706a,706bの役割を説明する。図12(A)は固定ミラーホルダ706aとその周辺部を示し、図12(B)は固定ミラーホルダ706bとその周辺部を示す。各図の紙面に垂直な方向がZ方向であり、紙面内にX方向およびY方向の各軸が設定されている。
固定ミラーホルダ706aと台座部702eとの間、固定ミラーホルダ706bと台座部702fとの間には、位置調整部材であるワッシャ708がそれぞれ設置されている。ワッシャ708は、固定ミラー705aと固定ミラーホルダ706a、および、固定ミラー705bと固定ミラーホルダ706bを一体としてそれぞれ、固定ミラー705a、705bの面に垂直な方向に位置調整を行うために使用される。例えば、固定ミラーホルダ706bをフロントカバー304に固定した際、照射光354Dの照射点が照射点Pからずれている場合には、照射点のずれ量に応じて、厚みの異なるワッシャ708を設置して調整することができる。つまり照射光354Dが照射点Pへ正確に照射されるように、固定ミラーホルダ706bの位置を調整することができる。固定ミラーホルダ706aの位置調整についても、固定ミラーホルダ706bと同様に、ワッシャ708が使用される。
固定ミラーホルダ706a、706bは、固定ミラー705a、705bをそれぞれ保持するとともに、照射光354B〜D以外の光が走査デバイス400へ照射されることを防ぐ役目をもつ。図12(A)に示すように、固定ミラーホルダ706aには、開口部709B、709Cが形成されている。開口部709B、709Cはそれぞれ照射光354B、354Cの光路上に配置されており、照射光354B、354Cのみを通過させて、その他の光を遮断する。例えば、フロントカバー304とリアカバー305との境目から侵入した太陽光等の外乱光を遮断することができる。仮に、外乱光が走査デバイス400へ照射された後に被写体356へ照射された場合、被写体356から受光素子310までの距離に対して、光量が大きい反射光355が受光素子310に到達する。その結果、距離検出装置300が撮影する距離画像の精度が低下する可能性がある。
本実施形態では、固定ミラーホルダ706aが照射光354B、354C以外の光を遮断するので、精度を低下させることなく、距離画像を取得することができる。また、図12(B)に示すように、固定ミラーホルダ706bも同様に、開口部709Dが形成されているので、照射光354D以外の光を遮断する。その結果、精度を低下させることなく、距離画像を取得することができる。
本実施形態では、距離検出装置300が複数の発光素子309a〜309dを備える例を説明したが、発光素子309が1つの場合でも、測距動作時にユーザが触れる可能性のある部分の温度上昇を抑制する効果を奏する。
[第1実施形態の変形例]
図13を参照して第1実施形態の変形例を説明する。図13は、発光素子309a〜309dを内周部701に沿って配置し、カメラ100のグリップ部117と対向する範囲、すなわち、光軸Oに対して−X側に配置した例を示す。図13では、発光素子309a〜309dの配置および照射光354a〜354dの光路に関わらない部品の図示を省略している。
図13に示す発光素子309a〜309dの配置では、図8(B)に比べて発光素子309a〜309dが、左外装部801に対してさらに離れて位置することになる。そのため、左外装部801の温度上昇をさらに抑えることができる。
一方で、光軸Oを挟んで−X側(右側)のリアカバー305の表面およびフロントカバー304の側面を含む、距離検出装置300の外装領域が、図8(B)に比べて高温となる。この外装領域を右外装部802(図9(B)に図示)と称す。右外装部802は、左外装部801と同様に、発光素子309a〜309dからの熱に対して、距離検出装置300内部の空気層によって断熱されるため、温度上昇を抑える効果がある。
[第2実施形態]
次に図14を参照して、本発明の第2実施形態について説明する。図14は、本実施形態における距離検出装置300の発光素子309a〜309dの配置を説明する図である。以下では第1実施形態との相違点を主に説明し、第1実施形態で説明した距離検出装置と同様の部分については、既に使用した符号や記号を流用することで、それらの詳細な説明を省略する。このような説明の省略方法は後述する実施形態でも同じである。
図14に示すように、発光素子309a〜309dはフロントカバー304の内周部701に配置される。光軸Oに対して+X側(左側)に発光素子309a、309bが配置され、−X側(右側)に発光素子309c、309dが配置される。図14の紙面に垂直な方向がZ方向であり、紙面内にX方向およびY方向の各軸が設定されている。
本実施形態の距離検出装置300は、複数の走査デバイス400a、400bを備える。SUB−TOF−CPU401は、TOF−CPU350からの制御信号を受信して走査デバイス400a、400bをそれぞれ駆動する。
フロントカバー304の内周部701上には、台座部702b、702dが設けられている。発光素子309b、309dはFPC306に実装されており、FPC306を接着剤(不図示)等で接着することで、それぞれ台座部702b、702dに固定される。
さらに、レンズ装置200の光軸Oと直交するフロントカバー304の平面部703上には、台座部702a、702cが設けられている。発光素子309a、309cはFPC306に実装されており、FPC306を接着剤(不図示)等で接着することで、それぞれ台座部702a、702cに接着固定されている。
固定ミラー705aは固定ミラーホルダ706aに保持されており、発光素子309bからの照射光354bの光路上に配置される。固定ミラーホルダ706aは、フロントカバー304の外周部707に沿うように配置される。外周部707上には、光軸Oに対して+X側に台座部702eが設けられている。固定ミラーホルダ706aは、台座部702eにおいて、ビス(不図示)等によりフロントカバー304に締結固定されている。
固定ミラー705bは固定ミラーホルダ706bに保持されており、発光素子309dからの照射光354dの光路上に配置される。固定ミラーホルダ706bは、フロントカバー304の外周部707に沿うように配置される。外周部707上には、光軸Oに対して−X側に台座部702fが設けられており、固定ミラーホルダ706bは、台座部702fにおいて、ビス(不図示)等によりフロントカバー304に締結固定されている。
発光素子309aからの照射光354aは、走査デバイス400a内の照射点P1へ直接照射される。また発光素子309cからの照射光354cは、走査デバイス400b内の照射点P2へ直接照射される。
一方で、発光素子309bからの照射光354bは、まず、固定ミラー705aへ向けて照射され、固定ミラー705aで反射された照射光354Bが照射点P1へ照射される。発光素子309dからの照射光354dは、まず、固定ミラー705bへ向けて照射され、固定ミラー705bで反射された照射光354Dが照射点P2へ照射される。
TOF−CPU350の制御信号にしたがって、走査デバイス400aは、照射点P1への照射光354aおよび照射光354Bを走査して、被写体356への照射を行う。走査デバイス400bは、照射点P2への照射光354cおよび照射光354Dを走査して、被写体356への照射を行う。
本実施形態にて、左外装部801は、発光素子309a、309bからの熱に対して、距離検出装置300内部の空気層によって断熱されるので、温度上昇が抑えられる。また、内周部701は、距離検出装置300をレンズ装置200に取り付けた状態では、レンズ装置200と対向して接しているため、ユーザが触れることがない。また右外装部802は、左外装部801と同様に、発光素子309c、309dからの熱に対して、距離検出装置300内部の空気層によって断熱されるので、温度上昇が抑えられる。
本実施形態によれば、ユーザが撮影中に触れる部分が高温とならないため、ユーザへの不利益を生じることがない。すなわち、測距動作時にユーザが触れる部分の温度上昇を抑える効果が得られる。
[第3実施形態]
次に本発明の第3実施形態を説明する。図15は、本実施形態の距離検出装置300の分解斜視図である。距離検出装置300は、フロントカバー304、発光部301、受光部302、FPC306、接続端子307、リアカバー305により構成されている。
発光部301は、複数の発光素子309a〜309d、MEMS方式の走査デバイス400を備える。受光部302は、レンズユニット308と受光素子(TOFセンサ)310を備える。発光素子309a〜309dと受光素子310、TOF−CPU350(図16に図示)は、FPC306と電気的に接続されている。
距離検出装置300を被写体側から見ると、発光素子309a〜309dは、光軸Oを基準としたとき、走査デバイス400よりも距離が短い位置に配置されている(図15参照)。これにより、光軸Oを中心とした円環形状のサイズを小さくすることができるので、距離検出装置300をより小型化することが可能となる。発光素子309a〜309dは距離検出装置300内にてレンズ装置200に接する側(内径側)に配置されているので、測距動作時にユーザが触れる部分の温度上昇を抑制することができる。
図16は本実施形態のカメラシステムの回路構成を示す。図2に示す構成との相違点は、発光部301内にて固定ミラー705が削除されている点である。つまり、発光素子309a〜309dから走査デバイス400に向けて直射光が照射される。
次に図7、図16、図17を参照して、本実施形態に係るTOFシステムについて説明する。発光素子309a〜309dは、TOF−CPU350の制御信号に従い、照射光354A〜354Dによって被写体356を照射する。被写体356からの反射光355は、レンズユニット308で結像され、距離に応じた遅れ時間で受光素子310に到達する。TOF−CPU350は遅れ時間に基づき、カメラシステム1から被写体356までの距離を算出する。
図7(A)に示す照射範囲405a〜405dは、走査デバイス400が反射ミラー402を連続的に揺動させることによって形成される。距離検出装置300は、照射範囲405a〜405dへの照射によって、人物の左上、右上、左下、右下の部分にそれぞれ対応した画角に対して、精度よく被写体距離を取得する。各照射範囲405a〜405dは、互いに間隙を有することなく、連続して形成されている。具体的には、照射範囲405aと照射範囲405bは第1連続部451を介して形成され、照射範囲405aと照射範囲405cは第2連続部452を介して形成されている。照射範囲405dと照射範囲405cは第3連続部453を介して形成され、照射範囲405dと照射範囲405bは第4連続部454を介して形成されている。各照射範囲405a〜405dは互いに異なる第1連続部451、第2連続部452、第3連続部453、第4連続部454で連続して形成されるので隙間がない。よって、照射範囲を効率的に広げることが可能である。更に、第1連続部451と第3連続部453を、対応した撮影画角の水平方向の中心に合わせ、第2連続部452と第4連続部454を、垂直方向の中心に合わせることで、連続した照射範囲405a〜405dを撮影画角の中心に合わせることができる。撮影画角に対する連続部の位置設定については、各発光素子の位置関係によって決定される。図17を参照して、各発光素子の位置関係ついて説明する。
図17は、撮影画角500と発光素子と走査デバイス400の反射ミラー402の関係を模式的に示す図である。図17には、照射範囲405a,405bと、発光素子309a,309bと、照射光354a,354bと、反射光354A,354Bが図示されている。発光素子309aからの照射光354aと、発光素子309bからの照射光354bは、反射ミラー402の照射点Pへ直接照射される。照射点Pへ照射された照射光354aは、反射ミラー402によって反射される。照射点Pを中心とする反射ミラー402の揺動によって反射光354Aが走査されることで照射範囲405aが形成される。同様に、照射点Pへ照射された照射光354bは、反射ミラー402によって反射される。反射ミラー402の揺動によって反射光354Bが走査されることで照射範囲405bが形成される。
図17に示すように、反射ミラー402の照射点Pを起点とする法線Nを対称軸として設定し、照射光354aと照射光354bがなす角度をβと表記する。角度βを2等分した線分をL4と表記し、法線Nに関して線L4と線対称な線分をL5と表記する。線分L5は、撮影画角500の水平方向の中心Hsと略一致するように配置されている。つまり複数の光(354a,354bおよび354A,354B)が照射点Pにてなす角度を2等分する線は対象領域の水平方向の中心を通る。このような関係になる位置を基準として反射ミラー402を揺動させることで、照射範囲405aと照射範囲405bとの間の第1連続部451を、対応した撮影画角の水平方向の中心に合わせて照射範囲を形成することが可能となる。尚、対応した撮影画角の垂直方向の中心に合わせて照射範囲を形成する場合も同様である。
上述のように距離検出装置300は、発光素子309a〜309dから光を同時に照射し、照射範囲405a〜405dへの同時照射によって、被写体である人物全体に対応した画角において、精度よく被写体距離情報を取得する。但し、同時に発光素子309a〜309dから照射光354A〜354Dの照射を行うと、照射光354A〜354D同士が重なった場合に、距離情報の検出精度が低下する可能性がある。そのため、発光素子309a〜309dの照射タイミングをずらして、順番に照射してもよい。
発光素子309a〜309dをすべて用いて照射を行って被写体距離を取得した領域の情報が被写体距離マップ367(図7(B)参照)である。被写体距離を取得した結果、図7(B)に示す距離画像366を得ることができる。図7(B)に示す被写体距離マップ367は、図6(B)の被写体距離マップ364に比べて、距離情報の取得範囲が広い。
走査デバイス400の駆動範囲によっては、発光素子309が1つの場合でも、撮影画角内の任意の範囲を照射する照射方法が可能である。例えば、照射範囲405a〜405dの内、1つの照射範囲を任意に選択して照射することも可能である。
一方、複数の発光素子を使用する場合、距離検出装置300内における組立誤差や部品公差等のバラツキにより各発光素子の位置が所望の位置からずれると、照射範囲同士が連続せずに形成されることが懸念される。例えば、図18(A)に示すように、発光素子309aと発光素子309bとの位置関係が所望の位置関係からずれてしまった場合を想定する。照射範囲405aと照射範囲405bが、互いに間隔470を有して形成されてしまう。その結果、図18(B)に示すように、距離検出装置300によって撮影された距離画像376の被写体距離マップ377に欠落部475が生じる。その回避対策について図19を用いて説明する。
図19では、各照射範囲405a〜405dが互いにオーバーラップ部をもつように形成されている。具体的には、照射範囲405aと照射範囲405bは第1オーバーラップ部461を有して形成されている。この時のオーバーラップ量としては、距離検出装置300内における組立誤差や部品公差等のバラツキを吸収可能な量に設定される。つまり、想定される最大の組立誤差や公差等のバラツキが発生した場合でも、必ず照射範囲同士がオーバーラップする量に設定することが好ましい。なお、オーバーラップ量の設定は、各発光素子の位置関係に基づいて決定される。ここで、各発光素子の位置関係について、図20を参照して説明する。
図20は、被写体面と発光素子309a,309bと走査デバイス400の反射ミラー402の関係を模式的に示す図である。図20には、照射範囲405a,405bと、発光素子309a,309bと、照射光354a,354bと、反射光354A,354Bと、反射ミラーの揺動角α、角度βが図示されている。角度βは照射光354aと照射光354bがなす角度を表す。発光素子309aからの照射光354aと、発光素子309bからの照射光354bは、反射ミラー402の照射点Pへ直接照射される。照射点Pへ照射された照射光354aは、反射ミラー402によって反射される。反射ミラー402の揺動によって、反射光354Aは走査端T1から走査端T2まで走査され、照射範囲405aの水平方向の走査線が形成される。同様に、照射点Pへ照射された照射光354bは、反射ミラー402によって反射される。反射ミラー402の揺動によって、反射光354Bは走査端T3から走査端T4まで走査され、照射範囲405bの水平方向の走査線が形成される。この時、反射ミラー402の揺動角をαとすると、照射光354aと反射光354Aがなす光学的振れ角と、照射光354bと反射光354Bがなす光学的振れ角はαの2倍である。ここで、反射ミラーの揺動角αと、照射光354aと照射光354bがなす角βに着目すると、「2α>β」が成り立つ配置となっている。こうすることで、照射範囲405aと照射範囲405bとの間で第1オーバーラップ部461を形成することが可能となる。
上述のように、各発光素子の配置を調整して照射範囲405aと照射範囲405bとの間に第1オーバーラップ部461を設けることで、図18(B)に示す被写体距離マップ377の欠落部475の発生を防止できる。同様に、照射範囲405aと照射範囲405cとの間には第2オーバーラップ部462を、照射範囲405dと照射範囲405cとの間には第3オーバーラップ部463を形成することができる。照射範囲405dと照射範囲405bとの間には第4オーバーラップ部464を形成することができる。
各照射範囲405a〜405dの間にオーバーラップ部を形成し、欠落のない被写体距離マップを取得可能となるが、オーバーラップ部は、複数の発光素子からの照射光を受けることが可能となる。受光部302に到達する反射光が増えるので、被写体の距離検出の信頼度を向上させることができる。その一方で、オーバーラップ部では同じ範囲を複数の発光素子で照射されることになるので、被写体距離の取得時間が長くなる。これらの事情を考慮して、以下のようにオーバーラップ部を使い分けることが好ましい。
例えば、炎天下での撮影のように、太陽光等の外乱光が強い場合には、TOFシステムの特性上不利な状況になる。そこで各オーバーラップ部を利用して被写体の距離検出の分解能を向上させることができる。また、被写体の凹凸を比較的詳細に取得したい場合(例、被写体の顔等)、被写体検知情報(例、顔検知情報等)に基づいて被写体の検知処理が行われる。当該被写体が所定のオーバーラップ範囲に入っている場合にはオーバーラップ部を利用して被写体の距離検出の分解能を向上させることができる。その他の撮影時には、各照射範囲405a〜405dが互いに重ならないように形成することで、被写体距離の取得時間を短縮可能である。
本実施形態の距離演算部(TOF−CPU350)は被写体を判別して、照射範囲が互いに重なる領域(オーバーラップ部)に対して、距離情報の演算を行うか否かを決定する。また、互いに重ならないように照射範囲を形成する場合、TOF−CPU350はSUB−TOF−CPU401を介して走査デバイス400の反射ミラー402の角度を制御する。TOF−CPU350は撮影条件や被写体の判別結果に応じて照射範囲を制御し、取得した距離情報をカメラ100に送信する。
[第4実施形態]
次に、本発明の第4実施形態を説明する。本実施形態では、走査デバイス400の駆動範囲を制御する場合の距離画像の取得方法について説明する。図21(A)は、レンズ装置200の焦点距離に応じて、走査デバイス400の駆動範囲を制御する例を示す。TOF−CPU350はカメラ100からレンズ装置200の焦点距離情報を取得し、SUB−TOF−CPU401を介して走査デバイス400の反射ミラー402の揺動角度を制御する。
距離検出装置300は、カメラ100およびレンズ装置200とケーブル2を介して通信可能である。レンズ装置200はズーム可能であり、ズーム操作により焦点距離が長く設定された場合を想定する。このときの画角360は、図7(A)の撮像画像358の画角に対して狭くなる。距離検出装置300はレンズ装置200の焦点距離情報に基づき、走査デバイス400の揺動角度を制御して照射範囲を狭める。具体的には、図7(A)で示した照射範囲405a〜405dを、図21(A)の画角360において適用すると、画角外の不要な部分まで測距光が照射されてしまう。そのため、走査デバイス400の揺動角度を小さくすることで、画角に応じて照射範囲406a〜406dのように照射範囲を狭める制御が行われる。その結果、必要十分な照射範囲で被写体距離マップを取得可能である。
次に図21(B)を参照して、画角内の被写体距離情報を簡易走査した後、被写体画像内の着目画素と周辺画素との距離情報の差分が所定の量以上であることを判定し、その領域を詳細走査した場合の距離画像の取得方法を説明する。本実施形態のTOF−CPU350は前記距離情報の差分を算出して、SUB−TOF−CPU401を介して走査デバイス400が有する反射ミラー402の角度、および揺動ピッチ(走査ピッチともいう)を制御する。
被写体356の距離情報を取得する際、照射範囲405a〜405d全体に亘って走査ピッチを粗くして照射が行われ、全体の簡易的な距離マップが取得される。簡易的な距離マップにおいて、例えば被写体人物の顎部領域415や耳部領域416等のように、着目画素と周辺画素との距離情報の差分があらかじめ設定した所定の量(閾値)よりも大きい領域が判定される。そのような領域に対して再度、走査ピッチを密にして照射が行われる。なお、肩部領域418のように、被写体と背景との距離情報の差が極端に大きくなるような領域については、被写体の距離マップの取得に関して必要性に乏しいと判断され、走査ピッチを密にした再走査は行われない。このように、走査ピッチを密にして再走査を行うときの距離情報の差分量は任意に設定可能である。
最初に簡易的な距離マップを取得し、着目画素と周辺画素との距離情報の差分に応じて部分的に詳細な距離マップを取得する処理が実行される。これにより、着目画素と周辺画素との距離情報の差分が極端に大きい領域に対して走査ピッチを密にする必要がないので、被写体の距離マップの取得時間を短縮可能である。
図22(A)および(B)を参照して、被写体が人物である場合に、顔検知や瞳検知による特徴領域の検出結果に応じて、走査デバイス400の駆動範囲を制御する場合の距離画像の取得方法を説明する。撮像画像358を取得する際、カメラ100の測距回路108により、撮像画像における被写体356の顔検知領域419や瞳検知領域420の情報が取得される。つまり測距回路108は被写体の特徴領域を検出する検出手段を構成する。距離検出装置300のTOF−CPU350はカメラ100から被写体の特徴領域(図22(A)の419,420参照)の情報を取得する。TOF−CPU350はSUB−TOF−CPU401を介して、走査デバイス400が有する反射ミラー402の角度を制御する。
本実施形態では撮像画像における被写体の特徴領域の情報に基づいて、顔周辺や瞳周辺等の対象領域を照射し、局所的な被写体距離マップを取得することができる。図22(B)は、顔検知領域419の特徴領域の検出結果に応じて、顔検知領域419に対する局所的な走査により取得された被写体距離マップ378を示す。撮像装置による撮像画像358の特徴領域の検出結果に応じた照射範囲を設定することで、被写体距離マップの取得時間を短縮可能である。走査デバイス400の駆動範囲を制御することで、照射時間および被写体距離マップの取得時間を短縮することができる。また、発光素子309a〜309dの照射時間を短縮できるため、発光素子309a〜309dの発熱量および消費電力の削減が可能である。
以上、本発明の好ましい実施形態について説明したが、本発明は前記実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
100 撮像装置
200 レンズ装置
300 距離検出装置
309a〜d 発光素子
310 受光素子
350 TOF−CPU
400 走査デバイス
402 反射ミラー
705 固定ミラー

Claims (26)

  1. 対象領域を照射光で照射する発光手段と、
    前記照射光を走査する走査手段と、
    前記対象領域上の対象物による、前記照射光の反射光を受光する受光手段と、
    前記発光手段が前記照射光を照射してから前記受光手段が前記反射光を受光するまでの時間に基づいて、前記対象物までの距離を示す距離情報の演算を行う距離演算手段と、を備える距離検出装置であって、
    前記距離検出装置は撮像装置が備えるレンズ装置を取り囲む位置にあって、前記発光手段は前記距離検出装置の内部で前記レンズ装置と接する側に配置される
    ことを特徴とする距離検出装置。
  2. 前記レンズ装置における被写体側の端部に着脱可能である
    ことを特徴とする請求項1に記載の距離検出装置。
  3. 前記対象物の側に配置される固定ミラーを有し、
    前記発光手段からの照射光は、前記固定ミラーを介して前記走査手段へ照射される
    ことを特徴とする請求項1または請求項2に記載の距離検出装置。
  4. 前記受光手段は、前記反射光を受光して距離画像の生成用の信号に光電変換する
    ことを特徴とする請求項1乃至3のいずれか1項に記載の距離検出装置。
  5. 第1および第2の前記発光手段を備え、前記第1の発光手段は前記走査手段へ光を直接照射し、前記第2の発光手段は、前記固定ミラーを介して前記走査手段へ光を照射する
    ことを特徴とする請求項3に記載の距離検出装置。
  6. 前記第2の発光手段は、前記第1の発光手段に比べて前記走査手段から離れた位置にある
    ことを特徴とする請求項5に記載の距離検出装置。
  7. 前記第2の発光手段と前記走査手段とを結ぶ線分の上に、前記距離検出装置の外装部が位置する
    ことを特徴とする請求項5に記載の距離検出装置。
  8. 前記距離検出装置の外装部は、前記対象物と対向する第1の部材と、前記撮像装置と対向する第2の部材とで構成され、
    前記発光手段は前記第1の部材に配置される
    ことを特徴とする請求項1乃至7のいずれか1項に記載の距離検出装置。
  9. 前記発光手段は、前記距離検出装置の内部において、前記撮像装置の把持部と対向する領域内に配置される
    ことを特徴とする請求項8に記載の距離検出装置。
  10. 前記固定ミラーは、前記距離検出装置の中心軸に対して径方向の外周側に配置される
    ことを特徴とする請求項3または請求項5に記載の距離検出装置。
  11. 前記固定ミラーを保持する保持部材を備え、
    前記保持部材は、前記照射光が前記固定ミラーを介して前記走査手段へ照射される光路上に開口部を有する
    ことを特徴とする請求項3、5、6、7、10のいずれか1項に記載の距離検出装置。
  12. 前記照射光が前記固定ミラーを介して前記走査手段へ照射される光路上の位置を調整する調整部材を有する
    ことを特徴とする請求項11に記載の距離検出装置。
  13. 複数の照射光が前記走査手段により走査されることで前記対象領域上に形成されるそれぞれの照射範囲は互いに連続する連続部を有する
    ことを特徴とする請求項1乃至12のいずれか1項に記載の距離検出装置。
  14. 複数の前記発光手段は、複数の前記照射範囲が互いに異なる前記連続部で連続するように配置されている
    ことを特徴とする請求項13に記載の距離検出装置。
  15. 前記走査手段は、揺動可能な反射ミラーを有し、
    複数の前記発光手段の照射光は前記反射ミラーにおける照射点に照射される
    ことを特徴とする請求項13または請求項14に記載の距離検出装置。
  16. 前記反射ミラーの前記照射点を起点とする法線を対称軸として、前記照射点にて前記複数の照射光がなす角度を2等分する線が、前記対象領域の水平方向または垂直方向の中心を通り、前記反射ミラーは前記照射点を中心に揺動する
    ことを特徴とする請求項15に記載の距離検出装置。
  17. 前記発光手段は、前記レンズ装置の光軸に沿う方向から見た場合、前記走査手段よりも前記光軸からの距離が短い位置に配置されている
    ことを特徴とする請求項1乃至16のいずれか1項に記載の距離検出装置。
  18. 前記走査手段が複数の照射光を走査することによって、前記対象領域上に形成されるそれぞれの照射範囲は互いに重なる領域を有する
    ことを特徴とする請求項1乃至12のいずれか1項に記載の距離検出装置。
  19. 前記複数の照射光は前記走査手段が有する反射ミラーにおける照射点に照射され、前記反射ミラーは前記照射点を中心に揺動し、
    前記照射点にて前記複数の照射光がなす角度は、前記反射ミラーの揺動角の2倍よりも小さい
    ことを特徴とする請求項18に記載の距離検出装置。
  20. 前記距離演算手段は、前記照射範囲が互いに重なる領域に対して前記距離情報の演算を行うか否かを決定する
    ことを特徴とする請求項18または請求項19に記載の距離検出装置。
  21. 前記距離演算手段は、複数の照射光が前記走査手段により走査されることで前記対象領域上に形成されるそれぞれの照射範囲が互いに重ならない制御を行う
    ことを特徴とする請求項1乃至12のいずれか1項に記載の距離検出装置。
  22. 前記走査手段は、微小電気−機械システム方式の走査デバイスを有する
    ことを特徴とする請求項1乃至21のいずれか1項に記載の距離検出装置。
  23. 被写体の画像内の領域における着目画素と周辺画素との距離情報の差分を算出し、前記差分を用いて前記走査手段が有する反射ミラーの角度および揺動ピッチを制御する制御手段を備える
    ことを特徴とする請求項1乃至22のいずれか1項に記載の距離検出装置。
  24. 請求項1乃至23のいずれか1項に記載の距離検出装置と、
    前記レンズ装置を介して被写体を撮像する撮像手段と、
    前記撮像手段による画像情報および前記距離情報を用いて画像処理を行う画像処理手段と、を備える
    ことを特徴とする撮像装置。
  25. 前記距離検出装置が備える制御手段は、前記レンズ装置の焦点距離情報によって前記走査手段が有する反射ミラーの角度を制御する
    ことを特徴とする請求項24に記載の撮像装置。
  26. 撮像画像における被写体の特徴領域を検出する検出手段を備え、
    前記距離検出装置は、前記特徴領域の情報を用いて前記走査手段が有する反射ミラーの角度を制御する
    ことを特徴とする請求項24または請求項25に記載の撮像装置。


JP2019134707A 2019-07-22 2019-07-22 距離検出装置および撮像装置 Pending JP2021018174A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019134707A JP2021018174A (ja) 2019-07-22 2019-07-22 距離検出装置および撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019134707A JP2021018174A (ja) 2019-07-22 2019-07-22 距離検出装置および撮像装置

Publications (1)

Publication Number Publication Date
JP2021018174A true JP2021018174A (ja) 2021-02-15

Family

ID=74563133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019134707A Pending JP2021018174A (ja) 2019-07-22 2019-07-22 距離検出装置および撮像装置

Country Status (1)

Country Link
JP (1) JP2021018174A (ja)

Similar Documents

Publication Publication Date Title
TWI471630B (zh) 主動式距離對焦系統及方法
JP5549230B2 (ja) 測距装置、測距用モジュール及びこれを用いた撮像装置
US7405762B2 (en) Camera having AF function
US11846731B2 (en) Distance detection device and imaging apparatus
ES2733311T3 (es) Procedimiento y aparato de procesamiento de enfoque, y dispositivo terminal
JP7156352B2 (ja) 撮像装置、撮像方法、及びプログラム
JP2001272591A (ja) 電子スチルカメラ
JP2014185917A (ja) 撮像装置
JP2001141982A (ja) 電子カメラの自動焦点調節装置
JP2001166360A (ja) 画像記録システムの合焦装置
JP2021018174A (ja) 距離検出装置および撮像装置
JP2001141984A (ja) 電子カメラの自動焦点調節装置
CN216246133U (zh) 结构光投射装置、深度数据测量头和计算设备
JP4865275B2 (ja) 焦点検出装置及び撮像装置
US9588260B2 (en) Microlens substrate and imaging apparatus
JP5278890B2 (ja) 光捕捉追尾装置
CN116250246A (zh) 摄像模组装置、多摄摄像模组、摄像系统、电子设备和自动变焦成像方法
CN115218820A (zh) 结构光投射装置、深度数据测量头、计算设备和测量方法
JP2001141983A (ja) 電子カメラの自動焦点調節装置
EP3783386B1 (en) Distance detection device and imaging apparatus
JP3905696B2 (ja) 3次元画像入力装置
JP2017040704A (ja) 撮像装置および撮影システム
JP2006259078A (ja) 一眼レフカメラのファインダー内表示装置
JP7404157B2 (ja) 表示装置およびその制御方法、撮像装置およびその制御方法
JP2016109824A (ja) 撮像システム、照明装置および撮像装置とその制御方法